
Fast Gradient-Based Methods with Exponential Rate:
A Hybrid Control Framework

Arman Sharifi Kolarijani 1 Peyman Mohajerin Esfahani 1 Tamás Keciczky 1

Abstract

Ordinary differential equations, and in general a
dynamical system viewpoint, have seen a resur-
gence of interest in developing fast optimization
methods, mainly thanks to the availability of well-
established analysis tools. In this study, we pursue
a similar objective and propose a class of hybrid
control systems that adopts a 2nd-order differen-
tial equation as its continuous flow. A distinctive
feature of the proposed differential equation in
comparison with the existing literature is a state-
dependent, time-invariant damping term that acts
as a feedback control input. Given a user-defined
scalar α, it is shown that the proposed control
input steers the state trajectories to the global opti-
mizer of a desired objective function with a guar-
anteed rate of convergence O(e−αt). Our frame-
work requires that the objective function satisfies
the so called Polyak–Łojasiewicz inequality. Fur-
thermore, a discretization method is introduced
such that the resulting discrete dynamical system
possesses an exponential rate of convergence.

1. Introduction
The low computational and memory complexities of
gradient-based optimization algorithms have made them
an attractive alternative in many applications such as sup-
port vector machines (Allen-Zhu, 2016), signal and image
processing (Becker et al., 2011), and networked-constrained
optimization (Ghadimi et al., 2013) among others. Hence,
extensive efforts have been made recently in order to bring
more insight into these algorithms’ properties.

One research direction that has been recently revitalized is
the application of ordinary differential equations (ODEs) to
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the analysis and design of optimization algorithms. Con-
sider an iterative algorithm that can be viewed as a discrete
dynamical system, with the scalar s as its step size. As s de-
creases, one can observe that the iterative algorithm in fact
recovers a differential equation, e.g., in the case of gradient
descent method applied to an unconstrained optimization
problem minX∈Rn f(X), one can inspect that

Xk+1 = Xk − s∇f(Xk)  Ẋ(t) = −∇f
(
X(t)

)
where f : Rn → R is a smooth function, X is the decision
variable, k ∈ Z≥0 is the iteration index, and t ∈ R≥0 is
the time. The main motivation behind this line of research
has to do with well-established analysis tools in dynamical
systems described by differential equations.

The slow rate of convergence of the gradient descent al-
gorithm (O( 1

t ) in continuous and O( 1
k ) in discrete time),

limits its application in large-scale problems. In order to
address this shortcoming, many researchers resort to the
following class of 2nd-order ODEs, which is also the focus
of this study:

Ẍ(t) + γ(t)Ẋ(t) +∇f
(
X(t)

)
= 0. (1)

Increasing the order of the system dynamics interestingly
helps improve the convergence rate of the corresponding al-
gorithms to O( 1

k2 ) in the discrete-time domain or to O( 1
t2 )

in the continuous-time domain. Such methods are called
momentum, accelerated, or fast gradient-based iterative al-
gorithms in the literature. The time-dependent function
γ : R≥0 → R>0 is a damping or a viscosity term, which
has been also referred to as the asymptotically vanishing
viscosity since limt→∞ γ(t) = 0 (Cabot, 2004).

Chronological developments of fast algorithms: It is be-
lieved that the application of (1) to speed-up optimization al-
gorithms is originated from (Polyak, 1964) in which Polyak
was inspired by a physical point of view (i.e., a heavy-ball
moving in a potential field). Later on, Nesterov introduced
his celebrated accelerated gradient method in (Nesterov,
1983) using the notion of “estimate sequences” and guar-
anteeing convergence rate of O( 1

k2 ). Despite several exten-
sions of Nesterov’s method (Nesterov, 2004; 2005; 2013),
the approach has not yet been fully understood. In this re-
gard, many have tried to study the intrinsic properties of
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Nestrov’s method such as (Drusvyatskiy et al., 2016; Bubeck
et al., 2015; Drori & Teboulle, 2014; Lessard et al., 2016).
Recently, the authors in (Su et al., 2014) and in details (Su
et al., 2016) surprisingly discovered that Nesterov’s method
recovers (1) in its continuous limit, with the time-varying
damping term γ(t) = 3

t .

