
Scalable Kernel Inverse Optimization

Youyuan Long
Delft Center for Systems and Control

Delft University of Technology
The Netherlands

longyouyuan432@gmail.com

Tolga Ok
Delft Center for Systems and Control

Delft University of Technology
The Netherlands

T.Ok@tudelft.nl

Pedro Zattoni Scroccaro
Delft Center for Systems and Control

Delft University of Technology
The Netherlands

P.ZattoniScroccaro@tudelft.nl

Peyman Mohajerin Esfahani
Delft Center for Systems and Control

Delft University of Technology
The Netherlands

P.MohajerinEsfahani@tudelft.nl

Abstract

Inverse Optimization (IO) is a framework for learning the unknown objective
function of an expert decision-maker from a past dataset. In this paper, we extend
the hypothesis class of IO objective functions to a reproducing kernel Hilbert space
(RKHS), thereby enhancing feature representation to an infinite-dimensional space.
We demonstrate that a variant of the representer theorem holds for a specific training
loss, allowing the reformulation of the problem as a finite-dimensional convex
optimization program. To address scalability issues commonly associated with
kernel methods, we propose the Sequential Selection Optimization (SSO) algorithm
to efficiently train the proposed Kernel Inverse Optimization (KIO) model. Finally,
we validate the generalization capabilities of the proposed KIO model and the
effectiveness of the SSO algorithm through learning-from-demonstration tasks on
the MuJoCo benchmark.

1 Introduction

Inverse Optimization (IO) is distinct from traditional optimization problems, where we typically
seek the optimal decision variables by optimizing an objective function over a set of constraints. In
contrast, inverse optimization works “in reverse” by inferring the optimization objective given the
optimal solution. The inherent assumption in IO is that an agent generates its decision by solving
an optimization problem. The assumed optimization problem is called the Forward Optimization
Problem (FOP), which is parametric in the exogenous signal ŝ with the corresponding optimal solution
û. Therefore, IO aims to deduce the objective function of the FOP from a dataset of exogenous
signal and decision pairs, {(ŝi, ûi)}Ni=1. In this work, we assume the constraints are known a priori.
Consequently, we can leverage the FOP derived from the expert’s dataset by solving it to mimic the
expert’s behavior when encountering new exogenous signals. IO has garnered widespread attention
within several fields, giving rise to numerous studies encompassing both theoretical and applied
research. Application domains include vehicle routing [11, 31, 41], transportation system modeling
[29, 8], portfolio optimization [25, 39, 23], power systems [9, 16, 32], electric vehicle charging
problems [17], network design [15], healthcare problems [5], as well as controller design [2, 14]. For
a more detailed discussion on different applications of IO, we refer the readers to the recent survey
paper [10].

IO can be categorized into classic IO and data-driven IO. In classic IO, only a single signal-decision
pair is considered, where the decision is assumed to be the optimal solution of the FOP (i.e., there is
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no noise), and different classes of FOPs have been studied, such as linear conic problems [1, 36, 20].
However, in real-world applications, there are usually many observations of signal-decision pairs,
and due to the presence of noise, it is usually unreasonable to assume that all observed decisions are
optimal w.r.t a single, true data-generating FOP. Additionally, for complex tasks, the chosen FOP
may only approximate the task, not allowing for perfect replication of the observed behavior from the
expert. These cases are referred to as data-driven IO problems. In such scenarios, a loss function is
usually used to compute the discrepancy between observed data and the decision generated by the
learned FOP. Examples of loss functions include the 2-norm distance loss [4], suboptimality loss
[25], variational inequality loss [8], KKT loss [21], and augmented suboptimality loss [40].

In data-driven IO, the objective function of the FOP is typically non-linear with respect to an
exogenous signal ŝ. Hence, classical methods that learn an FOP based on linear function classes may
oversimplify the problem and lead to suboptimal solutions. One effective approach for addressing the
expressibility issue in data-driven IO problems is the introduction of kernel methods. These methods
have been extensively studied within the context of IO [35, 8] and have shown promising results for
scaling IO to address practical problems. The application of kernel methods in IO allows for the
exploration of a broader class of optimization problems, thereby enhancing the model’s ability to
generalize from observed decisions to unseen situations. Specifically, using a kernelized approach
facilitates the embedding of decision data into a richer feature space, enabling the deduction of an
FOP that not only fits the training data but also exhibits strong generalization capabilities.

Contributions. We list the contributions of this work as follows:

(1) Kernelized IO Formulation: We propose a novel Kernel Inverse Optimization (KIO)
model based on suboptimality loss [25]. The proposed approach leverages kernel methods
to enable IO models to operate on infinite-dimensional feature spaces, which allows KIO to
outperform existing imitation learning (IL) algorithms on complex continuous control tasks
in low-data regimes.

(2) Sequential Selection Optimization Algorithm: To address the quadratic computational
complexity of the proposed KIO model, we introduce the Sequential Selection Optimization
(SSO) algorithm inspired by coordinate descent style updates. This algorithm selectively
optimizes components of the decision variable, greatly enhancing efficiency and scalability
while provably converging to the same solution of our proposed KIO model.

(3) Open Source Code: To foster reproducibility and further research, we provide an open-
source implementation of the proposed KIO model and the SSO algorithm, along with the
source code of the experiments in Github1.

