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Abstract—(To be considered for an IEEE Jack Keil Wolf ISIT
Student Paper Award.) We present a new algorithm, based on
duality of convex programming and the specific structure of the
channel capacity problem, to iteratively construct upper and
lower bounds for the capacity of memoryless channels having
continuous input and countable output alphabets. Under a mild
assumption on the decay rate of the channel’s tail, explicit bounds
for the approximation error are provided. We demonstrate the
applicability of our result on the discrete-time Poisson channel
having a peak-power input constraint.

I. INTRODUCTION

Since Shannon’s seminal 1948 paper [1], channel capacities
have become a basic concept in information theory. In case
of finite input and output alphabets several methods for
computing the capacity of a memoryless channel have been
studied, among those the well known Blahut-Arimoto algo-
rithm [2], [3]. Mung and Boyd presented an efficient method
to derive upper bounds for the channel capacity, based on
geometric programming and duality of convex programming
[4]. In a companion paper, we proposed an iterative first-order
method for efficiently approximating the capacity using special
smoothing techniques from convex optimization, leading to
explicit error bounds with fast decay rate [5].

All the mentioned methods rely on finiteness of the input
and output alphabets. For memoryless channels, with continu-
ous alphabets, it is in general not clear how to compute or ap-
proximate the capacity. One approach toward this computation
is described by Huang and Meyn in [6]. Their method is based
on cutting planes, where the mutual information is iteratively
approximated by linear functionals. In each iteration step, an
infinite dimensional linear program has to be solved, which
in general is NP-hard [7, p. 16]. It has been shown that their
method converges to the optimal value, however no explicit
error bound is available.

Capacity of Memoryless Channels.— The capacity of a
memoryless channel consisting of an input and output alphabet
X ,Y ⊂ R and a channel, described by the transition density
Pr[Y ∈ dy|X = x] = W (y|x) dy for x ∈ X and y ∈ Y , is
given as

C(W ) = sup
p∈P(X )

I(p,W ) ,

where P(X ) denotes the set of all probability distributions
on X and the mutual information is defined as I(p,W ) :=∫
X D(W (·|x)||(pW )(·)) p( dx). The probability distribution

of the channel output induced by p and W is given by
(pW )(y) :=

∫
X W (y|x)p( dx). The relative entropy is defined

as D(W (·|x)||(pW )(·)) :=
∫
YW (y|x) log W (y|x)

(pW )(y) dy. In most
cases it is essential to introduce additional constraints on the
input distribution in order to obtain physically meaningful
results; more details can be found in [8, Chapter 7]. Two com-
mon input constraints are an average-power constraint and a
peak-power constraint. The average-power constraint requires
that E[s(X)] ≤ S for S ≥ 0, where s : R → R+ denotes
some cost function. The peak-power constraint demands that
with probability one we have X ∈ A for some set A ⊂ X . For
such a setup, i.e., having average and peak-power constraints,
the channel capacity is given by

CA,S(W ) = sup
p∈P(A)

{I(p,W ) : E[s(X)] ≤ S}. (1)

Contributions.— In this paper, we present a new approach
to solve (1) for a countable output alphabet Y ⊂ N and under
a mild assumption on the tail of W (·|x). Our method exploits
the fact that the dual problem of (1) has a particular structure
that allows us to use Nesterov’s smoothing method [9]. In case
of only a peak-power constraint, this leads to an explicit (a
priori) error bound. In addition, the novel method provides
an a posteriori error. This is particularly useful as oftentimes
explicit error bounds are conservative in practice. It is finally
shown, that the class of discrete-time Poisson channels is
an example of channels satisfying the required assumptions.
We demonstrate the performance of the new method for a
particular example of a discrete-time Poisson channel with a
peak-power constraint.

Notation.— All the logarithms in this paper are with respect
to the basis 2. The natural logarithm is denoted by ln(·).
We consider memoryless channels having a continuous input
alphabet X ⊂ R and a countable output alphabet Y ⊂ N. Let
P(X ) denote the space of probability distributions on X and
D(X ) all probability densities on X . For a probability density
p ∈ D(A) with support A ⊂ X we denote the differential
entropy by h(p) := −

∫
A p(x) log p(x) dx. We denote the

maximum between a and b by a∨b. Let 1A(·) be the standard
indicator function of a set A.

II. CAPACITY APPROXIMATION SCHEME

We consider memoryless channels with continuous input
and countable output alphabets. The class of discrete-time



Poisson channels is an example of such channels with par-
ticular interest in applications, for example to model direct
detection optical communication systems [10], [11]. Consider
X ⊂ R as the input alphabet and Y=N as the output alphabet.
The channel is described by the transition density W .

Definition 1 (Polynomial Tail). The channel W features a
k-ordered polynomial tail if for M ∈ N

Rk(M) :=
∑

i≥M

(
sup
x∈X

W (i|x)
)k
<∞. (2)

The following assumptions hold throughout this section.

