
Rank-One Modified Value Iteration

Arman S. Kolarijani 1 Tolga Ok 1 Peyman Mohajerin Esfahani 1 2 Mohamad Amin Sharifi Kolarijani 1

Abstract

In this paper, we provide a novel algorithm
for solving planning and learning problems of
Markov decision processes. The proposed al-
gorithm follows a policy iteration-type update
by using a rank-one approximation of the tran-
sition probability matrix in the policy evaluation
step. This rank-one approximation is closely re-
lated to the stationary distribution of the corre-
sponding transition probability matrix, which is
approximated using the power method. We pro-
vide theoretical guarantees for the convergence of
the proposed algorithm to optimal (action-)value
function with the same rate and computational
complexity as the value iteration algorithm in the
planning problem and as the Q-learning algorithm
in the learning problem. Through our extensive
numerical simulations, however, we show that the
proposed algorithm consistently outperforms first-
order algorithms and their accelerated versions
for both planning and learning problems.

1. Introduction
Value iteration (VI) and policy iteration (PI) algorithms lie
at the heart of most if not all algorithms for optimal con-
trol of Markov decision processes (MDPs) in both cases of
the planning problem (i.e., with access to the true model
of the MDP) and the reinforcement learning problem (i.e.,
with access to samples of the MDP) (Sutton & Barto, 2018;
Bertsekas, 2023). Their widespread application stems from
their simple implementation and straightforward combina-
tion with function approximation schemes such as neural
networks. Both VI and PI are iterative algorithms that ul-
timately find the fixed-point of the Bellman (optimality)
operator T: For γ-discounted, finite state-action MDPs, the

1Delft University of Technology, The Netherlands 2University
of Toronto, Canada. Correspondence to: Arman S. Kolarijani
<a.sharifikolarijani@tudelft.nl>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

value function vk at iteration k is given by

vk+1 = vk +Gk

(
T(vk)− vk

)
, k = 0, 1, . . . , (1)

where Gk = I in the VI algorithm and Gk = (I − γPk)
−1

in the PI algorithm, I is the identity matrix and Pk is the
state transition probability matrix of the MDP under the
greedy policy with respect to vk. Both algorithms are guar-
anteed to converge to the optimal value function and con-
trol policy; see, e.g., (Puterman, 2014, Thms. 6.3.3 and
6.4.2). When it comes to computational complexity, one
observes a trade-off between the two algorithms: VI has
a lower per-iteration complexity compared to PI, while PI
converges in a smaller number of iterations compared to VI.
The faster convergence of PI is partially explained by its
second-order nature which leads to a local quadratic conver-
gence rate (Puterman & Brumelle, 1979; Bertsekas, 2022;
Gargiani et al., 2022), compared to the linear convergence
rate of VI (Puterman, 2014, Thms. 6.3.3).

This trade-off between the two algorithms has motivated
much research to improve the convergence rate of VI and/or
the per-iteration complexity of PI. One of the first improve-
ments is the Relaxed VI algorithm (Kushner & Kleinman,
1971; Porteus & Totten, 1978) which allows for a greater
step size compared to the standard VI algorithm. A large
body of research in this area originates from the correspon-
dence between VI and gradient descent method and between
PI and Newton method (Grand-Clément, 2021; Kolarijani
& Mohajerin Esfahani, 2023). Here, approaches such as ac-
celerated gradient descent and quasi-Newton methods from
the optimization literature are adapted to develop modified
versions of VI and PI. For instance, the combination of the
VI algorithm with Nesterov acceleration (Nesterov, 1983)
and Anderson acceleration (Anderson, 1965) have been
explored in (Goyal & Grand-Clément, 2022) and (Zhang
et al., 2020), respectively, for solving the planning prob-
lem. More recently, Halpern’s anchoring acceleration
scheme (Halpern, 1967) has been used to introduce the
Anchored VI algorithm (Lee & Ryu, 2024) which in particu-
lar exhibits a O(1/k)-rate for large values of discount factor
and even for γ = 1. In the case of the learning problem,
Speedy Q-Learning (Ghavamzadeh et al., 2011), Momentum
Q-Learning (Weng et al., 2021), and Nesterov Stochastic
Approximation (Devraj et al., 2019) are among the algo-
rithms that use the idea of momentum to achieve a better
rate of convergence compared to standard Q-learning (QL).

1



Rank-One Modified Value Iteration

The Zap Q-Learning algorithm (Devraj & Meyn, 2017) can
be thought of as a second-order learning algorithm which
was inspired by the stochastic Newton-Raphson (SNR) algo-
rithm (Ruppert, 1985). The Quasi-Policy Iteration/Learning
algorithms (Kolarijani & Mohajerin Esfahani, 2023) are,
on the other hand, an example of using the idea of quasi-
Newton methods for developing algorithms for optimal con-
trol of MDPs. Another class of modified VI algorithms is the
Generalized Second-Order VI algorithm (Kamanchi et al.,
2022) which applies the Newton method on a smoothed
version of the Bellman operator. Tools and techniques from
linear algebra have also been exploited to modify the VI
algorithm, particularly for policy evaluation. The Operator
Splitting VI algorithm (Rakhsha et al., 2022) is an exam-
ple that exploits the matrix splitting method for solving
the linear equation corresponding to policy evaluation for
a given “cheap-to-access” model of the underlying MDP.
Recently, in (Lee et al., 2024), the authors combined the
matrix splitting method with the matrix deflation techniques
for removing the dominant eigenstructure of the transition
probability matrix to speed up the policy evaluation.

Contribution. In this paper, we propose a novel algorithm
that modifies the VI algorithm by incorporating a compu-
tationally efficient PI-type update rule. To this end, we
consider the update rule (1) with a matrix gain of the form
Gk = (I − P̃k)

−1, where P̃k is a rank-one approxima-
tion of Pk. To be precise, we consider the approxima-
tion P̃k = 1d⊤

k , where dk = P⊤
k dk is the stationary distri-

bution of Pk (assuming it exists) and 1 is the all-one vector.
The proposed algorithm then uses the power method for
approximating dk iteratively using the true matrix Pk in the
planning problem and its sampled version in the learning
problem. In particular,

(1) we propose the Rank-one VI (R1-VI) Algorithm 1 as
the modified VI algorithm for solving the planning
problem and prove its convergence to the optimal value
function (Theorem 3.3);

(2) we propose the Rank-one QL (R1-QL) Algorithm 2
as the modified QL algorithm for solving the learning
problem and prove its convergence to the optimal Q-
function (Theorem 4.2);

(3) we compare the proposed R1-VI and R1-QL algo-
rithms with the state-of-the-art algorithms for solving
planning and learning problems of MDPs and show the
empirically faster convergence of the proposed algo-
rithms compared the ones with the same per-iteration
computational complexity (i.e., the first-order algo-
rithms and their accelerated versions).

Paper organization. In Section 2, we provide the neces-
sary background and the problem definition along with the

standard VI and QL algorithms for solving the planning
and learning problems of MDPs. The proposed R1-VI al-
gorithm for solving the planning problem and its analysis
are discussed in Section 3. Section 4 presents the R1-QL
algorithm for solving the learning problem and its analysis.
In Section 5, we provide the results of our extensive nu-
merical simulations and compare the proposed algorithms
with a range of existing algorithms for solving the optimal
control problem of MDPs. Finally, some limitations of the
proposed algorithms and future research directions are dis-
cussed in Section 6. All the technical proofs are provided in
Appendix A.

Notations. The set of real numbers is denoted by R. For
a vector v ∈ Rn, we use v(i) and [v](i) to denote its i-th
element. Similarly, M(i, j) and [M ](i, j) denote the ele-
ment in i-th row and j-th column of the matrix M ∈ Rm×n.
We use ⟨v,u⟩ =

∑n
i=1 v(i) · u(i) to denote the the inner

product of the two vectors v,u ∈ Rn. ∥v∥1 =
∑n

i=1 |v(i)|,
∥v∥2 =

√
⟨v,v⟩, and ∥v∥∞ = maxni=1 |v(i)| denote the

1-norm, 2-norm, and ∞-norm of the vector v ∈ Rn, re-
spectively. We use ρ(M) to denote the spectral radius (i.e.,
the largest eigenvalue in absolute value) of a square matrix
M ∈ Rn×n. Given a set X , ∆(X ) denotes the set of prob-
ability distributions on X . Let x ∼ P be a random variable
with distribution P ∈ ∆(X ). We use x̂ ∼ P to denote a
sample of the random variable x drawn from the sample
space X of x according to the distribution P . We use 1, 0,
and I to denote the all-one vector, the all-zero vector, and
the identity matrix, respectively, with their dimension being
clear from the context.

