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Abstract— We present a framework for learning of modeling
uncertainties in Linear Time Invariant (LTI) systems to improve
the predictive capacity of system models in the input-output
sense. First, we propose a methodology to extend the LTI
model with an uncertainty model. The proposed framework
guarantees stability of the extended model. To achieve this,
two semi-definite programs are provided that allow obtaining
optimal uncertainty model parameters, given state and uncer-
tainty data. Second, to obtain this data from available input-
output trajectory data, we introduce a filter in which an internal
model of the uncertainty is proposed. This filter is also designed
via a semi-definite program with guaranteed robustness with
respect to uncertainty model mismatches, disturbances, and
noise. Numerical simulations are presented to illustrate the
effectiveness and practicality of the proposed methodology in
improving model accuracy, while guaranteeing model stability.

I. INTRODUCTION

Dynamical systems modeling has been a key problem
in many engineering and scientific fields, such as biology,
physics, chemistry, and transportation. When modeling dy-
namical systems, it is of key importance to use such well-
established principles of physics and other prior system
knowledge such as stability [1]. However, many complex and
uncertain systems in real life possess partially known physics
only [2]. Even for systems in which accurate physics-based
models are known, such as high-tech systems and robotics,
there are unavoidable (parametric and non-parametric) un-
certainties that affect the model’s predictive capacity.

For a class of linear uncertain dynamical systems, this
paper focuses on learning models for uncertainties while
guaranteeing stability of extended models (prior models plus
uncertainty characterization), given available input-output
data. This problem contrasts with black box modelling
approaches, e.g., using Neural Networks (NNs) or Gaussian
Processes (GPs), as we incorporate prior relations that come
from first-principles into the modeling and learning scheme.
Moreover, this problem differs from identifying a full model
in a gray box fashion, as a prior model with known param-
eters is given. However, such problems can be a subclass of
the problem we consider here with no prior model. Below,
some related existing literature is provided.

Existing Literature: Our approach is fundamentally differ-
ent from well-known existing Physics-Informed (PI) learning
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techniques where standard black box models (such as NNs
or GPs) are trained constrained to satisfy physics-based rela-
tions [3]. Yazdani et al. in [4] use this technique to construct
the so-called Physics Informed Neural Networks (PINNs).
They constrain a known physics-based model during the
training of a NN-based model (i.e., penalize loss function
for the mismatch between the physics-based model and the
NN as a soft constraint) and incorporate physics knowledge
in the structure of the NN. Although this method provides a
NN as a system model (as well as parameters for physics-
based models), it does not give a closed-form expression
for uncertainty in the physics-based model (i.e., it does
not account for modeling mismatches due to unmodeled
physics). Furthermore, parameters of both physics-based
models and NNs are learned simultaneously, which increases
the computational burden.

The approach proposed in this paper also differs from
the so-called Sparse Identification of Nonlinear Dynamics
(SINDy) scheme [5]. SINDy assumes full knowledge of sys-
tem states and their time derivatives. Then, based on known
physics-based models and known variables (i.e., system
states and their derivatives) a library of functions is generated
that can be incorporated in dynamical models to account for
uncertainty. To select the active functions in models, sparse
identification algorithms are exploited. This approach has
demonstrated quite accurate performance in sparse model
identification of complex nonlinear systems [6]–[8]. How-
ever, SINDy not only requires full-state measurement but
also requires the derivative of states to be known. Although
the state derivatives can be approximated numerically if
the complete state is known, most numerical methods are
noise sensitive. Furthermore, the requirement of full-state
measurements is a strong assumption for most dynamical
systems. In our work, we do not require measurements of
the full-state and its time derivative. The proposed algorithms
need input-output data only.

Our approach, augments a known physics-based model by
a black-box model used as a correction term. Such generic
approach is also taken by Quaghebeur et al. in [9], who add
an NN model to a known physics-based model with unknown
parameters. This approach allows maintaining the basic
structure of the model that comes from first principles, which
improves interpretability. However, it requires simulating the
hybrid model at each iteration during the training process.
This approach is clearly more computationally expensive
compared to the proposed method, which alleviates the need
for simulating the model in every iteration. Furthermore, the
main drawback of this method is that it assumes that the
initial state of the dynamic system is known or at least it



requires measuring all the states (full-state measurement) of
the true dynamical system.