Assumption 1.
(i) The channel W has a k-ordered polynomial tail for some

k ∈ (0, 1) in the sense of Definition 1.
(ii) The mapping x 7→W (y|x) is continuous for any y ∈ N.

Given a channel W , we introduce an M -truncated version
of the channel by

WM (i|x) :=

{
W (i|x) + 1

M

∑
j≥M

W (j|x), i < M

0, i ≥M.
(3)

WM can be seen as a channel with input alphabet X and
output alphabet {0, 1, . . . ,M−1}. The finiteness of the output
alphabet allows us to derive an approximation scheme, inspired
by [9], to numerically approximate C(WM ). Hence as a first
step, we opt to quantify the capacity of a channel by its M -
truncated version.
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Fig. 1. Pictorial representation of the M -truncated channel counterpart

Theorem 1. Suppose channel W satisfies Assumptions 1 with
the order k ∈ (0, 1]. Then, for any M ∈ N we have

∣∣C(W )−C(WM )
∣∣ ≤ 2 log(e)

e(1− k)

[
M1−k(R1(M)

)k
+Rk(M)

]
,

where Rk(M) is as defined in (2).

Proof: The proof can be found in Appendix A-A.
Let Cb(X ) denote the space of continuous bounded func-

tions and M(X ) the Banach space of finite signed measures
on the Borel σ-algebra on X . We define the bilinear form on
M(X )× Cb(X ) by

〈
µ, u

〉
:=

∫

X
u(x) dµ(x).

Consider a linear Operator W : RM → Cb(X ) and its adjoint
operator W∗ : M(X )→ RM , given by

Wλ(x) :=

M∑

i=1

WM (i− 1|x)λi,

(W∗µ)i :=

∫

X

WM (i− 1|x) dµ(x).

We consider two types of input cost constraints: A peak-power
constraint Pr[X ∈ A] = 1 for some compact set A ⊂ X and
an average-power constraint E[s(X)] ≤ S for some S ∈ R≥0

and s ∈ C(X ).

Proposition 2. The optimization problem (1) is equivalent to

CA,S = sup
p∈D(A)

{I(p,W ) : E[s(X)] ≤ S} . (4)

where D(A) is the space of all probability densities on A.

Proof: The proof can be found in Appendix A-B.
Define r(·) := −∑M−1

j=0 WM (j|·) log(WM (j|·)), which is
an element in Cb(X ) by Assumption 1.

Lemma 3. Let Smax := max
p∈D(A)

Ep
[
s(X)

]
. If S ≥ Smax the

optimization problem (4) with channel WM is equivalent to

P :





sup
p,q

−
〈
p, r
〉

+H(q)

s. t. W∗p = q
p ∈ D(A), q ∈ ∆M .

If S < Smax the optimization problem (4) with channel WM

is equivalent to

P :





sup
p,q

−
〈
p, r
〉

+H(q)

s. t. W∗p = q〈
p, s
〉

= S
p ∈ D(A), q ∈ ∆M .

(5)

Proof: The proof can be found in Appendix A-C.
Thus, problem (1) by following Proposition 2 and Lemma 3,

is equivalent to (with or without additional input constraint〈
p, s
〉

= S, depending on S)

P :





sup
p,q

−
〈
p, r
〉

+H(q)

s. t. W∗p = q〈
p, s
〉

= S
p ∈ D(A), q ∈ ∆M .

(6)

We call (6) the primal program. Its Lagrange dual program is
given by

D : inf
λ∈RM

{G(λ) + F (λ)}, (7)

where

G(λ) =

{
sup

p∈D(A)

〈
p,Wλ

〉
−
〈
p, r
〉

s. t.
〈
p, s
〉

= S,
(8)

F (λ) = max
q∈∆M

{H(q)− λ>q}. (9)

Lemma 4. Strong duality holds between (6) and (7).



Proof: The primal program (6) clearly satisfies Slater’s
condition. Since it is a convex optimization problem, this
implies strong duality.
G(λ) is a linear program and as such non-smooth in λ

in general, which prevents the dual program (7) from being
solved efficiently. Therefore, we consider the smooth approx-
imation

Gν(λ)=

{
sup

p∈D(A)

〈
p,Wλ

〉
−
〈
p, r
〉
+νh(p)−ν log ρ

s.t.
〈
p, s
〉

= S,
(10)

with smoothing parameter ν ∈ R>0 and ρ =
∫
X 1A(x) dx. We

denote by pλν the optimizer to (10), that is unique since the
objective function is strictly concave. Note that h(p) ≤ log ρ
for all p ∈ D(A) and that there exists a function ι : R>0 →
R≥0 such that

Gν(λ) ≤ G(λ) ≤ Gν(λ) + ι(ν) for all λ, (11)

i.e., Gν(λ) is a uniform approximation of the non-smooth
function G(λ). In Lemma 9, for the case of no additional
input cost constraint, an explicit expression for ι is given,
which implies that ι(ν) → 0 as ν → 0. In oder to analyze
(10) we consider the optimization problem

{
sup

p∈D(A)

h(p) +
〈
p, c
〉

s.t.
〈
p, s
〉

= S,
(12)

with c, s ∈ Cb(X ), that has a closed form solution.

