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Abstract— In this paper we investigate lagrangian duality for
a class of mixed integer programs which is of wide practical
interest as it appears in many application domains, such as
power systems or logistics. For this problem structure, we
provide a new solution method that is simple to implement, is
distributable and has convergence and performance guarantees.
To obtain it, we borrow ideas and results from the convex
optimization field, and exploit the special geometric features
arising from the specific structure studied. The performance
bound indicates that the quality of the solutions recovered
improves as the size of the problem increases, making it
particularly useful for very large instances. We verify the
efficacy of the proposed method on industrial-sized instances
of a problem stemming from supply chain optimization.

I. INTRODUCTION

In this paper we investigate mixed integer optimization
programs in the form

minimize
x

∑
i∈I

c>i xi

subject to
∑
i∈I

Hixi ≤ b

xi ∈ Xi ∀i ∈ I,

(P)

in which the sets Xi are mixed integer polyhedral sets that
can be written as

Xi =
{
x ∈ Rri × Zzi

∣∣ Aix ≤ di} ,
for some given Ai ∈ Rmi×ni , where ni = ri+zi, di ∈ Rmi ,
and the coupling constraints are determined by the matrices
Hi ∈ Rm×ni and the vector b ∈ Rm.
The structure given in P can be thought of as modeling
problems in which a large number of local subsystems Xi,
whose description can contain discrete variables, is coupled
through a relatively small number of constraints budgeted by
the resource vector b. We are particularly interested in large
scale instances of this problem, i.e., instances for which the
number of subsystems included – the cardinality of the index
set I – is significantly larger than m, the number of coupling
constraints.
Such instances arise in a variety of application domains. The
simplest examples are traditional combinatorial programs,
such as the knapsack problem, in which Xi = {0, 1},
ci ≥ 0 and Hi ≥ 0. More detailed models appear, for
instance, in power systems control. Here the subsystems are
the generators to be controlled, integer variables arise due
to start-up or shut-down costs, and the coupling constraints
are related to the requirement that production must match
the load [20]. Portfolio optimization problems for small
investors, in which integer variables are used to encode
various investment frictions, is another example application
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in which models fitting P have been proposed [4]. Problems
structured as P are also considered in the literature on
network utility maximization [16]. In this paper we study
an application from supply chains related to the problem
of partial shipments, discussed in [10], [3]. Finally, many
problems that do not naturally possess the structure of P can
be brought back to it by adequate permutations of the rows
and columns of the constraint matrices. In [5], the authors
discuss algorithms to automate this procedure.
Lagrangian duality is a particularly useful framework in this
context, because it allows one to separate P . However, in
contrast to the convex case, duality in the mixed integer
case is known to be generally unable to produce optimal
solutions directly. In fact, primal solutions recovered may
even be infeasible (we illustrate this issue with an example
in Section II). It is for this reason that, often, duality in the
mixed integer case is only used to produce tight lower bounds
to the optimal objective of P .
In this paper we show that, owing to its geometric structural
properties, it is indeed possible to recover a good, feasible
primal solution to P from its dual.

Previous Results and Current Contribution

Duality for the specific structure in P has been already
investigated. In [2] the authors show that as the size of
the problem is increased by adding subsystems, the duality
gap vanishes. This indicates that as the size of the problem
increases, it more closely resembles a convex program.
In practical applications, vanishing duality gap has been
observed in the context of power systems [7]. It also appears
in the literature for multistage stochastic programs [9], [8],
where it is used to assert that for the problem structures
of interest there, lagrangian duality is almost strong, but in
which no further relation is derived in order to retrieve primal
solutions. Another example is in the field of communications,
in problems related to multicarrier systems optimization,
where the duality gap arises due to non-convexity of the ob-
jective function rather than the presence of integer variables
[21].
Here we further investigate duality for problem P . The main
contributions of this paper are the following:

• We propose a method to solve the mixed-integer pro-
gram P with convergence guarantees, borrowing ideas
and results from the convex literature, in particular a
primal recovery scheme based on averaging.

