
Fast Adaptive First-Order Semidefinite Programming for Data-Driven
Linear Quadratic Regulation

Reza Rahimi Baghbadorani, Peyman Mohajerin Esfahani, and Sergio Grammatico

Abstract— We study the data-driven finite-horizon linear
quadratic regularization (LQR) problem reformulated as a
semidefinite program (SDP). Our contribution is to propose two
novel accelerated first-order methods for solving the resulting
SDP. Our methods enjoy adaptive stepsize and adaptive smooth-
ing parameters that speed up convergence and in turn, enhance
scalability. Finally, we compare our accelerated first-order
methods and show their benefits via numerical simulations on
a benchmark LQR example.

I. INTRODUCTION

Linear matrix inequalities and in general semidefinite
programs (SDP) are ubiquitous in system analysis and
control design [1]. Therefore, semidefinite programming
has become an important tool especially in data-driven
control design because both the decision variables and the
constraints are high-dimensional. In fact, data-driven control
requires a large number of sampled data, which in turn,
increases the number of decision variables in the associated
SDP [2], [3].

For solving an SDP with high precision, second-order
methods, such as the interior point method, are available,
but suffer from high computational complexity [4], [5],
[6]. Instead, first-order methods are the most popular for
the high-dimensional SDPs. Specifically, two classes of
first-order algorithms are mainly used: subgradient [7] and
mirror descent [8] (which exploits the structure of the
constraints). In their original formulation, these methods
require O

(
1/ε2

)
iterations to reach an ε-neighbor of an

optimal solution.

Thanks to the pioneering work by Nesterov [9], [10],
one can exploit the structure of the objective function in
the SDP, use its soft-max smooth approximation, and then
apply an accelerated first-order method [11]. Remarkably,
Nesterov’s algorithm needs O (1/ε) iterations to reach an
optimal solution with ε precision.
The main practical problem with [9] and [10] is perhaps
that one should fix the smoothing parameter based on
the desired precision, which however affects the stepsize
choice. Consequently, having a small error ε requires a small
stepsize, which in turn reduces the convergence speed. Some
recent works attempt to address this issue. The authors in

R. Rahimi Baghbadorani, P. Mohajerin Esfahani, and S. Grammatico
are with the Delft Center for Systems and Control, TU Delft, The
Netherlands. E-mail addresses: {R.Rahimibaghbadorani,
P.MohajerinEsfahani, S.Grammatico}@tudelft.nl.
This work was supported by the ERC under the research project
TRUST-91562 and COSMOS-91409.

[12] use an adaptive smoothing parameter with a conditional
gradient descent with convergence rate O

(
1/ε2

)
. Another

adaptive smoothing technique is proposed in [13] with
O (1/ε) iteration complexity. The technical issue with this
method is that the stepsize and the smoothing parameter
decrease strictly throughout the iterations, thus resulting in
slower convergence in practice.

In this paper, based on Nesterov’s smoothing technique,
we propose an adaptive stepsize-adaptive smoothing
technique for SDPs that we apply to the data-driven
finite-horizon LQR problem [14], [15]. Our theoretical
contribution is to prove the convergence rate O (1/ε)
for our proposed algorithms. Thanks to the adaptive
stepsize and adaptive smoothing parameters we obtain
faster convergence in practice. Differently from [13], the
stepsize is non-increasing and in fact, in our numerical
experience, it does not strictly decrease in many iterations.
Instead, our smoothing parameter strictly decreases in each
iteration, which results in a smaller approximation error. In
summary, our adaptive (non-increasing) stepsize yields the
best theoretical limit convergence rate (O (1/ε)), while the
adaptive smoothing parameter enhances the precision of the
algorithm itself.

Next, when applying our methods to the data-driven finite-
horizon LQR, we make the same (surprising) observation as
in [16]: By increasing the number of samples in data-driven
finite-horizon LQR, the number of iterations needed to
reach the desired precision is decreased. One plausible
explanation is that the information on the system dynamics
is richer with more sampled data and thus the task of the
solver is simplified. It is worth noting that by increasing
the number of samples, the complexity per iteration grows.
Nevertheless, we do not notice any noteworthy changes in
our numerical experiments.

The paper is organized as follows. Section II contains
the problem statement and rewrites the LQR problem as
a semidefinite program; in Section III we propose our
novel first-order methods for solving SDPs; Section IV
benchmarks our algorithm in a data-driven finite-horizon
LQR design. We conclude the paper in Section V where we
highlight some future research directions.