2. Optimal control of MDPs
Consider a finite MDP (S,A, P, c, γ). Here, S :=
{1, 2, . . . , n} and A := {1, 2, . . . ,m} are the state and ac-
tion spaces, respectively. The transition kernel P : S×A →
∆(S) is the conditional probability P (s+|s, a) of the tran-
sition to state s+ given the current state-action pair (s, a).
The function c ∈ R|S×A| = Rnm, bounded from below,
represents the stage cost c(s, a) of taking the control ac-
tion a while the system is in state s. And, γ ∈ (0, 1) is
the discount factor which can be seen as a trade-off pa-
rameter between short- and long-term costs. A control
policy π : S → A is a mapping from states to actions.
Fix policy π. For the corresponding Markov chain under
the policy π we define: (i) the state transition probabil-
ity matrix P π ∈ R|S|×|S| = Rn×n where P π(s, s+) =
P
(
s+|s, π(s)

)
for s, s+ ∈ S , (ii) the state-action transition

probability matrix P
π ∈ R|S×A|×|S×A| = R(nm)×(nm)

where P
π(

(s, a), (s+, a+)
)
= P (s+|s, a) if a+ = π(s+)

and = 0 otherwise for (s, a), (s+, a+) ∈ S×A, and (iii) the
stage cost cπ ∈ R|S| = Rn where cπ(s) = c

(
s, π(s)

)
for

s ∈ S.

2



Rank-One Modified Value Iteration

Under policy π, the value function vπ ∈ R|S| = Rn is the
expected discounted cost endured by following policy π
over an infinite-horizon trajectory, that is, for each s ∈ S,

vπ(s) := Est+1∼Pπ(st,·)

[ ∞∑
t=0

γtcπ(st)

∣∣∣∣∣ s0 = s

]
.

The action-value function qπ ∈ R|S×A| = Rnm (or the
so-called Q-function) under policy π is defined as follows:
for each (s, a) ∈ S ×A

qπ(s, a) := c(s, a) + γ Es+∼P (·|s,a)
[
vπ(s+)

]
.

These functions can be shown to satisfy the fixed-point
equations (Puterman, 2014, Thm. 6.1.1)

vπ = cπ + γP πvπ, qπ = c+ γP
π
qπ. (2)

The problem of interest is to control the MDP in a manner
that the expected, discounted, infinite-horizon cost is min-
imized. To do so, one aims to find the optimal policy π∗

such that for any policy π,

v⋆(s) := vπ⋆

(s) ≤ vπ(s), ∀s ∈ S,

or, equivalently,

q⋆(s, a) := qπ⋆

(s, a) ≤ qπ(s, a), ∀(s, a) ∈ S ×A.

The optimal value function can be characterized as the
solution to the fixed-point equation v⋆ = T(v⋆), where
T : R|S| → R|S| is the so-called Bellman (optimality) oper-
ator defined as follows: for each s ∈ S

[T(v⋆)](s) := min
a∈A

{
c(s, a) + γ Es+∼P (·|s,a)

[
v⋆(s+)

]}
.

(3)
The operator T is a γ-contraction in the ∞-norm
(i.e., ∥T(v)−T(w)∥∞ ≤ γ ∥v −w∥∞ for all v,w ∈
Rn) (Puterman, 2014, Prop. 6.2.4). This contraction prop-
erty is essentially the basis for the VI algorithm, introduced
in (4).

intialize v0 ∈ R|S| = Rn

for k = 0, 1, . . .
vk+1(s) = [T(vk)](s), ∀s ∈ S

endfor

(4)

From the Banach fixed-point theorem (see, e.g., (Puter-
man, 2014, Thm. 6.2.3)), the VI algorithm converges to v⋆

with a linear rate γ. Correspondingly, one can derive the
fixed-point characterization q⋆ = T(q⋆) of the optimal
Q-function, where

[T(q⋆)](s, a) :=c(s, a)

+ γ Es+∼P (·|s,a)

[
min
a+∈A

q⋆(s+, a+)

]
,

for each (s, a) ∈ S × A (Szepesvári, 2009, Fact 3). This
characterization is particularly useful when one only has
access to samples ŝ + ∼ P (·|s, a) of the next state s+ for
each state-action pair (s, a) ∈ S × A (and not to the true
transition probability kernel of the MDP). In particular, let
us define the empirical Bellman operator T̂ : R|S×A| ×
S → R|S×A| as follows: for each (s, a, s+) ∈ S ×A× S

[T̂(q, s+)](s, a) := c(s, a) + γ min
a+∈A

q(s+, a+).

A classic algorithm for the learning problem is then the (syn-
chronous) QL algorithm (Watkins & Dayan, 1992; Kearns
& Singh, 1998), given in (5).

intialize q0 ∈ R|S×A| = Rnm

for k = 0, 1, . . .
for (s, a) ∈ S ×A

ŝ +
k ∼ P (·|s, a)
δk = qk(s, a)− [T̂(qk, ŝ

+
k )](s, a)

qk+1(s, a) = qk(s, a)− λkδk
endfor

endfor

(5)

Above, λk ≥ 0 are the step-sizes, The QL algorithm is
also guaranteed to converge to q⋆ almost surely given that
the step-sizes satisfy the Robbins–Monro conditions (i.e.,∑∞

k=0 λk = ∞ and
∑∞

k=0 λ
2
k < ∞) (Tsitsiklis, 1994;

Jaakkola et al., 1993). In particular, with a polynomial
step-size λk = 1/(1 + k)ω with ω ∈ (1/2, 1), QL out-
puts an ϵ-accurate Q-function with high probability after
Õ(τ−4/ω · ϵ−2/ω + τ1/(1−ω)) iterations of synchronous
sampling with τ = 1 − γ (Even-Dar & Mansour, 2003),
while with a re-scaled linear step-size λk = 1/(1+ τk), QL
has been shown to require Õ(τ−5 · ϵ−2) iterations of syn-
chronous sampling for the same performance (Wainwright,
2019).

3. Rank-one value iteration (R1-VI)
Another well-known algorithm for solving the planning
problem in MDPs is the PI algorithm. In order to provide
this algorithm in a compact form, let us first introduce the
notion of greedy policy. Given a value function v ∈ Rn, the
greedy policy with respect to v, denoted by πv : S → A, is

πv(s) ∈ argmin
a∈A

Es+∼P (·|s,a)
[
c(s, a) + γv(s+)

]
,∀s ∈ S.

(6)
The PI algorithm is then summarized in (7).

intialize π0 : S → A
for k = 0, 1, . . .

vk = vπk [policy evaluation – eq. (2)]
πk+1 = πvk [policy improvement – eq. (6)]

endfor

(7)

3



Rank-One Modified Value Iteration

The algorithm to be proposed in this section is based on
an alternative representation of the iterations of the PI algo-
rithm; see also (Puterman, 2014, Prop. 6.5.1).

Lemma 3.1 (Policy iteration). Each iteration of the PI
algorithm (7) equivalently reads as

vk+1 = vk + (I − γPk)
−1

(
T(vk)− vk

)
, (8)

where Pk := P πvk is the state transition probability matrix
of the MDP under the greed policy πvk .

The PI algorithm outputs the optimal policy in a finite num-
ber of iterations (Puterman, 2014, Thm. 6.4.2). Moreover,
the algorithm has a local quadratic rate of convergence
when initiated in a small enough neighborhood around the
optimal solution (Bertsekas, 2022; Gargiani et al., 2022).
The faster convergence of PI compared to VI comes how-
ever with a higher per-iteration computational complexity:
The per-iteration complexities of VI and PI are O(n2m)
and O(n2m + n3), respectively. The extra O(n3) com-
plexity is due to the policy evaluation step, i.e., solving a
linear system of equations; see also the matrix inversion
in the characterization (8). To address this issue, we pro-
pose to use a low-rank approximation of Pk instead. Such
approach allows us to approximate (I − γPk)

−1 with a
reduced computational cost by using the Woodbury for-
mula (Hager, 1989). To be precise, we propose the rank-one
VI (R1-VI) algorithm

vk+1 = vk + (I − γP̃k)
−1

(
T(vk)− vk

)
, (9)

where
P̃k = 1d⊤

k , (10)

is a rank-one approximation of the true transition probability
matrix Pk at iteration k, with dk := dπk

∈ ∆(S) being a
stationary distribution of the greedy policy πk = πvk

, i.e., a
solution of d⊤

k Pk = d⊤
k . Under certain conditions, (10) is

indeed “the best” rank-1 approximation of Pk:

Lemma 3.2 (Rank-1 approximation). Assume that the tran-
sition probability matrix Pk is ergodic (i.e., irreducible and
aperiodic). Then,

1d⊤
k = argmin

P∈Rn×n

ρ(P − Pk)

s.t. P ≥ 0, P1 = 1, rank(P ) = 1.
(11)

where dk is the unique stationary distribution of Pk. That
is, P̃k = 1d⊤

k is the best rank-1 approximation of Pk in
terms of the spectral radius.