A dynamical systems perspective: Based on the obser-
vation suggested by (Su et al., 2014), several novel fast
algorithms have been developed. Inspired by the mirror
descent approach (Nemirovskii et al., 1983), the ODE (1)
has been extended to non-Euclidean settings and to higher
order methods using the Bregman Lagrangian in (Wibisono
et al., 2016). Followed by (Wibisono et al., 2016), a “rate-
matching” Lyapunov function is proposed in (Wilson et al.,
2016) with its monotonicity property established for both
continuous and discrete dynamics. Recently, the authors in
(Lessard et al., 2016) make use of an interesting semidefinite
programming framework developed by (Drori & Teboulle,
2014) and use tools from robust control theory to analyze the
convergence rate of optimization algorithms. More specifi-
cally, the authors exploit the concept of integral quadratic
constraints (IQCs) (Megretski & Rantzer, 1997) to design
iterative algorithms under the strong convexity assumption.
Later, the authors in (Fazlyab et al., 2017) extend the results
of IQC-based approaches to quasiconvex functions. (Hu
& Lessard, 2017) uses dissipativity theory (Willems, 1972)
along with the IQC-based analysis to construct Lyapunov
functions enabling rate analyses.

Restarting schemes: A characteristic feature of fast meth-
ods is the non-monotonicity in the suboptimality measure
f − f∗, where f∗ refers to the optimal value of function
f . The reason behind such an undesirable behavior can be
intuitively explained in two ways: (i) a momentum based ar-
gument indicating as the algorithm evolves, the algorithm’s
momentum gradually increases to a level that it causes an
oscillatory behavior (O’Donoghue & Candès, 2015); (ii) an
acceleration-based argument indicating that the asymptot-
ically vanishing damping term becomes so small that the
algorithm’s behavior drifts from an over-damped regime
into an under-damped regime with an oscillatory behav-
ior (Su et al., 2016). To prevent such an undesirable be-
havior in fast methods, an optimal fixed restart interval is
determined in terms of the so-called condition number of
function f such that the momentum term is restarted to a
certain value, see e.g., (Nesterov, 2004; Nemirovski, 2005;
Gu et al., 2013; Lan & Monteiro, 2013; Nesterov, 2013).
It is worth mentioning that (O’Donoghue & Candès, 2015)
proposes two heuristic adaptive restart schemes. It is numer-
ically observed that such restart rules practically improve
the convergence behavior of a fast algorithm.

Regularity for exponential convergence: Generally
speaking, exponential convergence rate and the correspond-

ing regularity requirements of the function f are two crucial
metrics in fast methods. In what follows, we discuss about
these metrics for three popular fast methods in the literature.
When the objective functions are strongly convex with a
constant σf and their gradient is Lipschitz with a constant
Lf , (Su et al., 2016) proposes the “speed restarting” scheme

sup
{
t > 0 : ∀τ ∈ (0, t),

d‖Ẋ(τ)‖2

dτ
> 0
}
,

to achieve the convergence rate of:

f
(
X(t)

)
− f∗ ≤ d1e−d2t‖X(0)−X∗‖2.

The positive scalars d1 and d2 depend on the constants σf
and Lf . Assuming the convexity of the function f with a
certain choice of parameters in their “ideal scaling” con-
dition, (Wibisono et al., 2016) guarantees the convergence
rate of O(e−ct) for some positive scalar c. However, in this
general case, their approach requires to compute a matrix
inversion in the Euler-Lagrange equation in the form of:

Ẍ(t) + cẊ(t)

+ c2ect
(
∇2h

(
X(t) +

1

c
Ẋ(t)

))−1
∇f
(
X(t)

)
= 0,

where the function h is a distance generating function. Un-
der uniform convexity assumption with a constant νf , it is
further shown that

f
(
X(t)

)
− f∗ ≤

(
f
(
X(0)

)
− f∗

)
e−νf

1
p−1 t,

where p− 1 is the order of smoothness of f . The authors in
(Wilson et al., 2016) introduce the Lyapunov function

E(t) = eβ(t)
(
f
(
X(t)

)
− f∗ +

σf
2
‖X∗ − Z(t)‖2

)
,

to guarantee the rate of convergence

E(t) ≤ E(0)e−
∫
β̇(s)ds,

where Z(t) = X(t) + 1
β̇(t)

Ẋ , and β(t) is a user-defined
function.

