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Abstract— We present a framework for maximising the
power output of a wind farm considering wake effects. A
parameter representing the total power coefficient of a wind
farm is introduced, which quantifies the wind speed deficit
due to wake. For any given wake model, this parameter is
a function of the blade pitch angle and the tip speed ratio
of the individual turbines, and is independent of the wind
speed. Thus, the variables associated with each turbine can
be optimised offline, given the wind farm layout, in order to
determine reference set points that maximise power production.
An MPC controller is designed for individual turbines to track
the optimal reference set points. The performance is illustrated
with the turbine simulator FAST and the wind farm simulator
Aeolus SimWindFarm.

I. INTRODUCTION

In 2012 the European Union (EU) reached 100 GW of
wind power capacity, meeting the power needs of 57 million
households as stated in the annual report of the European
Wind Energy Association (EWEA) [1]. The EU aims to get
20% of its energy from renewable sources by 2020. The
installation of wind farms and suitable control strategies are
a key factor in achieving the targets.
Due to wake effects downstream wind turbines face a loss
of wind power leading to a substantial power loss in wind
farms. Models have been developed to calculate and simulate
the wind speed experienced by each turbine in wind farms
based on discretised wind field and Navier-Stokes equations
[2], [3], or based on dynamic models of the wind turbines
and the wake [4]-[6]. The validation and applicability of a
wake model and the choice of its parameters depend on the
site and terrain as investigated in [7]-[9].
Traditionally, feedback control has been used for tracking
and optimisation of a single turbine power output. Recently,
MPC approaches were applied to wind turbines for load
mitigation [10]-[13], or to regard turbine constraints [14],
[15]. These works often require current or future wind speed
information which might be available from measurements
such as LIDAR (light detection and ranging). Recent work
[16] has shown that the use of MPC at high frequencies is
possible enabling MPC application for online wind turbine
control.
While single turbine control has been studied extensively,
the control and optimisation of wind farms is a young
field of research. In [17] a stationary model of the wind
turbines is used to investigate the influence of upstream wind
turbines on the power generation of downstream turbines.
The publications [18]-[21] deal with tracking of a desired
power output and load mitigation of wind farms. A model-
free approach with a learning rule to maximise the power
output of the farm is presented in [22]. The application
of online optimisations in wind farms is difficult in reality
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as measurements of the total wind farm power are mainly
influenced by the fast wind speed dynamics. Furthermore, the
wake due to different control strategies is barely detectable
as it takes several hundred seconds to spread in the whole
farm.
In this work, we formulate and explore an approach for
maximising the power output of a wind farm. The approach is
based on deriving a single parameter that captures the total
power coefficient of a wind farm, given an arbitrary wake
model. The introduced total power coefficient is independent
of wind speed and depends only on the wind speed deficit,
which itself is a function of the blade pitch angle and
the rotor speed of individual turbines. Thus, the variables
associated with individual turbines can be determined using
a static optimisation in order to minimise the deficit. The
consideration of arbitrary wake model allows for appropriate
wake model choice for a given site. An MPC controller is
presented based on a 5MW offshore wind turbine model
[23] in order to track the set points of the optimisation.
The formulation is verified using the well known wind farm
simulators FAST (Fatigue, Aerodynamics, Structures, and
Turbulence) [24] and Aeolus SimWindFarm [21].
The paper is organised as follows. In Section II we describe
the wind turbine model and the general wake model. In
Section III we present the objective and the algorithm for
the wind farm optimisation leading to the optimal reference
values for every turbine. The MPC turbine controller to
regulate the turbine to the desired reference values is defined
in Section IV. In Section V we illustrate the performance of
the optimisation and the controller using the simulators FAST
and Aeolus SimWindFarm.