Notation Rn
+ denotes the space of n-dimensional non-negative vectors. The identity square matrix

with dimension n is denoted by In. For a symmetric matrix Q, the inequality Q ⪰ 0 (respectively,
Q ≻ 0) means that Q is positive semi-definite (respectively, positive definite). The trace of a matrix
Q is denoted as Tr(Q). Given a vector x ∈ Rn, we use the shorthand notation ∥x∥2Q := x⊤Qx.
Symmetric block matrices are described by the upper diagonal elements while the lower diagonal
elements are replaced by “*”. The Frobenius norm of matrix Q is denoted as ∥Q∥F . The notation
Qij represents the element in the i-th row and j-th column of the matrix Q. The Euclidean inner
product of x and y is denoted as x⊤y.

2 Preliminaries

2.1 Inverse Optimization
In general, to solve a data-driven IO problem, we need to design two components: the Forward Opti-
mization Problem (FOP) and the loss function. Specifically, the FOP corresponds to the optimization
problem we aim to “fit” to the observed dataset D̂ = {(ŝi, ûi)}Ni=1, where each input-output pair
(ŝi, ûi) ∈ S × Rn. In this paper, we use the “hat” notation (e.g., ŝ) to denote objects that depend on
the dataset. Our goal is to find a parameter vector θ ∈ Θ such that

FOP(θ, ŝ) := min
u∈U(ŝ)

Fθ(ŝ, u), (1)

1https://github.com/Longyouyuan/Scalable-Kernel-Inverse-Optimization
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replicates the data as closely as possible by minimizing a loss function, akin to classical empirical risk
minimization problems. In this work, we focus on lifting the learning problem based on quadratic
FOPs. These FOPs include linear constraints and continuous decision variables, as defined by

Fθ(ŝ, u) := u⊤θuuu+ 2ϕ(ŝ)⊤θsuu and U(ŝ) := {u ∈ Rn : M(ŝ)u ≤ W (ŝ)} , (2)
where θ := (θuu, θsu), θuu ∈ Rn×n, θsu ∈ Rm×n, M(s) ∈ Rm×n, W (s) ∈ Rm, and ϕ : S → Rm

is the feature function that maps ŝ to a higher-dimensional feature space to enhance the model’s
capacity. To simplify notation, we omit the explicit dependence of M and W on s, denoting them as
M̂ and Ŵ , respectively.

To learn θ, we solve a regularized loss minimization problem using the Suboptimality Loss [25]

min
θ∈Θ

kR(θ) +
1

N

N∑
i=1

max
ui∈U(ŝi)

{
Fθ(ŝi, ûi)− Fθ(ŝi, ui)

}
, (3)

where Θ := {θ = (θuu, θsu) : θuu ⪰ In}, R(θ) := ∥θuu∥2F +∥θsu∥2F , and k is a positive regulariza-
tion parameter. The constraint θuu ⪰ In prevents the trivial solution θuu = θsu = 0 and guarantees
that the resulting FOP is a convex optimization problem. Moreover, since Fθ is linear in θ, the
optimization program (3) is convex w.r.t. θ, and it can be reformulated from the “minimax” form
to a single minimization problem. This reformulation is based on dualizing the inner maximization
problems of (3) and combining the resulting minimization problems.

Proposition 1 (LMI reformulation [2]). For the hypothesis function and feasible set in (2), the
optimization program (3) is equivalent to

min
θ,λi,γi

kR(θ) +
1

N

N∑
i=1

(
Fθ(ŝi, ûi) +

1

4
γi + Ŵ⊤

i λi

)
s.t. θ = (θuu, θsu), θuu ⪰ In, λi ∈ Rd

+, γi ∈ R ∀i ≤ N[
θuu M̂⊤

i λi + 2θ⊤suϕ(ŝi)
∗ γi

]
⪰ 0 ∀i ≤ N.

(4)

2.2 The Kernel Method
The kernel method is a powerful technique used in machine learning and statistics that exploits the
structure of data embedded in a higher-dimensional space. The kernel method has found numerous
applications, including Support Vector Machines [12], Kernel Principal Component Analysis [33],
and Kernel Linear Discriminant Analysis [6]. The fundamental idea behind the kernel method is to
implicitly map input data into a higher-dimensional space without explicitly computing the transfor-
mation, thus enabling algorithms to capture complex patterns and non-linear relationships without
heavy computational burden [35]. The kernel method generalizes the hypothesis of the optimization
problem to a nonlinear function class based on a Reproducing Kernel Hilbert Space (RKHS) H.
In this work, we primarily focus on lifting the original parametric optimization problem of the
form min

θ∈Θ
ℓ
(
{(fθ(ŝi), ŝi, ûi)}Ni=1 , ∥θ∥F

)
, where fθ : S → Rn such that fθsu(s)

⊤u := ϕ(s)⊤θsuu,

following Definition (2). The lifted problem is then defined as min
f∈H

ℓ
(
{(f(ŝi), ŝi, ûi)}Ni=1 , ∥f∥H

)
with f in an RKHS H. By lifting the function class to H, we effectively optimize over nonlinear
hypotheses.