Our contribution: state-dependent damping coefficient
It is evident that the damping term γ(t) is unaware of how
the dynamics (1) evolves. As a result, this term is also
unaware of the non-monotonicity of the objective function
along the trajectories of the dynamics (1). As such, sev-
eral fast algorithms adopt restarting schemes to improve
the theoretical and/or practical convergence rate. To some
extent, the reason behind considering a time-dependent term
γ may be due to the fact that the discretization process of the
continuous-time dynamics (1) becomes less cumbersome.
The above discussion strongly suggests that the term γ may
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be treated as a feedback (or a control input) and thus allow-
ing tools from control theory to synthesize γ, possibly based
on the performance criterion a designer seeks for.

In this article we adopt this mindset and consider the con-
trolled dynamics

Ẍ(t) + u
(
X(t), Ẋ(t)

)
Ẋ(t) +∇f(X(t)) = 0,

where the feedback control input u
(
X(t), Ẋ(t)

)
replaces

the time-dependent damping coefficient γ(t) in (1). Given
a positive scalar α, we seek to achieve an exponential rate
of convergence O(e−αt) for an unconstrained, smooth opti-
mization problem in the suboptimality measure f

(
X(t)

)
−

f∗. Inspired by restarting techniques, in our proposed frame-
work we extend the class of dynamics to hybrid control
systems (see Definition 2.1 for further details) in which the
above 2nd-order differential equation represents its continu-
ous flow. To achieve the convergence rate of O(e−αt), we
propose the state-dependent feedback law

uα
(
X(t), Ẋ(t)

)
:=

α+
‖∇f(X(t))‖2 − 〈∇2f

(
X(t)

)
Ẋ(t), Ẋ(t)〉

〈∇f
(
X(t)

)
,−Ẋ(t)〉

.

We next suggest an admissible control input range
[umin, umax] that determines the flow set of the hybrid sys-
tem. Given the model parameters α, umin, and umax, the
jump map of the hybrid control system is defined through
the mapping

(
X>,−β∇>f(X)

)>
ensuring that the jump

map’s range is a subset of the flow set . Notice that the
velocity restart scheme becomes Ẋ = −β∇f(X). We now
summarize the contributions of our proposed approach in
the context of continuous fast methods:

• We introduce a system-theoretic framework to design
the damping term γ as a parametric state-dependent
feedback control, as opposed to the customary choice
of being time-dependent, whose parameter ensures the
desired convergence rate (Theorem 3.1);

• Our framework requires that the objective function f
satisfies the Polyak–Łojasiewicz (PL) inequality (As-
sumption (A2)). The PL inequality is in fact a weaker
regularity assumption compared to the ones mentioned
in the literature (e.g., strong convexity);

• We further provide a discretization method, as well as
a discretization step size, leading to a discrete-time
dynamical system (i.e., an optimization algorithm)
that enjoys an exponential rate of convergence (Theo-
rem 3.7).

The remainder of this paper is organized as follows. In
Section 2, the mathematical notions are represented. The

main results of the paper are introduced in Section 3. Sec-
tion 4 contains the proofs of the main results. In Section 5,
a numerical example is given.

Notations: The sets Rn and Rm×n denote the n-
dimensional Euclidean space and the space of m × n di-
mensional matrices with real entries, respectively. For a
matrix M ∈ Rm×n, M> is the transpose of M , M � 0
(≺ 0) refers to M is positive (negative) definite, M � 0
(� 0) refers to M is positive (negative) semi-definite, and
λmax(M) denotes the maximum eigenvalue of M . The
n×n identity matrix is denoted by In. For a vector v ∈ Rn
and i ∈ {1, · · · , n}, vi represents the i-th entry of v and
‖v‖ :=

√
Σni=1 v

2
i is the Euclidean 2-norm of v. For two

vectors x, y ∈ Rn, 〈x, y〉 := x>y denotes the Euclidean
inner product. For a matrix M , ‖M‖ :=

√
λmax(A>A) is

the induced 2-norm. Given the set S ⊆ Rn, ∂S and int(S)
represent the boundary and the interior of S, respectively.

2. Preliminaries
In this section, we recall the notion of hybrid control systems
and then, formally present the problem statement. The fol-
lowing representation of a hybrid control system is adapted
from (Goebel et al., 2012) that is sufficient in the context of
this paper.