Using the Woodbury formula, we then have

(I − γP̃k)
−1 = (I − γ1d⊤

k )
−1 = I + γ

1−γ1d
⊤
k ,

and hence the R1-VI update (9) reads as

vk+1 = T(vk) +
γ

1−γ

〈
dk,T(vk)− vk

〉
1. (12)

Algorithm 1 Rank-One Value Iteration (R1-VI)
Input: transition kernel P : S ×A → ∆(S); cost function c ∈

R|S×A|; discount factor γ ∈ (0, 1);
Output: optimal value function v⋆

1: initialize: v0 ∈ R|S|, d−1 ∈ ∆(S);
2: for k = 0, 1, 2, . . . do
3: Pk = 0 ∈ R|S|×|S|;
4: for s ∈ S do

5:

 ak ∈ argmin
a∈A

{
c(s, a) + γ Es+

[
vk(s

+)
]}

,

[T(vk)](s) = min
a∈A

{
c(s, a) + γ Es+

[
vk(s

+)
]}

;

6: Pk(s, s
+) = P (s+|s, ak), ∀s+ ∈ S;

7: end for
8: f = P⊤

k dk−1; dk = f/ ∥f∥1;
9: vk+1 = T(vk) +

γ
1−γ

〈
dk,T(vk)− vk

〉
1;

10: end for

Next to be addressed is the computation of the vector dk.
Considering the fact that dk is a left eigenvector of Pk

corresponding to the eigenvalue 1, we can use the power
method (Golub & Van Loan, 2013, Sec. 7.3) to compute it
as follows

f = P⊤
k d

(i)
k , d

(i+1)
k =

f

∥f∥1
, i = 0, 1, . . . , I − 1, (13)

with some initialization d
(0)
k ∈ ∆(S) and I ∈ {1, 2, . . .}.

We then use dk = d
(I)
k in the update rule (12). We note

that the normalization is only to avoid the accumulation of
numerical errors; to see this note that for the row stochastic
matrix Pk, we have P⊤

k d ∈ ∆(S) for any d ∈ ∆(S). Un-
der the assumptions of Lemma 3.2, the preceding iteration
converges linearly to the unique stationary distribution with
a rate equal to the second largest eigenvalue modulus of Pk

(Gallager, 2011, Thm. 3.4.1).

The complete description of the proposed R1-VI algorithm
is provided in Algorithm 1. We note that Algorithm 1 in-
cludes a single iteration (i.e., I = 1) of the power method
in (13) initialized by d

(0)
k = dk−1. The reason for this

choice is that the greedy policy πvk and hence the corre-
sponding transition matrix Pk usually stays the same over
multiple iterations k of the algorithm in the value space.
This means that the algorithm effectively performs multiple
iterations of the power method. Despite using this approxi-
mation dk of the stationary distribution of Pk with a single
iteration of the power method, the proposed algorithm can
be shown to converge.
Theorem 3.3 (Convergence of R1-VI). The iterates vk

of the R1-VI Algorithm 1 converge to the optimal value
function v⋆ = T(v⋆) with at least the same rate as VI, i.e.,
with linear rate γ.

Let us also note that the per-iteration complexity of the

4



Rank-One Modified Value Iteration

proposed R1-VI Algorithm 1 is O(n2m), i.e., the same as
that of VI. We finish this section with the following remark.

Remark 3.4 (Generalization to modified policy iteration).
Recall the generic value update rule

vk+1 = vk +Gk

(
T(vk)− vk

)
, k = 0, 1, . . . , (14)

with the gain matrix Gk = I in the VI algorithm and
Gk = (I−γPk)

−1 in the PI algorithm. Also, note that (I−
γPk)

−1 =
∑∞

ℓ=0 γ
ℓP ℓ

k since ρ(I − γPk) < 1 (Puterman,
2014, Cor. C.4). Inserting the truncated sum

Gk =

L∑
ℓ=0

γℓP ℓ
k ,

with L ∈ {0, 1, . . .} in the update rule (14), we derive the
Modified PI (MPI) algorithm which converges linearly with
rate γ for any choice of L (Puterman, 2014, Thm. 6.5.5).
(Observe that L = 0 and L = ∞ correspond to the standard
VI and PI algorithms, respectively). The proposed rank-
one modification can be in general combined with the MPI
algorithm. Indeed, we have

(I − γPk)
−1 =

∞∑
ℓ=0

γℓP ℓ
k =

L−1∑
ℓ=0

γℓP ℓ
k + γLPL

k

∞∑
ℓ=0

γℓP ℓ
k

=

L−1∑
ℓ=0

γℓP ℓ
k + γLPL

k (I − γPk)
−1.

Then, by using the approximation P̃k = 1d⊤
k in the ma-

trix inversion on the right-hand side of the equation above,
we derive the gain matrix of the rank-one MPI (R1-MPI)
algorithm to be

Gk =

L−1∑
ℓ=0

γℓP ℓ
k + γLPL

k (I − γP̃k)
−1

=

L∑
ℓ=0

γℓP ℓ
k +

γL+1

1− γ
1d⊤

k .

Observe that R1-VI is now a special case of R1-MPI with
L = 0.

4. Rank-one Q-learning (R1-QL)
In this section, we focus on the learning problem in which
we have access to a generative model that provides us with
samples of the MDP (as opposed to access to the true transi-
tion probability kernel of the MDP in the planning problem).
To start, let us provide the PI update rule for the Q-function.
The proof is similar to the proof of Lemma 3.1 and omitted.

Lemma 4.1 (Policy iteration for Q-function). Each iteration
of the PI algorithm for the Q-function is given by

qk+1 = qk + (I − γP k)
−1

(
T(qk)− qk

)
, (15)

where P k := P
πqk

is the state-action transition probability
matrix of the MDP under the greed policy πqk .

The idea is again to use the rank-one approximation P̃k =
1d⊤

k of the matrix P k in the update rule (15), where dk

is now the stationary distribution of P k. This leads to the
update rule

qk+1 = T(qk) +
γ

1− γ

〈
dk,T(qk)− qk

〉
1,

at each iteration of the planning problem. Then, for the
learning problem, considering the synchronous update of
all state-action pairs (s, a) ∈ S ×A at each iteration k, we
arrive at the rank-one Q-learning (R1-QL) update rule

αk =
γλk

1− γ

〈
d̂k, T̂k(qk)− qk

〉
,

qk+1 = (1− λk)qk + λkT̂k(qk) + αk1,

(16)

where λk ≥ 0 are properly chosen step-sizes satisfying
the Robbins–Monro conditions (e.g., λk = 1/(k + 1)),
and T̂k is the empirical Bellman operator evaluated at it-
eration k, i.e., [T̂k(qk)](s, a) := [T̂(qk, ŝ

+
k )](s, a) with

ŝ +
k ∼ P (·|s, a) for each (s, a) ∈ S × A – the subscript k

in T̂k denotes the dependence on the next-state sample ŝ +
k

generated at iteration k.

What remains to be addressed is computing the estima-
tion d̂k of the stationary distribution in (16) using the sam-
ples. At each iteration k, define the sparse matrix Fk ∈
R|S×A|×|S×A| = R(nm)×(nm) with exactly one nonzero
entry equal to 1 in each row (s, a) ∈ S ×A corresponding
to the column (s+, a+), where

s+ = ŝ +
k ∼ P (·|s, a),

a+ = â +
k = argmin

a+∈A
qk(ŝ

+
k , a+). (17)

Observe that the matrix Fk is a sampled version of the state-
action transition probability matrix P k. Using this sample,
we can form the stochastic approximation

P̂k = (1− λk)P̂k−1 + λkFk.

for the state-action transition probability matrix. We note
that the same approximation is used in the Zap Q-learning
algorithm (Devraj & Meyn, 2017). With this approximation
in hand, we can again use the power method for finding the
stationary distribution. In particular, with a single iteration
of the power method initialized by the previous stationary
distribution d̂k−1, we have

d̂k = P̂⊤
k d̂k−1 = (1− λk)P̂

⊤
k−1d̂k−1 + λkF

⊤
k d̂k−1.