Furthermore, our approach offers stability guarantees for
the extended LTI model (i.e., the model consisting of the
known physics-based model and the uncertainty model). The
identification of stable LTI models has (mainly) been studied
in the context of discrete systems [10]–[12]. For instance,
in [13], the authors provide convex constraints to ensure
incremental stability for linear non-autonomous discrete-time
models and some nonlinear models such as recurrent neural
networks. Additionally, there exist studies that have explored
model identification with asymptotic stability guarantees for
discrete LTI systems using subspace identification methods
[14], [15]. Subspace identification methods involve obtaining
an estimate of state sequence or extended observability ma-
trix, followed by solving a least squares problem to estimate
the model parameters. One way to ensure the asymptotic
stability of the model is to add stability constraints to the
least squares optimization [16]. This addition results in a
convex linear program with mixed equality, quadratic, and
semi-definite constraints. Moreover, there exist some studies
such as [17], [18] which provide non-parametric model
identification with stability guarantees for discrete and con-
tinuous LTI systems using kernel-based approaches. It can
be observed that stable LTI model identification has a rich
literature, with a focus on identifying the complete dynamics.
In this context, our focus is on identifying the missing
elements (uncertainty) in known physics-based models.

In this paper, we propose a framework for learning of
modeling uncertainties in physics-based models applicable
to Linear Time Invariant systems (LTIs). We first focus on
fitting uncertainty models, assuming that some realizations of
input, (estimated) uncertainty, and (estimated) state are given,
while guaranteeing asymptotic stability of the extended
model (i.e., known physics-based model plus uncertainty
model). This is achieved by formulating the problem as a
constraint supervised learning problem.

One key challenge in this problem is the introduction of
stability constraints, which is addressed using Lyapunov-
based tools. The stability criteria typically lead to a non-
convex optimization problem. We tackle this challenge by
proposing two different approaches:

1) Cost Modification: The first approach involves a
change of variables, resulting in cost function being
rewritten in terms of these new variables (Theorem 1).

2) Constraint Modification: The second approach in-
troduces a sufficient condition to fulfill the stability
constraint by solving a convex program (Theorem 2).

Having addressed the non-convexity challenge, the paper
proceeds to discuss the practical implementation of the
framework. Specifically, it outlines a method for estimating
uncertainty and state trajectories using input-output data
and the known physics-based model (Proposition 1). In this
context, we treat uncertainty as an unknown term affecting
the system dynamics and estimate uncertainty and state
using robust state and unknown input observers [19].

Notation: The symbol R+ denotes the set of nonnegative
real numbers. The n × n identity matrix is denoted by
In or simply I if n is clear from the context. Similarly,
n × m matrices composed of only zeros are denoted by
0n×m or simply 0 when their dimensions are clear. First
and second time-derivatives of a vector x are expressed as ẋ
and ẍ, respectively. For rth-order time-derivatives of a vector
x, the notation x(r) is adopted. A positive definite matrix
is denoted by X � 0 and positive semi-definite matrices
are denoted by X � 0. Similarly, for a negative definite
X ≺ 0 is used, and X � 0 for negative semi-definite
matrices. The imaginary unit j is defined by j2 = −1.
For a transfer function T (s), with s ∈ C, σmax

(
T (s)

)
denotes the maximum singular value, and TH(s) represents
the Hermitian transpose. The notation col[x1, . . . , xn] stands
for the column vector composed of the elements x1, . . . , xn.
This notation is also used when the components xi are
vectors. For a differentiable function V : Rn → R we denote
by ∂V

∂x the row-vector of partial derivatives and by V̇ (x) the
total derivative of V (x) with respect to time (i.e., ∂V

∂x
dx
dt ).

The notation tr(W ) stands for trace of a matrix W . We
often omit time dependencies for notation simplicity.

II. PROBLEM FORMULATION

Consider the system{
ẋs =Axs +Buu+ Sηη(xs, u) +Bωω,

ys =Cxs +Dνν,
(1)

where t ∈ R+, xs ∈ Rn, ys ∈ Rm, and u ∈ Rl are
time, system state, measured output and known input vectors,
respectively, and function η : Rn × Rl → Rnη is unknown
modeling uncertainty. Signals ω : R+ → Rnω and ν : R+ →
Rmν are unknown bounded disturbances; the former with
unknown frequency range and the latter with high-frequency
content (e.g., related to measurement noise). Known matrices
(A,Bu, Sη, Bω, C,Dν) are of appropriate dimensions, with
n,m, l, nη, nω,mν ∈ N. Matrix Sη is used to indicate in
which equation(s) the uncertainty η appears explicitly.

We aim to fit a data-based model for the uncertainty
(i.e., η(·) in (1)) using a supervised learning method, while
guaranteeing model stability, with the goal of constructing a
more accurate system model (valid at least for trajectories
close to the training data set). The proposed methods in
Section III assume that a data-set (labeled data) of input,
(estimated) uncertainty, and (estimated) state realizations are
given. This assumption can be considered as another problem
for which a solution is provided in Section IV. In what
follows, we formulate the problem of uncertainty model
learning with stability guarantees.

