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Abstract: This paper considers the problem of fault estimation in linear time-invariant systems
when actuators are subject to unknown additive faults. A data-driven approach is proposed to
design an inverse-system-based filter for reconstructing fault signals when the underlying fault
subsystem can be either a minimum phase or non-minimum phase system. Unlike traditional
two-step data-driven methods in the literature, the proposed method directly computes the filter
parameters from input-output data to avoid the propagation of identification errors through an
inverse operation into the fault estimates, which is the case in state-of-the-art filter designs.
Furthermore, regarding out-of-sample performance of the filter, a kernel-based regularization
is exploited to not only reduce the model complexity but also enable the design scheme to
take advantage of available prior knowledge on the underlying system behavior. This knowledge
can be incorporated into basis functions, promoting the desired solution to the optimization
problem. To validate the effectiveness of the proposed method, a simulation study is conducted,
demonstrating a notable reduction in estimation error compared to state-of-the-art methods.

Keywords: Fault estimation, Data-driven, Non-minimum phase systems, Kernel-based
regularization.

1. INTRODUCTION

During the past decades, fault diagnosis techniques on
detection and isolation tasks have been extensively studied
(Hafezi et al., 2022); however, fault estimation (FE) has
been less investigated, which is the main focus of this
paper. On the one hand, FE is a more challenging task,
requiring the diagnosis system to detect, isolate, and
determine the size and shape of faults. On the other
hand, the outcomes of FE would provide more informative
insights for control objectives, particularly in fault-tolerant
design and predictive maintenance. Model-based residual
generation approaches, such as unknown input observers
(Chen et al., 1996; Ghanipoor et al., 2023) and nullspace-
based filters (Zhong et al., 2010; Mohajerin Esfahani and
Lygeros, 2015) under certain conditions can track fault
signals. However, in practice, an explicit and accurate
model of the real system often is not available, which
promotes the adoption of data-driven methods.

As far as fault estimation problem is concerned, it is
inherently tied to inverting the underlying fault subsys-
tem, for which the model is unavailable in data-driven
applications. As a result, inversion-based filters have re-
cently garnered attention (Wan et al., 2016; Naderi and
Khorasani, 2019). The principal obstacle in this class of
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problems is the presence of transmission zeros, causing
the system to become input-state unobservable (Kirtikar
et al., 2011). This signifies that exact reconstruction is
impossible within a finite-time if the underlying system
possesses any transmission zero (Ansari and Bernstein,
2019; Palanthandalam-Madapusi and Bernstein, 2009). In
Dong and Verhaegen (2011), a subspace-based data-driven
fault estimation filter is developed based on predictor
Markov parameters (MPs) (Wan et al., 2016, 2017). The
main scheme is initially identifying the MPs and then
proceeding with an inversion step to perform FE. These
approaches are referred to as indirect methods in this
paper. Stable system-inversion is the fundamental require-
ment in these methods to ensure asymptotically unbiased
estimation. Most of the recent developments in data-driven
fault estimation methods share the restrictive minimum
phase condition of the fault subsystem; otherwise, the
reconstruction error grows exponentially. Hence, achieving
stable inversion of non-minimum phase (NMP) systems
remains a significant challenge across various contexts,
especially FE problems. In this regard, few model-based
methods have been proposed in recent literature, although
their applications in real scenarios are limited. In Marro
and Zattoni (2010), a geometric approach is proposed in
a noise-free condition, where the system matrices are as-
sumed to be known. The model-based approach in Naderi
and Khorasani (2019) is only unbiased for either step or
ramp fault signals. A more general model-based solution
is provided in Ansari and Bernstein (2018) by introducing
a retrospective cost function for unknown input recon-



struction. Inspired by preview-based techniques in control
tracking problems of NMP systems, two methods were
developed recently for fault estimation in model-based
(Naderi and Khorasani, 2018) and data-driven (Yu and
Verhaegen, 2018) fashions. The major issues with these
methods include the high sensitivity of the reconstruction
error to the correct location of zeros, especially in a data-
driven framework due to identification errors, as well as
significant estimation delay in case the invariant zeros are
close to the unit circle.