Now, using the approximation d̂k−1 ≈ P̂⊤
k−1d̂k−1 (i.e.,

assuming d̂k−1 is the stationary distribution of P̂k−1 which

5



Rank-One Modified Value Iteration

Algorithm 2 Rank-One Q-Learning (R1-QL)

Input: samples from transition kernel P : S ×A → ∆(S); cost
function c ∈ R|S×A|; discount factor γ ∈ (0, 1);

Output: optimal Q-function q⋆

1: initialize: q0 ∈ R|S×A|, d̂−1 ∈ ∆(S ×A);
2: for k = 0, 1, 2, . . . do
3: λk = 1/(k + 1);
4: f = 0 ∈ R|S×A|;
5: for (s, a) ∈ S ×A do
6: ŝ +

k ∼ P (·|s, a);

7:


â +
k ∈ argmin

a+∈A
qk(ŝ

+
k , a+),[

T̂k(qk)
]
(s, a) = c(s, a) + γ min

a+∈A
qk(ŝ

+
k , a+);

8: f(s, a) = (1− λk)d̂k−1(s, a) + λkd̂k−1(s
+, a+);

9: end for
10: d̂k = f/ ∥f∥1;
11: αk = γλk

1−γ

〈
d̂k, T̂k(qk)− qk

〉
;

12: qk+1 = (1− λk)qk + λkT̂k(qk) + αk1;
13: end for

does not hold exactly since d̂k−1 is only an approximation
of the stationary distribution of P̂k−1), we derive,

d̂k = (1− λk)d̂k−1 + λkF
⊤
k d̂k−1

or, equivalently, for each (s, a) ∈ S ×A

d̂k(s, a) = (1− λk)d̂k−1(s, a) + λkd̂k−1(s
+, a+), (18)

where s+ and a+ are given in (17). Observe that the ap-
proximation d̂k−1 ≈ P̂⊤

k−1d̂k−1 significantly reduces the
memory and time complexity of the algorithm since we do
not need to keep track of the estimates P̂k of the state-action
transition probability matrix and perform full matrix-vector
multiplications for updating the estimates d̂k of the station-
ary distribution.

The complete description of the proposed R1-QL algorithm
is provided in Algorithm 2. We again note that the vector f
and its normalization are only introduced to avoid the accu-
mulation of numerical errors. The following result discusses
the convergence of the proposed algorithm.
Theorem 4.2 (Convergence of R1-QL). The iterates qk
of the R1-QL Algorithm 2 converge to the optimal Q-
function q⋆ = T(q⋆) almost surely with at least the same
rate as QL.

Finally, we note that the per-iteration time complexity of the
R1-QL Algorithm 2 is the same as that of the synchronous
QL algorithm, i.e., O(nm2).

5. Numerical simulations
In this section, we compare the performance of several plan-
ning and learning algorithms with our proposed methods.

The experiments are conducted on Garnet (Archibald et al.,
1995) and Graph MDPs (Devraj & Meyn, 2017), focusing on
the Bellman errors ∥T(vk)− vk∥∞ and

∥∥T(qk)− qk
∥∥
∞

and the value errors ∥vk − v⋆∥∞ and ∥qk − q⋆∥∞. In all
of our experiments, we run policy iteration (PI) until it
converges to calculate the optimal values v⋆ and q⋆ for ref-
erence. Garnet and Graph MDPs are particularly compelling
for our empirical analysis as we can run PI to compute the
optimal values, enabling us to measure value errors through-
out the iterations. The Garnet MDPs have a state size of
n = 200, an action size of m = 5, and randomly generated
transition probabilities and costs with a branching factor
of 10. For our numerical experiments, we consider 25 ran-
domly generated instances of Garnet MDPs and report the
three quantiles of the errors. For the Graph MDPs, we use
the same configuration as described in (Devraj & Meyn,
2017), providing a complementary benchmark to validate
the effectiveness of our proposed method. We also note that
the supplementary material includes the Python package
implementing the algorithms and the experiments discussed
in this section. In what follows, we report the result of our
simulations for the planning and learning problems.

Planning Algorithms. We compare several value iteration
(VI) algorithms with the same per-iteration time complexity
as our proposed R1-VI Algorithm 1. We also include PI
for reference. We mainly focus on comparing R1-VI with
accelerated VI methods, namely, Nesterov-VI (Goyal &
Grand-Clément, 2022) and Anderson-VI (Geist & Scherrer,
2018). In order to keep the time complexity the same, we
use Anderson-VI with the memory parameter equal to one
leading to a rank-one approximation of the Hessian matrix.
The update rule of the accelerated VI algorithms is provided
in Appendix B.1.

In Figure 1, we report the median number of iterations re-
quired to reach a certain error threshold for each algorithm
across both MDPs for four different values of the discount
factors γ. Our results indicate that the convergence perfor-
mance of R1-VI is comparable with PI while maintaining
the same per-iteration time complexity as VI. Additionally,
R1-VI significantly outperforms the VI algorithm and its
accelerated versions, particularly when the discount factor
is close to 1. This observation can be partially explained by
the fact that the proposed R1-VI algorithm forms an approxi-
mation of the inverse of the “Hessian”, i.e., (I−γPk)

−1, by
incorporating its largest eigenvalue 1

1−γ . A more detailed
comparison of the algorithms is provided in Appendix B.2.

Learning Algorithms. In the learning experiments, we re-
port the Bellman and value errors of the algorithms trained in
a synchronous fashion, following the methodology outlined
in (Ghavamzadeh et al., 2011), ensuring a consistent evalua-
tion. In synchronous learning, in each iteration k, a sample
ŝ + ∼ P (·|s, a) of the next state is generated for each state-

6



Rank-One Modified Value Iteration

0.9 0.95 0.99 0.999
1

10

10 2 

10 3 

10 4 

0.9 0.95 0.99 0.999
1

10

10 2 

10 3 

10 4 

0.9 0.95 0.99 0.999

10

10 2 

10 3 

10 4 

0.9 0.95 0.99 0.999

10

10 2 

10 3 

10 4 

PI R1-VI Anderson-VI Nesterov-VI VI

It
er
at
io
n

It
er
at
io
n

It
er
at
io
n

It
er
at
io
n

Graph MDP 
 Value error < 1e-02

Graph MDP 
 Bellman error < 1e-04

Garnet MDP 
 Value error < 1e-02

Garnet MDP 
 Bellman error < 1e-04

Figure 1: Planning algorithms – the median number of iterations required for each algorithm to reach a fixed error threshold across
four discount factors γ for the two MDPs.

0.9 0.95 0.99 0.999

10 −2 

10 −1 

1

0.9 0.95 0.99 0.999

10 −2 

10 −1 

1

0.9 0.95 0.99 0.999

10 −2 

10 −1 

1

0.9 0.95 0.99 0.999

10 −1 

Zap QL R1-QL Speedy QL QL

V
al

ue
 e

rr
or

B
el

lm
an

 e
rr

or

V
al

ue
 e

rr
or

B
el

lm
an

 e
rr

or

Graph MDP 
 5K steps

Graph MDP 
 5K steps

Garnet MDP 
 5K steps

Garnet MDP 
 5K steps

Figure 2: Learning algorithms – the median error values achieved by each learning algorithm over the course of 5000 iterations
across four discount factors γ for the two MDPs.

action pair (s, a) ∈ S ×A and the action-value function qk
is updated in all state-action pairs; see the update rule in QL
algorithm (5) and R1-VI Algorithm 2. All the learning algo-
rithms use the same samples generated through the training.
Besides the proposed R1-QL Algorithm 2, we report the
performance of Speedy QL (Ghavamzadeh et al., 2011),
Zap QL (Devraj & Meyn, 2017), and the standard QL (5) in
Garnet and Graph MDPs for several discount factors; see
Appendix B.1 for the update rule of Speedy QL and Zap
QL. We run each algorithm using the same step-size sched-
ule (λk)

∞
k=0, namely, linearly decaying λk = 1/(1 + k), to

ensure a fair comparison.

Figure 2 shows the final error values after running each
algorithm for 5000 iterations. R1-QL achieves comparable
or lower error values across both MDPs. In contrast to the
other algorithms, R1-QL consistently maintains a similar
level of error values across various discount factors, particu-
larly at higher discount factors – a characteristic attributed
to Policy Iteration (PI) algorithms. It is worth mentioning
that since both Zap QL and R1-QL estimate (I − γP k)

−1

using the samples, they behave more robustly against the in-
crease in the discount factor γ; see Figure 2. Regarding per
iteration complexity, R1-QL has the same time and memory
complexity as QL and Speedy QL. In contrast, Zap QL, due
to the inherent full-rank matrix inversion, incurs higher time
and memory complexity. Albeit Zap QL can be efficiently
implemented with lower complexity, it typically exhibits

a higher computational cost in practice. A comprehensive
analysis of the error trajectories observed during training is
provided in Appendix B.2.

6. Limitations and future research directions
We finish the paper by discussing some limitations of the
proposed rank-one modification of the VI and QL algo-
rithms along with some future research directions.