Definition 2.1 (Hybrid control system). A time-invariant
hybrid control systemH comprises a controlled ODE and a
jump (or a reset) rule introduced as:{

ẋ = F
(
x, u(x)

)
, x ∈ C

x+ = G(x), otherwise, (H)

where x+ is the state of the hybrid system after a jump,
the function u : Rn → Rm denotes a feedback signal, the
function F : Rn × Rm → Rn is the flow map, the set
C ⊆ Rn × Rm is the flow set, and the function G : ∂C →
int(C) represents the jump map.

Throughout this study we assume the requirements under
which the hybrid control system (H) admits a well-defined
solution, see Chapters 2 and 6 of (Goebel et al., 2012) for
further details in this regard.

Consider the following class of unconstrained optimization
problems:

f∗ := min
X∈Rn

f(X), (2)

where f : Rn → R is an objective function. We proceed
with the main problem in this article:

Problem 2.2. Consider the unconstrained optimization
problem (2) where the objective function f is twice differ-
entiable. Given a positive scalar α, design a fast gradient-
based method in the form of a hybrid control system (H)
with the α-exponential convergence rate, i.e. for any initial
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condition X(0) and any t ≥ 0 we have

f
(
X(t)

)
− f∗ ≤ e−αt

(
f
(
X(0)

)
− f∗

)
,

where {X(t)}t≥0 denotes the solution trajectory of the sys-
tem (H).
Assumption 2.3 (Regularity assumptions). We stipulate
that the objective function f : Rn → R is twice differen-
tiable and fulfills the following

• The Hessian of function f , denoted by ∇2f(x), is uni-
formly bounded, i.e.,

−`fIn � ∇2f(x) � LfIn, (A1)

where `f and Lf are non-negative constants.

• The function f satisfies the Polyak-Łojasiewicz inequal-
ity with a positive constant µf , i.e., for every x in Rn
the following inequality holds:

1

2
‖∇f(x)‖2 ≥ µf

(
f(x)− f∗

)
, (A2)

where f∗ is the minimum value of f on Rn.

Remark 2.4 (Lipschitz gradient). Since the function f is
twice differentiable, Assumption (A1) implies that the func-
tion f has also Lipschitz gradient with a positive constant
Lf , i.e., for every x, y in Rn we have

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖. (3)

In what follows, we state interesting facts regarding the set
of functions that satisfy (A2).
Remark 2.5 (PL functions and invexity). The PL inequality
in general does not imply the convexity of a function but
rather the invexity of it. The notion of invexity was first in-
troduced by (Hanson, 1981). The PL inequality (A2) implies
that the suboptimality measure f − f∗ grows at most as a
quadratic function of∇f .
Remark 2.6 (Non-uniqueness of stationary points). While
the PL inequality does not require the uniqueness of the
stationary points of a function (i.e., {x : ∇f(x) = 0}),
it ensures that all stationary points of the function f are
global minimizers (Craven & Glover, 1985).

We close our preliminary section with a couple of popular
examples borrowed from (Karimi et al., 2016).
Example 1 (PL functions). The composition of a strongly
convex function and an exponential function satisfies the
PL inequality. This class includes a number of important
problems such as least squares, i.e., f(x) = ‖Ax − b‖
(obviously, strongly convex functions also satisfy the PL
inequality). Any strictly convex function over a compact set
satisfies the PL inequality. As such, the log-loss objective
function in logistic regression, i.e., f(x) = Σni=1 log

(
1 +

exp(bia
>
i x)

)
, locally satisfies the PL inequality.

3. Main Results
The main results of this paper are presented in this section
along with several remarks highlighting their implications.
The underlying idea and the corresponding technical proofs
are provided in Section 4. In what follows we introduce
the notation x := (x1, x2) such that the variables x1 and x2
represent the system trajectories X and Ẋ , respectively.

In the first step we provide a type of parameterization for the
hybrid system (H). Given a positive scalar α, the proposed
parameterization denoted by uα(x) enables achieving the
rate of convergence O(e−αt) in the suboptimality measure
f
(
X(t)

)
− f∗. Motivated by the dynamics of fast gradient

methods (Su et al., 2016), we start with a 2nd-order ODE as
the continuous evolution (or the flow map) F : R2n × R→
R2n defined as

F
(
x, uα(x)

)
=

(
x2

−∇f(x1)

)
+

(
0

−x2

)
uα(x). (4a)