Lemma 5. Let p∗(x) = 2µ1+c(x)+µ2s(x), where µ1 and µ2

are chosen such that p∗ satisfies the constraints in (12). Then
p∗ uniquely solves (12).

Proof: The proof can be found in Appendix A-D.
By considering a finite dimensional version of Lemma 5 one

can find the smooth, closed form expression for F (λ) given
by

F (λ) = log

(
M∑

i=1

2−λi

)
. (13)

Furthermore, Lemma 5 implies that Gν(λ) has a (unique)
analytical optimizer

pλν (x, µ) = 2µ1+
1
ν (Wλ(x)−r(x))+µ2s(x), x ∈ A, (14)

where µ1, µ2 ∈ R have to be chosen such that
〈
pλν (·, µ), s

〉
=

S and pλν (·, µ) ∈ D(A). Having chosen µ1, µ2 ∈ R as
described we call the solution pλν .

Remark 1. In case of no input constraint
〈
p, s
〉

= S, the
unique optimizer to (10) is given by

pλν (x) =
2

1
ν (Wλ(x)−r(x))

∫
A 2

1
ν (Wλ(x)−r(x)) dx

,

whose straightforward evaluation is numerically difficult for
small ν. A numerically stable technique to evaluate the above
integral for small ν can be obtained by following the same
lines as in [9, p. 148].

Remark 2. In case of additional input constraints, we seek
for an efficient method to find the coefficients µi in (14). The
problem of finding µi can be reduced to the finite dimensional
convex optimization problem [12, p. 257 ff.]

sup
µ∈R2

{〈
y, µ
〉
−
∫

A
pλν (x, µ) dx

}
, (15)

where y := (1, S). Note that (15) is an unconstrained max-
imization of a concave function. However, unlike the finite
input alphabet case, the evalutation of its gradient and Hessian
involves computing moments of the measure pλν (x, µ) dx,
which we want to avoid in view of computational efficiency. In
the case of having an odd number of moment constraints, there
are efficient numerical schemes known, based on semidefinite
programming, to compute the gradient and Hessian (see [12,
p. 259 ff.] for details).

In the remainder of this paper we impose the following
assumption on the channel W .

Assumption 2. γM := min
x∈A,y<M

WM (x|y) > 0

In case
∑
j≥M W (j|x) > 0 for all x, Assumption 2 holds

according to (3) and a lower bound can be given by γM ≥
1
M minx

∑
j≥M W (j|x).

Lemma 6. Under Assumption 2, the dual program (7) is
equivalent to min

λ∈Q
{G(λ) + F (λ)}, where

Q :=
{
λ ∈ RM : ‖λ‖1 ≤ M

2

(
log(γ−1

M ) ∨ 1
)}

.

Proof: The proof can be found in Appendix A-E.
We can show that the uniform approximation Gν(λ) is

smooth and has a Lipschitz continuous gradient, with known
constant.

Theorem 7. Gν(λ) is well defined and continuously differen-
tiable at any λ ∈ Q. Moreover, this function is convex and
its gradient ∇Gν(λ) = W∗pλν is Lipschitz continuous with
constant Lν = 1

ν .

Proof: The proof can be found in Appendix A-F.
Finally, we consider the smooth, finite dimensional, convex

optimization problem

Dν : min
λ∈Q
{F (λ) +Gν(λ)}, (16)

whose solution can be approximated with Nesterov’s optimal
scheme for smooth optimization [9]. Note that the objective
function has a Lipschitz continuous gradient with constant
Lν ≤ 1 + 1

ν , according to (13) and Theorem 7. For D1 :=

Algorithm 1: Optimal Scheme for Smooth Optimization

For k ≥ 0 do
Step 1: Compute ∇F (λk) +∇Gν(λk)
Step 2: yk = − 1

Lν
(∇F (λk) +∇Gν(λk)) + λk

Step 3: zk = − 1
Lν

∑k
i=0

i+1
2

(∇F (λi) +∇Gν(λi))
Step 4: λk+1 = 2

k+3
zk + k+1

k+3
yk



1
2 (M2 log(γ−1

M ) ∨ 1)2 we have the following result, when
running Algorithm 1 on the problem (16).

Theorem 8. Consider a smoothing parameter ν = ν(n) =
K
n+1 for some positive constant K. Then after n iterations we
can generate approximate solutions to the problems (7) and
(4), namely,

λ̂ = yn ∈ Q, p̂ =

n∑

i=0

2(i+ 1)

(n+ 1)(n+ 2)
pλiν ∈ D(A),

which satisfy the following inequality:

0 ≤ F (λ̂) +G(λ̂)− I(p̂,W )

≤ ι
(

K

n+ 1

)
+

4D1

K(n+ 1)
+

4D1

(n+ 1)2
. (17)

Proof: The theorem can be proven by following the proof
in [9] while using Theorem 7.