For the system in (1), consider the following LTI model

ẋ = Ax+Buu+ Sηlηl(x, u),

ηl(x, u) := Θlx+Blu,
(2)

where x ∈ Rn is model state and function ηl : Rn × Rl →
Rnηl is the uncertainty model that is parameterized by
Θl, Bl. Matrices (Θl, Bl, Sηl) are of appropriate dimensions,



with nηl ∈ N. Matrix Sηl , similar to Sη in (1) shows explicit
appearance of the uncertainty model ηl in the right-hand side
and could be different from Sη .

Next, we define a cost function for supervised learning
and the stability constraint.

A. Cost Function

Recall that in this section, we presume that (estimated)
uncertainty and state realizations are given. Let us define the
following (given) i-th sample (in time) data vector

di :=
[
x̂>i u>i η̂>i

]>
,

where x̂i, ui, and η̂i correspond to given i-th realizations of
state estimation, input, and uncertainty estimation, respec-
tively. Given N samples of data realizations, define the data
matrix D as follows:

D :=

N∑
i=1

did
>
i . (3)

Further, define the error vector between the uncertainty
model and its (given) estimation as

ei := ηl(x̂i, ui)− η̂i = Tdi

with
T :=

[
Θl Bl −I

]
. (4)

Then, we define the following quadratic cost function to be
minimized to identify Θl and Bl:

J :=

N∑
i=1

e>i ei =

N∑
i=1

d>i T
>Tdi. (5)

B. Stability Constraint

We aim to formulate a constraint to satisfy asymptotic
stability of the model in (2) via Lyapunov-based stability
analysis.

Consider the quadratic function V (x) = x>Px for a
positive definite matrix P � 0. If we can find a P such
that V̇ < 0 for u = 0 along trajectories of (2); then, the
model in (2) is asymptotically stable. The condition V̇ < 0,
for u = 0 can be stated as

(A+ SηlΘl)
>P + P (A+ SηlΘl) ≺ 0, (6)

or equivalently, by applying the congruence transformation
of Q := P−1, (6) can be written as

(A+ SηlΘl)Q+Q(A+ SηlΘl)
> ≺ 0. (7)

Note that the asymptotic stability conditions above re-
quires the linear matrix of the dynamics A + SηlΘl to be
Hurwitz. For a nonzero u, this condition implies Input-to-
State Stability (ISS) of the model in (2) [20, Col. 5.2], for
any Bu and Bl. Now, we can state the problem we seek to
solve.

Problem 1 (Uncertainty Model Learning with Stability
Guarantee) Consider a given data-set of input and (esti-
mated) uncertainty and state realizations. Find the optimal
parameters Θl and Bl of uncertainty model ηl(·) of the form

in (2) that minimizes the cost function J in (5), such that the
system model in (2) is asymptotically stable (i.e., respecting
the constraint in (6) or (7)). In other words, find the optimal
parameters of the following optimization problem:

min
P,Θl, Bl

J

s.t. (A+ SηlΘl)
>P + P (A+ SηlΘl) ≺ 0,

P � 0.

(8)

In what follows, we provide an approximate solution to
Problem 1 guaranteeing the stability of the system model
described in (2).

III. APPROXIMATE SOLUTION TO PROBLEM 1

The challenge is that the stability condition (6) that appears
in the optimization problem (8) is not convex in P and Θl.
Therefore, in what follows we provide two approaches to
convexify the optimization problem.

A. Cost Modification Approach

First, we convexify the stability constraint by a change
of variable and rewrite the cost function in (5) in terms
of this new variable. The following theorem formalizes the
associated convex optimization problem obtained via this
approach (which can be considered an approximation to the
problem in (8)).

Theorem 1 (Stable Model Learning with Modified Cost)
Consider system (1), a given data-set of input and (estimated)
uncertainty and state realizations. In addition, consider the
uncertainty model of the form in (2). Consider the following
convex program:

min
P, S,R,W

tr(W )

s.t. A>P + PA+ S> + S ≺ 0, (9a) 2P T̃ D̃> I
∗ I 0
∗ ∗ W

 � 0, (9b)

P � 0

with given A related to the known part of the system
dynamics in (1), T̃ :=

[
S R −P

]
, and D̃ the Cholesky

decomposition of the data matrix D defined in (3) (i.e.,
D = D̃>D̃). Denote the optimizers of (9) as P ?, S?, R?, and
W ?. Then, the following parameters of the model (2), Sηl =

I,Θl = Θ?
l = P ?

−1

S?, Bl = B?l = P ?
−1

R? guarantee
asymptotic stability of the model in (2). In addition, it
holds that the cost J of (8) satisfies J ≤ tr(W ); as such
(9) represents an approximate convexified problem of the
problem in (8).