This paper addresses the fault estimation (FE) problem in
non-minimum phase (NMP) systems within a data-driven
framework, allowing the recovery of solutions for minimum
phase systems as well. In contrast to indirect methods, a
bilateral finite impulse response (FIR) filter is proposed
for the fault subsystem inverse, directly parameterized by
corresponding Markov parameters (MPs) of the inverse
system, and is referred to as a direct method. This implies
that identification errors bypass the inversion operation,
improving the estimation performance. Moreover, the pro-
posed scheme allows for using kernel-based regularization
to shape the filter characteristics at the design stage.

This paper is organized as follows: The problem is formu-
lated in Section 2. Section 3 is devoted to the main result
of the research. Simulation studies to verify the proposed
method are presented in Section 4, and the conclusions are
drawn in Section 5.

Notation. Throughout this paper, Z, R, and C denote the
set of integer, real, and complex numbers, respectively. In
the complex plane, D represents the interior of the unit
circle, and T is the unit circle. z stands for the complex
conjugate, and the space ℓ2(Z) characterizes sequences as∑

k∈Z|x(k)|2 < ∞, where Rℓ2(Z) denotes real sequences.
L2(T) consists of all complex-valued functions defined and
square-integrable on the unit circle, with RL2 referring to
real-rational functions. The inner product of two vectors in
an inner-product space X is shown by ⟨., .⟩X . The symbol
“⊗” represents the Kronecker product, and vec(.) is the
vectorization operator. “∗” denotes convolution operation.

2. PROBLEM STATEMENT

Consider the following general linear time-invariant (LTI)
system

M :
x(k + 1) = Ax(k) +Buu(k) +Bff(k) +Bww(k) ,

y(k) = Cx(k) +Duu(k) +Dff(k) + v(k) ,
(1)

in which x(k) ∈ Rn, y(k) ∈ Rny , u(k) ∈ Rnu , and f(k) ∈
Rnf denote the state, the output measurement, the control
input, and the unknown fault signal at discrete-time in-
stant k, respectively. The disturbances are represented by
the process noise w(k) ∈ Rnw and the measurement noise
v(k) ∈ Rnv , both of which are considered to be white noises
with zero-mean, without loss of generality, and the corre-

sponding bounded covariance matrix

[
w(k)
v(k)

]
∼

[
Q S
ST R

]
.

It is further assumed that w(k) and v(k) are uncorre-
lated with u(k) and f(k). (A,Bu, Bf , Bw, C,Du, Df ) are
minimal state-space realization matrices with compatible
dimensions. Under detectability assumption of pair (A,C)
and controllable (A,Q1/2), the system in (1) admits the

following stable one-step ahead prediction form as (Kailath
et al., 2000)

x̂(k + 1) = Ãx̂(k) + B̃uu(k) + B̃ff(k) +Ky(k)

y(k) = Cx̂(k) +Duu(k) +Dff(k) + e(k)
(2)

with Ã = A − KC, B̃u = Bu − KDu, B̃f = Bf − KDf .
K ∈ Rn×ny represents the steady-state Kalman gain,
and e(k) ∈ Rny is the zero-mean innovation process with
covariance matrix Σe.

Definition 2.1. For the system (A, B, C, D) with u(k) ∈
Rnu , x(k) ∈ Rn, y(k) ∈ Rny , z0 ∈ C is called a transmis-
sion zero if the associated Rosenbrock system matrix loses
rank, i.e.,

rank

(
R(z0) ≜

[
A− z0I B

C D

])
< n+min{ny, nu} .

Remark 2.1. The transmission zeros of the original sys-
tem (1) are equivalent to its observer form (2). In fact, the
system zeros are not being modified by the output feed-
back, which can be verified by investigating the relation
between both system matrices and Definition 2.1.[

Ã− zI [B̃u B̃f ]
C [Du Df ]

]
=

[
I −K
0 I

] [
A− zI [Bu Bf ]
C [Du Df ]

]
The observer form is linked to the original system through
a full rank matrix that does not affect the rank of Rosen-
brock matrix.