The feedback law uα : R2n → R is given by

uα(x) = α+
‖∇f(x1)‖2 − 〈∇2f(x1)x2, x2〉

〈∇f(x1),−x2〉
. (4b)

The important feature of the proposed control structure is
to ensure achieving an α-exponential convergence rate, see
Subsection 4.1 for more details. In the next step, we con-
sider an admissible interval [umin umax] to characterize a
candidate flow set C ⊂ R2n, i.e.,

C =
{
x ∈ R2n : uα(x) ∈ [umin, umax]

}
, (4c)

where umin, umax represent the range of acceptable control
values. Notice that the flow set C is the domain in which
the hybrid system (H) can evolve continuously. Finally, we
introduce the jump map G : R2n → R2n parameterized by
a constant β

G(x) =

(
x1

−β∇f(x1)

)
. (4d)

The parameter β ensures that the range space of the jump
map G is a strict subset of int(C). By construction, one can
inspect that any neighborhood of the the optimizer x∗1 has
a non-empty intersection with the flow set C. That is, there
always exist paths in the set C that allow the continuous
evolution of the Hybrid system to approach arbitrarily close
to the optimizer.

The first result of this section introduces a mechanism to
compute the hybrid system’s parameters umin, umax, and β
in (4c) and (4d) to achieve the desired exponential conver-
gence rate O(e−αt).

Theorem 3.1 (Continuous-time hybrid dynamics). Con-
sider a positive scalar α and a smooth function f : Rn → R
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satisfying Assumption 2.3. Then, the solution trajectory
of the continuous-time hybrid control system (H) with the
respective parameters (4) and starting from any initial con-
dition x1(0) satisfies

f
(
x1(t)

)
− f∗ ≤ e−αt

(
f
(
x1(0)

)
− f∗

)
, ∀t ≥ 0, (5)

if the scalars umin, umax, and β are chosen such that

umin < α+ β−1 − Lfβ, (6a)

umax > α+ β−1 + `fβ, (6b)
α ≤ 2µfβ. (6c)

Remark 3.2 (Weaker regularity than strong convexity). The
PL inequality is a weaker requirement than the strong con-
vexity, which is often assumed in similar contexts (Su et al.,
2016; Wibisono et al., 2016; Wilson et al., 2016). It is
worth noting that such a condition has also been used in the
context of 1st-order algorithms (Karimi et al., 2016).

Remark 3.3 (Hybrid embedding of restarting). The hy-
brid framework intrinsically captures a restarting scheme
through the jump map. The scheme is a weighted gradient
where the weight factor β is essentially characterized by the
given data α, µf , `f , and Lf . One may inspect that the con-
stant β can be in fact introduced as a state-dependent weight
factor to potentially improve the performance. Nonetheless,
for the sake of simplicity of exposition, we do not pursue
this level of generality in this paper.

Remark 3.4 (Fundamental limits on control input). In or-
der to guarantee the rate of convergence of O

(
e−αt

)
, Theo-

rem 3.1 asserts the following theoretical limits on umin and
umax: (i) The upper-bound on the admissible input interval
umax is required to be larger than α, and (ii) the lower-
bound on the admissible input interval umin has to be neg-
ative if the geometrical property α >

( 2µf√
max{Lf−2µf ,0}

)
holds based on the given α. As a result, it is required
to inject energy to the dynamical system through negative
damping in order to achieve an exponential rate of conver-
gence.

Remark 3.5 (Connection to time dilation). The authors in
(Wibisono et al., 2016) show that in the continuous-time
domain an arbitrary rate of convergence can be achieved
through a change of variable on the time variable, to which
they refer as “time dilation”. Notice that such a technique
may yields a time-varying dynamical system. Theorem 3.1
indeed addresses the exact same objective in a more explicit
fashion through the parameter α, representing the desired
convergence rate, in the control law of the damping term as
defined in (4b).

Remark 3.6 (2nd-order information). Although our pro-
posed framework requires 2nd-order information, i.e., the
Hessian ∇2f , this requirement only appears in a mild form

as an evaluation in the same spirit as the modified Newton
step proposed in (Nesterov & Polyak, 2006). Furthermore,
we emphasize that our results still hold true if one replaces
∇2f(x1) with its upper-bound LfIn following essentially
the same analysis. For further details we refer the reader to
the proof of Theorem 3.1.