Proof: The proof can be found in Appendix A. �

Remark 1 (Surrogate Convex Optimization with Modi-
fied Cost) We remark that the semi-definite program in (9) is
not equivalent to the non-convex optimization problem in (8)
(i.e., it is a convex approximation) due to setting Sηl = I and



using a sufficient condition (a lower bound) in the derivation
of the LMI in (9b). Although by letting Sηl = I , we do
not use the known structure of uncertainty, this makes the
problem tractable. Note that here, we do not use knowledge
of uncertainty structure.

Next, we follow a different approach to formulate an alter-
native surrogate (approximate) convex optimization problem
for Problem 1.

B. Constraint Modification Approach

Instead of changing the model-related variable (Θl) in
the stability constraint (7) (or in its equivalent (6)), we
formulate a sufficient condition (an upper bound) for the
stability constraint (7) which is linear in all the optimization
parameters in order to convexify the optimization problem
(8). The following theorem formalizes this approach.

Theorem 2 (Stable Model Learning with Modified Con-
straint) Consider system (1), a given data-set of input
and (estimated) uncertainty and state realizations and the
uncertainty model of the form in (2). Consider the following
convex program:

min
Q,Θl, Bl,W

tr(W )

s.t.

[
AQ+QA> SηΘl + γ̄Q

? −2γ̄I

]
≺ 0, (10a)

tr(TDT>) ≤ tr(W ), (10b)
Q � 0

with given Hurwitz A, Sη related to known parts of the
system in (1), positive scalar γ̄, and D and T as defined
in (3), and (4), respectively. Denote the optimizers of (10)
as Q?, Θ?

l , B?l , and W ?. Then, the following parameters
of the model (2), Sηl = Sη,Θl = Θ?

l , Bl = B?l guarantee
asymptotic stability of the model in (2). In addition, it holds
that the cost J of (8) satisfies J ≤ tr(W ).

Proof: The proof can be found in Appendix B. �

Note that the scalar parameter γ̄ in Theorem 2 is tuned
for the minimal feasible cost by a line search.

Remark 2 (Surrogate Convex Optimization with Mod-
ified Constraint) Similar to Theorem 1, the semi-definite
program in (10) is a convex approximation of the non-convex
optimization problem in (8) since the stability constraint
(10a) is a sufficient condition for asymptotic stability of
the model in (2). Note that, a disadvantage of Theorem 2
compared to Theorem 1 is that to ensure the feasibility of the
semi-definite problem in Theorem 2, the known A matrix of
the system in (1) has to be Hurwitz. On the other hand, unlike
Theorem 1, Theorem 2 uses the knowledge of uncertainty
structure by setting Sηl = Sη , which is potentially beneficial.

In the above, we assumed that state and uncertainty real-
izations are available, which is, in practice typically not the
case. In what follows, we present a solution for uncertainty
and state estimation based on only input and output data.

IV. UNCERTAINTY AND STATE ESTIMATION

First, we formulate the uncertainty and state estimation
problem before providing a solution for that problem. Con-
sider system in (1) and the required assumptions as below
to ensure that the problem is well-posed.

Assumption 1 (Regularity) The following assumptions are
required to ensure the regularity of the uncertainty and state
estimation problem, which stand throughout this section:
• State and Input Boundedness: The state variable
xs(t) and the input u(t) remain bounded in some
compact region of interest.

• Cr Uncertainty Vector: The uncertainty vector
η(xs(t), u(t)) in (1) is r times differentiable with re-
spect to time, i.e., the time derivatives η(1)(xs(t), u(t)),
η(2)(xs(t), u(t)), ... ,η(r)(xs(t), u(t)) exist and are con-
tinuous, and η(r)(xs(t), u(t)) is uniformly bounded.

• Disturbance Boundedness: The disturbance vector
ω(t) in (1) is bounded uniformly in t.

• C1 Measurement Noise: The measurement noise vector
ν(t) in (1) is bounded uniformly in t and differentiable,
i.e., the total derivative with respect to time ν̇(t) exists,
is continuous, and bounded uniformly in t.

We assume input u and measured output ys vector-valued
signals in (1) are available. The following filter is designed
for uncertainty and state estimation:

ż =h(z, u, ys; θ),

η̂ =φ1(z, ys; θ),

x̂s =φ2(z, ys; θ),

(11)

where z ∈ Rnz is the internal state of the filter with nz ∈ N.
Functions h : Rnz×Rl×Rm → Rnz , φ1 : Rnz×Rm → Rnη ,
and φ2 : Rnz ×Rm → Rn characterize the filter structure, θ
denotes design parameters.

Define x̂d := col[η̂, x̂s] (representing the estimate of both
the uncertainty and the state) and its estimation error as

ed := x̂d − xd, (12)

where xd := col[η, xs]. The error dynamics of the filter is
given later as a linear system and it is shown that ed =
ed(ω, η

(r), ν, ν̇). With this, we can state the uncertainty and
state estimation problem at a high abstraction level.