Remark 3. By combining Theorem 1 and Theorem 8, we can
quantify the approximation error of the presented method to
find the capacity of any channel W , satisfying Assumptions 1
and 2, by

|C(W )− Capprox(n)|
≤ |C(WM )− Capprox(n)|+ |C(W )− C(WM )| ,

which can be expressed as an a posteriori approximation error

|C(W )− Capprox(n)| ≤
F (λ̂) +G(λ̂)− I(p̂,W )︸ ︷︷ ︸

(?)

+ |C(W )− C(WM )|︸ ︷︷ ︸
(??)

,

where |C(W )− C(WM )| is given by Theorem 1.

Remark 4. Given a fixed number of iterations, the term (?)
above is effected by the truncation level M for two reasons:
the higher M the larger the size of the output as well as the
lower the parameter γM . Therefore, term (?) increases as M
increases. On the other hand, term (??) obviously has the
opposite behavior. Namely, the higher M leads to the better
approximation of the channel W by the truncated version
WM as defined in (3). Hence, given a channel W with the
polynomial tail order k, there is an optimal value for the
truncation parameter M , which thanks to the monotonicity
explained above can be effectively computed in practice by
techniques such as bisection.

A. Without Average-Power Constraint

In this subsection we discuss the setting considering only a
peak-power constraint. Here our proposed methodology allows
us to access a closed form expression for Gν(λ) in (10) and
its gradient

Gν(λ) = ν log

(∫

A
2

1
ν (Wλ(x)−r(x)) dx

)
− ν log ρ (18)

and

∇Gν(λ) =

∫
A 2

1
ν (Wλ(x)−r(x))WM (·|x) dx∫
A 2

1
ν (Wλ(x)−r(x)) dx

.

The following lemma gives an explicit expression for the
function ι in (11). Note that fλ(·) is Lipschitz continuous,
uniformly in λ, by Assumption 2 and (3). Let L denote the
Lipschitz constant.

Lemma 9. In case of only a peak-power constraint, a possible
choice of the function ι in (11) is given by

ι(ν) =

{
ν
(

log
(
Lρ
ν

)
+ 1
)
, ν < Lρ

ν, otherwise,

where ρ :=
∫
X 1A dx.

Proof: The proof can be found in Appendix A-G.

Remark 5. Using Lemma 9, (17) provides an explicit error
bound and implies that the duality gap vanishes in the limit
n→∞, which shows that we approach the capacity of WM .

Remark 6. By (11) and Theorem 8

0 ≤ F (λ̂) +Gν(λ̂) + ι(ν)− I(p̂,W )

≤ ι(ν) +
4

n+ 1

√
D1D2 +

4D1

(n+ 1)2
, (19)

which means that F (λ̂) +Gν(λ̂) + ι(ν) is an upper bound for
the channel capacity with a priori error (19). This bound can
be particularly helpful in cases where an evaluation of G(λ)
for a given λ is hard.

III. DISCRETE-TIME POISSON CHANNEL

The discrete-time Poisson channel is a mapping from R≥0

to N, such that conditioned on the input x ≥ 0 the output is
Poisson distributed with mean x+ η, i.e.,

W (y|x) = e−(x+η) (x+ η)y

y!
, y ∈ N, x ∈ R≥0, (20)

where η ≥ 0 denotes a constant sometimes referred to as dark
current. A peak-power constraint on the transmitter is given
by the peak-input constraint X ≤ A with probability one, i.e.,
A = [0, A] and an average-power constraint on the transmitter
is considered by E[X] ≤ S.

Up to now, no analytic expression for the capacity of a
discrete-time Poisson channel is known. However, for different
scenarios lower and upper bounds exist. For the presence of
only an average-power constraint, lower and upper bounds
have been introduced in [13], [14]. In [15], for a peak-
power and/or an average-power constraint, a lower bound
and an asymptotic upper bound have been determined. The
asymptotic upper bound contains an unknown error term that
vanishes in the limit A → ∞. In this section, we show
how to use the methods developed in the preceding section,
to approximate the capacity of a Poisson channel for the
presence of only a peak-power constraint. In other words, we
derive iterative lower and upper bounds that coincide when
performing an infinite number of iterations and come very
close for a finite number of iterations.

The following proposition provides an upper bound for the
k-polynomial tail of the Poisson channel W as defined in (20).



Proposition 10 (Poisson Tail). The Poisson channel defined
in (20) having a bounded input alphabet X = [0, A] and dark
current parameter η has a k-polynomial tail for any k ∈ (0, 1]
in the sense of Definition 1, which is upper bounded for all
M ≥ A+ η by

Rk(M) ≤
(
αe(α−1)(A+η) (A+ η)M

M !

)k
, α := 2(k−1−1).