To proceed with the problem statement, it is required to
introduce the notion of left-invertibility, which is provided
in Definition 2.2.

Definition 2.2. (Left-invertibility) The system M defined
by an ny×nu proper transfer function H(z) is τ -delay left
invertible if there exists an nu×ny proper transfer function
H inv

τ (z) such that H inv
τ (z)H(z) = z−τInu for almost all

z ∈ C and nonnegative integer τ . Lastly, the smallest
nonnegative integer for which H(z) is left invertible is the
relative degree of the system.

Theorem 1. (Kirtikar et al., 2011) The system M defined
by an ny × nu proper transfer function H(z) = C(zIn −
A)−1B +D is a left invertible system if ∃z ∈ C such that
the following equivalent statements hold

• rank H(z) = nu (full column rank).

• rank

[
A− zI B
C D

]
= n+ nu (full column rank).

Proof. See Theorem 1 in Kirtikar et al. (2011).

According to Theorem 1, ny ≥ nu is always a necessary
condition for system M to be a left invertible system, i.e.,
the system must have at least as many outputs as inputs.
As a matter of fact, this condition usually holds in most
practical systems, and it is not restrictive.

Assumption 2.1. (System detectability). The fault matri-
ces Bf and Df satisfy the rank condition

max {rank [BT
f DT

f ]} = nf ,

which is a necessary condition for the fault detectability.

The fault subsystem (A,Bf , C,Df ) satisfies Assump-
tion 2.1, and is τ -delay left invertible, where τ repre-
sents the corresponding relative degree. Furthermore, fault
estimation in the presence of transmission zeros (main
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Fig. 1. The actuator fault estimation structure

focus of this paper) is a significant challenge in actuator
fault scenarios. Motivated by this, we shall consider the
problematic case of actuator fault throughout the rest of
paper, that is,

j-th actuator fault: Bf = B(:,j)
u , Df = D(:,j)

u

where X(:,j) denotes the j-th column of the matrix X.
For the sake of brevity in subsequent analysis, we further
assume that the fault signals affect all the input compo-
nent/channels, i.e., nf = nu, while recovering the general
case is straightforward.

As faulty datasets are often not available in practice,
the following assumption is required to be made on the
collected data.

Assumption 2.2. (Dataset regularity) Fault-free input-
output (I/O) data obtained from the system is available
for the proposed data-driven design. Moreover, the input
signal u(k) is persistently exciting of sufficient order.

3. MAIN RESULT

In this section, an inverse-system-based filter (ISF) is
developed for the data-driven fault estimation problem.
Figure 1 illustrates the cascade configuration for which the
proposed filter is designed, underscoring the requirement
for a left-invertible fault subsystem.

Suppose linear maps H : Rnu 7→ Rny and H−1 : Rny 7→
Rnu represent the nominal system and its left inverse,
respectively. In the absence of noises and disturbances, the

estimation performance f − f̂ can be quantified as

f − f̂ = (I−H−1 ◦ H)(u+ f) . (3)

Based on (3), perfect fault estimation is achieved if I −
H−1 ◦ H = 0. This condition depends on the accuracy of
the system inversion to the true inverse of the system.
The challenge is minimizing this difference when both
the actual system parameters and the fault signal are
unknown.

3.1 Model

Regarding the data-driven design, the problem should be
parameterized, where the Markov parameters are the well-
known choice to describe the linear dynamical systems.
To do so, the prediction form (2) can be consistently
represented by a VARX (Vector AutoRegressive with
eXogenous inputs) model of sufficiently large order p
(Chiuso, 2007):

A(q−1)y(k) = B(q−1)(u(k) + f(k)) + ε(k) , (4)

where q−1 is the backward shift operator, A(q−1) =

Iny
−

p∑
i=1

My
i q

−i, B(q−1) =

p∑
i=0

Mu
i q

−i, and ε(k) ∈ Rny

represents noise signals as a sequence of independent

and identically distributed (i.i.d.) multivariate random
variable. Mu

i and My
i are associated predictor Markov

Parameters (MPs) defined as follows

Mu
i =

{
D i = 0

CÃi−1B̃u i > 0
, My

i =

{
0 i = 0

CÃi−1K i > 0
.