II. WIND FARM MODEL
We consider a wind farm with n wind turbines denoted

by the set N = {1,2, ...,n}. For simplicity, we assume the
wind speed V∞(t) is uniform over the wind farm span and
approaches the wind farm with a constant direction. More-
over, we assume that all wind turbines are oriented facing the
wind with the rotor perpendicular to the wind direction. We
state those simplifications without loss of generality as the
yaw angles of the wind turbines are controlled independently
of the other states. The optimisation for any wind direction
is achieved by turning the coordinate system. The MPC
controller for the wind turbine control is based on the
dynamic turbine model (see Subsection II-A). For the wind
farm optimisation we simplify the characterisation of every
turbine i ∈ N to its position (si,ri) ∈ R2 and the reference
values for the tip speed ratio λri ∈ R+ and the pitch angle
βri ∈ [0,π] as elaborated in Subsection II-D.

A. Wind Turbine Model
Advanced simulators like FAST [24] are used to describe

the dynamics of wind turbines. However, these models are
too complex for implementation in an MPC scheme. Hence
we develop a state space representation of the 5MW offshore
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Fig. 1: States (red), inputs (green) and disturbance (blue) of
the wind turbine.

three-bladed upwind turbine [23] based on [25] and [21]
with collective pitch control, meaning that every blade has
the same reference value and dynamics. We neglect the
states for the yaw angle due to the assumption of constant
wind direction. The states, represented by x ∈ R6, are the
angular rotor speed ωr, angular generator speed ωg, drive
train torsion angle γ , generator torque τg, pitch angle β and
pitch angular velocity βv. The system is influenced by the
wind speed faced at the turbine V as disturbance d ∈ R
and the two inputs u ∈ R2 set by the controller, namely the
generator torque input τg,c and the pitch angle input βc. The
measurable outputs of the system are the wind speed Vm
and the generator speed ωg,m. The flexible drive train with
torsion stiffness constant Kd , torsion damping constant Bd ,
drive train efficiency ηd and gear box ratio Ng transfers the
power from the low speed shaft of the rotor with inertia Jr to
the high speed shaft of the generator with the inertia Jg. Fig. 1
illustrates the states, inputs, disturbance and mechanics of the
wind turbine. The whole system is driven by the aerodynamic
power defined as Paero = 1

2 ρπR2CP (λ ,β )V 3 where V is the
wind speed, CP (λ ,β ) the power coefficient, R the rotor
radius and ρ the air density. We derive the values of the
power coefficient CP as an explicit function of the tip
speed ratio λ = ωrR

V and the pitch angle β . Dividing the
aerodynamic power by the angular generator speed yields
the moment introduced by the wind on the rotor as visible
in (1). We model the dynamics of the generator as a first
order closed loop transfer function τg(s)

τg,c(s)
=

αgc
s+αgc

using the
generator and converter coefficient αgc based on [25]. The
dynamics of the hydraulic pitch system of the blades are
represented by the closed loop second order transfer function
β (s)
βc(s)

=
ω2

b
s2+2ζbωb+ω2

b
and the damping factor ζb. The following

equations describe the state space model of the variable
speed, collective pitch controlled wind turbine.

ω̇r =
1
Jr

[
ρπR2CP (λ ,β )

2ωr
V 3−Kdγ−Bd

(
ωr−

ωg

Ng

)]
(1)

ω̇g =
1
Jg

[
−τg +

ηd

Ng

(
Kdγ +Bd

(
ωr−

ωg

Ng

))]
(2)

γ̇ = ωr−
ωg

Ng
(3)

τ̇g =−αgcτg +αgcτg,c (4)

β̇ = βv, (5)

β̇v =−ω
2
b β −2ζbωbβv +ω

2
b βc (6)

R 63 [m] ωr,nom 1.267 [rad/s]
Jr 53.4 ·106 [kg ·m2] ωr,min 0.723 [rad/s]
Jg 534 [kg ·m2] βmin 0 [deg]
Ng 97 [-] βmax 90 [deg]
ηd 0.97 [-] βrate 8 [deg/s]
Kd 867.64 ·106 [kg ·m2] τg,min 0 [Nm]
Bd 6.215 ·106

[
kg·m2

rad·s

]
τg,max 47403 [Nm]