Let us start by noting that the provided theoretical results
in Theorems 3.3 and 4.2 guarantee the convergence of the
proposed algorithms with the same rate as the standard VI
and QL algorithms. However, our numerical experiments
with Garnet and Graph MDPs in Section 5 show that the pro-
posed algorithms have a faster convergence rate compared to
standard VI and QL and their accelerated versions. This gap
can be explained by the fact that our proof technique does
not exploit that the vectors dk and d̂k used in the update
rule are specifically constructed to approximate the station-
ary distribution of the Markov chain induced by the greedy
policy (see Appendices A.3 and A.4 for details). That is, the
convergence of R1-VI and R1-QL algorithms is guaranteed
for any choice of dk ∈ ∆(S) and d̂k ∈ ∆(S ×A). In fact,
when the stationary distribution concentrates on a single
state, as happens when there is an absorbing state with zero
reward, the second term in the R1VI update (Equation (12))
vanishes. Appendix B.3 provides an empirical analysis in

7



Rank-One Modified Value Iteration

Gridworld (Sutton & Barto, 2018), which includes an ab-
sorbing state and thus violates the assumption of Lemma
3.2. Moreover, the provided proof of convergence shows
that the greedy policies generated with respect to the iterates
of R1-VI and R1-QL are the same as those for the standard
VI and QL algorithms, respectively (see Lemmas A.2 and
A.4). In other words, the proposed algorithms do not affect
the speed of convergence to the optimal policy compared
to VI and QL. Nevertheless, at least in the case of R1-VI,
the faster convergence in the value spaces leads to a faster
termination of the algorithm for a given performance bound
for the greedy policy. In this regard, let us also note that the
mismatch between convergence in value space and policy
space also arises in other “accelerated” VI/QL algorithms;
see Appendix B.4.

Second, the proposed algorithms heavily depend on the
structure of the transition probability matrices Pk and P k

and their rank-one approximation using the corresponding
stationary distributions. This dependence particularly hin-
ders the application of the proposed algorithms to generic
function approximation setups in solving the optimal con-
trol problem of MDPs with continuous state-action spaces.
We note that a similar issue for the Zap Q-leaning algo-
rithm (Devraj & Meyn, 2017) has been successfully ad-
dressed in (Chen et al., 2020).

Third, we note that the proposed R1-QL algorithm 2
is a synchronous algorithm that updates all state-action
pairs (s, a) ∈ S × A of the Q-function qk at each itera-
tion k. This algorithm can be modified in a standard fashion
for the asynchronous case. However, the provided conver-
gence analysis can not be extended for the corresponding
asynchronous algorithm in a straightforward manner. More-
over, the straightforward asynchronous implementation of
R1-QL leads to an O(nm) per-iteration complexity for up-
dating a single entry (s, a) ∈ S × A at each iteration k,
which is higher than the O(m) per-iteration complexity of
the standard asynchronous QL algorithm. We note that the
Zap Q-leaning algorithm (Devraj & Meyn, 2017) also suf-
fers from this issue. Addressing these issues requires a more
involved analysis and modification of the proposed algo-
rithm in the asynchronous case, which we leave for future
research.

Finally, the basic idea of the proposed algorithms can also
be used for developing the rank-one modified version of
the existing algorithms for the average cost setting. For
example, consider the PI algorithm that uses the relative VI
algorithm in the policy evaluation step for unichains (Puter-
man, 2014, Sec. 8.6.1). This algorithm can be characterized
via the following update rule in the value space: For a fixed
s ∈ S,

vk+1 = vk +
(
(I − Pk)(I–ese

⊤
s ) + 1e⊤s

)−1
(T(vk)–vk

)
,

vk+1(s) = 0,

where es is the s-th unit vector and T is now the undis-
counted Bellman operator. Now, observe that

Gk =
(
(I − Pk)(I–ese

⊤
s ) + 1e⊤s

)−1

=
(
I − Pk + (pk − es + 1)e⊤s

)−1

=
(
I − 1d⊤

k + (pk − es + 1)e⊤s
)−1

,

where pk = Pk(·, s) is the s-th column of Pk and we
used the approximation Pk ≈ 1d⊤

k in the last equality.
The matrix inversion can then be handled efficiently using
the Woodbury formula. However, the convergence of this
algorithm and any possible improvement in the convergence
rate when dk is approximated via the power method requires
further investigation.

Acknowledgements
The authors would like to thank the reviewers for their useful
comments. This work was supported by the Horizon Europe
Pathfinder Open project RELIEVE-101099481 and by the
European Research Council (ERC) project TRUST-949796.

References
Anderson, D. G. Iterative Procedures for Nonlinear Integral

Equations. Journal of the ACM (JACM), 12(4):547–560,
1965.

Archibald, T., McKinnon, K., and Thomas, L. On the
Generation of Markov Decision Processes. Journal of the
Operational Research Society, 46(3):354–361, 1995.

Bertsekas, D. Lessons from AlphaZero for Optimal, Model
Predictive, and Adaptive Control. Athena Scientific,
2022.

Bertsekas, D. A Course in Reinforcement Learning. Athena
Scientific, 2023.

Chen, S., Devraj, A. M., Lu, F., Bušić, A., and Meyn, S.
Zap Q-Learning with Nonlinear Function Approximation.
In Advances in Neural Information Processing Systems,
volume 33, pp. 16879–16890, 2020.

Devraj, A. M. and Meyn, S. Zap Q-Learning. In Advances
in Neural Information Processing Systems, volume 30,
2017.

Devraj, A. M., Bušić, A., and Meyn, S. On Matrix Mo-
mentum Stochastic Approximation and applications to
Q-Learning. In 2019 57th Annual Allerton Conference
on Communication, Control, and Computing (Allerton),
pp. 749–756, 2019.

Even-Dar, E. and Mansour, Y. Learning Rates for Q-
Learning. Journal of Machine Learning Research, 5
(1):1–25, 2003.

8



Rank-One Modified Value Iteration

Gallager, R. G. Discrete Stochastic Processes. 2011.

Gargiani, M., Zanelli, A., Liao-McPherson, D., Summers,
T., and Lygeros, J. Dynamic Programming Through the
Lens of Semismooth Newton-Type Methods. IEEE Con-
trol Systems Letters, 6:2996–3001, 2022.

Geist, M. and Scherrer, B. Anderson Acceleration for Rein-
forcement Learning. preprint arXiv:1809.09501, 2018.

Ghavamzadeh, M., Kappen, H., Azar, M., and Munos, R.
Speedy Q-Learning. In Advances in Neural Information
Processing Systems, volume 24, 2011.

Golub, G. H. and Van Loan, C. F. Matrix Computations.
JHU Press, 2013.

Goyal, V. and Grand-Clément, J. A First-Order Approach
to Accelerated Value Iteration. Operations Research, 71
(2):517–535, 2022.

Grand-Clément, J. From Convex Optimization to MDPs: A
Review of First-Order, Second-Order and Quasi-Newton
Methods for MDPs. preprint arXiv:2104.10677, 2021.

Hager, W. W. Updating the Inverse of a Matrix. SIAM
Review, 31(2):221–239, 1989.

Halpern, B. Fixed Points of Nonexpanding Maps. Bulletin
of the American Mathematical Society, 73(6):957–961,
1967.

Jaakkola, T., Jordan, M., and Singh, S. Convergence of
Stochastic Iterative Dynamic Programming Algorithms.
In Advances in neural information processing systems,
volume 6, 1993.

Kamanchi, C., Diddigi, R. B., and Bhatnagar, S. General-
ized Second-Order Value Iteration in Markov Decision
Processes. IEEE Transactions on Automatic Control, 67
(8):4241–4247, 2022.

Kearns, M. and Singh, S. Finite-Sample Convergence Rates
for Q-Learning and Indirect Algorithms. In Advances in
neural information processing systems, volume 11, 1998.

Kolarijani, M. A. S. and Mohajerin Esfahani, P. From
Optimization to Control: Quasi Policy Iteration. arXiv
preprint arXiv:2311.11166, 2023.

Kushner, H. and Kleinman, A. Accelerated Procedures
for the Solution of Discrete Markov Control Problems.
IEEE Transactions on Automatic Control, 16(2):147–152,
1971.

Lee, J. and Ryu, E. Accelerating Value Iteration with An-
choring. In Advances in Neural Information Processing
Systems, volume 36, 2024.

Lee, J., Rakhsha, A., Ryu, E. K., and Farahmand, A.-
m. Deflated dynamics value iteration. arXiv preprint
arXiv:2407.10454, 2024.

Nesterov, Y. E. A Method for Solving the Convex Program-
ming Problem with Convergence Rate O(1/k2). Doklady
Akademii Nauk SSSR, 269(3):543–547, 1983.

Porteus, E. L. and Totten, J. C. Accelerated Computation
of the Expected Discounted Return in a Markov Chain.
Operations Research, 26(2):350–358, 1978.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
2014.

Puterman, M. L. and Brumelle, S. L. On the Convergence
of Policy Iteration in Stationary Dynamic Programming.
Mathematics of Operations Research, 4(1):60–69, 1979.

Rakhsha, A., Wang, A., Ghavamzadeh, M., and Farahmand,
A.-m. Operator splitting value iteration. Advances in Neu-
ral Information Processing Systems, 35:38373–38385,
2022.