Notation: For a square matrix A, Tr(A) refers to its trace.
A ≽ 0 denotes that matrix A is positive semidefinite. We
use the notation w(k) ∼ N (0,W) to show the Normal

distribution with zero mean and variance W . The notation
B = diag(A1, . . . , An) is utilized to denote the block
diagonal matrix B with sub-matrices A1, . . . , An as diagonal
components.

II. LINEAR QUADRATIC REGULATION VIA
SEMIDEFINITE PROGRAMMING

A. Model-based linear quadratic regulation

Consider a discrete-time linear system

x(k + 1) = Ax(k) +Bu(k) (1)

where x ∈ Rn is the state, u ∈ Rm is the input, and A
and B are the dynamics matrices of (1). The states of the
system are assumed to be measurable and the pair (A,B)
is controllable. To compute the optimal control sequence
u[0,N−1] = (u(0), . . . , u(N − 1)) over the horizon N ∈ N
one might solve the following stochastic linear quadratic
control problem [17]:

min
ρk

Ex⊤(N)Qxxx(N)+

∑N−1
k=0 E

[
x(k)

u(k)

]⊤
Q

[
x(k)

u(k)

]
s.t. x(k + 1) = Ax(k) +Bu(k) + w(k)

x(0) ∼ N (0, In)

w(k) ∼ N (0, In)

E[w(k)x⊤(l)] = 0, ∀l ≤ k

u(k) = ρk(x(0), x(1), . . . , x(k))

(2)

where

Q =

[
Qxx 0
0 Quu

]
> 0.

Moreover, according to [17, Prop. 1], (2) can be reformulated
as the following covariance selection problem:

min
V (0),...,V (N)≽0

Tr (QxxVxx(N))

+
∑N−1

k=0 Tr(QV (k))

s.t.

Vxx(0) = In[
A B

]
V (k)

[
A B

]⊤
+ In = Vxx(k + 1)

∀k ∈ {0, . . . , N − 1}

(3)

where

V (k) =

[
Vxx Vxu

V ⊤
xu Vuu

]
= E

[
x(k)
u(k)

] [
x(k)
u(k)

]⊤
,

and the corresponding control law is then

u(k) = V ⊤
xu (k)V

−1
xx x(k). (4)

In view of [14, Th. 2] we can reformulate the covariance
selection problem in (3) as an SDP which can be solved via
first-order optimization algorithms.

Lemma 1 (LQR via SDP) [14, Th. 2] The optimal control
law in (4) is equivalent to the K solution of the following
problem:

min
Vxx,K,Z

Tr(QxxVxx(N))

+
∑N−1

k=0 Tr(QxxVxx(k) +QuuZ(k))

s.t.

Vxx(0) ≽ In

Vxx(k + 1)− (A+BK(k))Vxx(k)(A+BK(k))⊤

−In ≽ 0

Z(k)−Q
1/2
uu K(k)Vxx(k)K(k)⊤Q

1/2
uu ≽ 0

(5)

∀k ∈ {0, . . . , N − 1}, where

Vxx := {Vxx(1), . . . , Vxx(N)}

K := {K(0), . . . ,K(N − 1)}

Z := {Z(0), . . . , Z(N − 1)}.

■

With the aim of applying our own optimization algorithms,
let us first rewrite (5) in standard SDP form. Thus, we define
an auxiliary variable H(k) = K(k)Vxx(k), and exploit the
fact that Vxx ≽ In and the Schur complement inequality.
Next, we define the matrices:

C(k) =

[
Vxx(k + 1)− In AVxx(k) +BH(k)

(AVxx(k) +BH(k))⊤ Vxx(k)

]
2n×2n

D(k) =

[
Z(k) Q

1/2
uu H(k)

(Q
1/2
uu H(k))⊤ Vxx(k)

]
(m+n)×(m+n)

and the block diagonal matrices

X = diag (C(1), D(1), . . . , C(n), D(n))

F = diag
(
02n×2n, Quu, Qxx, . . . ,02n×2n, Quu, Qxx

)
Then (5) is equivalent to{

min
X

Tr(F⊤X)

subject to X ∈ SN(3n+m)×N(3n+m)
+

(6)

The sparse structure of X allows us to simplify the SDP in
(6). In fact, thanks to the symmetry of Vxx, Z, C, and D,
we have α = N(

n

2
(5n+ 3) +mn+

m

2
(m+ 1)) variables.