• From an application point of view, we assess the
performance of the proposed method on a problem
stemming from supply chain optimization. General pur-
pose solvers are unable to solve these models, and our
results indicate that our proposed method is an attractive
alternative.

The paper is structured as follows: in Section II we briefly



introduce duality and discuss special geometric properties
arising from the specific structure of P . Based on these
geometric properties, in Section III we propose a solution
algorithm with convergence and performance guarantees. In
Section IV we verify its efficacy on a model stemming from
supply chains.

Notation

Given an optimization problem A, we indicate with J?A its
optimal objective value and with JA(x) the performance
of the solution x with respect to the objective function of
A. For a given set X , we denote by conv(X) its convex
hull and by vert(X) the set of vertices of conv(X). The
inequality sign “≥” used between vectors (or matrices) is
always intended component-wise. In the algorithms, we use
brackets to indicate iterations, e.g., λ[k] is the value of the
variable λ at iteration k. In order to avoid confusion of sub-
and superscripts when describing particular subsystems we
use parentheses, e.g., we denote by (xLP)i the part of (xLP)
related to subsystem i ∈ I . With U [a, b] we denote the
uniform distribution between a and b. We indicate with |I|
the cardinality of the set I .

II. EXPLOITING THE SPECIAL FEATURES OF P USING
DUALITY

In the Lagrangian duality framework, we relax (or dualize)
the coupling constraints of P in the objective, leading to the
following dual function

d(λ)
.
= min

x∈X

(∑
i∈I

c>i xi + λ>(
∑
i∈I

Hixi − b)
)
.

The dual function is known to provide lower bounds to the
objective of P , i.e., d(λ) ≤ J?P for all λ � 0. We are
then interested in the best (largest) lower bound duality can
provide, which is why we pose the following dual problem
(after some algebraic reorganization){

sup
λ
−λ>b+

∑
i∈I

min
xi∈Xi

(
c>i xi + λ>Hixi

)
s.t. λ � 0.

(D)

When we solve the dual (outer maximization) problem in D
using an iterative algorithm, at each iterate λ[k] we have to
solve the following inner minimization problem∑

i∈I
min
xi∈Xi

(
c>i xi + (λ[k])>Hixi

)
. (1)

The central object of this paper are the solutions of this
inner problem (1). These are of substantial practical interest,
because they are obtained as by–products of methods used to
solve D, and because they are computed in a distributed fash-
ion. Notice in fact that solving the inner problem amounts
to solving a collection of |I| decoupled minimizations. We
thus denote by X (λ) the set of minimizers of (1) for some
λ. An inner solution is then any selection from X (λ), and it
is denoted by x(λ). Here we are particularly interested in the
behavior of x(λ) when λ[k] → λ?, where λ? is an optimizer
of the dual problem.
It is well known that for problems affected by a duality gap
(i.e., for which J?D < J?P ), these solutions are usually non-
unique, suboptimal, even infeasible, and hence inadequate

candidates for solving the primal problem. We illustrate this
with an example.
Example 1: Consider the following problem:

minimize −x1
subject to x1 − x2 ≤ 0.5

x1 + x2 ≤ 1.5
x1 ∈ X1, x2 ∈ X2

(2)

with Xi = {xi ∈ Z | 0 ≤ xi ≤ 1} , i = 1, 2. Figure 1(a)
depicts its geometry. The only two feasible (and also optimal)
points for this problem are (x1, x2) = (0, 0) and (0, 1).
Relaxing the constraints x1 − x2 ≤ 0.5 and x1 + x2 ≤ 1.5,
and introducing the corresponding multipliers (λ1, λ2) � 0,
leads to the dual function

d(λ) =


−0.5λ1 + 0.5λ2 − 1 λ ∈ 1©
−1.5λ1 − 0.5λ2 λ ∈ 2©
−0.5λ1 − 1.5λ2 λ ∈ 3©
+0.5λ1 − 0.5λ2 − 1 λ ∈ 4©,

where the regions are arranged according to Figure 1(b). It
can be seen that any point on the intersection of regions 1
and 4 attains the largest value for the dual function, and is
therefore a solution for the dual problem, i.e.,[