Ruppert, D. A Newton-Raphson Version of the multivariate
Robbins-Monro Procedure. The Annals of Statistics, 13
(1):236–245, 1985.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. MIT press, 2018.

Szepesvári, C. Algorithms for Reinforcement Learning.
2009.

Tsitsiklis, J. N. Asynchronous Stochastic Approximation
and Q-Learning. Machine learning, 16:185–202, 1994.

Wainwright, M. J. Stochastic Approximation with Cone-
Contractive Operators: Sharp ℓ∞-Bounds for Q-Learning.
arXiv preprint arXiv:1905.06265, 2019.

Watkins, C. J. and Dayan, P. Q-Learning. Machine Learning,
8(3):279–292, 1992.

Weng, B., Xiong, H., Zhao, L., Liang, Y., and Zhang, W.
Finite-Time Theory for Momentum Q-Learning. In Un-
certainty in Artificial Intelligence (UAI), pp. 665–674,
2021.

Zhang, J., O’Donoghue, B., and Boyd, S. Globally Con-
vergent Type-I Anderson Acceleration for Nonsmooth
Fixed-Point Iterations. SIAM Journal on Optimization,
30(4):3170–3197, 2020.

9



Rank-One Modified Value Iteration

A. Technical Proofs
A.1. Proof of Lemma 3.1

We begin by providing two basic results on MDPs. First, recall that given a policy π, the value vπ of π solves the (Bellman
consistency) equation (Puterman, 2014, Thm. 6.1.1)

vπ(s) = cπ(s) + γ Es+∼Pπ(s,·)
[
vπ(s+)

]
, ∀s ∈ S.

Hence, we have
vπ = (I − γP π)−1cπ. (19)

Moreover, the definitions of the Bellman operator in (3) and of the greedy policy in (6) imlpy that

T(v) = cπ
v

+ γP πv

v, ∀v ∈ Rn. (20)

Recall Pk := P πvk . Using these two results, we have at each iteration of the PI algorithm (7),

vk+1 = vπk+1 = vπvk (19)
= (I − γPk)

−1cπ
vk (20)

= (I − γPk)
−1

(
T(vk)− γPkvk

)
= (I − γPk)

−1
(
T(vk)− vk + (I − γPk)vk

)
= vk + (I − γPk)

−1
(
T(vk)− vk

)
.

This concludes the proof.

A.2. Proof of Lemma 3.2

Let (ρi)ni=1 be the eigenvalues of Pk such that |ρ1| ≥ |ρ2| ≥ · · · ≥ |ρn|. Since Pk is a row stochastic matrix, we
have ρ1 = 1 (Gallager, 2011, Thm. 3.4.1). Moreover, the assumption that Pk is irreducible and aperiodic implies
that |ρi| < 1 for all i ̸= 1 (Gallager, 2011, Thm. 3.4.1), that is, ρ1 = 1 is the unique eigenvalue of Pk on the unit
circle in the complex plane and all other eigenvalues lie inside the unit disc. The unique (up to scaling) right and left
eigenvectors corresponding to ρ1 = 1 are the all-one vector 1 and the stationary distribution dk. From these results it
follows that P̃k = 1d⊤

k is the unique solution of (11).

A.3. Proof of Theorem 3.3

For each iteration k ≥ 0 of the R1-VI Algorithm 1, we havevk+1 = T(vk) + αk1

αk =
γ

1− γ

〈
dk,T(vk)− vk

〉
,

(21)

where dk ∈ ∆(S) is an approximation of the stationary distribution of the MDP under the greedy policy with respect to vk.
We start with analyzing the effect of a constant shift in the argument of the Bellman operator.

Lemma A.1. For all α ∈ R and v ∈ Rn, we have

T(v + α1) = T(v) + γα1.

Proof. For each s ∈ S, we have

[T(v + α1)](s) = min
a∈A

{
c(s, a) + γ

∑
s+∈S

P (s+|s, a) [v + α1] (s+)

}

= γα+min
a∈A

{
c(s, a) + γ

∑
s+∈S

P (s+|s, a)v(s+)

}
= γα+ [T(v)](s).

10



Rank-One Modified Value Iteration

We next use the preceding result to provide an alternative characterization of the iterates of R1-VI in (21).

Lemma A.2. For each k ≥ 0, the iterates in (21) are equivalently given by{
vk+1 = T(k+1)(v0) + βk+11

βk+1 = γβk + αk, with β0 = 0.

Proof. (Proof by induction.) Consider k = 0 and observe that

v1 = T(v0) + β11,

with β1 = γβ0 + α0 = α0. Next, for some k ≥ 1 and βk ∈ R, assume vk = T(k)(v0) + βk1. Then,

vk+1 = T(vk) + αk1 = T
(
T(k)(v0) + βk1

)
+ αk1 = T(k+1)(v0) + γβk1+ αk1,

where the last equality follows from Lemma A.1. Therefore,

vk+1 = T(k+1)(v0) + (γβk + αk)1 = T(k+1)(v0) + βk+11,

which concludes the proof.

We now employ the preceding lemmas to provide an alternative characterization of the constant shifts αk in the R1-VI
updates in (21).

Lemma A.3. For each k ≥ 0, one has

αk =
γ

1− γ

〈
dk,T

(k+1)(v0)−T(k)(v0)
〉
− γβk.

Proof. From Lemma A.2, we have
vk = T(k)(v0) + βk1, k = 0, 1, . . . .

(Notice that for k = 0, the preceding equation simply implies v0 = v0 since T(0) is the identity operator and β0 = 0.) Then,
from Lemma A.1, it follows that

T(vk) = T
(
T(k)(v0) + βk1

)
= T(k+1)(v0) + γβk1.

Thus,
T(vk)− vk = T(k+1)(v0)−T(k)(v0)− (1− γ)βk1

and 〈
dk,T(vk)− vk

〉
=

〈
dk,T

(k+1)(v0)−T(k)(v0)
〉
− (1− γ)βk⟨dk,1⟩

=
〈
dk,T

(k+1)(v0)−T(k)(v0)
〉
− (1− γ)βk,

where we used dk ∈ ∆(S) (i.e., ⟨dk,1⟩ = 1) in the second equality above. Therefore, for αk in (21), we have

αk =
γ

1− γ

〈
dk,T

(k+1)(v0)−T(k)(v0)
〉
− γβk.

This completes the proof.

Now, observe that plugging in αk from Lemma A.3 in the update rule of Lemma A.2 leads to

vk+1 = T(k+1)(v0) +
γ

1− γ

〈
dk,T

(k+1)(v0)−T(k)(v0)
〉
1, k = 0, 1, . . . . (22)

11



Rank-One Modified Value Iteration

Then, using the fact that v⋆ = T(v⋆) and the Bellman operator is a γ-contraction in the ∞-norm, we have

∥vk+1 − v⋆∥∞ =

∥∥∥∥T(k+1)(v0)−T(v⋆) +
γ

1− γ

〈
dk,T

(k+1)(v0)−T(k)(v0)
〉
1

∥∥∥∥
∞

≤
∥∥∥T(k+1)(v0)−T(v⋆)

∥∥∥
∞

+
γ

1− γ

∣∣∣〈dk,T
(k+1)(v0)−T(k)(v0)

〉∣∣∣
≤ γk+1 ∥v0 − v⋆∥∞ +

γ

1− γ

∥∥∥T(k+1)(v0)−T(k)(v0)
∥∥∥
∞

≤ γk+1 ∥v0 − v⋆∥∞ +
γk+1

1− γ
∥T(v0)− v0∥∞

≤ γk+1
(
∥v0 − v⋆∥∞ +

1

1− γ
∥T(v0)− v0∥∞

)
.

That is, vk → v⋆ as k → ∞ linearly with rate γ.

A.4. Proof of Theorem 4.2

Let us begin with recalling the definition of the empirical Bellman operator[
T̂k(q)

]
(s, a) := c(s, a) + γ min

a+∈A
q(ŝ +

k , a+), (23)

where ŝ +
k ∼ P (·|s, a), that is to say ŝ + is sampled according to the law P (·|s, a) at iteration k. From this definition, it

immediately follows that

T̂k(q + α1) = T̂k(q) + γα1, ∀ α ∈ R, q ∈ R|S×A|. (24)

Also, recall that each iteration k ≥ 0 of the R1-QL Algorithm 2 reads asqk+1 = (1− λk)qk + λkT̂k(qk) + αk1

αk = λk

( γ

1− γ

)〈
d̂k, T̂k(qk)− qk

〉
,

(25)

where d̂k ∈ ∆(S ×A) is an estimation of the stationary distribution of the state-action transition probability matrix of the
MDP under the greedy policy with respect to qk. Let us also consider the standard QL iterates

qQL
k+1 = (1− λk)q

QL
k + λkT̂k(q

QL
k ), k = 0, 1, . . . ,

with the same initialization qQL
0 = q0 and empirical Bellman operator T̂k(·) for all k as the R1-QL algorithm (25).