To develop the direct approach, we rearrange the model in
(4) w.r.t. to the input signal in a fault-free condition

B(q−1)u(k) = A(q−1)y(k) + ε′(k) (5)

with ε′(k) = −ε(k) as another i.i.d. sequence. This implies
that the inverse of a VARX model is another VARX model.
There is, however, a major difference. Unlike the model
in (4), the stability of the inverse model relies on the
characteristics of B(q−1), while simultaneously dictating
the autoregressive behavior of the stochastic noise term.
For systems with NMP transmission zeros, the inverse
VARX model results in unstable dynamics that has to be
taken care of in the proposed scheme.

3.2 Inverse-system-based filter

We aim at providing a stable ISF to be used for fault esti-
mation in the presence of NMP zeros. To this end, stable
inversion techniques are developed in which the central
idea involves treating the unstable internal dynamics as
stable noncausal operators in order to produce bounded re-
sponses (George et al., 1999). The noncausality viewpoint
implies that the trajectory is known ahead of time over a
preview horizon. Since the proposed filter parameters are
derived from only the fault-free I/O data, this information
is available to the design scheme and is not a limitation.
In turn, the preview window would naturally cause the
estimation delay that needs to be minimized. In order to
take advantage of preview-based methods, the following
assumption has to be made.

Assumption 3.1. (Transmission zero)
The system(A,B,C,D) has no transmission zeros on the
unit circle, i.e.,

rank

[
A− zI B
C D

]
= n+ nu , ∀z ∈ C , |z| = 1 .

The inverse of any linear system that satisfies Assump-
tion 3.1 can be described using the following two-sided
representation based on the Laurent Series:

H−1 : Hinv(q, H) =

∞∑
i=−∞

Hi q
−i ; i ∈ Z , (6)

where Hinv(q, H) represents a bilateral impulse response
expansion of the nominal left inverse system H−1. In this
representation, Hi ∈ Rnu×ny is a matrix of expansion coef-
ficients in the impulse response sequence H = {Hi}∞i=−∞,
and the time shift operator q allows the manipulation of
multi-dimensional signals either forward or backward in
time.

Given the model (6), the input-output relation in a noise-
free condition can be written as

u(k) = (H ∗ y)(k) =
∞∑

i=−∞
Hi y(k − i) ; i ∈ Z , (7)

where the input signal at time k is a convolution of the out-
put signal with the bilateral Markov parameter sequence



H. Therefore, negative time-delays i ∈ {. . . , −1, 0, 1, . . . }
are acceptable, making the model noncausal and depen-
dent on both past and future input data at each instant.
As a result, the fault estimation filter parameterized by H
can be proposed as

ISF filter: f(k) =

∞∑
i=−∞

Hiu
ISF(k−i)−u(k) ; i ∈ Z , (8)

with uISF as the input of the filter. Hence, the filter
design boils down to estimating the sequence H from
healthy data. Let the set of fault-free measurement data
be denoted by Dhealthy = {u(k), y(k)}Nk=1. To estimate the
parameters of bilateral model (6) in terms of mean-squared
error (MSE) criterion, the following optimization problem
can be considered