λ?1
λ?2

]
=

[
1
1

]
· θ, θ ∈ [0, 0.5]. (3)

For any θ ∈ [0, 0.5) the set of primal solutions recovered is

X1(λ?) = arg min
x1∈X1

{x1(λ∗1 + λ∗2 − 1)} = {1}

X2(λ?) = arg min
x2∈X2

{x2(−λ∗1 + λ∗2)} = {0, 1} .

Thus, at these dual optimizers, the inner solution is non-
unique, and for any selection made, e.g. x1(λ∗) = 1 ∈
X1(λ∗) and x2(λ?) = 0 ∈ X2(λ?), the pair (x1(λ?), x2(λ?))
is infeasible for problem (2).
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Fig. 1. Illustrations of Example 1.



Our objective in this paper is to provide a method for
recovering good and feasible solutions for the particular
structure of P from the inner solutions x(λ).

A. A convexification of P and its structure

It is known that lagrangian duality for mixed integer pro-
grams is tightly related to the following convexification of
the primal problem

minimize
x

∑
i∈I

c>i xi

subject to
∑
i∈I

Hixi ≤ b

xi ∈ conv(Xi) ∀i ∈ I.

(PLP)

It is in fact well known that PLP satisfies the (non-obvious)
relation J?PLP

= J?D [11, Thm. 1d]. Note that we do not
usually have direct access to PLP because we do not have an
explicit description of conv(Xi). It must also be emphasized
that while PLP is a linear program, it does not coincide with
the traditional linear relaxation obtained when relaxing the
integrality constraints in Xi to an interval. In fact, PLP is
usually tighter [11, Thm. 1a].
In this paper we will exploit the fact that it is possible to
recover a solution to PLP, denoted by x?LP, when solving
D. For this, we borrow a method from convex optimization
which was initially proposed in [18]. We will outline this
method in the next section. For the moment, notice that
a solution to the convexification PLP may, in general, not
necessarily satisfy the local constraints (in particular, the
integrality conditions on the discrete variables). However,
in the following Theorem we establish that, for the specific
structure of P , a vertex solution of PLP is indeed useful as it
may violate the local constraints only for a few subsystems.
Theorem 1: Let x̃ be a vertex of PLP. Then x̃i ∈ conv(Xi)
for all i ∈ I , and there exists I1 ⊆ I , with cardinality at
least |I1| ≥ |I| −m− 1, so that x̃i ∈ Xi for all i ∈ I1.

Proof: See Appendix A.
Note that Theorem 1 holds for any vertex of the feasible set
of PLP, and thus in particular also for any vertex optimizer
x?LP. In the next subsection we show how to recover x?LP,
while in Section III we exploit it in order to recover a good
feasible solution for the original P .

B. Averaging scheme

In this section we discuss a method to obtain a solution
x?LP to PLP. It is based on a method developed for convex
problems, which was first proposed in [18], was then further
developed in [12] and has been recently extended by [15]. Its
theoretical properties in the convex case are summarized in
[1]. It consists in deploying a combination of the subgradient
method and an averaging scheme for the inner solutions.
The subgradient method is a well known method used to
solve duals. According to it, given an initialization λ[1], the
subsequent dual iterates λ[k] are updated as

λ[k+1] = P+

(
λ[k] + s[k] · γ[k]

)
, (4)

in which P+(·) denotes the projection onto Rm+ , s[k] is the
steplength and γ[k] is a subgradient of the dual function.
When solving a dual problem, a valid subgradient is given
by the residuals of the current inner solution, i.e., γ[k] =