Proof: The proof can be found in Appendix A-H.
We present an example to illustrate the theoretical results de-

veloped in the preceding section and their performance. First,
note that for the discrete-time Poisson channel Assumption 2
clearly holds.

Example 1. Consider a discrete-time Poisson channel W as
defined in (20) with a peak-power constraint A and a dark
current η = 3. Up to now, the best known lower bound for
the capacity is given by [15, Theorem 4]

CA(W ) ≥ 1

ln 2

(
1

2
lnA+

(
A

3
+ 1

)
ln

(
1 +

3

A

)
− 1

−

√
µ+ 1

12

A

(
π

4
+

1

2
ln 2

)
− 1

2
ln
πe

2


. (21)

Due to the best of our knowledge no explicit upper bound for
the capacity is known. According to Theorems 1 and 8, the
algorithm introduced in this paper leads to an approximation
error after n iterations that is given by

|Capprox(n)− CA(W )| ≤ F (λ̂) +G(λ̂)− I(p̂,W ) + E ,

where E = 2 log(e)
e(1−k) [M1−k(R1(M)

)k
+ Rk(M)], R`(M) =

(αe(α−1)(A+η) (A+η)M

M ! )` and α := 2(`−1−1) for any ` ∈ (0, 1].
This finally leads to the following upper and lower bounds for
C(W )

2I(p̂,W )−
(
F (λ̂) +G(λ̂)

)
− E ≤ CA(W ) (22)

≤ 2
(
F (λ̂) +G(λ̂)

)
− I(p̂,W ) + E . (23)

IV. CONCLUSION

In this paper we introduced a method to approximate the
capacity for a large class of memoryless channels with a
continuous input and a countable output alphabet. The key idea
is to deploy the duality theory of convex programming together
with a smoothing technique, which leads to entropy maxi-
mization problems whose analytical solutions are available.
By invoking this favourable structure, the dual program can
be seen as a finite dimensional convex optimization problem,
which we solve with an efficient fast gradient method leading
to explicit bounds on the approximation error.
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APPENDIX A
PROOFS

A. Proof of Theorem 1

To prove Theorem 1 we need a preliminary lemma.

Lemma 11. Given k ∈ (0, 1) and p ∈ [0, 1], we have for all
x ∈ [0, 1− p]

∣∣(p+ x) log(p+ x)− p log p
∣∣ ≤ log(e)

e(1− k)
xk.

Proof: Note that for a fixed x ∈ [0, 1], the mapping p 7→
(p+x) log(p+x)−p log p is non-decreasing; observe that the
derivative of the mapping is non-negative for each x ∈ [0, 1].
Therefore, it suffices to verify the claim for p ∈ {0, 1}. For
p = 1 and accordingly x = 0, Lemma 11 holds trivially. Let
p = 0 and h(x) := log(e)

e(1−k)x
k−1 + log x. Note that h(1) =

log(e)
e(1−k) > 0 and h(x) → ∞ as x → 0. Hence, by setting
d

dxh(x?) = 0, it can be easily seen that

min
x∈(0,1]

h(x) = h(x?) = 0, x? := e
1
k−1 .

Thus h(x) ≥ 0, and consequently xh(x) ≥ 0 for all x ∈ (0, 1],
which concludes the proof.

Proof of Theorem 1: Note that

|C(W )− C(WM )| =
∣∣ max
p∈P(X )

I(p,W )− max
p∈P(X )

I(p,WM )
∣∣

≤ max
p∈P(X )

∣∣I(p,W )− I(p,WM )
∣∣.



It thus suffices to bound the mutual information difference
uniformly in the input probability distribution p ∈ P(X ).
Observe that
∣∣I(p,W )− I(p,WM )

∣∣

=

∣∣∣∣
∫

X

[
− h
(
W (·, x)

)
+ h
(
WM (·, x)

)]
p( dx)

+ h
(∫

X
W (·, x)p( dx)

)
− h
(∫

X
WM (·, x)p( dx)

)∣∣∣∣

=

∣∣∣∣
∫

X

[∑

i∈N
W (i|x) log(W (i|x))

−WM (i|x) log(WM (i|x))
]
p( dx)

+
∑

i∈N
−
(∫

X
W (i|x)p( dx)

)
log
(∫

X
W (i|x)p( dx)

)

+
(∫

X
WM (i|x)p( dx)

)
log
(∫

X
WM (i|x)p( dx)

)∣∣∣∣.

By the definition of the truncated channel in (3) and applying
Lemma 11 to the above relation, we have

∣∣I(p,W )− I(p,WM )
∣∣

≤ log(e)

e(1− k)

(∫

X

[ ∑

i<M

( 1

M

∑

j≥M

W (j|x)
)k

+
∑

i≥M

(
W (i|x)

)k
]
p( dx)

+
∑

i<M

( 1

M

∑

j≥M

∫

X
W (j|x)p( dx)

)k

+
∑

i≥M

(∫

X
W (i|x)p( dx)

)k)

≤ 2 log(e)

e(1− k)

(
M
(R1(M)

M

)k
+Rk(M)

)
,

which concludes the proof.