In a vector-valued RKHS H equipped with the inner product ⟨·, ·⟩H, as defined in [24], given a proper
kernel function K : S × S → Rn×n that is symmetric and positive definite, Moore-Aronszajn’s
reproducing kernels theory implies that there exists a unique RKHS with the reproducing properties
induced by matrix-valued K, such that ∀f ∈ H : f(s)⊤u = ⟨f,K(·, s)u⟩H with a linear operator
K(·, s) : Rn → H. Furthermore, the Riesz representation theorem states that for every s ∈ S and
u ∈ Rn, there exists a unique function K(·, s)u ∈ H for all f ∈ H. Recall that the lifted optimization
problem is formed over all nonlinear hypotheses via f ∈ H. However, as a result of the reproducing
property [34], we can write the lifted optimization problem in the infinite-dimensional inner product
space. Hence, the resulting optimization problem has the form

min
f∈H

ℓ

({(〈
f,K(·, ŝi)u

〉
H, ŝi, ûi

)}N

i=1
, ∥f∥H

)
. (5)
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In what follows, we show that the solution of the optimization problem (5) exists and is finite when
the problem is built over a finite dataset D̂ of size N . We leverage the Representer theorem [35],
which for an arbitrary loss function, as in (5), states that the solution admits the kernel representation
of the form f⋆(s) =

∑N
i=1 K(ŝi, s)αi with αi ∈ Rn. This result effectively suggests that optimizing

over an infinite-dimensional RKHS has a sparse solution over the linear hypotheses.

3 Kernel Inverse Optimization
In this section, we extend the Inverse Optimization (IO) model proposed by [2] to incorporate kernel
methods. We consider a hypothesis class of the form in Equation (1). However, kernelizing such
hypotheses is not straightforward. Instead, we argue that by kernelizing the optimization problem
associated with the loss function described in Equation (3), we can obtain a forward optimization
problem (FOP) that minimizes the kernelized objective F (s, u).

In Theorem 1, we dualize the problem in (3) and show that the optimal solution for θ⋆su, when
plugged into FOP(θ⋆su, θuu, ŝ), admits an affine function of N coefficients w.r.t ŝ. The resulting
FOP, obtained by Theorem 1, takes a form consistent with the representer theorem when the loss
function and kernel are defined appropriately, as discussed later in this section.

Theorem 1 (Kernel reformulation). The Lagrangian dual of the optimization program (4) is

min
P,Λi,Γi

1

4k

∥∥∥∥∥
(

N∑
i=1

ûiû
⊤
i

N
− Λi

)
− P

∥∥∥∥∥
2

F

− Tr(P )

+
1

k

N∑
i=1

N∑
j=1

κ(ŝi, ŝj)

(
ûi

N
− 2Γi

)⊤(
ûj

N
− 2Γj

)
s.t. P ⪰ 0, Λi ⪰ 0, Γi ∈ Rn ∀i ≤ N

ŝi
N

− 2M̂iΓi ≥ 0 ∀i ≤ N[
Λi Γi

∗ 1
4N

]
⪰ 0 ∀i ≤ N,

(6)

where κ(ŝi, ŝj) = ϕ(ŝi)
⊤ϕ(ŝj) is the scalar-valued kernel function. The primal variables θuu and

θsu can be recovered using

θuu =
1

2k

(
P −

(
N∑
i=1

ûiû
⊤
i

N
− Λi

))
and θsu =

N∑
i=1

ϕ(ŝi)
1

k

(
2Γ⊤

i − û⊤
i

N

)
. (7)

Proof. See Appendix A.1.

Notice that the complexity of the optimization program (6) does not depend on the dimensionality
of the feature vector ϕ(ŝi). Consequently, this allows us to use kernels generated from infinite-
dimensional feature spaces, e.g., the Gaussian (a.k.a. radial basis function) kernel κ(ŝi, ŝj) =
exp(−γ∥ŝi − ŝj∥22). Program (6) is a convex optimization problem and can be solved using off-the-
shelf solvers, such as MOSEK [3]. Once solved, we can recover the optimal primal variables θ⋆uu and
θ⋆su from the optimal dual variables Λ⋆

i ,Γ
⋆
i and P ⋆ using (7). Notice that the dimensionality of θ⋆su

depends on ϕ, meaning it can be an infinite-dimensional matrix. However, our ultimate goal is to
learn an FOP that replicates the behavior observed in the data. By combining (7) with (1), we have
that, for the signal (ŝnew, M̂new, Ŵnew), the resulting FOP is

min
M̂newu≤Ŵnew

u⊤ 1

2k

(
P ⋆ −

(
N∑
i=1

ûiû
⊤
i

N
− Λ⋆

i

))
u+

N∑
i=1

κ(ŝnew, ŝi)
2

k

(
2Γ⋆

i −
ûi

N

)⊤

u, (8)

which again does not depend on the dimensionality of ϕ, but only on the kernel function κ. However,
a key difference between solving the IO problem using the kernel reformulation of Theorem 1 and
other classical IO approaches (e.g., [25, 2, 40]) is that the resulting FOP (8) explicitly depends on the
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entire training dataset D̂. These models are sometimes called nonparametric models [26], indicating
that the number of parameters of the model (in our case, P ⋆, Λ⋆

i , and Γ⋆
i for all i ≤ N ) depends on

the size of the training dataset.