∑
i∈I Hixi(λ

[k])− b. Following the scheme proposed in [1],
we use the steplength rule

s[k] =
α

k
, (5)

and as we produce the dual iterates λ[k] during the subgra-
dient optimization (4), we construct an average of the inner
solutions encountered:

x̄[k] =
1

k

k∑
j=1

x(λ[j]). (6)

Surprisingly1, the sequence
{
x̄[k]
}

accumulates at the opti-
mizers of PLP [1, Cor. 5]. For the sake of simplicity, we
now make the following assumption.
Assumption 1: The optimization problem PLP has the
unique solution x?LP.
Necessary and sufficient conditions for the uniqueness of
solutions to linear programs are discussed in [14]. The
exceptional case in which Assumption 1 is not satisfied
can be avoided by adding negligible perturbation terms to
the cost vector. Assumption 1 eliminates the need to talk
about accumulation points, enabling the following concise
convergence result.
Theorem 2 (primal and dual convergence): Suppose that
the subgradient method (4) is applied to the dual problem D.
Then λ[k] → λ? ∈ Λ?, where Λ? is the set of optimal dual
solutions. Further, if Assumption 1 holds, then x̄[k] → x?LP.

Proof: Dual convergence λ[k] → λ? ∈ Λ? is proven in
[1, Thm. 2]. For primal convergence, see Appendix B.
Remark 1: Dual convergence asserted in Theorem 2 can be
generalized to any steplength rule which satisfies

s[k] → 0,

∞∑
k=1

s[k] =∞,
∞∑
k=1

(s[k])2 <∞, (7)

see [1, Thm. 3]. Other averaging schemes that generalize (6)
can be found in [17].

III. A SOLUTION ALGORITHM WITH CONVERGENCE AND
PERFORMANCE GUARANTEES

In this section we propose an algorithm to recover a good
solution to P . We take advantage of the properties of vertex
solutions of PLP established in Theorem 1, and the primal
solution recovery scheme of Theorem 2. In order to simplify
the analysis, we first make the following assumption.
Assumption 2: The local systems are such that, for all i ∈ I ,
0 ∈ Xi and Hixi ≥ 0 for all xi ∈ Xi.
Assumption 2 holds for a number of traditional combinatorial
problems (e.g. the knapsack problem) as well as more refined
models used in practice, such as portfolio optimization
problems for small investors, for which models fitting P have
been proposed [4]. Another example application is the supply
chain problem presented in Section IV.
Our proposed method to solve P under Assumptions 1, and
2 is reported in Algorithm 1. It is a two–phases method.
In a first phase, using averaging we construct x?LP and
detect I1, the subset of subsystems whose solution already

1Recall that, as shown in Example 1, the iterates x(λ[k]) are generally
non-unique, suboptimal, or even infeasible points.



Algorithm 1 Primal Solution Recovery

Initialization:
k = 1
λ[1] = 0

Construction of the Ergodic Sequence:
while k ≤ kmax do

xi(λ
[k]) = arg min

xi∈Xi

(ci + λ[k]Hi)xi

x̄
[k]
i = 1

k

k∑
j=1

xi(λ
[j])

γ[k] =
∑
i∈I

Hixi(λ
[k])− b

λ[k+1] = max(λ[k] + α
k γ

[k], 0)
k = k + 1

end while
Rectification of the Solution:
determine the partitioning of I = I1 ∪ I2, such that for all
i ∈ I1, x̄[kmax]

i ∈ Xi (in particular, it satisfies integrality).
|I1| ≥ |I| −m− 1.
for i ∈ I1 do

x̂?i = x̄
[kmax]
i

end for
ρ =

∑
i∈I1

Hix̂
?
i

(x̂?)i∈I2 =


arg min

∑
i∈I2

cixi

s.t.
∑
i∈I2

Hixi ≤ b− ρ

xi ∈ Xi, i ∈ I2

(PFIX)