B. Proof of Proposition 2

Lemma 2 can be shown by proving that the optimization
problem (1) is equivalent to

CA,S = sup
p∈D(A)

{I(p,W ) : E[s(X)] ≤ S} ,

where D(A) is the space of probability measures on A that are
absolutely continuous with respect to the Lebesgue measure.

It is known that the mapping p 7→ I(p,W ) is weakly
lower semicontinuous [16]. It then suffices to show that
D(A) is weakly dense in P(A). Let B be a countable dense
subset of A, and ∆(B) be the family of probability measures
whose supports are finite subsets of B. It is well known that
∆(B) is weakly dense in P(A), i.e., P(A) = ∆(B) [17,
Theorem 4, p. 237], where ∆ is the weak closure of ∆.
Moreover, thanks to the Lebesgue differentiation theorem [18,
Theorem 3.21, p. 98], we know that for any b ∈ B the point
measure δ{b} ∈ ∆(B) can be arbitrarily weakly approximated
by measures in D(A), i.e., δ{b} ∈ D(A). Hence, we have

∆(B) = D(A), which in light of the preceding assertion
implies P(A) = D(A).

C. Proof of Lemma 3

In a first step, note that the mutual information I(p,W ) can
be expressed as

I(p,W ) =

∫

A

M−1∑

j=0

WM (j|x)p(x) log

(
WM (j|x)∫

AWM (j|z)p(z) dz

)
dx

=

∫

A

M−1∑

j=0

[WM (j|x)p(x) logWM (j|x)

−WM (j|x)p(x) log

(∫

A
WM (j|z)p(z) dz

)]
dx

By adding the constraint
∫
A p(x)WM (j|x) dx = qj for all

j = 0, . . . ,M − 1,

I(p,W ) =

∫

A

M−1∑

j=0

[WM (j|x)p(x) logWM (j|x)

−
M−1∑

j=0

qj log qj

= −
〈
p, r
〉

+H(q),

where p ∈ D(A). In a second step we consider now the
input constraints. Let Smax := maxp∈D(A) E[s(X)]. We can
simplify the input cost constraint in optimization problem (4)
as follows.

Lemma 12. If S ≥ Smax we can remove the input cost
constraint. If S < Smax we can assume equality in the input
cost constraint.

Proof: By definition of Smax it is obvious that the input
cost constraint is inactive for S ≥ Smax. In the following we
assume S < Smax and denote CS by C(S). We first prove that
C(S) is a concave function. Let S(1), S(2) ≥ 0, 0 ≤ λ ≤ 1 and
p(i) being a probability mass function that achieves C(S(i))
for i ∈ {1, 2}. Consider the probability mass function p(λ) =
λp(1) + (1− λ)p(2). We can write

Ep(λ)
[
s(X)

]
= λEp(1)

[
s(X)

]
+ (1− λ)Ep(2)

[
s(X)

]

≤ λS(1) + (1− λ)S(2)

=: S(λ). (24)

Using the concavity of the mutual information in the input
distribution, we obtain

λC(S(1)) + (1− λ)C(S(2)) = λI
(
X(1), Y

)
+ (1− λ)I

(
X(2), Y

)

≤ I
(
X(λ), Y

)

≤ C(S(λ)),

where the final inequality follows by definition. Note that
S(λ) is feasible has been shown in (24). Note that C(S)
non-decreasing in S, since enlarging S relaxes the input cost
constraint. Furthermore, C(S) is not constant in S in the



presence of an active input-cost constraint. Thus, together
with the concavity of C(S) this implies that C(S) is strictly
increasing in S. Assume that C(S) is achieved for some p∗

such that Ep∗
[
s(X)

]
= S̃ < S. Then,

C(S̃) := max
p:E[s(X)]≤S̃

I(X,Y ) ≥ I(X∗, Y ) = C(S),

which is a contradiction since C(S) is strictly increasing in
S.

D. Proof of Lemma 5

This proof is similar to the proof given in [19, Theo-
rem 12.1.1]. Let q satisfy the constraints in (12). Then

J(q) = h(q) +
〈
q, c
〉

= −
∫
q(x) log q(x) dx+

〈
q, c
〉

= −
∫
q(x) log

(
q(x)

p∗(x)
p∗(x)

)
dx+

〈
q, c
〉

= −D(q||p∗)−
∫
q(x) log p∗(x) dx+

〈
q, c
〉

≤ −
∫
q(x) log p∗(x) dx+

〈
q, c
〉

(25)

= −
∫
q(x) (µ1 + µ2s(x)) dx (26)

= −
∫
p∗(x) (µ1 + µ2s(x)) dx

〈
p∗, c

〉
−
〈
p∗, c

〉
(27)

= −
∫
p∗(x) log p∗(x) dx+

〈
p∗, c

〉
= J(p∗).