αgc 50 [Hz] τg,rate 15000 [Nm/s]
ηg 0.944 [-] Pnom 5 [MW]
ωb 11.11 [Hz]
ζb 0.6 [-]

TABLE I: Parameters of wind turbine

Considering the generator efficiency ηg the power output of
the generator is

Pg = ηgωgτg. (7)

Ideally, the turbine speed is limited by the minimal and nom-
inal angular rotor speed ωr,min and ωr,nom. Hard constraints
exist for the pitch angle with βmin and βmax, the generator
torque with τg,min and τg,max and the generator power with
Pnom as stated in [23] and [25]. Furthermore, we need to
consider the rate limits of the pitch angle and the generator
torque βrate and τg,rate. Table I lists the parameters of the
wind turbine.

B. Wake Model
Wake models are a simplified characterisation of the wake

resulting from a single wind turbine. Throughout the paper
we use a general formulation of wake effect to describe the
wind velocity profile V (s̄ j, r̄ j,CT j) caused by a single turbine
j ∈ N of the form

V (s̄ j, r̄ j,CT j) =V∞ [1−δV (s̄ j, r̄ j,CT j)] ,

where δV (s̄ j, r̄ j,CT j) is the fractional velocity deficit at the
relative coordinate (s̄, r̄) downstream of turbine j. Most wake
models characterise the wake deficit caused by turbine j as a
function of the thrust coefficient CT j (λ j,β j) and downstream
distance to the vertex in wind direction s̄ j = s− s j and in
orthogonal direction r̄ j = |r− r j| as illustrated in Fig. 2. The
thrust coefficient CT j is a function of the tip speed ratio λ j
and pitch angle β j of turbine j taken from lookup tables.
For the simulations presented in this work we adapt one of
the oldest and simplest wake models developed by Jensen in
1983 [4] which is still used by the recent wind farm simulator
Aeolus SimWindFarm [21]. It describes the wind velocity
deficit as linear function of the thrust coefficient of the form

δV =

{
1
2CT j

(
1+ s̄ j

4R

)−1
if r̄ j ≤

√
4R2 + s̄ jR

0 if r̄ j >
√

4R2 + s̄ jR
(8)

with the wake radius Rw(s̄ j,CT j)=
√

4R2 + s̄ jR. Let us recall
that the proposed approach in this work is not restricted to a
specific model and the model (8) is just an example for our
simulation results.

C. Wake Interaction Model
In wind farms, overlapping wakes from several wind

turbines pose a core challenge to modelling. To derive the
aggregate wind velocity deficit faced by each turbine i ∈ N,
we define the set Wi ∈ N of all upwind turbines causing a
wake on turbine i. We describe the aggregate wind velocity
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Vi at any turbine i∈N as a function of the aggregate velocity
deficit δVi of the form

Vi =V∞

[
1−δVi

(
(s̄ j,i, r̄ j,i,CT j) j∈Wi

)]
. (9)

The aggregate velocity deficit of turbine i depends on the
downstream distance to the vertex in wind direction s̄ j,i =
si− s j and orthogonal direction r̄ j,i = |ri− r j| and the thrust
coefficient CT j (λ j,β j) of every wind turbine j ∈Wi.
As specific wake interaction model for the simulations we
choose the commonly used approach of the momentum
balance [5]. The aggregate wind velocity of turbine i is given
by

δVi =

√√√√∑
j∈Wi

(
δVi (s̄ j,i, r̄ j,i,CT j)

Aoverl
j→i

A

)2

where A= πR2 is the swept area of the rotor and Aoverl
j→i is the

area of the overlap between the wake generated by turbine
j and the rotor swept area of turbine i (see Fig. 2).