In the following, we use the forward-Euler method to dis-
cretize the continuous-time hybrid control system (H). This
technique leads to an iterative optimization algorithm that
enjoys an exponential rate of convergence in f(xk1) − f∗
where k is the iteration index. Define the parameter s as the
step size of the discretization. Consider

Hd :=

{
xk+1 = Fd

(
xk, uα,d(x

k)
)
, xk ∈ Cd

xk+1 = Gd(x
k), otherwise, (7)

where the discrete flow map Fd : R2n × R→ R2n is given
by

Fd
(
xk, uα,d(x

k)
)

=(
xk1 + s xk2(

1− s u(xk)
)
xk2 − s∇f(xk1)

)
,

(8a)

the discrete state-dependent feedback uα,d : R2n → R is
given by

uα,d(x
k) =

α+
‖∇f(xk1)‖2 − 〈∇2f(xk1)xk2 , x

k
2〉

〈∇f(xk1),−xk2〉
,

(8b)

the discrete flow set Cd ⊂ R2n is

Cd :=
{

(xk1 , x
k
2) ∈ R2n :

c1‖xk2‖2 ≤ ‖∇f(xk1)‖2 ≤ c2〈∇f(xk1),−xk2〉
}
, (8c)

and the discrete jump map Gd : R2n → R2n is

Gd(x
k+1) =

(
xk1

−β∇f(xk1)

)
. (8d)

Due to technical difficulties mainly caused by the discretiza-
tion of the control input uα(x), we need to appropriately
modify the definition of the discrete-time flow set Cd in
comparison with the continuous-time flow set C so that the
stability of the process can be ensured. Based on the discrete
dynamics (7) with the parameterization (8), the upper-bound
on the step size s is determined such that an exponential
rate of convergence is guaranteed in Theorem 3.7.

Theorem 3.7 (Stable discretization). Consider a smooth
function f : Rn → R satisfying Assumption 2.3. The solu-
tion trajectory of the discrete-time hybrid control system (7)
with the respective parameters (8) and starting from any
initial condition x01 satisfies

f(xk+1
1 )− f∗ ≤ λ(s, c1, c2, β)

(
f(xk1)− f∗

)
, (9)
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Algorithm 1 Sate Dependent Scheme
Input: data x01, `f , Lf , µf , α ∈ R+, kmax ∈ N+

Set: √c1 = c2 = β−1 = Lfs, x02 = −β∇f(x01)
x0 = (x01, x

0
2)

for k = 1 to kmax do
if c1‖xk2‖2 ≤ ‖∇f(xk1)‖2 ≤ c2〈∇f(xk1),−xk2〉 then
xk+1 ← Fd(x

k)
else
xk+1 ← Gd(x

k)
end if

end for

with λ(s, c1, c2, β) ∈ (0, 1) given by

λ(s, c1, c2, β) := 1 + 2µf
(
− s

c2
+
Lf
2c1

s2
)

(10)

if the set of parameters s, c1 ,c2, and β satisfies the follow-
ing:

√
c1 ≤ c2, (11a)

β2c1 ≤ 1 ≤ βc2, (11b)
c2Lfs < 2c1. (11c)

Remark 3.8 (Naive discretization). We stress that our pro-
posed discretization effectively exploits only the dynamics
of x1. Namely, the dynamics of x2 as well as the control law
uα play no active role in our proposed method, see Subsec-
tion 4.2 for more details. Thus, a more in-depth analysis is
due in this regard.

Corollary 3.9 (Optimal guaranteed rate). The optimal con-
vergence rate guaranteed by Theorem 3.7 for the discrete-
time dynamics is λ∗ :=

(
1− µf

Lf

)
and

√
c∗1 = c∗2 =

1

β∗
= Lfs

∗.

In Algorithm 1, we provide the pseudocode to implement
Corollary 3.9 using the discrete-time dynamics (7) with the
respective parameters (8).

4. Underlying idea and technical proofs
4.1. Proof of Theorem 3.1

We start with explanation on why the chosen structure for
uα(x) guarantees the desired convergence rate α. Let us
define the set Eα :=

{
x ∈ R2n : α

(
f(x1) − f∗

)
<

〈∇f(x1),−x2〉
}

. In the first step, we argue that the ob-
jective function f decreases at the rate α (i.e., (5)) along
any solution trajectory of the dynamical system (4a) that
is contained in the set Eα. To see this, observe that if

(
x1(t), x2(t)

)
∈ Eα, we then have

d

dt

(
f
(
x1(t)

)
− f∗

)
=
〈
∇f
(
x1(t)

)
, x2(t)

〉
≤ −α

(
f(x1)− f∗

)
.