Therefore, we can write (6) in vector form as{ min
y∈Rα

c⊤y

s.t. G0 + G∗(y) ≽ 0

Py = b

(7)

where c ∈ Rα, G∗(y) =
∑α

i=1 yiGi, Gi, G0 ∈
SN(3n+m)×N(3n+m), P ∈ RN(2n2+n)×α, and b ∈
RN(2n2+n) can be written explicitly by A, B, Qxx, Quu,
and F . Finally, the problem in (7) is in standard form of
dual semidefinite programming [5]. We note that SDP in (7)
requires the knowledge of the dynamics in (1).

B. Data-driven linear quadratic regulation

A recently popular alternative to model knowledge is
represented by the so-called data-driven approach where
input-state experimental data are available [18], [19]. Let us
consider the data-driven finite horizon LQR problem via SDP
as well.
Lemma 2 (Data-driven LQR via SDP) [14, Th. 3] Con-
sider sampled input du,[0,T] and state dx,[0,T] data with
length T of system (1). Let matrices U0,T , X0,T , and X1,T

be the Hankel matrices of the experiment data satisfying the
persistent excition condition. Then the optimal control law
for system (1) is given by

K(k) = U0,TR(k)V −1
xx (k)

where the matrices R(k) and Vxx(k) are given by solving
the following optimization problem:

min
Vxx,R,Z

Tr(QxxVxx(N))

+
∑N−1

k=0 Tr(QxxVxx(k) +QuuZ(k))

s.t.

Vxx(0) ≽ In

Vxx(k) = X0,TR(k)[
Vxx(k + 1)− In X1,TR(k)

R⊤(k)X⊤
1,T Vxx(k)

]
≽ 0

[
Z(k) Q

1/2
uu U0,TR(k)

R(k)⊤U⊤
0,TQ

1/2
uu Vxx(k)

]
≽ 0

(8)

∀k ∈ {0, . . . , N − 1}, where

Vxx := {Vxx(1), . . . , Vxx(N)},
R := {R(0), . . . , R(N − 1)},
Z := {Z(0), . . . , Z(N − 1)}.

■

Similarly to section II-A, we can also rewrite (8) in SDP dual
form. We emphasize that the computational cost of solving
(8) grows with the size of the data.

III. FIRST-ORDER ALGORITHMS FOR SDP IN
DUAL FORM

In the spirit of the smoothing technique for non-smooth
convex optimization [10], we introduce an accelerated first-
order method for solving (7). In the first version of the
algorithm, we fix the smoothing parameter (µ) and change
the stepsize (ζ) adaptively and in a second version of the
algorithm, we update both parameters adaptively.

A. Smooth approximation

The problem in (7) is equivalent to{ min
y∈Rα

c⊤y

s.t. λn(G0 + G∗(y)) ≥ 0

Py = b

(9)

where λ1 ≥ ... ≥ λn are the eigenvalues of G0 + G∗(y)
in (9). Since the objective function in (9) is affine in y, the
solution is attained on the boundary of the feasible region.
Thus (9) can be written as

min
y∈Py=b

c⊤y s.t. λn(G0 + G∗(y)) = 0 ⇐⇒

min
y∈Py=−b

−c⊤y s.t. λ1(G∗(y)−G0) = 0.
(10)

The equality constraints in (10) are well suited for applying
the method of multipliers. However, the function λ1(·) is not
differentiable; a common approach is then to use Nesterov’s
smooth approximation of λ1(·) [10].

Lemma 3 (Smoothness regularity) [10] Let X ∈ Sn and
µ ∈ R+. Then the function

fµ(X) = µ log

(
n∑

i=1

exp(λi(X)/µ)

)
(11)

is convex and twice differentiable with gradient

∇fµ(X) =

(
n∑

i=1

exp(λi(X)/µ)

)−1 n∑
i=1

exp(λi(X)/µ)qiq
⊤
i

where qi is the ith column of the unitary matrix Q in the
eigen-decomposition QΣQT of X . In addition, fµ(X) satis-
fies the following inequalities due to the Lipschitz continuity
of λ1 :

λ1(X) ≤ fµ(X) ≤ λ1(X) + µ log n. (12)

Therefore, lim
µ→0

fµ(X) = λ1(X).