Remark 1 (A potential variant of representer theorem). In the primal problem (4), a regularized
empirical risk loss is optimized over a set of constraints. In the learned objective function of the
FOP (8), the term related to the features ŝi (the linear coefficient of the optimizer u) can be represented
as a finite linear combination of kernel products evaluated on the input points in the training set data,
i.e., f⋆(·) =

∑N
i=1 κ(ŝi, ·)αi with α ∈ Rn. A similar forward optimization problem can be obtained

using a loss function defined in a vector-valued RKHS H with a corresponding kernel function K for
functions f : S → Rn, as discussed in Section 2.2, via

ℓH(f, θuu, D̂) = k∥f∥H +
1

N

N∑
i=1

max
ui∈U(ŝi)

{
F (ŝi, ûi; θuu, f)− F (ŝi, ui; θuu, f)

}
,

where F (s, u; θuu, f) = u⊤θuuu+ ⟨f,K(·, s)u⟩H and K(s, s′) ∈ Rn × Rn is set to be a diagonal
matrix, with diagonal entries corresponding to the same scalar kernel κ, such that: K(s, s′)jj =
κ(s, s′) for j ∈ {1, . . . , n}. Based on the representer theorem, the solution to the optimization
problem min

f∈H
ℓH(f, θuu, D̂) admits the form f⋆(s) =

∑N
i=1 K(s, ŝi)αi =

∑N
i=1 κ(s, ŝi)αi. This

result indicates that the learned FOP (8) exhibits characteristics consistent with the representer
theorem, implying a potential variant in the context of inverse optimization.

In the class of cost functions studied in this paper (2), θuu can be interpreted as a matrix that penalizes
the components of the decision vector u. However, in many problems, it is assumed that the expert
generating the data equally penalizes each dimension of u, or equivalently, uses θuu = In. This
assumption holds, for instance, in the Gymnasium MuJoCo environments [38], where the reward
settings for all tasks apply the same penalty to each dimension of the decision vector. Intuitively, this
means that the expert trained under such reward settings aims to reduce the magnitude of the decision
vector uniformly across all dimensions, rather than favoring any specific dimension. Therefore,
assuming θuu = In as prior knowledge can reduce model complexity and lead to faster training,
without degrading model performance.

Corollary 1 (Kernel reformulation for θuu = In). The Lagrangian dual of the optimization program
(4) with θuu = In is

min
Λi,Γi: ∀i∈S

1

k

N∑
i=1

N∑
j=1

κ(ŝi, ŝj)

(
ûi

N
− 2Γi

)⊤(
ûj

N
− 2Γj

)
+

N∑
i=1

Tr(Λi)

s.t. Λi ⪰ 0, Γi ∈ Rn ∀i ∈ S

Ŵi

N
− 2M̂iΓi ≥ 0 ∀i ∈ S[

Λi Γi

∗ 1
4N

]
⪰ 0 ∀i ∈ S,

(9)

where κ(ŝi, ŝj) = ϕ(ŝi)
⊤ϕ(ŝj) is the kernel function and S = {1, . . . , N}. The primal variable θsu

can be recovered using (7).

The proof of Corollary 1 is the same as the proof of Theorem 1 under the assumption that θuu = In,
and is therefore omitted here. S represents an index set, where all decision variables whose indices
belong to S will be optimized, while decision variables whose indices do not belong to S retain their
original values and are treated as constants. In Corollary 1, all variables will be optimized, so S is the
set comprising natural numbers from 1 to N . The concept of the index set S is introduced to make
Problem (9) compatible with the sub-optimization problems based on the coordinate descent method
outlined in Section 4.

In the following section, we will focus on algorithms to solve Problem (9). However, all ideas also
apply to the general problem (6).
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4 Sequential Selection Optimization
Solving the kernel IO problem (9) involves optimizing a Semidefinite Program (SDP), which can
become prohibitively costly if the number of semidefinite constraints and optimization variables
grows too large. In our case, the size of the SDP grows quadratically with the size of the training
dataset N . For instance, in our experiments, solving (9) with N = 20000 using CVXPY [13] requires
up to 256GB of memory. Therefore, in this section, we propose a coordinate descent-type algorithm
to find an approximate solution to (9) by iteratively optimizing only a subset of the coordinates at
each iteration, keeping all other coordinates fixed. We define a pair of variables Λi and Γi as the
i-th coordinate, denoted as {Λi,Γi}. In Problem (9), each coordinate is decoupled in the constraints,
which enables the use of the coordinate descent framework here. We call this method Sequential
Selection Optimization (SSO), and present it in Algorithm 1.