D. Power Model

For the optimisation of a wind farm it is too complex to
model all the states of the wind turbine and describe the
power output with (7). Hence we characterise the power of
turbine i by

Pi =
1
2

ρπR2
ηCPi (λri,βri)V 3

i (10)

as a function of the reference values for the tip speed ratio
λri and the pitch angle βri with η = ηdηg representing the
overall turbine efficiency. We can influence the power Pi of
turbine i with the two control parameters λri and βri. Those
are the reference points which the turbine needs to track. For
a turbine operating in steady state at λi = λri and βi = βri (10)
and (7) result in the same value. The total power generated
by a wind farm is

Ptot = ∑
i∈N

Pi (λri,βri) . (11)

III. WIND FARM OPTIMISATION

The aim of the wind farm optimisation in our formulation
is to maximise the power Ptot by setting the optimal refer-
ence values λ ∗ri and β ∗ri for every turbine i ∈ N. The MPC
controller of every turbine tracks the desired reference values
as illustrated in Fig. 3.
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Fig. 3: Scheme of wind farm optimisation and single turbine
control.

A. Objective
The total power of the wind farm depends on the wind

speed. Since the wind speed cannot be influenced, we aim
for an independent optimisation objective. Combining (10)
and (11) yields the total power Ptot = ∑i∈N

1
2 ρπR2ηCPiV 3

i as a
function of the wind Vi at every wind turbine i. We replace
the wind speed Vi with the wake model in (9) and achieve
the total power

Ptot = η
1
2

ρπR2V 3
∞︸ ︷︷ ︸

Pwind

∑
i∈N

CPi

[
1−δVi

(
(s̄ j,i, r̄ j,i,CT j) j∈Wi

)]3

︸ ︷︷ ︸
CP,tot

,

where δVi is the aggregate velocity deficit of every turbine i.
We simplify the total power Ptot to a product of the turbine
efficiency η , the wind power of ambient wind speed V∞ over
the rotor area Pwind and the total power coefficient of the
wind farm CP,tot . The total power coefficient characterises the
power production of a wind farm independent of the actual
wind speed. The distances between the turbines (s̄ j,i, r̄ j,i) are
determined by the wind farm layout. Hence, we introduce the
optimisation objective with the reference tip speed ratio λri
and pitch angle βri for every turbine i ∈ N as follows:

(λ ∗ri,β
∗
ri)i∈N = argmax

(λri,βri)i∈N

CP,tot
(
(λri,βri)i∈N

)
,

where the total power coefficient CP,tot is defined as

CP,tot
(
(λri,βri)i∈N

)
= ∑

i∈N
CPi

[
1−δVi

(
(s̄ j,i, r̄ j,i,CT j) j∈Wi

)]3

with the power and the thrust coefficient CPi (λri,βri) and
CTi (λri,βri) as functions of the reference tip speed ratio and
pitch angle.

B. Optimal Operating Points for a Given Layout
Consider n turbines in a wind farm with a given layout.

The total power coefficient CP,tot depends on the reference
values of all n turbines, a total of 2n optimisation param-
eters. For a large number of wind turbines the number of
parameters lies beyond a computationally tractable brute
force optimisation. To address this issue, we propose a
heuristic algorithm to find the optimal set points. Consider



an iterative algorithm that loops through every wind turbine
i ∈ N calculating for every step the total power coefficient
of the whole wind farm CP,tot depending on just the refer-
ence values (λri,βri) of the current turbine i while keeping
the reference values (λr j,βr j) j∈N\i of the other turbines
constant. The algorithm is initialised with the reference
values for greedy control λr,greedy = 7.5 and βr,greedy = 0◦
and terminates if two successive loops result in the same
reference values for every turbine. We obtain the optimal
total power coefficient depending on the reference values
(λri,βri) of a single turbine i using brute force with a
reduced number of states. Notice that one may limit the
range of possible optimal reference values around the greedy
reference values λr,greedy and βr,greedy thanks to the steep
decay of the power coefficient CP (λ ,β ) . The algorithm is
presented below:

(λri← 7.5)i∈N {initialise λri}
(βri← 0)i∈N {initialise βri}
while ε > 0 do

for i = 1 to n do {iterate over all turbines}
(λri,βri)← argmax

(λri,βri)

CP,tot
(
(λri,βri)i∈N

)
end for
ε ← ∑n

i=1
(
λri−λri,old

)2
+
(
βri−βri,old

)2(
λri,old ← λri

)
i∈N(

βri,old ← βri
)

i∈N
end while

This procedure does not guarantee to find the global maxi-
mum of the total power coefficient CP,tot , but the result is an
improvement compared to the greedy reference values as will
be seen in simulations. However, in practise the algorithm
shows good performance and returned the global maximum,
obtained with exhaustive search for up to 5 turbines in a
row, within two to three iteration. The reason is that the
optimal reference values of a turbine hardly depend on the
reference values of the other turbines but mainly on the
turbine’s position which is constant.