satisfies all the local constraints (including the integrality
requirements). We let the averaging run for kmax iterations,
where kmax is a parameter chosen such that the averaging
sequence has settled. Recall that the convergence of this
sequence is guaranteed by Theorem 2.
In the second phase, we reoptimize over the smaller set of
subsystems indexed by I2 = I \ I1. The second optimization
is low dimensional since it is guaranteed to entail at most m+
1 subsystems. The input of the algorithm is the data of the
problem, i.e. the tuple (ci, Hi, Ai, di)i∈I for each subsystem,
and the resource vector b ∈ Rm. The output is x̂?, a feasible
solution to P that satisfies the performance bound given in
the following Theorem.
Theorem 3: Under Assumptions 1 and 2, the solution x̂?

produced by Algorithm 1 is a feasible solution to P which
satisfies the following performance bound:

JP(x̂?)− J?P ≤ (m+ 1) max
i∈I

max
xi∈Xi

c>i xi. (8)

Proof: See Appendix B.
According to the performance bound (8), if J?P grows
linearly as we increase the size of the problem |I|, and if
the sets {Xi}i∈I are uniformly bounded, then

J(x̂?i )− J?P
J?P

→ 0 as |I| → ∞, (9)

indicating that the quality of the solutions recovered im-
proves as the problem size is increased.
Remark 1: The reoptimization in PFIX is not necessary, one
can safely pick x̂?i = 0 for i ∈ I2. The advantage of opting

for this variation is that then the algorithm is fully distributed.
And while the performance of the solutions is decreased in
this case, it still satisfies the bound (8).

IV. APPLICATION EXAMPLE: PARTIAL SHIPMENTS

The main objective of this section is to assess how the
proposed method performs on a mixed integer optimization
problem that is of practical interest: the problem of partial
shipments.
In this problem setting, a distributor of some products has
to supply multiple customers. Due to uncertainties in the
demand and high storage costs, as well as restrictions on
manufacturing capacities (especially true for seasonal items
such as ski equipment or pharmaceuticals), the products
available in the inventory that are ready for shipping is
less than the total demand. Under these circumstances, more
often than not, the distributor chooses to satisfy partial
orders of more customers, instead of fully satisfying only
a few of them [10]. On the other hand, these shipments
cannot be too small, due to transportation costs and the
additional paperwork and tracking costs. Distributors are
therefore faced with the problem of allocating the available
product inventories to customers in the presence of these
shipping restrictions [10].

A. Model for the Optimization Problem

We use the formulation proposed in [10], which we summa-
rize here for completeness. We are given a demand of M
products from N customers (N > M ). Di

j is the demand of
product j from customer i, while Ij is the amount of product
j available in the inventory. If a shipment is made, it must
at least amount to the β-fraction of the total demand over all
products. The optimization variables are wi ∈ {0, 1}, which
decide whether customer i gets a partial shipment, and Sij ,
which is the amount of product j shipped to customer i.
The rewards are composed of two components. A fixed
reward amounting to Ki is obtained if a shipment is made
to customer i. This can encode the customer appreciation
for receiving shipment, even if partial, or the weight that the
distributor attaches to each customer. There is an additional
revenue rij that the supplier retrieves based on what fraction
Sij of the total demand Di

j is shipped.
We can formulate this problem as the following optimization
program

minimize
wi,Si

j

−
|N |∑
i=1

Kiwi −
|N |∑
i=1

|M |∑
j=1

rij
Sij
Di
j

(10a)

subject to

|N |∑
i=1

Sij ≤ Ij , j ∈M (10b)

|M |∑
j=1

Sij ≥ β · wi
|M |∑
j=1

Di
j , i ∈ N (10c)

0 ≤ Sij ≤ wi ·Di
j , i ∈ N, j ∈M (10d)

wi ∈ {0, 1} , i ∈ N. (10e)



|N | |M | Ij

100 25 U[1000-2500]
300 75 U[4000-5000]
500 50 U[7000-8500]
600 50 U[8500-9500]
1000 100 U[14500-15500]

TABLE I
SIZES OF THE PROBLEM STUDIED AND THE CORRESPONDING

INVENTORIES.