Ĥ = argmin
{Hi}∞i=−∞ ∈ Rnu×ny

1

N

N∑
k=1

∥∥∥u(k)− ∞∑
i=−∞

Hi y(k − i)
∥∥∥2
2

This problem can be reformulated as

θ̂ = argmin
{θi}∞i=−∞ ∈ Rnuny

1

N

N∑
k=1

∥∥∥u(k)− ∞∑
i=−∞

(yT (k−i)⊗ Inu
) θi

∥∥∥2
2

(9)
with θi = vec (Hi). Examining (9) shows that an infi-
nite dimensional optimization problem should be solved
to retrieve the parameters of model (6). This is because
the VARX model (5) is described by a two-sided infinite
impulse response (IIR) model, wherein the set of corre-
sponding Markov parameters has no compact support.
Consequently, achieving the exact inverse of the system
from a finite number of noisy measurements is an ill-
posed problem, leading to high estimation variance. To
address ill-posedness and overfitting, regularization should
be introduced into the regression problem. Kernel-based
regularization is a technique commonly employed in the
machine learning theory to robustify the prediction model
performance against unseen data. Moreover, prior knowl-
edge on the system behavior can be incorporated into
the decision variables through this framework (Pillonetto
et al., 2014). This approach can capture aspects including
stability, smoothness, noncausality, and model complexity.

3.3 Kernel-based regularization

In order to introduce regularization, we limit the hypoth-
esis space to a class of reproducing kernel Hilbert space
(RKHS) HK that can be uniquely characterized by a
positive semi-definite kernel function K. In this regards,
we penalize the feasible solutions that do not align with
the prior knowledge by including a regularization term
associated with the induced norm on HK in (9)

θ̂reg = argmin
θ∈HK

1

N

N∑
k=1

∥∥∥u(k)− ∞∑
i=−∞

(yT (k − i) ⊗ Inu
) θi

∥∥∥2
2

+ µ ∥θ∥2HK
. (10)

in which θ =
[
θT−∞ · · · θT∞

]T
is the column stack of θi, and

the positive scalar µ > 0 is the regularization parameter
to create a bias/variance balance. An immediate result
of adopting an RKHS function space is that the infinite-
dimensional problem (10) has a finite-dimensional solution
according to the representer theorem (Pillonetto et al.,

2014). In the proposed optimization problem (10), kernels
also accounts for noncausal terms in the impulse response
expansion (7) for general NMP systems. Non-causal ker-
nels are recently introduced in Blanken and Oomen (2020),
where negative indices are allowed for kernels as well.
Henceforth, we define the (i, j)-th element of the kernel
matrix [K]ij corresponds to the real-valued kernel function
K as K(ti, tj ;α) : Z× Z 7→ R. The kernel matrix K(α) is
a positive semi-definite matrix (K(α) ⪰ 0) parameterized
in terms of α, a set of hyper-parameters that depends on
the type of kernels in use.

Rational orthonormal basis functions (ROBF) kernels
have been demonstrated to be effective in describing a wide
range of linear dynamical systems, as well as estimating
impulse responses (Van den Hof et al., 2000). Since the
proposed fault estimation filter is formulated on the basis
of bilateral impulse responses, ROBF-based kernels are
considered for the ISF. These basis functions are essen-
tially a network of interconnected transfer functions in a
cascading fashion. Each basis function has an IIR sequence
that enables the design scheme to effectively capture slow
dynamics with a relatively small number of bases. These
advantages motivate the use of ROBF recently presented
in Blanken and Oomen (2020), which is an extension
of the so-called Takenaka-Malmquist basis functions for

noncausal systems. Let G(z) ∈ RLnu×ny

2 (T) denotes the
left inverse system. Under Assumption 3.1, G(z) can be
decomposed with a complete set of scalar orthonormal
basis functions for RL2(T) as G(z) =