The inequality follows form the non-negativity of the relative
entropy. Equality (26) follows by the definition of p∗ and (27)
uses the fact that both p∗ and q satisfy the constraints in (12).
Note that equality holds in (25) if and only if q = p∗. This
proves the uniqueness.

E. Proof of Lemma 6

Consider the following two convex optimization problems

Pβ :





max
p,q,ε

−
〈
p, r
〉

+H(q)− βε
s.t. |W∗p− q| ≤ ε1〈

p, s
〉

= S
p ∈ D(A), q ∈ ∆M , ε ∈ R≥0

and

Dβ :





min
λ

F (λ) +G(λ)

s.t. ‖λ‖1 ≤ β
2

λ ∈ RM ,

which are duals of each other and strong duality holds as the
existence of a Slater point is obviously guaranteed. Denote by
ε∗(β) the optimizer of Pβ with the respective optimal value
J∗β . The main idea of the proof is to show that for a sufficiently
large β, which we will quantify in the following, the optimizer
ε∗(β) of Pβ is equal to zero. That is, in light of the duality
relation, the constraint ‖λ‖1 ≤ β

2 in Dβ is inactive and as such

Dβ is equivalent to D. Note that for

J(ε) :=





max
p,q

−
〈
p, r
〉

+H(q)

s.t. |W∗p− q| ≤ ε1〈
p, s
〉

= S
p ∈ D(A), q ∈ ∆M ,

(28)

the mapping ε 7→ J(ε), the so-called perturbation function, is
concave [20, p. 268]. In the next step we write the optimization
problem (28) in another equivalent form

J(ε) =





max
p,v

−
〈
p, r
〉

+H(W∗p+ εv)

s.t. ‖v‖∞ ≤ 1〈
p, s
〉

= S
p ∈ D(A), v ∈ RM .

(29)

By using Taylor’s theorem, there exists y ∈ [0, ε] such that the
entropy term in the objective function of (29) can be bounded
as

H(W∗p+ εv)

= H(W∗p)− (log(W∗p) + 1)
>
vε

−
M∑

j=1

v2
j

(W∗p)j + yvj
ε2

≤ H(W∗p)− (log(W∗p) + 1)
>
vε+

M

γ
ε2. (30)

Thus, the optimal value of problem Pβ can be expressed as

J∗β ≤ max
ε
{J(ε)− βε}

≤ max
ε

{
max
p,v

[
−
〈
p, r
〉

+H(W∗p) (31a)

− (log(W∗p) + 1)
>
vε :

〈
p, s
〉

= S
]

+
M

γ
ε2 − βε

}

≤ max
ε

{
max
p,v

[
−r>p+H(W∗p) :

〈
p, s
〉

= S
]

+(ρ− β)ε+
M

γ
ε2

}
(31b)

= J(0) + max
ε

{
(ρ− β)ε+

M

γ
ε2

}
, (31c)

where ρ = M
(
log(γ−1) ∨ 1

)
. Note that (31a) follows

from (29) and (30). The equation (31b) uses the fact that
− (log(W∗p) + 1)

>
v ≤ M

(
log(γ−1) ∨ 1

)
. Thus, for β > ρ

and ε1 = γ
M (ρ − β), we have max

ε≤ε1

{
(ρ− β)ε+ M

γ ε
2
}

= 0.

Therefore, (31c) together with the concavity of the mapping
ε 7→ J(ε) implies that J(0) is the global optimum of J(ε) and
as such ε∗(β) = 0 for β > ρ, indicating that Pβ is equivalent
to P.

F. Proof of Theorem 7

To prove Theorem 7 we need a preliminary lemma.

Lemma 13. The function d : D(A) → R≥0, p 7→ −h(p) +
log(ρ) as introduced in (10) is strongly convex with convexity
parameter σ = 1.



Proof: The proof follows the ideas of [9]. It can easily
be shown that

〈
d′′(p) · g, g

〉
=

∫

A

g(x)2

p(x)
dx.

Cauchy-Schwarz then implies

〈
d′′(p) · g, g

〉
≥
(∫

A g(x) dx
)2

∫
A p(x) dx

= ‖g‖2 .

Proof of Theorem 7: It is known according to Theo-
rem 5.1 in [21], that Gν(λ) is well defined and continuously
differentiable at any λ ∈ Q and that this function is convex and
its gradient ∇Gν(λ) = W∗pλν is Lipschitz continuous with
constant Lν = 1

ν ‖W‖
2, where we have also used Lemma 13.

The operator norm can be simplified to

‖W‖ = sup
λ∈RM ,p∈P(X )

{〈
Wλ, p

〉
: ‖λ‖2 = 1, ‖p‖1 = 1

}

≤ sup
λ∈RM ,p∈P(X )

{‖W∗p‖2 ‖λ‖2 : ‖λ‖2 = 1, ‖p‖1 = 1}

≤ sup
p∈P(X )

{‖W∗p‖1 : ‖p‖1 = 1}

= sup
p∈P(X )

{
M−1∑

i=0

∫

X
WM (i|x)p(x) dx : ‖p‖1 = 1

}

= sup
p∈P(X )

{∫

X
‖WM (·|x)‖1 p(x) dx : ‖p‖1 = 1

}

≤ sup
x∈X
‖WM (·|x)‖1

≤ 1.