Algorithm 1 Sequential Selection Optimization (SSO)

1: Initialize {Λi,Γi}Ni=1
2: for t = 1, . . . , T do
3: Select a batch of p coordinates S = {ai}pi=1, where ai ∈ {1, . . . , N}
4: Update {Λai ,Γai}

p
i=1 based on (9) with S

5: end for

Here, we explain each step of Algorithm 1: (i) Initialization of the optimization variables. In general,
the variables are usually initialized randomly or set to 0 or 1. These methods are simple but may not
provide a good initial guess. (ii) Selection of a batch of p coordinates. The most straightforward
approach to selecting p coordinates is to choose them cyclically. Alternatively, we can select the
coordinates at random at each iteration (not necessarily with equal probability). Lastly, we can choose
coordinates greedily, selecting the components corresponding to the greatest descent or those with
the largest gradient or subgradient at the current iteration [37]. (iii) Solving the KIO subproblem to
update the selected coordinates. The mathematical expression of the subproblem is Problem (9) with
S, where S is a set containing the indices of the coordinates that need to be updated. Note that the
coordinates whose indices /∈ S remain fixed. Therefore, the number of quadratic terms in (9) scales
with |S|2 rather than N2.

Next, we propose two heuristics to accelerate the convergence speed of the SSO algorithm: a heuristic
method for choosing which coordinates (line 3 of Algorithm 1) to optimize, and a warm-up trick to
improve the initialization of the optimization variables (line 1 of Algorithm 1).

4.1 Heuristic for choosing coordinates
At each iteration of Algorithm 1, intuitively, the largest improvement will be made by updating the
“least optimal” set of p variables. One way to evaluate their degree of suboptimality is to choose
the variables with the most significant violation of the Karush-Kuhn-Tucker (KKT) conditions of
the primal version of Program (9) (i.e., (4) with θuu = In), inspired by the Sequential Minimal
Optimization (SMO) method from [30].

Proposition 2. For optimal decision variables of Problem (9), the coordinate {Λi,Γi} that satisfies

Ŵi

N
− 2M̂iΓi > 0, (10)

should also satisfy

Tr

([
Λi Γi

∗ 1
4N

] [
In 2θ⊤suϕ(ŝi)
∗ ∥2θ⊤suϕ(ŝi)∥22

])
= 0. (11)

Proof. See Appendix A.2.

Proposition 2 is based on KKT conditions. Based on Condition (11), we can define the KKT violation
condition as

kkt_violator(i) :=

∣∣∣∣Tr
([

Λi Γi

∗ 1
4N

] [
In 2θ⊤suϕ(ŝi)
∗ ∥2θ⊤suϕ(ŝi)∥22

])∣∣∣∣ . (12)
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Using the violation condition (12), we can establish the following heuristic method to construct the set
S in Algorithm 1: given the current values of {Λi,Γi}Ni=1 at iteration t, we choose the p coordinates
that satisfy Condition (10) with the maximum KKT violation (12). In practice, we additionally select
some random coordinates to update at each iteration, ensuring that all coordinates have the chance
to be updated, including those that initially do not meet the criteria specified in Condition (10) and
would otherwise never be updated. This random selection is inspired by the proven convergence of
coordinate descent algorithms with uniformly random and cyclic coordinate selection [27, 7].

4.2 Warm-up trick for improved initialization
Another component of Algorithm 1 that may have a significant practical impact is how the optimiza-
tion variables {Λi,Γi}Ni=1 are initialized. A poor initial guess (e.g., Λi = Γi = 0) can lead to slow
solver convergence or even result in numerical instability. Here, we propose a simple warm-up trick
that leads to a better initialization of the optimization variables. First, we divide the original dataset D̂
into n non-overlapping sub-datasets D̂1, . . . , D̂n and solve the n small problems (9) for each of these
sub-datasets (Ni = |D̂i| and S is the set of indices of all the data in D̂i). We then concatenate the
optimal solutions of these n solved small problems to form an initial guess. Even when the original
problem (9) is intractable due to a large training dataset (i.e., large N ), each subproblem remains
tractable for a small enough batch size Ni, and its solutions are still feasible with respect to (9).

5 Numerical Experiments

5.1 Performance Evaluation
In this evaluation, KIO is implemented in its simplified version (9), incorporating a Gaussian kernel,
and tested on continuous control datasets from the D4RL benchmark [18]. The model is trained using
the SSO Algorithm 1. In each task, the model’s performance is assessed over 100 test episodes, and
the score2 for KIO is the average score across these 100 episodes. The parentheses following KIO
scores indicate the amount of data used.

For comparison, four additional agents are selected for this experiment. IO is the inverse optimization
model without the kernel method, introduced in Proposition 1. To illustrate the effect of the kernel
method, both the KIO and IO models are trained on identical datasets. The scores of two behavior
cloning agents, BC(TD3+BC) [19] and BC(CQL) [22], are taken from two offline reinforcement
learning algorithms in which the entire dataset of 1 million samples was used for training. These
papers implemented their respective behavior cloning agents using D4RL datasets, serving as base-
lines to compare against their proposed offline reinforcement learning algorithms. In these studies,
BC(TD3+BC) and BC(CQL) were evaluated over 10 seeds and 3 seeds, respectively. The Teacher
is the agent responsible for generating the dataset and serves as the target for imitation learning in
this experiment.

Table 1: Performance of KIO, IO, two Behavior Cloning (BC) agents, and the Teacher agent
on MuJoCo tasks from the D4RL benchmark on the normalized return metric. The numbers in
parentheses represent the amount of data used by KIO and IO, and the score for KIO in each task is
the average score over 100 episodes.