∑∞
i=−∞ hiψi(z),

where hi ∈ Rnu×ny is a sequence of matrices whose (m,n)-

th entry h
[m,n]
i corresponds to the m-th input and n-th

output channel G[m,n](z) as h
[m,n]
i = ⟨ψi, G

[m,n]⟩L2 . In
this regards, we define noncausal ROBF kernels as

ψi(z) =


ψc
i (z) =

√
1− |λc, i|2
z − λc, i

i−1∏
j=1

1− λc, j z

z − λc, j
i > 0,

ψac
i (z) =

√
1− |λac, i|2

1− λac, i z

i+1∏
j=−1

z − λac, j

1− λac, j z
i < 0,

in which {λc, i}i∈Z+
, {λac, i}i∈Z− ⊂ D are sequences of

generating poles that play the role of hyper-parameters
in the kernel design, i.e., α = {λc, λac}. To guarantee real-
valued impulse responses, the set of poles should appear
as either real numbers or pairs of complex conjugate num-
bers. For the sake of completeness of basis, the conditions
I)
∑∞

i=1(1 − |λc, i|) = ∞, II)
∑−1

i=−∞(1 − |λac, i|) = ∞
have to be satisfied. Direct feedthrough can be included
in basis functions by setting ψac

0 = 1, and ψac
0 = 0

otherwise. The proposed noncausal kernels are orthonor-
mal with respect to the unit circle in the sense that
1
2π

∮
T ψi(e

jω)ψj(ejω) dω = δi, j . {ψc
i }i>0 and {ψac

i }i≤0

form causal and anti-causal basis functions, respectively.
As we aim at estimating impulse responses of the inverse
system, the corresponding basis functions in time-domain
can be computed by taking the inverse z-transform Z−1{.}
of the ROBFs with respect to the valid region of con-
vergence (ROC). Therefore, ϕi(k) = Z−1{ψi(z)} denotes
the associated basis function in the time-domain. Since
{ψi}∞i=−∞ is a complete basis of Hilbert space RL2, a
similar argument applies to the time-domain basis func-
tions {ϕi}∞i=−∞ to verify that they are complete in Rℓ2(Z)



and orthonormal:
∑∞

k=−∞ ϕi(k)ϕj(k) = δi, j . Accordingly,
the bilateral impulse response g(k) ∈ Rℓ2(Z) associ-
ated with G(z) can be equivalently expressed by g(k) =∑∞

i=−∞ hiϕi(k). Hence, the following kernel function is
built

KOBF(ti, tj ; {λc, λac}) =
∞∑

i=−∞
ϕi(ti)ϕi(tj) (11)

It can be shown that it is a reproducing kernel for the
RKHS space spanned by {ϕi}∞i=−∞. In practice, a finite
number of basis functions is used for the estimation while
accepting a certain level of error, which can be made
arbitrarily small by increasing the model order. To ensure a
specified level of approximation error, the required preview
time is determined by the closest NMP zero to the unit
circle. Denote by nac and nc the number of anti-causal and
causal terms in (6), respectively. Then define the stacked
vector of data over N measurements Dhealthy as

UN =
[
uT (nc + 1) uT (nc + 2) · · · uT (N − nac)

]T
,

and the block-Toeplitz structure of output data

T y
N =


yT (nc + nac + 1) yT (nc + nac) · · · yT (1)
yT (nc + nac + 2) yT (nc + nac + 1) · · · yT (2)

...
...

. . .
...

yT (N) yT (N − 1) · · · yT (N − nc − nac)

,
X = T y

N ⊗ Inu
.

Consider θ = vec([H−nac
· · ·H0 · · ·Hnc

)]) ∈ Rnθ with
nθ = nynu(nac + nc + 1). Using (10) and the kernel
matrix K(α) ∈ Rnθ×nθ associated with (11), the model
parameters are the solution of the following optimization
problem

θ̂reg = argmin
θ∈Rnθ

1

N
∥UN −X θ∥22 +

µ

N
θTK(α)−1θ ,

= (K(α)XTX + µ Inθ
)−1K(α)XTUN .