Also, the gradient ∇fµ(G0+G∗(y)) is Lipschitz continuous
with constant ∥G∥2/µ, where ∥G∥ = max

h∈Rm

{
∥G(y)∥∞ |

∥h∥ = 1
}

. ■

By using a smooth approximation of λ1, we can apply the
method of multipliers to a smoothed variant of (10), i.e.

min
y∈Py=−b

Lµ(y, ν;σ) (13)

where

Lµ(y, ν;σ) = −c⊤y−νfµ(G∗(y)−G0)+
1

2σ
fµ(G∗(y)−G0)

2

The following Algorithm 1 summarizes the augmented La-
grangian method for solving (13) [20, Chapter 17]. This
algorithm has two loops where the inner loop minimizes the
penalized function and the outer one updates the Lagrangian
multiplier. In practice, it is extremely important that the inner
loop algorithm is very fast and computationally inexpensive
to speed up convergence. For this specific purpose, next we
propose two novel accelerated first-order methods.

B. Adaptive stepsize method

We first consider the application of an adaptive accel-
erated gradient descent method for minimizing a smooth
convex function [21], where the stepsize is chosen adap-
tively. Namely, we fix µ (smoothing parameter) based on
desired error in (12), and then minimize Lµ(·, νt;σt) with

Algorithm 1 Method of multipliers for equality constraints

Require: µ > 0, σ0 > 0, tolerance ε > 0, starting points ys0
and ν0

1: for t = 0, 1, 2, . . . do
2: compute yt = min

Py=−b
Lµ(y, ν

t;σt) by starting at yst

(terminate if ∥∇yLµ(y, ν
t;σt)∥ ≤ ε or after specific

iterations) ▷Inner loop
3: if final convergence test satisfied then
4: STOP with approximate solution yk
5: end if
6: Update Lagrange multipliers:

νt+1 = νt − 1

σt
fµ(G∗(y)−G0)

7: Choose new penalty parameter σt+1 ∈ (0, σt)
8: Set starting point for the next iteration to yst+1 = yt
9: end for

an adaptive stepsize. The following algorithm can be used to
minimize Lµ(·, νt;σt) in the inner loop of Algorithm 1:

x0 = x1, β0 = 0,

βk+1 = (1 +
√

1 + 4β2
k)/2, γk = (1− βk)/βk+1,

ζk : max
ζ≤ζk−1

{
ζ | ∇Lµ(xk, ν

t;σt)
⊤

∇Lµ(xk − ζ∇Lµ(xk, ν
t;σt), ν

t;σt)

−1

2
∥∇Lµ(xk, ν

t;σt)∥2 ≥ 0
}

▷ LineSearch

yk+1 = xk − ζk∇Lµ(xk, ν
t;σt),

xk+1 = (1− γk)yk+1 + γkyk
(Algorithm 2)

Unlike Nesterov’s algorithm, the stepsize used in the above
algorithm is not fixed. In Algorithm 2, the stepsize begins
with a large value and it is non-increasing. Additionally, the
linesearch in Algorithm 2 establishes the lower bound for the
stepsize at 1/2L, where L represents a smooth constant of
the objective function [21]. The adaptively changing stepsize
contributes to the acceleration of the algorithm towards
achieving the best theoretical convergence rate.

C. Adaptive-smoothing adaptive-stepsize method

Now we introduce an extension of Algorithm 2 where we
have an adaptive smoothing parameter besides the adaptive
stepsize (the difference is just in the stepsize and the smooth-
ing parameter update). The idea is that an adaptive smoothing
of λ1(·) in (10) should result in better convergence speed and
approximation error.
Theorem 1 (Convergence of adaptive smoothing)
Consider the non-smooth function f(·) = λ1(·). Let ε > 0
be a desired precision and T the number of iterations
of Algorithm 3. If T ≥ D/ε, then f(yT)− f⋆ ≤ ε where

D = 2
√
2 log n (∥u1∥2 + ζ0β2

0δ1 + (ab− b+ a)µ0 log nζ0β2
0),

in which δ1 = fµ1
(y1)−f⋆ and u1 = β1x1−(β1−1)y1−x⋆,

that is, they only depend on the initial conditions and optimal
solution. ■

µk+1 = max
{ bµk

b(a− 1) + a

a− 1

β2
k+1

β2
k

− 1

,
ε

2 log n

}
(a>1, b>0)

ζk : max
ζ≤ζk−1

{
ζ | ∇fµk+1

(xk)
⊤∇fµk+1

(xk − ζ∇fµk+1
(xk))

−1

2
∥∇fµk+1

(xk)∥2 −
µk+1

ζ
log n ≥ 0

}
▷ LineSearch

yk+1 = xk − ζk∇fµk+1
(xk),

xk+1 = (1− γk)yk+1 + γkyk
(Algorithm 3)

To improve the convergence speed, Algorithm 3 can
be used in the inner loop of Algorithm 1 to minimize
Lµ(·, νt;σt).