Task KIO IO BC(TD3+BC)[19] BC(CQL)[22] Teacher
Hopper-expert 109.9 (5k) 31.8 111.5 109.0 108.5

Hopper-medium 50.2 (5k) 20.6 30.0 29.0 47.2
Walker2d-expert 108.5 (10k) 0.9 56.0 125.7 107.1

Walker2d-medium 74.6 (5k) 0.0 11.4 6.6 68.1
Halfcheetah-expert 84.4 (10k) -1.7 105.2 107.0 88.1

Halfcheetah-medium 39.0 (5k) -3.1 36.6 36.1 40.7

Evaluation for KIO. Table 1 presents the final experimental results, where KIO achieves com-
petitive scores in four out of six tasks. In these tasks, except for a slightly lower score in the
Halfcheetah-expert task compared to the teacher agent, KIO’s scores are either close to or exceed

2Regarding the definition of the score for one episode, we refer readers to the official documentation of
Gymnasium [38] and the D4RL paper [18].
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those of the teacher agent, indicating strong learning capabilities in complex control tasks. However,
without the kernel method, the IO model demonstrates weak learning capabilities, achieving low
scores in the Hopper task and failing to learn in the other two more challenging tasks. We argue
that the weak performance of the IO model is due to the limitations of its hypothesis class, which
lacks the richness needed to learn an effective policy for imitation learning tasks. This limitation
arises from its reliance on predefined feature spaces, which may fail to capture the complexities of
more sophisticated environments. All hyperparameters used in this experiment for KIO are listed in
Appendix B.

Task SCS SSO
Obj Value Score Obj Value Score

Hopper-expert 185.219 109.9 185.220 110.2
Hopper-medium 218.761 50.2 218.761 51.8
Walker2d-expert 140.121 108.5 140.121 109.2

Walker2d-medium 151.117 74.6 151.117 74.9
Halfcheetah-expert 165.041 84.4 165.041 83.8

Halfcheetah-medium 188.184 39.0 188.184 39.7

Table 2: Final Objective Function Value and Score
(average return over 100 evaluations) for SCS [28]
and SSO (20 iterations for all tasks) algorithms. The
ultimate Objective Function Values of the two algo-
rithms are nearly identical, yet across the majority of
tasks, SSO achieves a slightly higher score compared
to SCS.
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Figure 1: Convergence curves for SSO.

Evaluation for SSO. Table 2 presents the optimal objective function values and task scores obtained
by the centralized algorithm, Splitting Conic Solver (SCS) [28], and the distributed algorithm,
Sequential Selection Optimization (SSO), for solving Problem (9). In this experiment, SCS is
employed to directly address the large-scale problem (9) with |S| = N . The corresponding solution is
evaluated 100 times, and the average score is taken as the final result. Meanwhile, SSO addresses the
large-scale problem by solving a series of subproblems. After each iteration, the current solution is
evaluated 100 times, and the average score is recorded. After 20 iterations, there are 20 corresponding
scores, and we select the highest score along with the objective function value from the last iteration
and report it. The results show that SSO and SCS yield nearly identical optimal objective function
values. However, except for the Halfcheetah-medium task, SSO achieved higher scores across all
other tasks. Figure 1 displays the convergence performance of the SSO algorithm across six distinct
tasks, with the horizontal axis representing the number of iterations and the vertical axis representing
the error between the current objective function value and the optimal objective function value
(calculated by SCS) in Problem (9). The SSO algorithm demonstrates a fast convergence rate. By the
10th iteration, the errors for all tasks are below 0.1, and by the 20th iteration, the errors have further
diminished to approximately 1e-4 for all tasks.

In the previous evaluation of the SSO algorithm, we limited the maximum training data to 10k to
ensure that we could directly solve Problem (9) without SSO. Thereby, we were able to compare
the results with and without the SSO algorithm. However, to further verify the effectiveness of the
SSO algorithm, we tested it on a new task (the medium-expert dataset) using 100k data points. At
this scale, due to memory limitations, we were unable to solve Problem (9) directly without the
SSO algorithm, thus the effectiveness of the SSO algorithm is inferred solely from its experimental
performance. Table 3 presents the results of the KIO model optimized by the SSO algorithm. The
results indicate that the KIO model achieves competitive results and scales effectively to larger data
sizes. We list the hyperparameters used in this experiment in Appendix B.

5.2 Ablation Studies
We perform ablation studies to understand the contribution of each individual component: Heuristic
Coordinates Selection (Section 4.1) and Warm-Up Trick (Section 4.2). Our results, presented in Figure
2, compare the performance of SSO with and without each component (all model hyperparameters
remain unchanged as shown in Appendix B).

We use the Hopper task as the testing task, with the first 5000 data points from the D4RL
Hopper-expert dataset as training data. The block coordinate for each iteration consists of

8



Table 3: Performance of KIO, two Behavior Cloning (BC) agents, and the Teacher agent on MuJoCo
tasks from the D4RL benchmark on the normalized return metric. The numbers in parentheses
represent the amount of data used by KIO, and the score for KIO in each task is the average score
over 100 episodes.