Problem 2 (Uncertainty and State Estimation - Abstract
Level) Consider the system (1) with known input and output
signals, u(t) and ys(t), and the uncertainty-state estimator
filter (11). For given r, design the filter parameters θ such
that the following properties are guaranteed:
1) Stability: The estimation error dynamics is input-to-state
stable with respect to the perturbation input (ω, η(r), ν, ν̇);
2) Disturbance Attenuation: The H∞-norm of the transfer
function from col[ω, η(r)] to ed in (12) is bounded by some
known λ > 0;
3) Noise Rejection: The H2-norm of the transfer function
from col[ν, ν̇] to ed in (12) is bounded by some known γ > 0.



Now, to restate Problem 2 in a more formal way; first, we
discuss the uncertainty-state estimator filter architecture, in
what follows.

A. Ultra Local Uncertainty Representation

First some preliminaries which are required to present the
estimator filter architecture are discussed. Considering that
the uncertainty η(xs(t), u(t)) in (1) is an implicit function
of time, for all xs(t) and u(t), we can write an entry-wise
r-th order Taylor time-polynomial approximation at time t
of η as η̄ = a0 + a1t + · · · + ar−1t

r−1 with coefficients
ai ∈ Rnη , i = 0, . . . , r − 1. This model can be written in
state-space form as

˙̄ζj = ζ̄j+1, 0 < j < r,

˙̄ζr = 0,

η̄ = ζ̄1,

(13)

where ζ̄j ∈ Rnη . Clearly, in the above model, we have
η̄(r) = 0, which might not be true for actual uncertainty
signal η. Under Assumption 1, the actual internal state-space
representation of η is as follows:

ζ̇j = ζj+1, 0 < j < r,

ζ̇r = η(r),

η = ζ1,

(14)

where ζj ∈ Rnη . Clearly, the accuracy of the approximate
model (13) increases as η(r) goes to zero (entry-wise). In
the following, to design the uncertainty-state estimator we
augment the system state, xs(t), with the states of the actual
uncertainty internal state ζj(t), j ∈ {1, . . . , r}, and augment
the system dynamics in (1) with (14). We then design a linear
filter (observer) for the augmented system to simultaneously
estimate xs and ζj using model (13). We remark that proper
selection of the number of the uncertainty derivatives, r,
added to the approximated model (13) (and (14)) is problem-
dependent, see [21] for discussion on selection of r.

B. Augmented Dynamics

Based on the uncertainty internal representation in (14)
introduced above, define the augmented state xa :=
col[xs, ζ1, ζ2, . . . , ζr], and rewrite the augmented dynamics
using (1) and (14) as{

ẋa = Aaxa +Buaua +Bωaωa,

ys = Caxa +Dνν,
(15a)

Aa :=

A Sη 0
0 0 Idn
0 0 0

 , Bua :=
[
B>u 0

]>
, ua := u,

Bωa :=

Bω 0
0 0
0 Inη

 , ωa :=

[
ω
η(r)

]
, Ca :=

[
C 0

]
(15b)

with dn := (r − 1)nη .

C. Uncertainty-State Estimator

In this section, considering the uncertainty-state estima-
tor general structure in (11), inspired from observer-based
approaches, we consider h(·) and φi(·), i = 1, 2, as

h(z, u, ys; θ) =Nz +Gu+ Lys,

φi(z, ys; θ) =C̄i(z − Eys),
(16a)

with x̂a = z − Eys, filter state z ∈ Rnz , nz = n+ rnη ,

C̄1 :=
[

0 Inη 0
]
, C̄2 :=

[
In 0

]
,

and matrices (N,G,L) defined as

N := MAa −KCa, M := I + ECa,

G := MBa, L := K(I + CaE)−MAaE.
(16b)

Matrices E and K are filter gains to be designed which can
be collected as θ = (E,K). Note that according to (16a), the
part of the augmented state, xa, that we use to reconstruct
uncertainty and state signals is C̄axa with

C̄a :=
[
C̄>1 C̄>2

]>
. (17)

In the following section, we analyze the estimator error
dynamics.

D. Uncertainty-State Estimator Error Dynamics

Consider the augmented state estimate x̂a and let us define
estimation error as

e := x̂a − xa = z − xa − Eys = z −Mxa − EDνν.

Then, given the algebraic relations in (16b), the estimation
error dynamics can be written as

ė = Ne−MBωaωa +
[
KDν −EDν

][ ν
ν̇

]
.