Remark 1 (Convergence of adaptive stepsize) The same
convergence rate can be proven for Algorithm 2 by fixing
µ = ε/(2 log n). ■

IV. NUMERICAL SIMULATIONS
In this section, we compare our Algorithms 2 and 3 with

Nesterov’s accelerated gradient descent (NAGD) when used
in the inner loop of Algorithm 1. The numerical performance
of these algorithms are evaluated on a batch reactor system,
a discretized version [22] with sampling time 0.1s, which
has unstable open-loop dynamics:[

A B
]
=

1.178 0.001 0.511 −0.403 0.004 −0.087
−0.051 0.661 −0.011 0.061 0.467 0.001
0.076 0.335 0.560 0.382 0.213 −0.235

0 0.335 0.089 0.849 0.213 −0.016

In the simulations, we take the cost weights Vxx = I4 and
Vuu = I2. The inputs and initial conditions for the states,
and the initial condition for the optimization algorithms
are randomly generated with a normal distribution. The
smoothing parameter (µ) for NAGD and Algorithm 2 is set
to 0.01, and the initial value of the Lagrangian coefficient (σ)
is chosen randomly (the number of outer-loop iterations in
Algorithm 1 is fixed to t = 1, 2, · · · , 10). All random data
are the same for the different algorithms and the various
simulation scenarios.

To compare the algorithms, we consider two scenarios. In
the first one, we terminate the first-order methods in the inner
loop of Algorithm 1 after 300 iterations by fixing the number
of data (T = 15) and the control horizon (N = 10). Figure 1
illustrates the histogram of objective cost in (8) by running
the system with the achieved controllers with the solution
of Algorithm 1 for 10 seconds. We see that Algorithm 3
reduces the objective function more than other algorithms.
The Riccati optimal controller, constructed using the exact
dynamics of the system, is used as a benchmark. In the
second scenario, we change the length of the data and of the
control horizon from T = 10 to T = 30 and from N = 10
to N = 20, respectively. In this case, the optimization
method in the inner loop of Algorithm 1 is terminated if
∥∇yLµ(y, ν

t;σt)∥ ≤ ε = 10−5. Figure 2a shows the number
of iterations versus the control horizon when the length of
data is changed from T = 10 to T = 30. Remarkably,

Fig. 1: Frequency plot of the objective cost.

(a)

(b)

(c)

Fig. 2: Simulation results for different cases.

Algorithm 2 and Algorithm 3 need fewer iterations to achieve
the desired error. In another experiment, in Figure 2b, we
plot the number of iterations needed to reach the desired
error versus the size of the data by fixing the control horizon
from N = 10 to N = 20. An interesting observation is that
the more data we have, the fewer iterations are needed to
reach the desired error. We note that by increasing the size
of the data the complexity of each iteration increases, yet we
observe overall no significant change in the simulation time
(Figure 2c).

V. CONCLUSION AND FUTURE WORK
The data-driven finite-horizon linear quadratic regular-

ization problem can be solved very efficiently and very
accurately via semidefinite programming with adaptive ac-
celerated first-order methods. Interestingly, by increasing the
size of the experimental data, the number of iterations for
solving the corresponding semidefinite program decreases.
One problem associated with the smoothing parameter is its
independency from the optimization variables. Breaking this
independency via a suitable update rule is left as future work.

APPENDIX
A. Proof of Theorem 1

First, we show the function reduction of f(·) and its
smooth approximation fµ.

fµk+1
(yk+1)− f(z)

(Lemma (3))
≤

fµk+1
(yk+1)− fµk+1

(z) + µk+1 log n

≤ fµk+1
(yk+1)− fµk+1

(xk)

+∇fµk+1
(xk)

⊤(xk − z) + µk+1 log n

≤ ∇fµk+1
(yk+1)

⊤(yk+1 − xk)

− 1

2
∇fµk+1

(xk)
⊤(yk+1 − xk) + µk+1 log n

+∇fµk+1
(xk)