Task KIO BC(TD3+BC) BC(CQL) Teacher
Hopper-medium-expert 79.6 (100k) 89.6 111.9 64.8

Walker2d-medium-expert 100.1 (100k) 12.0 11.3 82.7
Halfcheetah-medium-expert 46.4 (100k) 67.6 35.8 64.4

2500 coordinates (|S| = 2500). When applying the Warm-Up Trick, we partition the data
into two equal parts and solve two subproblems (9), each with |S| = 2500. Therefore,
the computational time required for the Warm-Up Trick is approximately equal to the time
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Figure 2: Convergence curves on the MuJoCo Hop-
per task with the first 5k data points from the D4RL
Hopper-expert dataset. The vertical axis represents
the difference between the current objective func-
tion value and the optimal value. Sequential Se-
lection Optimization (orange) exhibits the fastest
convergence rate.

needed for two iterations of the SSO algorithm.
In Figure 2, we present the results of 20 iter-
ations, with the vertical axis representing the
difference between the current objective func-
tion value and the optimal value in Problem (9).

Both the Heuristic Coordinates Selection, ab-
breviated as Heuristic in Figure 2, and Warm-
Up Trick significantly accelerate the algorithm.
With the Warm-Up Trick, the initial objective
function value is markedly reduced. Without
the Warm-Up Trick, the Heuristic curve requires
approximately 10 iterations to reach the initial
values of the SSO curve, whereas the Warm-
Up Trick requires only about the time of two
iterations. The Heuristic Coordinates Selection
results in rapid descent of the error curves. The
WarmUp curve, however, becomes nearly flat af-
ter a few iterations, until the 17th iteration when
the Heuristic Coordinates Selection method is
activated, causing a rapid decrease in the curve.

6 Conclusion and Limitations

We introduced Kernel Inverse Optimization (KIO), an inverse optimization model leveraging kernel
methods, along with its simplified variant and the theoretical derivations. Subsequently, we proposed
the Sequential Selection Optimization (SSO) algorithm for training the KIO model, which addresses
memory issues by decomposing the original problem into a series of subproblems. Our empirical
results demonstrate that KIO exhibits strong learning capabilities in complex control tasks, while
the SSO algorithm achieves rapid convergence to the optimal solution within a limited number of
iterations.

One of the limitations of this model is the computational cost of adding a new data point. In that
case, all training data are required to compute the coefficients for the FOP problem (see FOP (8))
for that point. Thus, as the amount of training data grows, so does the computational cost. Another
limitation is the absence of theoretical analysis on the convergence rate of the SSO algorithm, which
we leave for future research. Furthermore, in our numerical experiments in Section 5, the proposed
KIO model, even with the SSO algorithm, required substantial memory resources—up to 256 GB
when using 100k data points. However, we believe that further optimization in implementation could
reduce these memory requirements. Finally, in our numerical experiments in Section 5, we observed
that initialization strategies critically impact the performance of the SSO algorithm. Thus, exploring
alternative initialization strategies beyond the one proposed in Section 4.2 presents a promising
direction for future work.
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SUPPLEMENTARY

A Technical Proofs
A.1 Proof of Theorem 1

First, let P , λ̃i and
[
Λi Γi

∗ αi

]
be the Lagrange multiplier associated with the constraints θuu ⪰ Im,

λi ∈ Rd
+ and

[
θuu M̂⊤

i λi + 2θ⊤suϕ(ŝi)
∗ γi

]
⪰ 0 respectively, where P,Λi ∈ Rn×n, Γi ∈ Rn,

λ̃i ∈ Rd and γi ∈ R. Then define the Lagrangian function

L(θuu, θsu, λi, γi, P, λ̃i,Λi,Γi, αi) =k∥θuu∥2F + k∥θsu∥2F − Tr(P (θuu − In))−
N∑
i=1

λ̃i
⊤
λi

+
1

N

N∑
i=1

(
û⊤
i θuuûi + 2ϕ(ŝi)

⊤θsuûi +
1

4
γi + Ŵ⊤

i λi

)

−
N∑
i=1

Tr
([

Λi Γi

∗ αi

] [
θuu M̂⊤

i λi + 2θ⊤suϕ(ŝi)
∗ γi

])
,

(13)
and the Lagrange dual problem

max
P,λ̃i,Λi,Γi,αi

inf
θuu,θsu,λi,γi

L(θuu, θsu, λi, γi, P, λ̃i,Λi,Γi, αi)

s.t. P ⪰ 0, λ̃i ∈ Rd
+, ∀i ≤ N[

Λi Γi

∗ αi

]
⪰ 0, ∀i ≤ N.

(14)

When the Lagrangian function (13) is at the point of the infimum with respect to θuu, θsu, λi, γi, we
have

∂L

∂θuu
= 2kθuu +

1

N

N∑
i=1

ûiû
⊤
i − P +

N∑
i=1

−Λi = 0 ⇒ θuu =
1

2k

(
P −

(
N∑
i=1

ûiû
⊤
i

N
− Λi

))
∂L

∂θsu
= 2kθsu + 2

N∑
i=1

ϕ(ŝi)

(
û⊤
i

N
− 2Γ⊤

i

)
= 0 ⇒ θsu =

N∑
i=1

ϕ(ŝi)
1

k

(
2Γ⊤

i − û⊤
i

N

)
∂L

∂λi
=

Ŵi

N
− λ̃i − 2M̂iΓi = 0 ⇒ λ̃i =

Ŵi

N
− 2M̂iΓi

∂L

∂γi
=

1

4N
− αi = 0 ⇒ αi =

1

4N

Finally, substituting the expressions for θuu, θsu, λ̃i, and αi into the Lagrange dual problem (14) and
simplifying completes the proof.