The first result concerns an alternative characterization of the iterates in (25).

Lemma A.4. For each k ≥ 0, the iterates of R1-QL algorithm (25) equivalently read as{
qk+1 = qQL

k+1 + βk+11

βk+1 = (1− λk)βk + γλkβk + αk, with β0 = 0.
(26)

Proof. (Proof by induction) For k = 0, since qQL
0 = q0, we can write

q1 = (1− λ0)q0 + λ0T̂k(q0) + α01

= (1− λ0)q
QL
0 + λ0T̂k(q

QL
0 ) + α01

= qQL
1 + β11,

12



Rank-One Modified Value Iteration

where β1 = α0. Assume next qk = qQL
k + βk1 for some k ≥ 0. Then, it follows that

qk+1 = (1− λk)qk + λkT̂k(qk) + αk1

= (1− λk)(q
QL
k + βk1) + λkT̂k(q

QL
k + βk1) + αk1

(24)
= (1− λk)(q

QL
k + βk1) + λk

(
T̂k(q

QL
k ) + γβk1

)
+ αk1

= (1− λk)q
QL
k + λkT̂k(q

QL
k ) +

(
(1− λk)βk + γλkβk + αk

)
1

= qQL
k+1 + βk+11.

This concludes the proof.

We next provide a useful characterization of the constant shifts αk in the R1-QL update rule (25).

Lemma A.5. For each k ≥ 0, one has

αk = λk

( γ

1− γ

)〈
d̂k, T̂k(q

QL
k )− qQL

k

〉
− γλkβk.

Proof. From Lemma A.4 and since q0 = qQL
0 and β0 = 0, we have

qk = qQL
k + βk1, k = 0, 1, . . . .

Hence, we can use (24) to write

T̂k(qk) = T̂k(q
QL
k + βk1) = T̂k(q

QL
k ) + γβk1.

As a result,

T̂k(qk)− qk = T̂k(q
QL
k ) + γβk1− qQL

k − βk1

= T̂k(q
QL
k )− qQL

k − (1− γ)βk1,

and 〈
d̂k, T̂k(qk)− qk

〉
=

〈
d̂k, T̂k(q

QL
k )− qQL

k

〉
− (1− γ)βk⟨d̂k,1⟩

=
〈
d̂k, T̂k(q

QL
k )− qQL

k

〉
− (1− γ)βk,

where we use the identity ⟨d̂k,1⟩ = 1 in the second line since d̂k ∈ ∆(S ×A). Recalling the definition of αk in (25), one
thus have

αk = λk

( γ

1− γ

)〈
d̂k, T̂k(q

QL
k )− qQL

k

〉
− γλkβk.

Plugging the expression for αk from Lemma A.5 into the update rule of Lemma A.4, we derive the iteration

βk+1 = (1− λk)βk + λk

( γ

1− γ

)〈
d̂k, T̂k(q

QL
k )− qQL

k

〉
, k = 0, 1, . . . , (27)

initialized by β0 = 0. Next, using the convergence of QL, we can show the convergence of βk:

Lemma A.6. The iterates βk in (27) converge to zero almost surely.

Proof. Define β1,0 = β2,0 = 0 and consider the iterations

β1,k+1 = (1− λk)β1,k + λk

( γ

1− γ

)〈
d̂k, T̂k(q

QL
k )−T(qQL

k )
〉
, (28)

β2,k+1 = (1− λk)β2,k + λk

( γ

1− γ

)〈
d̂k,Tk(q

QL
k )− qQL

k

〉
, (29)

13



Rank-One Modified Value Iteration

for k = 0, 1, . . ., so that βk = β1,k+β2,k for all k ≥ 0. In what follows, we use the fact that the QL iterates qQL
k are bounded

and converge to q⋆ = T(q⋆) almost surely (Tsitsiklis, 1994, Thm. 4). First, observe that the iteration (28) converges to zero
almost surely using (Tsitsiklis, 1994, Lem. 1) and the fact that (see also (Tsitsiklis, 1994, Sec. 7))

Eŝ+k

[〈
d̂k, T̂k(q

QL
k )−T(qQL

k )
〉]

=
〈
d̂k,Eŝ+k

[
T̂k(q

QL
k )−T(qQL

k )
] 〉

= 0,

Eŝ+k

[〈
d̂k, T̂k(q

QL
k )−T(qQL

k )
〉2] ≤ Eŝ+k

[∥∥∥T̂k(q
QL
k )−T(qQL

k )
∥∥∥2
∞

]
≤

∥∥∥qQL
k

∥∥∥2
∞

.

The iteration (29) also converges to zero almost surely since

β2,k+1 =
( γ

1− γ

) ∑
(s,a)∈S×A

d̂k(s, a)

{
1

k + 1

k∑
ℓ=0

(
[Tℓ(q

QL
ℓ )− qQL

ℓ ](s, a)
)}

,

is a scaled, weighted average of Cesaro means of the sequences [Tk(q
QL
k )− qQL

k ](s, a) that converge to zero almost surely
for each (s, a) ∈ S ×A (recall that λk = 1/(k + 1) and qQL

k → q⋆ = T(q⋆) almost surely).

Finally, recall the characterization qk = qQL
k + βk1 in Lemma A.4 and observe that qQL

k → q⋆ and βk → 0 almost surely.
Therefore, qk → q⋆ almost surely.

B. On numerical experiments
B.1. Algorithms

Below, we provide the update rules of the algorithms we employed in our numerical experiments. We adapt the update rules
provided by (Kolarijani & Mohajerin Esfahani, 2023) in our implementations for the planning algorithms.

• Nesterov VI algorithm (Goyal & Grand-Clément, 2022):

zk = vk +
1−

√
1− γ2

γ
(vk − vk−1),

vk+1 = zk +
1

1 + γ
(T(zk)− zk).

• Anderson VI algorithm (Geist & Scherrer, 2018): (The following update rule is for Anderson acceleration with
memory equal to 1 which corresponds to a rank-one approximation of the Hessian.)

zk = vk − vk−1,

z′
k = T(vk)−T(vk−1),

δk =

0, z⊤
k (zk − z′

k) = 0,

z⊤
k

(
vk−T(vk)

)
z⊤
k (zk−z′

k)
, otherwise,

vk+1 = (1− δk)T(vk) + δkT(vk−1).

• Speedy QL algorithm (Ghavamzadeh et al., 2011): (The following update rule is the synchronous implementation of
Speedy QL.)

14



Rank-One Modified Value Iteration

for (s, a) ∈ S ×A
ŝ + ∼ P (·|s, a),
zk(s, a) = c(s, a) + γ min

a+∈A
qk(ŝ

+, a+),

z′
k(s, a) = c(s, a) + γ min

a+∈A
qk−1(ŝ

+, a+),

endfor

qk+1 = qk +
1

1 + k
(z′

k − qk) +
k

1 + k
(zk − z′

k).

• Zap QL algorithm (Devraj & Meyn, 2017): (The following update rule is also the synchronous implementation
of Zap QL without eligibility trace. The matrix Fk ∈ R|S×A|×|S×A| below denotes the sampled transition matrix at
iteration k.)

Fk = 0 ∈ R|S×A|×|S×A|,

for (s, a) ∈ S ×A
ŝ + ∼ P (·|s, a),
â + = argmin

a+∈A
qk(ŝ

+, a+),[
T̂k(qk)

]
(s, a) = c(s, a) + γ min

a+∈A
qk(ŝ

+, a+)− qk(s, a),

Fk

(
(s, a), (ŝ +, â +)

)
= 1,

endfor

P̂k = P̂k−1 +
1

2 + k
(Fk − P̂k−1),

qk+1 = qk +
1

1 + k
(I − γP̂k)

−1
(
T̂k(qk)− qk

)
.

B.2. Extended numerical analysis

In this appendix, we provide the Bellman and value errors observed throughout the iterations of planning and learning
algorithms. We run each planning algorithm until the error thresholds in Table 1 are achieved.

Table 1: Error thresholds for planning algorithms.

MDP Error γ = 0.9 γ = 0.9 γ = 0.9 γ = 0.9

Garnet value 10−5 10−4 10−4 10−2

Bellman 10−5 10−5 10−5 10−4

Graph value 10−5 10−4 10−3 10−2

Bellman 10−5 10−5 10−5 10−4

We consider four different values for discount factor γ across 25 realizations of the Garnet MDP. Note that the planning
algorithms are deterministic in nature, hence, the only source of variation in the errors is due to the random realization of the
Garnet MDPs. Figure 3 shows the range of error values observed within the span of the iterations of the planning algorithms.
The solid curve represents the median error values, while the shaded region around the curve indicates the errors between
the first and the third quantiles. We follow the same style of presentation in the other figures in this section.