Define νa := col[ν, ν̇], ed := C̄ae with C̄a as in (17),
and Bνa :=

[
KDν −EDν

]
. Then, the estimation error

dynamics is given by{
ė = Ne−MBωaωa +Bνaνa,

ed = C̄ae.
(18)

Define the transfer matrices

Tedωa(s) := −C̄a(sI −N)−1MBωa ,

Tedνa(s) := C̄a(sI −N)−1Bνa ,
(19)

where Tedωa(s) and Tedνa(s), with s ∈ C, denote the
corresponding transfer matrices from ωa and νa, both to ed,
respectively. Now, we can restate Problem 2 in a more formal
way.

Problem 3 (Uncertainty and State Estimation) Consider
the system (1) with known input and output signals, u(t)
and ys(t). Furthermore, consider the internal uncertainty
dynamics (14), its Taylor approximation (13), the augmented
dynamics (15), the uncertainty-state estimator (11) with
functions defined in (16), and the transfer matrices in (19).
Design the filter gain matrices θ = (E,K) such that the
following properties are guaranteed:



1) Stability [22]: There exist a class KL function β(·) and
a class K function µ(·) such that for any initial estimation
error e(t0) and any bounded input ω̄a := col[ωa, νa], the
solution e(t) of (18) exists for all t ≥ t0 and satisfies

‖e(t)‖ ≤ β (‖e (t0)‖ , t− t0) + µ( sup
t0≤τ≤t

‖ω̄a(τ)‖)

2) Disturbance Attenuation:

J1(θ) = ‖Tedωa‖∞ := sup
α∈R+

σmax(Tedωa(iα)) (20)

is bounded by some known λ > 0;
3) Noise Rejection:

J2(θ) = ‖Tedνa‖H2

:=

√
1

2π
trace

∫ ∞
−∞

Tedνa(iα)THedνa(iα) dα
(21)

is bounded by some known γ > 0.

The essence of Problem 3 is to find an uncertainty-state
estimator that, firstly, ensures a bounded estimation error,
e(t), for any input (input to state boundedness); the H∞-
norm of Tedωa(s), the transfer matrix from external distur-
bances and uncertainty model mismatch to the performance
output ed = C̄ae is upper bounded by λ; the H2-norm of
Tedνa(s), the transfer matrix from measurement noise to the
performance output ed, is upper bounded by γ; and, for
ωa = 0 and νa = 0, e(t) goes to zero asymptotically (internal
stability).

E. Uncertainty-State Estimator Design

In the following proposition, we provide the solution of
Problem 3 as a semi-definite problem, where we seek to
minimize the H∞-norm of Tedωa(s) for an acceptable upper
bound on the H2-norm of Tedνa(s) (there exist a trade-off
between these two norms, see [23], [24]). Moreover, we add
the Input-to-State Stability (ISS) constraint with respect to
filter error dynamics input col[ωa, νa] to this program to
enforce that stability of the resulting estimation filter.

Proposition 1 (Estimator Design) Consider the system (1),
the augmented dynamics (15), the uncertainty-state esti-
mator (11) with h(·) and φ(·) as defined in (16), the
corresponding estimation error dynamics (18), and the trans-
fer functions (19). Consider the following convex program:

min
Π, F,H,Z, λ, γ

λ

s.t. S̄ + εI � 0, S̄ −(Π + FCa)Bωa C̄>a
∗ −λI 0
∗ ∗ −λI

 ≺ 0,

 S̄ HDν −FDν

∗ −γI 0
∗ ∗ −γI

 ≺ 0,

[
Π C̄>a
∗ Z

]
� 0,

Π � 0,

γ − trace(Z), γ, λ > 0,

γ ≤ γmax

with
S̄ := A>a Π+A>a C

>
a F
>−C>a H>+ΠAa+FCaAa−HCa,

given ε, γmax > 0, C̄a in (17), and the
remaining matrices as defined in (15b). Denote
the optimizers as Π?, F ?, H?, Z?, λ?, and
γ?. Then, the optimal parameters in (16)
θ = θ? = {E? = Π?−1

F ?,K? = Π?−1

H?} guarantee the
following properties:

1) The estimation error dynamics in (18) is
ISS and the ISS-gain from input col[ωa, νa]
to the estimation error is upper bounded by
2‖Π?

[
(I + E?Ca)Bωa −K?Dν E?Dν

]
‖ε−1.

2) ‖Tedωa‖∞ < λ? (J1(·) in (20) is upper bounded by λ?).
3) ‖Tedνa‖H2

< γ? (J2(·) in (21) is upper bounded by
γ?).