A.2 Proof of Proposition 2
Note that Problem (9) is the dual problem of Problem (4) with θuu = In. Here, we enumerate the
five KKT conditions that will be employed

θsu =
1

k

N∑
i=1

ϕ(ŝi)

(
2Γ⊤

i − û⊤
i

N

)
, (stationarity) (15a)

λ̃i =
Ŵi

N
− 2M̂iΓi, ∀i ≤ N, (stationarity) (15b)

λ̃i
⊤
λi = 0, ∀i ≤ N, (complementary slackness) (15c)

Tr
([

Λi Γi

∗ 1
4N

] [
In M̂⊤

i λi + 2θ⊤suϕ(ŝi)
∗ γi

])
= 0, ∀i ≤ N, (complementary slackness) (15d)

λi ∈ Rd
+, ∀i ≤ N. (primal feasibility) (15e)
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First, we choose coordinate i that satisfy Condition (10). Then based on KKT condition (15b), we
have

λ̃i > 0. (16)

Next, based on conditions in (15c) and (15e), one can obtain

λi = 0. (17)

Substituting the result (17) into Condition (15d) yields

Tr
([

Λi Γi

∗ 1
4N

] [
In 2θ⊤suϕ(ŝi)
∗ γi

])
= 0. (18)

γi is the decision variable of Problem (4) with θuu = In. Next, let’s solve for its expression. By
utilizing the Schur complement, we can prove the following two constraints are equivalent[

In M̂⊤
i λi + 2θ⊤suϕ(ŝi)

∗ γi

]
⪰ 0 ⇔ γi ≥

∥∥∥M̂⊤
i λi + 2θ⊤suϕ(ŝi)

∥∥∥2
2
.

Therefore, Problem (4) with θuu = In can be equivalently expressed as

min
θsu,γi,λi

k∥θsu∥2F + 1
N

∑N
i=1

(
2ûT

i θ
T
suϕ(ŝi) +

1
4γi + Ŵ⊤

i λi

)
s.t. λi ∈ Rd

+, γi ∈ R, ∀i ≤ N

γi ≥
∥∥∥M̂⊤

i λi + 2θ⊤suϕ(ŝi)
∥∥∥2
2
, ∀i ≤ N,

(19)

Here, the variable γi is highlighted. It can be easily proven that when γi attain its optimal values, the

equality in the last constraint should hold: γi =
∥∥∥M̂⊤

i λi + 2θ⊤suϕ(ŝi)
∥∥∥2
2
. Note that λi = 0 (17), then

the expression of γi is

γi =
∥∥2θ⊤suϕ(ŝi)∥∥22 . (20)

Substituting (20) into (18), one can obtain Condition (11).

B Hyperparameters of KIO

Table 4 provides the hyperparameters used in the experiments in Section 5.

Table 4: KIO Environment Specific Parameters. N is the size of the dataset, p is the number of
coordinates that are updated in one iteration of SSO, k is the regularization coefficient, and scalar
is the multiplier used in the implementation to avoid numerical instabilities.

Environment Dataset k scalar p

Hopper-expert 0:5k 1e-6 200N 0.5N
Hopper-medium 0:5k 1e-6 200N 0.5N

Hopper-medium-expert First 50k + Last 50k 1e-6 200N 0.1N
walker2d-expert 0:5k+10k:15k 1e-5 50N 0.5N

walker2d-medium 15k:20k 1e-5 50N 0.5N
walker2d-medium-expert First 50k + Last 50k 1e-5 50N 0.1N

Halfcheetah-expert 325k:330k+345k:350k 5e-6 50N 0.5N
Halfcheetah-medium 10k:15k 5e-6 50N 0.5N

Halfcheetah-medium-expert First 50k + Last 50k 1e-6 50N 0.1N
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C Ablation Study on Kernel Function

Table 5: Performance of KIO on MuJoCo tasks from the D4RL benchmark on the normalized return
metric. The scores in each task represent the average score over 100 episodes within the range of one
standard deviation.

Task RBF Laplace Linear
Hopper-medium 51 ± 6.4 41 ± 5.1 24 ± 0.05
Hopper-expert 109.9 ± 0.4 71 ± 26.7 28 ± 0.5

Walker2d-medium 72 ± 14 43 ± 28.2 -0.19 ± 0.006
Walker2d-expert 109.1 ± 0.3 103.1 ± 22.6 -0.02 ± 0.1

Halfcheetah-medium 32.4 ± 12.2 52 ± 10.5 -0.8 ± 0.6
Halfcheetah-expert 78.8 ± 24.9 59.1 ± 35.5 2.0 ± 3.1

In addition to the studies presented in Section 5.2, we conducted experiments to evaluate our proposed
model using different kernels commonly employed in machine learning: Gaussian (RBF), Laplacian,
and linear kernels. The results for the RBF kernel in Table 5 differ slightly from those in Table 3 due
to using a different dataset partition for normalizing the states.
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