G. Proof of Lemma 9

We start by the following definitions that simplify the proof
below

fλ(x) :=Wλ(x)− r(x),

f̄λ := sup
x∈A

fλ(x)

Bε(λ) :=
{
x ∈ A | f̄λ − fλ(x) < ε

}
,

ηε(λ) :=

∫

Bε(λ)

dx.

Then we get the uniform lower bound

ηε(λ) ≤ ε
L ∧ ρ. (32)

G(λ)−Gν(λ)

≤ f̄λ −Gν(λ) (33a)

= ν

(
− log

(∫

Bε(λ)

2
1
ν (fλ(x)−f̄λ) dx

+

∫

Bc
ε(λ)

2
1
ν (fλ(x)−f̄λ) dx

)
+ log ρ

)
(33b)

≤ ν
(
− log

(∫

Bε(λ)

2
1
ν (fλ(x)−f̄λ) dx

)
+ log ρ

)

≤ ν
(
− log

(
ηε(λ)2−

ε
ν

)
+ log ρ

)
(33c)

≤ ν
(
− log

(
ε
L ∧ ρ

)
+
ε

ν
+ log ρ

)
(33d)

= ν log

(
Lρ

ε
∨ 1

)
+ ε,

where (33a) follows from (8) and (33b) is due to (18). The
inequality (33c) results from the definitions of Bε(λ) and
ηε(λ) above and (33d) is implied by (32). Finally, it can be
seen that for small enough ν, the optimal choice for ε is ν,
which concludes the proof.

H. Proof of Proposition 10

To prove Proposition 10, we need two lemmas.

Lemma 14. For any k ∈ (0, 1] and a, b ≥ 0

ak + bk ≤ 21−k(a+ b)k.

Proof: Let h(x) := 21−k(1 + x)k − xk. By setting
d

dxh(x?) = 0, one can easily see that x? = 1 is the minimizer
of function h over the interval [0, 1], i.e., h(x) ≥ h(1) = 1 for
all x ∈ [0, 1]. Suppose, without loss of generality, that a ≥ b.
By virtue of the preceding result of function h, we know that

1 ≤ h
( b
a

)
= 21−k

(
1 +

b

a

)k
−
( b
a

)k
,

where by multiplying ak it readily leads to the desired asser-
tion.

Lemma 15. Let (ai)i∈N be a non-negative sequence of real
numbers. For any k ∈ (0, 1]

∑

i∈N
aki ≤

(∑

i∈N
αiai

)k
, α := 2(k−1−1).

Proof: For the proof we make use of an induction
argument. Note that for any a1 ≥ 0 it trivially holds that ak1 ≤
21−kak1 . We now assume that for any sequence (ai)

N
i=1 ⊂ R≥0

we have

N∑

i=1

aki ≤
( N∑

i=1

2(k−1−1)iai

)k
. (34)



Let (ai)
N+1
i=1 ⊂ R≥0. Then,

N+1∑

i=1

aki = ak1 +

N+1∑

i=2

aki ≤ ak1 +
(N+1∑

i=2

2(k−1−1)(i−1)ai

)k

(35)

≤ 21−k
(
a1 +

N+1∑

i=2

2(k−1−1)(i−1)ai

)k
(36)

=
(

2(k−1−1)a1 +

N+1∑

i=2

2(k−1−1)iai

)k

=
(N+1∑

i=1

2(k−1−1)iai

)k
,

where (35) (resp. (36)) follows from (34) (resp. Lemma 14).

Proof of Proposition 10: It is straightforward to see that

max
x∈[0,A]

e−xxi = e−min{A,i}(min{A, i}
)i
. (37)

Moreover, based on a Taylor series expansion, it is well known
that for all M ∈ N and x ∈ R≥0

∑

i≥M

xi

i!
≤ ex

M !
xM . (38)

Therefore, it follows that

Rk(M) :=
∑

i≥M

(
sup

x∈[0,A]

e−(x+η) (x+ η)i

i!

)k

≤
∑

i≥M

(
e−(A+η) (A+ η)i

i!

)k
(39a)

≤e−k(A+η)
( ∑

i≥M

α(i−M+1) (A+ η)i

i!

)k
(39b)

=
e−k(A+η)

αk(M−1)

( ∑

i≥M

(
α(A+ η)

)i

i!

)k

≤e−k(A+η)

αk(M−1)

(eα(A+η)

M !
αM (A+ η)M

)k
(39c)

=
(
αe(α−1)(A+η) (A+ η)M

M !

)k
,

where (39a) results from (37) and the assumption M ≥ A+η,
and (39b) (resp. (39c)) follows from Lemma 15 (resp. (38)).
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