IV. TURBINE MPC CONTROLLER

Traditional feedback controllers aim to regulate the wind
turbine to the maximum of the power coefficient at the
greedy reference values λr,greedy = 7.5 and βr,greedy = 0◦ [23].
For wind farm optimisation we set varying reference values
λ ∗ri and β ∗ri for every turbine i ∈ N. The MPC controller
sets the turbine inputs τg,c and βc such that the captured
power is optimised for below rated wind speeds and kept at
the rated power for above rated wind speeds. This results
in a region based MPC controller using information of the
measured angular generator speed ωg,m as the generally used
feedback controllers and in addition the current wind speed
measurement Vm which is measured by the anemometer for
every time step and is assumed to be constant over the
prediction horizon.
To guarantee convexity of the MPC optimisation we linearise
the non linear state space equations (1)-(6). Since the number
of states, inputs and disturbances of the wind turbine model is
larger than the number of equations, we need measurements
to determine the equilibrium point. The measured values are
the angular speed of the generator ωg0 =ωg,m and the current
wind speed V0 = Vm. Furthermore, we set the inputs of the
turbine the pitch angle β0 and the torque of the generator τg0
to the optimisation values βc and τg,c of the last iteration. The

other states of the equilibrium point, like γ0 =
V 3

0 ρπR2Cp(λ0,β0)
2Kd ωr

,
can be obtained by setting ẋ = 0 leading to the linearised and
discretised dynamics

x̂(k+1) = Akx̂(k)+Bkû(k), (12)

where x̂ = x− x0 and û = u− u0 describe the deviation
from the equilibrium. In (12) the disturbance d is neglected
as we assume constant wind speed over the prediction
horizon. For every time step k the equilibrium point and
the linearisation matrices Ak and Bk are updated according
to the new measurements ωg,m and Vm.

A. Reference Vector
The optimisation of the MPC minimises the deviation of

the states from the reference vector. We determine the ref-
erence signal such that the wind turbine tracks the reference
values λ ∗r and β ∗r provided by the wind farm optimisation
framework as described in the preceding Section. The refer-
ence value for the rotor speed ωr,re f =

λ ∗r VLP
R tracks the optimal

operating point λ ∗r depending on the low pass filtered wind
speed VLP. The low pass filter with the time constant T = 10s
is necessary because the dynamics of the wind Vm are much
faster than the dynamics of the generator speed ωg. The
dynamics of the filter are V̇LP =− 1

T VLP +
1
T Vm. Analogously,

we set the reference value for the pitch angle to the optimal
operating point βre f = β ∗r . The reference for the generator
speed is derived from the rotor speed reference ωg,re f =
Ngωr,re f . To maximise the power, the reference for the torque
is defined as maximum torque of the generator regarding
the nominal power Pnom of the turbine. The reference vector
for the state vector x = [ωr ωg γ τg β βv]

> includes
the upper limit of the generator torque and the limits of the
nominal and the cut-in rotor and generator speed ωg,nom =
Ngωr,nom and ωg,min =Ngωr,min. The reference vector is given
by

xre f =



max(ωr,min,min(ωr,re f ,ωr,nom))
max(ωg,min,min(ωg,re f ,ωg,nom))

γ0

min
(

τg,max,
Pnom

ηgωg0

)
βre f

0

 .