The direct application of Gronwall’s inequality, see
Lemma A.1 in (Khalil, 2002), to the above inequality yields
the desired convergence claim (5). In the light of the above
observation, it suffices to ensure that the solution trajectory
does not leave the set Eα. Let us define the quantity

σ(t) := 〈∇f
(
x1(t)

)
, x2(t)〉+ α

(
f
(
x1(t)

)
− f∗

)
.

By definition, if σ(t) < 0, it is then readily guaranteed
that

(
x1(t), x2(t)

)
∈ Eα. By virtue of this implication, if

σ̇(t) ≤ 0 along the solution trajectory of (4a), we ensure
that the value of σ(t) does not increase, and as such(
x1(t), x2(t)

)
∈ Eα, ∀t ≥ 0 ⇐⇒

(
x1(0), x2(0)

)
∈ Eα.

To ensure non-positivity property of σ̇(t), note that we have

σ̇(t) = 〈∇2f
(
x1(t)

)
x2, x2(t)〉+ 〈∇f

(
x1(t)

)
, ẋ2(t)〉

+ α〈∇f
(
x1(t)

)
, x2(t)〉

= 〈∇2f
(
x1(t)

)
x2(t), x2(t)〉 − ‖∇f

(
x1(t)

)
‖2

+
(
α− uα

(
x(t)

))
〈∇f

(
x1(t)

)
, x2(t)〉 = 0,

where the last equality follows from the definition of the pro-
posed control law (4b). It is worth noting that one can simply
replace the information of the Hessian∇2f

(
x1(t)

)
with the

upper bound Lf and still arrives at the desired inequality,
see also Remark 3.6 in regard to the 1st-order information
oracle. Thus far, we have showed how the designed feed-
back control preserves the α-rate of convergence along the
continuous flow of the hybrid system. Consider the initial
state x2(0) = −β∇f

(
x1(0)

)
. To ensure x(0) ∈ Eα, notice

that

α
(
f
(
x1(0)

)
− f∗

)
≤ α

2µf

∥∥∇f(x1(0)
)∥∥2

=
α

2µfβ
〈−x2(0),∇f

(
x1(0)

)
〉

≤ 〈∇f
(
x1(0)

)
,−x2(0)〉,

where in the first line we use (A2), and in the last line
the condition (6c). Introducing the proposed x2(0) as the
jump x+ one can see that the range space of the jump map
(4d) is indeed contained in the set Eα. Finally, we need to
ensure that such a jump policy is well-defined, that is the
trajectory lands in the interior of the flow set C defined as
in (4c), i.e., the control values also belong to the admissible
set [umin, umax]. In this view, we only need to take the
initial control value into consideration, as the switching
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law is continuous in the states and serves the purpose by
design. Suppose that x ∈ C, we then have the sufficient
requirements

umin < α+
‖∇f(x+1 )‖2 − Lfβ2‖∇f(x+1 )‖2

β‖∇f(x+1 )‖2

≤ uα(x+) ≤

α+
‖∇f(x+1 )‖2 + `fβ

2‖∇f(x+1 )‖2

β‖∇f(x+1 )‖2
< umax,

where the relations (4b) and (A1) are considered. Canceling
the term ‖∇f(x+1 )‖2 concludes the sufficient requirements
in (6a) and (6a).

4.2. Proof of Theorem 3.7

Let us first introduce our proposed discretization method
applied to the continuous-time hybrid system (H) with the
parameters (4). Applying the forward-Euler method, the
velocity ẋ1 is replaced with

xk+1
1 − xk1

s
= xk2 . (12)

Similarly, the discretized version of the acceleration ẋ2 gives
rise to

xk+1
2 − xk2

s
= −∇f(xk1)− uα,d(xk)xk2 ,

where the discrete input uα,d is given by (8b). Based on the
above discussion, the corresponding discrete dynamics of
(H), (4) becomes (7), (8).