⊤(xk − z) +
1

2
∇fµk+1

(xk)
⊤(yk+1 − xk) ≤

− 1

2ζk
∥yk+1 − xk∥2 −

1

ζk
(yk+1 − xk)

⊤(xk − z)

(14)

The last inequality of (14) holds due to the condition in the
linesearch. By rewriting inequality (14) with z = yk and
z = x∗, we have

fµk+1
(yk+1)− fµk

(yk)− µk log n
(Lemma (3))

≤

fµk+1
(yk+1)− f(yk) ≤ − 1

2ζk
∥yk+1 − xk∥2

− 1

ζk
(yk+1 − xk)

⊤(xk − yk)

(15)

fµk+1
(yk+1)− f∗ ≤ − 1

2ζk
∥yk+1 − xk∥2

− 1

ζk
(yk+1 − xk)

⊤(xk − x∗)
(16)

Now by defining δk := fµk
(yk) − f∗, multiplying (15) by

βk − 1, and adding the result to (16) we have

βkδk+1−(βk − 1)δk − µk log n(βk − 1) ≤

− βk

2ζk
∥yk+1 − xk∥2

− 1

ζk
(yk+1 − xk)

⊤(βkxk − (βk − 1)yk − x∗)

Multiplying above inequality by ζkβk, defining β2
k−1 := β2

k−
βk and using the fact that ζk ≤ ζk−1 we can write

ζkβ
2
kδk+1 − ζk−1β

2
k−1δk − µk log nζkβ

2
k−1 ≤

− 1

2
(∥βk(yk+1 − xk)∥2

+ 2βk(yk+1 − xk)
⊤(βkxk − (βk − 1)yk − x∗))

(17)

Now one can verify that

∥βk(yk+1 − xk)∥2

+ 2βk(yk+1 − xk)
⊤(βkxk − (βk − 1)yk − x∗) =

∥βkyk+1 − (βk − 1)yk − x∗∥2

− ∥βkxk − (βk − 1)yk − x∗∥2

(18)

Then by using (17) and (18), we obtain

ζkβ
2
kδk+1 − ζk−1β

2
k−1δk − µk log nζkβ

2
k−1 ≤

− 1

2
(∥βkyk+1 − (βk − 1)yk − x∗∥2

− ∥βkxk − (βk − 1)yk − x∗∥2)

(19)

In the right-hand terms of (19), we can drive the update rule
of xk+1,

βkyk+1−(βk−1)yk−x∗ = βk+1xk+1−(βk+1−1)yk+1−x∗

(20)
which is equivalent to

xk+1 =
(−1 + βk + βk+1)

βk+1
yk+1 +

1− βk

βk+1
yk

By combining (19) and (20) with uk = βkxk− (βk−1)yk−
x∗ we obtain
ζkβ

2
kδk+1 − ζk−1β

2
k−1δk − µk log nζkβ

2
k−1 ≤

1

2
(∥uk∥2 − ∥uk+1∥2)

(21)

We want to reduce µk in each iteration to reach our desired
error. Therefore we know that µk < µk−1. Then we have

− aµk−1 log nζk−1β
2
k−1 + (a− 1)µk log nζkβ

2
k−1 ≤

− aµk log nζkβ
2
k−1 + (a− 1)µk log nζkβ

2
k−1

= −µk log nζkβ
2
k−1

(22)

Let us define µk as follows

µk =

(
b(a− 1) + a

a− 1

β2
k

β2
k−1

µk − bµk−1

)
By substituting µk in the left-hand side of (22) and using
(21) we have

ζkβ
2
kδk+1 − ζk−1β

2
k−1δk − (ab− b+ a)µk−1 log nζk−1β

2
k−1

+ (ab− b+ a)µk log nζkβ
2
k ≤ 1

2
(∥uk∥2 − ∥uk+1∥2)

(23)

Summing inequalities (23) from k = 1 to k = T one obtains

ζTβ
2
T δT+1 − ζ0β

2
0δ1 − (ab− b+ a)µ0 log nζ0β

2
0 ≤

1

2
∥u1∥2 −

1

2
∥uT+1∥2 ≤ 1

2
||u1||2

which implies

δT+1 ≤ ∥u1∥2 + ζ0β
2
0δ1 + (ab− b+ a)µ0 log nζ0β

2
0

2ζTβ2
T

(24)

By the definition of δT+1 and Lemma 3, we then have

f(yT+1)− f∗ ≤ log nµT+1+

∥u1∥2 + ζ0β
2
0δ1 + (ab− b+ a)µ0 log nζ0β

2
0

2ζTβ2
T

(25)

To achieve ε error, we know that ζk has a lower bound
ε/(2 log n), and µk is decreasing until it reaches ε/(2 log n).
Then, the second term in the right-hand side of (25) is equal
to ε/2, and thanks to the fact that βk ≥ k/2 for all k, we
conclude that the ε precision is guaranteed if T is greater
than

2
√
2 log n (∥u1∥2 + ζ0β2

0δ1 + (ab− b+ a)µ0 log nζ0β2
0)

ε
.