Proof: The proof follows the line of reasoning of the proof
of Theorem 1 in [25]. �

V. SIMULATION RESULTS

In this section, we evaluate the proposed method using a
two-mass-spring-damper system (see Fig. 1 for a schematic).
By defining the state vector xs = [xs1 , xs2 , xs3 , xs4 ]> :=
[q1, q̇1, q2, q̇2]>, where qi and q̇i are the displacement and
velocity of the i−th mass, respectively, the system dynamics
can be described as follows:

ẋs = Axs +Buu+ Sηη (xs) ,

η (xs) = Θaxs,

ys = Cxs +Dνν,

(23)

where

A =


0 1 0 0

−k1+k2m1
− c1+c2m1

k2
m1

c2
m1

0 0 0 1
k2
m2

c2
m2

− k2
m2

− c2
m2

 , D = I,

Bu =


0
1
m1

0
0

 , Θa =


− δk1+δk2m1

δk2
m2

0 0
δk2
m1

− δk2m2

0 0


>

,

Sη =

[
0 1 0 0
0 0 0 1

]>
, C =

[
1 0 0 0
0 0 1 0

]
,

and constants mi, ki, and ci are the mass, stiffness, and
viscous coefficient of the i-th mass, spring and damper,
respectively. The uncertainty is due to the uncertainty on
the springs stiffness which are captured by δki for the i-
th spring. Input u is the force which applies to the first
mass. The parameters values are: m1 = 4 kg,m2 = 3
kg, k1 = 2 N/m, k2 = 1.5 N/m, c1 = 3.4 Ns/m, c2 = 3.8
Ns/m, δk1 = 0.25k1, δk2 = −0.2k2. For simulation, we set
initial conditions as xs(0) = [0.01, 0.01, 0.01, 0.01]T .



Fig. 1. Two-mass-spring-damper schematic.
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Fig. 2. Comparison of second output of system and different models.

For the above-mentioned system, Θa is unknown and
we assume that we have a data-set of input, estimation of
state and uncertainty (using uncertainty and state estimators
discussed in Section IV). Then, we want to solve Problem
1 (uncertainty model learning with stability guarantee) that
finds an approximation of Θa as Θl, using two proposed
semi-definite programs in (9) and (10). Furthermore, we find
uncertainty model parameter Θl without imposing stability
constraint by only minimizing the quadratic cost function in
(5) for the training data-set. For this problem, given that Ba
is zero (i.e., the uncertainty is not a function of input signal),
we have also selected Bl as zero for all approaches.

For a test data-set, we have compared the output of
system with extended models (which consist of the known
model plus one of the uncertainty models) and also with the
model without any uncertainty model. Figure 2 depicts this
comparison for the second mass position. It can be seen that
the result with uncertainty model which is trained without
any stability constraint is unstable, see red dashed line. This
shows that considering stability condition while learning a
model for a stable system is indeed necessary. Figure 2
also shows that using the learning strategy proposed in this
paper, model quality is significantly improved compared to
the model without learned uncertainty model.

Furthermore, for better comparison, the Root Mean Square
Errors (RMSEs) of error of each (stable) model (difference of
model and system outputs) are given in Table I. As the results
show, the constraint modification approach (Theorem 2)
outperforms for this example. Note that we cannot generalize
better performance of constraint modification approach in
comparison with cost modification approach since we only
show the results for one case study here.

TABLE I
RMSES OF DIFFERENT MODELS AND SYSTEM OUTPUTS.

RMSE [m] First mass
position

Second mass
position

No uncertainty model 0.0296 0.1272
Cost modification approach 0.0085 0.0303

Constraint modification approach 0.0077 0.0117

VI. CONCLUSION

This paper proposes a framework for learning of modeling
uncertainties in linear time invariant models. Furthermore,
we guarantee stability of the extended model which includes
a known physics-based model and the learned uncertainty
model. We tackle this problem in two distinct steps: 1.
we make the initial assumption that uncertainty and state
estimation are already known, and under this assumption,
we present two semi-definite programs (Theorems 1 and 2)
to learn uncertainty models while guaranteeing asymptotic
stability of the extended model; 2. we provide a filter,
which can be designed using the semi-definite program in
Proposition 1, to estimate uncertainty and state, given the
known physics-based model and input-output data. Simu-
lations for a two-mass-spring-damper system illustrate the
proposed approach’s performance and potential. Future work
could include extension of the proposed method for a class
of nonlinear systems.

APPENDIX

A. Proof of Theorem 1

We show that the non-convex optimization in (8) can be
convexified as (9). Consider the stability constraint (6). First,
to make the problem tractable, we set Sηl = I .

By applying the change of variable as S := PΘl, the
stability constraint in (6) is equivalent to (9a). Favorably,
by the introduced change of variable, the stability constraint
becomes convex (an LMI). However, since the cost J in (5)
is a function of Θl = P−1S, the cost is not convex in S
and P , after the change of variable. Therefore, we have to
convexify the cost to arrive at a convex optimization problem
formulation. For scalar cost function J in (5), we have the
following

J =

N∑
i=1

d>i T
>Tdi =

N∑
i=1

tr(d>i T
>Tdi),

where tr(·) stands for trace operator. Due to cyclic property
of the trace operator, the above cost can be written as

J = tr(T>T

N∑
i=1

did
>
i ).