The definition of the flow set Cd (8c) implies

c1‖xk2‖2 ≤ ‖∇f(xk1)‖2 ≤ c2〈∇f(xk1),−xk2〉
≤ c2‖∇f(xk1)‖ · ‖xk2‖,

where the extra inequality follows from the Cauchy-Schwarz
inequality (∀ a, b ∈ Rn, 〈a, b〉 ≤ ‖a‖ · ‖b‖). In order to
guarantee that the flow set Cd is non-empty the relation
(11a) should hold between the parameters c1 and c2 since
√
c1 ≤ ‖∇f(x

k
1 )‖

‖xk
2‖

≤ c2. Next, suppose that the parameters

c1, c2, and β satisfy (11b). Multiplying (11b) by ‖∇f(xk1)‖,
one can observe that the range space of the jump map Gd
(8d) is inside the flow set Cd (8c).

The discrete dynamics (7) is forced to evolve respecting the

the flow set Cd defined in (8c). This observation yields

f(xk+1
1 )− f(xk1)

≤ 〈∇f(xk1), xk+1
1 − xk1〉+

Lf
2
‖xk+1

1 − xk1‖2

≤ −s〈∇f(xk1),−xk2〉+
Lfs

2

2
‖xk2‖2

< − s

c2
‖∇f(xk1)‖2 +

Lfs
2

2c1
‖∇f(xk1)‖2

=
(
− s

c2
+
Lf
2c1

s2
)
‖∇f(xk1)‖2

≤ 2µf
(
− s

c2
+
Lf
2c1

s2
)(
f(xk1)− f∗

)
,

where we made use of the relation (3), the definition (12),
the relation (8c), and the assumption (A2), respectively.
Then, considering the inequality implied by the first and last
terms given above and adding f(xk1)− f∗ to both sides of
the considered inequality, we arrive at

f(xk+1
1 )− f∗ ≤ λ(s, c1, c2, β)

(
f(xk1)− f∗

)
where λ(s, c1, c2, β) is given by (10). As a result, if the step
size s is chosen such that s < 2c1

c2Lf
then λ(s, c1, c2, β) ∈

(0, 1). Hence, the claim follows.

5. Numerical Example
In this section, a numerical example is provided to illustrate
the results presented in preceding sections. We consider a
quadratic objective function f(x1) = x>1 Qx1 where x1 ∈
R5 with the matrix Q = diag{0.1, 0.2, · · · , 0.5}. It is not
difficult to verify that for quadratic objective functions we
have Lf = 2λmax(Q) = 1, µf = 2λmin(Q) = 0.2, and
due to the convexity we consider the lower bound `f = 0. In
what follows, we compare the performance of Algorithm 1
(denoted by HD) with that of Nesterov’s accelerated method
using the speed restarting scheme proposed in (Su et al.,
2016) (denoted by NSR). We set s = 1/Lf in Algorithm 1
and the rest of the parameters are computed according to
Corollary 3.9.

The NSR algorithm requires a tuning parameter kmin that is
the minimum number of iterations between two consecutive
restart instants (i.e., no restarting is allowed unless the num-
ber of iterations after the last restarting instant is larger than
or equal to kmin). The motivation behind adjusting such
a parameter is to avoid potentially frequent restarts in the
discrete-time domain, which may have significant impact on
the practical convergence rate (Su et al., 2016). The NSR
scheme exhibits an improved rate of convergence although
the rate analysis provided in (Su et al., 2016) holds true only
for kmin = 1. However, setting kmin > 1 suffers from a
shortcoming that NSR may lose the desirable monotonicity
property. Figure 1 reports the performance of NSR for two
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Figure 1. Comparison of suboptimality decay f(xk
1) − f∗ be-

tween the discrete-time hybrid system (HD) employing Algo-
rithm 1 and Nesterov’ accelerated scheme with the speed restarting
scheme (NSR).

values kmin ∈ {1, 6, 7}. We note that when kmin = 6, 7,
NSR is no longer monotone, while it remains monotone
for kmin ≤ 5. We remark that the best performance is
achieved in case of kmin = 6 as depicted in Figure 1. In
regard with the proposed method, the monotonicity property
is always preserved as long as the step size s respects the
inequalities (11). We observe that among these admissible
options, in this numerical case study, the best performance
is achieved when s = 1.65/Lf . As illustrated in this nu-
merical example, the step size proposed by Corollary 3.9 is
practically outperformed by a bigger step size. This obser-
vation suggests that further analysis is required to prescribe
a more intelligent step size that can carry useful dynami-
cal features of the continuous-domain to the discrete-time
counterpart.
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