■

REFERENCES

[1] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Society for Industrial and
Applied Mathematics, 1 1994.

[2] Y. Jin, H. Wang, T. Chugh, D. Guo, and K. Miettinen, “Data-
driven evolutionary optimization: An overview and case studies,” IEEE
Transactions on Evolutionary Computation, vol. 23, pp. 442–458, 6
2019.

[3] L. Vandenberghe and S. Boyd, “Applications of semidefinite program-
ming,” Applied Numerical Mathematics, vol. 29, pp. 283–299, 3 1999.

[4] F. Alizadeh, “Interior point methods in semidefinite programming
with applications to combinatorial optimization,” SIAM Journal on
Optimization, vol. 5, pp. 13–51, 2 1995.

[5] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 3 2004.

[6] A. d’Aspremont and N. E. Karoui, “A stochastic smoothing algo-
rithm for semidefinite programming,” SIAM Journal on Optimization,
vol. 24, pp. 1138–1177, 1 2014.

[7] A. Nemirovski and D. Yudin, Problem complexity and method effi-
ciency in optimization. John Wiley, 1983.

[8] A. Beck and M. Teboulle, “Mirror descent and nonlinear projected
subgradient methods for convex optimization,” Operations Research
Letters, vol. 31, pp. 167–175, 5 2003.

[9] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math-
ematical Programming, vol. 103, pp. 127–152, 5 2005.

[10] ——, “Smoothing technique and its applications in semidefinite opti-
mization,” Mathematical Programming, vol. 110, pp. 245–259, 3 2007.

[11] ——, “A method for solving the convex programming problem with
convergence rate O(1/k2),” Proceedings of the USSR Academy of
Sciences, vol. 269, pp. 543–547, 1983.

[12] A. Yurtsever, O. Fercoq, F. Locatello, and V. Cevher, “A conditional
gradient framework for composite convex minimization with applica-
tions to semidefinite programming,” 2018, pp. 5713–5722.

[13] Q. Tran-Dinh, “Adaptive smoothing algorithms for nonsmooth com-
posite convex minimization,” Computational Optimization and Appli-
cations, vol. 66, pp. 425–451, 4 2017.

[14] M. Rotulo, C. D. Persis, and P. Tesi, “Data-driven linear quadratic reg-
ulation via semidefinite programming,” IFAC-PapersOnLine, vol. 53,
pp. 3995–4000, 2020.

[15] G. R. G. da Silva, A. S. Bazanella, C. Lorenzini, and L. Campestrini,
“Data-driven lqr control design,” IEEE Control Systems Letters, vol. 3,
pp. 180–185, 1 2019.

[16] D. Bertsimas and B. V. Parys, “Sparse high-dimensional regression:
Exact scalable algorithms and phase transitions,” The Annals of
Statistics, vol. 48, 2 2020.

[17] A. Gattami, “Generalized linear quadratic control,” IEEE Transactions
on Automatic Control, vol. 55, pp. 131–136, 1 2010.

[18] Z.-S. Hou and Z. Wang, “From model-based control to data-driven
control: Survey, classification and perspective,” Information Sciences,
vol. 235, pp. 3–35, 6 2013.

[19] C. D. Persis and P. Tesi, “Formulas for data-driven control: Stabi-
lization, optimality, and robustness,” IEEE Transactions on Automatic
Control, vol. 65, pp. 909–924, 3 2020.

[20] J. Nocedal and S. J. Wright, Numerical Optimization. Springer New
York, 2006.

[21] R. R. Baghbadorani, S. Grammatico, and P. Mohajerin Esfahani,
“Adaptive accelerated composite minimization,” preprint available at
arXiv:2405.03414, 2024.

[22] M. Green and D. J. N. Limebeer, Linear robust control. Prentice
Hall, Englewood Cliffs, N.J., 1995.