Based on (3) and the cyclic property of trace, we have

J = tr(TDT>).



Now, we can write the epigraph form of the optimization
problem in (8) as follows:

min
P, S,Bl,W

tr(W )

s.t. A>P + PA+ S> + S ≺ 0,

P � 0,

tr(TDT>) ≤ tr(W ).

(24)

Due to monotonicity of trace, the last constraint in (24) can
be transformed to the following constraint:

TDT> �W.

Note that even with the application of the above transforma-
tion, the optimization remains equivalent to (24) [26, p.8].
By applying Schur complement to the above inequality, we
have [

W TD̃>

? I

]
� 0.

Note that by construction, the data matrix D is always
symmetric and positive semi-definite. Therefore, its Cholesky
decomposition (i.e., D = D̃>D̃) always exists. By applying
the congruence transformation of diag(P, I) to the above
inequality, we obtain the following equivalent inequality[

PWP T̃ D̃>

? I

]
� 0. (25)

Now, by substituting the lower bound of 2P − W−1 for
PWP and applying Schur complement, the LMI in (9b) is
obtained. In conclusion, instead of the non-convex optimiza-
tion problem in (8), we provide an approximation of that in
the form of the semi-definite program in (9). We remark that
the approximation arises from initially setting Sηl = I at
the beginning of the proof. Additionally, we use the lower
bound of 2P −W−1 for PWP in the derivation of the LMI
in (9b).

B. Proof of Theorem 2

Here, we follow the same line of reasoning as in the proof
of Theorem 1 by showing that the non-convex optimization
problem in (8) can be convexified as in (10). Consider the
stability constraint (7). First, we set Sηl = Sη (i.e., here we
use the knowledge of uncertainty structure).

Using Young’s inequality
(
X>Y + Y >X � 1

2 (X +
Z̄Y )>Z̄−1(X+Z̄Y ), with a symmetric positive definite Z̄

)
,

we can find the following sufficient condition for the first
inequality in (8):

AQ+QA> +
1

2
(Θ>l S

>
η + Z̄Q)>Z̄−1(Θ>l S

>
η + Z̄Q) ≺ 0.

Using the Schur complement, the above inequality is equiv-
alent to [

AQ+QA> SηΘl +QZ̄
? −2Z̄

]
≺ 0.

Given nonlinear term QZ̄ in the above inequality we select
Z̄ = γ̄I , with a positive scalar γ̄. Therefore, the above
inequality can be written as (10a). Furthermore, the quadratic

cost can be treated as constraint (10b) by writing the epigraph
form of the optimization problem (see (24) for the epigraph
form). Thus, instead of the non-convex optimization problem
in (8), we provide the surrogate semi-definite program in
(10).

ACKNOWLEDGMENT

This publication is part of the project Digital Twin project
4.3 with project number P18-03 of the research programme
Perspectief which is (mainly) financed by the Dutch Research
Council (NWO).

REFERENCES

[1] M. Revay, R. Wang, and I. R. Manchester, “Recurrent equilibrium
networks: Flexible dynamic models with guaranteed stability and
robustness,” IEEE Transactions on Automatic Control, 2023.

[2] A. Abbasi and C. Nataraj, “Physics-informed machine learning for
uncertainty reduction in time response reconstruction of a dynamic
system,” IEEE Internet Computing, vol. 26, no. 4, pp. 35–44, 2022.

[3] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[4] A. Yazdani, L. Lu, M. Raissi, and G. E. Karniadakis, “Systems biology
informed deep learning for inferring parameters and hidden dynamics,”
PLoS computational biology, vol. 16, no. 11, p. e1007575, 2020.

[5] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proceedings of the national academy of sciences, vol. 113,
no. 15, pp. 3932–3937, 2016.

[6] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton, “Data-driven
discovery of coordinates and governing equations,” Proceedings of the
National Academy of Sciences, vol. 116, no. 45, pp. 22 445–22 451,
2019.

[7] K. Champion, P. Zheng, A. Y. Aravkin, S. L. Brunton, and J. N.
Kutz, “A unified sparse optimization framework to learn parsimo-
nious physics-informed models from data,” IEEE Access, vol. 8, pp.
169 259–169 271, 2020.

[8] J.-C. Loiseau and S. L. Brunton, “Constrained sparse galerkin regres-
sion,” Journal of Fluid Mechanics, vol. 838, pp. 42–67, 2018.

[9] W. Quaghebeur, I. Nopens, and B. De Baets, “Incorporating unmod-
eled dynamics into first-principles models through machine learning,”
IEEE Access, vol. 9, pp. 22 014–22 022, 2021.
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