B. Applying the Proposed Method and Results

The partial shipment problem (10) is NP-hard, which is
proven by reduction to a knapsack problem, see [10, Lemma
2.1]. It is also known that greedy strategies perform poorly on
it [10]. We tried to solve it using general purpose solvers,
but these are also inadequate for the larger instances (see
Table II). In [10], the authors propose a heuristic to obtain
good partial assignments that can be fixed, thus reducing the
number of integer variables to be solved. The method used to
retrieve the assignment is relatively sophisticated and must be
adapted when the model is subject to minor changes. Even
under these circumstances, solving the problem remains a
challenge: reported solve times for medium sized instances
are up to 6 hours, with an average optimality gap of the
recovered solutions of 6.2%.
We tackle the problem using our proposed method. Here
duality can be exploited by relaxing the budget constraint
(10b). This leads to the following dual problem

sup
λ≥0

min
wi,Si

j

−
|N|∑
i=1

Kiwi −
|N|∑
i=1

|M|∑
j=1

(
rij

Di
j
− λj

)
Sij −

|M|∑
j=1

λjIj

|M|∑
j=1

Sij ≥ β · wi
|M|∑
j=1

Di
j

0 ≤ Sij ≤ wi ·Di
j

wi ∈ {0, 1} ,
(11)

whose inner problem is decoupled in N separate optimiza-
tion programs, one for each customer. We apply Algorithm 1
using this relaxation. For the tests, we generate 5 instances
of the problem using random parameters sampled from a
uniform distribution over the following ranges: Di

j = U [1−
100], Ki = U [1− 100], rij = U [1− 15], β = 0.6. The bud-
gets Ij are assigned according to Table I. These parameter
values are taken from [10], and the sizes of the problems
considered are representative for industrial instances related
to a pharmaceutical company. The computations are carried
on a Laptop PC with 4GB of RAM and a 2.67GHz processor.

The outer (maximization) problem in (11) is solved using
a subgradient method. Before activating the steplength rule
“α/k”, we first perform 50 iterations with fixed steplength,
in order to localize a better initialization point λ[1] for
Algorithm 1.
At each iteration, the inner (minimization) problem in (11)
is solved as a generic optimization program. As opposed to
the fully coupled system (10), general purpose solvers solve
the decoupled problem very rapidly. The inner problems are
constructed using Yalmip [13] and solved by CPLEX 12.5.
Figure 2(a) depicts the typical dual convergence observed
during the execution of Algorithm 1. The vertical dashed line
indicates the iteration from which we activate the “α/k” step-
size rule and start to compute the average sequence. Figure

Proposed Method CPLEX
N M Gap (%)† Time (s)† Time (s)†

100 25 .11–.38–.60 16.7–18.5–21.5 10.3–63.5–202.5
300 75 .01–.03–.07 61.0–62.5–63.4 –
500 50 .04–.06–.11 95.0–101.0–110.6 –
600 50 .01–.06–.10 113.7–116.6–119.5 –
1000 100 .00–.03–.05 225.3–245.2–288.8 –
†indicated are min., average and max. computation times.
(–) runs out of memory before solving.

TABLE II
PERFORMANCE OF THE PROPOSED METHOD COMPARED TO CPLEX

12.5.