(12)

In case the kernel matrix is rank deficient, the opti-
mization problem can be modified based on the singular
value decomposition of kernel matrix, as suggested in
Pillonetto et al. (2014)(Remark 1). The poles of rational
OBF {λc, λac} can be designed to approximate the true
dynamics of the inverse system H−1. Since the inverse
fault subsystem is estimated by solving the optimization
problem (12), the fault estimator of f(k) is given without
performing any further operation as

f̂(k) =

nc∑
i=−nac

Ĥθ
i u

ISF(k − i)− u(k) . (13)

4. SIMULATION RESULTS

To show the effectiveness of the proposed method com-
pared to the state-of-the-art method (Yu and Verhae-
gen, 2018), a Monte Carlo experiment is provided.
Consider a linear dynamical system with the following
minimal realization of state-space representation A =
[2, 1, 0;−1.23, 0, 1; 0.216, 0, 0], B = [−0.1, 0.370,−0.334]T ,
C = [1, 0, 0], D = 1. This system possesses an NMP zero
at z = 1.1 while the rest of zeros are inside the unit circle
(z = 0.5±0.5i). The fault matrix is Bf = Bu, and Bw = I3
for the process noise. The process and measurement noises
are zero mean white noises generated from Gaussian dis-
tributions as w(k) ∼ N (0, 0.01I3) and v(k) ∼ N (0, 0.01),
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Fig. 2. The bilateral impulse responses estimation.

Fig. 3. Out-of-sample histogram of fault estimation error,
where the I/O data has not been used during training.

respectively. In addition, the fault signal in these exper-
iments is following the profile as f(k) = {0 if k ≤
0, sin(0.1πk) if 50 < k ≤ 200, 2 if k > 200}. To design
the fault estimation filter, a data set of healthy I/O sam-
ples with N = 1000 is collected. The Signal-to-Noise Ratio
(SNR) is kept at the high level of SNR = 20 dB. A bilateral
impulse response model for the inverse system will be esti-
mated using (10). The proposed model orders are chosen as
nc = 20 and nac = 40, and the OBF hyper parameters are
designed according to {λc, i} = linspace(0.4, 0.6, nc) and
{λac, i} = linspace(0.8, 0.9, nac) together with a nonzero
direct feedthrough. The true two-sided expansion of the
inverse system and its estimation is provided in Figure 2. A
VARX model of order 3L with L = 50 is identified for the
system with VAF(variance-accounted-for)= %97.25 using
the receding horizon filter proposed in Yu and Verhaegen
(2018). The filter performance is evaluated based on the

normalized error e = ∥f − f̂∥2/∥f∥2. The Monte Carlo
simulation involves 300 runs with i.i.d. realizations for
process and measurement noises. In each run, the FE filter
is performing on real-time operating data resulting from a
multi-step input signal, and the comparison has been made
in Figure 3. Despite a perfect VARX identification, the
method in Yu and Verhaegen (2018) exhibits a clear bias
in the estimation, whereas the proposed ISF filter leads to
an almost unbiased estimation. This result resonates with
the fact that nonlinear propagation of identification errors
via an inversion operation can introduce a noticeable bias
in indirect approaches, which is addressed in the proposed
method by directly designing the filter parameters. The es-
timation bias due to truncation can be controlled through
regularization trade-off. Figure 4 presents the fault recon-
struction performance for one specific noise realization. In
this simulation, we also demonstrate that receding horizon
filter (Yu and Verhaegen, 2018) based on the true MPs is
unbiased. In addition, the proposed filter offers two more
advantages over the recent literature. First, the ISF filter
order (= 60) is much lower than the receding horizon
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Fig. 4. The fault estimation performance.

filter (= 151), implying less estimation delay. Second,
unlike indirect approaches, the proposed method does not
require any inversion operation, making it more favorable
for online applications.

5. CONCLUSION

This paper presents a data-driven fault estimation method
for linear systems, including those with unstable transmis-
sion zeros. The inverse system is represented by bilateral
impulse responses, leading to a mixed causal and non-
causal model. Unlike existing inversion-based approaches,
this method directly estimates the inverse fault subsys-
tem from input-output data, preventing the propaga-
tion of identification errors through the inversion oper-
ation. Moreover, it employs kernel-based regularization
with ROBF kernels to reduce filter order and enhance
performance on unseen data. Simulation studies confirm
the superior performance of this filter.
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