B. Optimisation
We formulate the optimisation as a linear MPC with

quadratic cost with the prediction horizon of Np steps at
time step k0 using the cost function

V (x0) = min
û

k0+Np−1

∑
k=k0

[
x̃>(k)Qcx̃(k)+ û>(k)Rcû(k)

]
+Fc

with respect to dynamic constraint

x̃(k+1) = Akx̃(k)+Bkû(k).

By minimising the deviation from the reference point x̃(k) =
x(k)− xre f the turbine states are regulated to the reference
values xre f . The matrices Qc and Rc define the weight of the
states and inputs and Fc defines the terminal cost. Since we
want to control the generator speed ωg and pitch angle β to
the optimal operating point ωg,re f and βre f we weigh those
states. Some weight is also set on the torque τg to maximise
the torque while still allowing tracking of the desired turbine
speed ωg,re f . Testing several settings in simulations yields



the weight matrices Qc = diag
([

0 10 0 10−6 10 0
])

and Rc = diag
([

10−5 1
])

. We formulate the terminal cost
Fc = x>(k0 +Np)Pcx(k0 +Np) by weighing the final state with
the infinite horizon solution Pc of the associated discrete-time
algebraic Riccati equation obtained for every time step as in
[15].
The turbine is controlled with a region based MPC. The
hard constraints for the system input û =

[
τ̂g,c β̂c

]> take
into account the absolute and rate limits. For ωg < ωg,nom
the input constraints are set to

ûmin =

[
max(−τg0,−τg,rate)
max(−β0,−βrate)

]
,

ûmax =

[
min(τg,max− τg0,

Pnom
ηgωg0

− τg0, τg,rate)

max(−β0,−βrate)

]
,

while for ωg ≥ ωg,nom the input constraints are set to

ûmin =

[
min(τg,max− τg0,

Pnom
ηgωg0

− τg0, τg,rate)

max(−β0, βrate)

]
,

ûmax =

[
min(τg,max− τg0,

Pnom
ηgωg0

− τg0, τg,rate)

min(βmax−β0, βrate)

]
.

If the generator speed ωg is below the rated speed ωg,nom
the pitch angle reference βc is constrained to its minimum
βmin. The generator speed ωg is regulated with the torque
reference τg,c to the optimal operating point ωg,re f and vice
versa if the generator speed is above the rated speed.

V. SIMULATION RESULTS
To demonstrate the performance of the wind farm optimi-

sation we present the simulation results of three turbines in
a row with FAST [24] and a 80-turbine wind farm adapting
the layout of Horns Rev with Aeolus SimWindFarm [21].
We compare the responses of the MPC controller developed
in Section IV running at the optimal set points obtained in
Section III, the MPC controller with the greedy reference
values λr,greedy = 7.5 and βr,greedy = 0◦ for every turbine
i ∈ N and the commonly used feedback controller presented
in [23]. The simulations are performed for constant wind
direction using the model from Subsection II-B and II-C for
the wake calculation.

A. Three Turbines in a Row
The behaviour of three 5MW offshore turbines [23] in

a row with a spacing of s̄1,2 = s̄2,3 = 500m is simulated
for 15000s of real wind data from the Colorado School of
Mines and National Renewable Energy Laboratory (see Fig.
4a). The model parameters are the air density of 1.225 kg

m3 ,
MPC sampling frequency of 80Hz, a prediction horizon of 8
steps and the optimal reference values λ ∗r = [7.1 7.1 7.5]
and β ∗r = [0.8◦ 0.8◦ 0◦]. The ratio of the total power
coefficient for greedy and optimal reference values is

CP,tot,greedy

C∗P,tot
=

1.098
1.109

= 99.0%. (13)

The MPC controller ensures that the wind turbines track
the desired reference values. Fig. 4b shows the normalised
produced energy of every turbine for the three different
controllers. The optimal MPC controller accepts a loss of
energy in the first turbine to increase the energy captured
by the second and third turbine and achieve a higher energy
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(a) Real wind data used for
FAST Simulation.
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(b) Normalised energy pro-
duced by every turbine.
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duced by three turbines in a row.
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(e) Total energy produced by
ten turbines in a row according
to Horns Rev layout.
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Fig. 4: Wind data and results of the simulation performed
in FAST with 15000s of real wind data in Fig. 4a-4c and
layout and results of the Aeolus SimWindFarm simulation
in Fig. 4d-4f.