2(b) shows primal convergence of the averaged x̄[k]. In our
experiments the “heavy tail” behavior shown is dominated by
the continuous part of the problem, i.e., by the convergence
rate of (S̄[k])ij → (S?LP)ij . In contrast, the convergence of
the integer part, i.e., (w̄[k])i → (w?LP)i is much faster.
In order to speed up the computations, we thus fix the
integer parts of (w[kmax])i, and in the rectification part of
the Algorithm, where we recompute a solution over I2 using
the remaining budget, we also recompute the continuous part
of the problem (Sij) for all the subsystems.
The results are reported in Table II, where we compare
the performance of our proposed method with CPLEX 12.5
when it is applied to the fully coupled system (10). CPLEX
is generally unable to provide exact solutions to the prob-
lem before running out of memory. Our proposed method
provides nearly optimal feasible solutions, the computation
times are acceptably short (≤ 5 min) and are affected by a
low degree of variance. We tested the algorithm on a single
processor, but since the bulk of the computational effort
lies in the computation of solutions to the inner problem,
solve times can be substantially improved by exploiting
parallelism.

20 40 60 80 100 120 140
−10

6

−10
4

−10
2

−10
0

−10
−2

iteration #

d
[k
]
−
d
⋆

(a) Dual convergence.

20 40 60 80 100
0

500

1000

1500

2000

iteration #

∣ ∣ ∣

∣ ∣ ∣
(∑

i∈
I
H

i
x̄
[k
]

i
−
b
)+
∣ ∣ ∣

∣ ∣ ∣

1

(b) Primal convergence of the ergodic sequence.

Fig. 2. Primal and dual convergence.



APPENDIX

A. Proofs of Theorem 1

Our theorem relies on the following crucial result, known in
the literature as the Shapley–Folkman–Starr Theorem.
Theorem 4 (Shapley–Folkman–Starr): Let Si ⊆ Rm+1, i ∈
I , be nonempty sets with |I| > m + 1, and let S = S1 +
· · ·+S|I|. Then every vector s ∈ conv(S) can be represented
as s = s1 + · · · + s|I|, where si ∈ conv(Si) for all i ∈ I ,
and si /∈ Si for at most m+ 1 indices i.

Proof: See [6, Prop. 5.7.1].
Proof: [Theorem 1] Let F (PLP) be the feasible set of

the program PLP, i.e.,

F (PLP)
.
=

x =

 x1...
x|I|

 ∣∣∣∣∣ ∑
i∈I

Hixi ≤ b, xi ∈ conv(Xi)

 .

Suppose that x̃ .
= [x̃>1 , · · · , x̃>|I|]

> is a vertex of F (PLP).
Then there exists a vector c̃ .= [c̃>1 , · · · , c̃>|I|]

> such that x̃ is
the unique optimizer of

x̃ = argmin
x∈F (PLP)

c̃>x.

Consider now the set S .
= S1 + · · ·+ S|I| where

Si
.
=

{[
s1
s2

]
∈ Rm+1

∣∣∣∣ s1 =Hixi, s2 = c̃>i xi,

for some xi ∈ Xi

}
.

Since conv(H ·X) = H · conv(X) (where H is a matrix, X
is a set – possibly non-convex – and the product is intended
to be the multiplication of each vector in X by H), we have
that

conv(Si) =

{[
s1
s2

]
∈ Rm+1

∣∣∣∣ s1 = Hixi, s2 = c̃>i xi,

for some xi ∈ conv(Xi)

}
.

Then, in view of Theorem 4, for every x = [x>1 , · · · , x>|I|]
>,

xi ∈ conv(Xi), there exist I1 ⊂ I , |I1| ≥ m + 1, and a
representation y = [y>1 , · · · , y>|I|]

> such that yi ∈ conv(Xi)
for all i ∈ I , yi ∈ Xi for all i ∈ I1 and∑

i∈I
H̃ixi =

∑
i∈I

H̃iyi,
∑
i∈I

c̃>i xi =
∑
i∈I

c̃>i yi.

This implies that the representation y of any x ∈ F (PLP)
also belongs to F (PLP) and attains the same objective value.
But since x̃ is the unique minimizer, it must coincide with
its representation ỹ, which concludes the proof.

B. Proofs of Theorem 2 and 3

For reasons of space, the other proofs have been moved to
[19], which is available on–line.
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