output combining all three turbines as visible in Fig. 4c.
The feedback controller from [23] captures less power for
low wind speeds because it regulates the rotor speed not as
consequently to the minimal rotor speed ωr,min. Furthermore,
the MPC controllers consider the current wind speed as an
additional measurement and react faster to changes in the
wind speed. The simulation leads to a ratio of the produced
energy of Etot,greedy

E∗tot
= 99.6%, where Etot,greedy and E∗tot represent

the total energy produced by the greedy, and optimal MPC
controllers, respectively, over the simulation time. The gain
of energy is not as high as predicted in (13) because both
controllers saturate at a power of 5MW for high wind speed,
making optimisation of the power capture impossible.

B. Layout Horns Rev
We adapt the 80 turbine layout from the Horns Rev wind

farm in Denmark as in Fig. 4d replacing the Vestas V80-
2MW with the 5MW turbine from [23].

1) Aeolus SimWindFarm: For the simulation with the
SimWindFarm toolbox we restricted the wind direction to
φ = 0◦ (see Fig. 4d). An initial simulation showed that
the eight rows do no affect each other. Hence, we reduce



the wind farm to ten turbines in a row without loss of
generality for computational intensity’s sake. The 1000s
of simulation are performed for a mean wind speed of
10 m

s , air density of 1.225 kg
m3 , MPC sampling frequency of

100Hz and a prediction horizon of 8 steps. Fig. 4e illustrates
normalised total energy production of the ten wind turbines.
The optimal MPC controller generates initially less power
than the two other controllers, but as soon as the wake
reaches the downwind turbines, it starts performing better.
The ratio of the power coefficients for greedy and optimal
control are CP,tot,greedy

C∗P,tot
= 28.73

29.03 = 99.0% whereas the simulation

leads to a ratio of the produced energy of Etot,greedy
E∗tot

= 98.6%.
The increase in total energy is achieved by a reduction of
the wake effects due to the optimal reference values leading
to lower thrust coefficients for the upwind turbines.

2) Optimal reference values for varying wind direction:
The optimisation according to Section III can be performed
for any wind direction. Hence, we can calculate the optimal
reference values for every turbine for a given wind farm
layout depending on the wind direction offline and store
its values on the wind turbine controller. Fig. 4f shows the
reference values and the total power coefficient of the wind
farm for turbine T1 (see Fig. 4d) as a function of the wind
direction φ .

C. Discussion
While we formulated the optimisation problem indepen-

dent from any wake model, the specific model considered in
this work showed an increase in the captured energy of about
1%. However, the possible energy gain depends greatly on
the wake model and can go up to 7% as shown in [22].

In reality the wind direction may have fast dynamics
but generally with limited amplitude, while the turbine yaw
angle dynamics are very slow. The optimisation framework is
robust to small changes in the wind direction as the captured
power depends on the cosine of the deviation of the wind
direction [25] and the optimal reference values are generally
not sensitive to wind direction as visible in Fig. 4f. However,
to estimate the influence of time varying wind directions
further simulations would be necessary accordingly, which
cannot currently be performed in Aelos SumWindFarm.

VI. CONCLUSION AND FUTURE WORK
In this paper, we introduced a framework for maximising

power output of wind farm by considering wake effects. A
static optimisation problem, given a wind farm layout and
an arbitrary wake model, was formulated which determined
optimal set points for the blade pitch angle and tip speed ratio
of individual turbines. In addition, an MPC controller was de-
signed for individual turbines to track the optimal reference
values. The approach can be used to provide an upper bound
on achievable power of a wind farm regarding the wake
effects causing wind deficit. Future directions include the
investigation of the influence of time varying wind directions
and the extension of the controller to additional objectives
such as load mitigation. In addition, to further validate the
methodology practical implementations are necessary with
measurements on wind tunnels or on real wind farms.
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