We observe in Figure 3 that Anderson VI has the highest error variance. Furthermore, the error curves for both Anderson VI
and Nesterov VI are not monotonically decreasing, which is particularly visible for Anderson VI. This is because the
iterations in these algorithms are not necessarily a contraction with a guaranteed reduction in the Bellman/value error.

15



Rank-One Modified Value Iteration

1 2 5 10 2 5 10 2 

10 −5 

10 −4 

10 −3 

10 −2 

10 −1 

1

1 2 5 10 2 5 10 2 2

10 −4 

10 −3 

10 −2 

10 −1 

1

10

1 2 5 10 2 5 10 2 2 5

10 −4 

10 −3 

10 −2 

10 −1 

1

10

10 2 

1 2 5 10 2 5 10 2 2 5 10 3 2 5 10 4 

10 −2 

10 −1 

1

10

10 2 

10 3 

1 2 5 10 2 5

10 −5 

10 −4 

10 −3 

10 −2 

10 −1 

1

1 2 5 10 2 5 10 2 2

10 −5 

10 −4 

10 −3 

10 −2 

10 −1 

1

1 2 5 10 2 5 10 2 2 5

10 −5 

10 −4 

10 −3 

10 −2 

10 −1 

1

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −4 

10 −3 

10 −2 

10 −1 

1

10

PI R1-VI Anderson-VI Nesterov-VI VI

Iteration Iteration Iteration Iteration

Iteration Iteration Iteration Iteration

V
al

ue
 e

rr
or

V
al

ue
 e

rr
or

V
al

ue
 e

rr
or

V
al

ue
 e

rr
or

B
el

lm
an

 e
rr

or

B
el

lm
an

 e
rr

or

B
el

lm
an

 e
rr

or

B
el

lm
an

 e
rr

or

Figure 3: Comparison of the planning algorithms in Garnet MDP with various γ values.

1 2 5 10 2 5 10 2 

10 −5 

10 −4 

10 −3 

10 −2 

10 −1 

1

10

1 2 5 10 2 5 10 2 2

10 −4 

10 −3 

10 −2 

10 −1 

1

10

10 2 

1 2 5 10 2 5 10 2 2 5 10 3 

10 −3 

10 −2 

10 −1 

1

10

10 2 

10 3 

10 4 

1 2 5 10 2 5 10 2 2 5 10 3 2 5 10 4 

10 −2 

10 −1 

1

10

10 2 

10 3 

1 2 5 10 2 5 10 2 

10 −5 

10 −4 

10 −3 

10 −2 

10 −1 

1

10

1 2 5 10 2 5 10 2 2

10 −5 

10 −4 

10 −3 

10 −2 

10 −1 

1

10

1 2 5 10 2 5 10 2 2 5 10 3 

10 −5 

10 −4 

10 −3 

10 −2 

10 −1 

1

10

10 2 

10 3 

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −4 

10 −3 

10 −2 

10 −1 

1

10

10 2 

PI R1-VI Anderson-VI Nesterov-VI VI

Iteration Iteration Iteration Iteration

Iteration Iteration Iteration Iteration

V
al

ue
 e

rr
or

V
al

ue
 e

rr
or

V
al

ue
 e

rr
or

V
al

ue
 e

rr
or

B
el

lm
an

 e
rr

or

B
el

lm
an

 e
rr

or

B
el

lm
an

 e
rr

or

B
el

lm
an

 e
rr

or

Figure 4: Comparison of the planning algorithms in Graph MDP with various γ values.

Nevertheless, in our numerical experiments, both algorithms seem to be convergent. Figure 4 shows the error curves of
planning algorithms for the Graph MDP. Here, the non-monotonic behavior of Anderson VI is more apparent as the error
values initially increase with an oscillating behavior. Similar to Garnet MDPs, R1-V1 consistently provides lower errors
throughout the iterations.

Figure 5 and 6 show the error curves for the learning algorithms in Garnet and Graph MDPs, respectively. In these
experiments, we run each learning algorithm with 5 different seeds to marginalize the randomness in the sampling process.
We observe that the difference between Zap QL, Speedy QL, and R1-QL is not noticeable at lower values of the discount
factors (i.e., γ ≤ 0.95). However, as the discount factor increases, particularly at γ = 0.999, the gap between the error
values increases. At higher values of the discount factors, R1-QL consistently yields lower error values, while QL struggles
to minimize the errors due to the linearly decaying step-size λk. Furthermore, we observe that Zap QL displays higher error

16



Rank-One Modified Value Iteration

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −2 

10 −1 

1

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −3 

10 −2 

10 −1 

1

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −3 

10 −2 

10 −1 

1

10

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −4 

10 −3 

10 −2 

10 −1 

1

10

10 2 

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −1 

1

10

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −1 

1

10

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −1 

1

10

10 2 

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −1 

1

10

10 2 

10 3 

Zap QL R1-QL Speedy QL QL

Iteration Iteration Iteration Iteration

Iteration Iteration Iteration Iteration

V
al

ue
 e

rr
or

V
al

ue
 e

rr
or

V
al

ue
 e

rr
or

V
al

ue
 e

rr
or

B
el

lm
an

 e
rr

or

B
el

lm
an

 e
rr

or

B
el

lm
an

 e
rr

or

B
el

lm
an

 e
rr

or

Figure 5: Comparison of the learning algorithms in Garnet MDP with various γ values.

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −3 

10 −2 

10 −1 

1

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −3 

10 −2 

10 −1 

1

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −3 

10 −2 

10 −1 

1

10

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −3 

10 −2 

10 −1 

1

10

10 2 

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −2 

10 −1 

1

10

1 2 5 10 2 5 10 2 2 5 10 3 2 5
10 −2 

10 −1 

1

10

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −1 

1

10

10 2 

1 2 5 10 2 5 10 2 2 5 10 3 2 5

10 −1 

1

10

10 2 

10 3 

Zap QL R1-QL Speedy QL QL

Iteration Iteration Iteration Iteration

Iteration Iteration Iteration Iteration

V
al

ue
 e

rr
or

V
al

ue
 e

rr
or

V
al

ue
 e

rr
or

V
al

ue
 e

rr
or

B
el

lm
an

 e
rr

or

B
el

lm
an

 e
rr

or

B
el

lm
an

 e
rr

or

B
el

lm
an

 e
rr

or

Figure 6: Comparison of the learning algorithms in Graph MDP with various γ values.

variance, which may be due to the inversion of the estimated “Hessain” (I − γP̂ ). In contrast, R1-QL exhibits considerably
lower variance, despite implicitly performing a similar inversion. We argue that the lower error variance observed with
R1-QL is due to the low-rank approximation of the transition probability matrix via estimation of the corresponding
stationary distribution.

B.3. Reducible MDPs

To illustrate R1-VI’s behavior in a reducible MDP, we replicate the comparison from Section 5 within the Gridworld
environment of (Sutton & Barto, 2018), which inherently contains an absorbing state. We consider two Gridworld variants:

1. Absorbing Gridworld, in which the absorbing state yields positive reward.

17



Rank-One Modified Value Iteration

2. Terminal Gridworld, in which the absorbing state grants a zero reward.

Here, “reducibility” refers to the Markov chain induced by the optimal policy. Note, however, that even in the absence of an
absorbing state, where all actions from a state lead back to itself, a non-optimal policy may still produce a reducible chain in
Gridworld.

0.9 0.95 0.99 0.999

10

10 2 

10 3 

10 4 

0.9 0.95 0.99 0.999

10

10 2 

10 3 

10 4 

0.9 0.95 0.99 0.999

10

10 2 

10 3 

10 4 

0.9 0.95 0.99 0.999

10

10 2 

10 3 

10 4 

PI R1-VI Anderson-VI Nesterov-VI VI

discount (γ) discount (γ) discount (γ) discount (γ)

it
er

at
io

ns

it
er

at
io

ns

it
er

at
io

ns

it
er

at
io

ns

Absorbing GridWorld 
 Value error < 0.01

Absorbing GridWorld 
 Bellman error < 0.01

Terminal GridWorld 
 Value error < 0.01

Terminal GridWorld 
 Bellman error < 0.01

Figure 7: Comparison of planning algorithms on two reducible Gridworld MDP instances, one with a zero-reward absorbing state
and one with a positive-reward absorbing state, across various γ values.

In Absorbing-Gridworld (left side of Figure 7), R1-VI yields the lowest value and Bellman error, apart from PI, across
all γ values. However, in Terminal Gridworld (right side of Figure 7), R1-VI performs slightly worse than the other
accelerated algorithms. This is explained by the fact that under the optimal policy, the stationary distribution concentrates
on the absorbing state, which provides zero reward and hence zero Bellman error when the values are initialized to zero.
Consequently, the second term in the R1-VI update (Equation (9)) vanishes. In contrast, in Absorbing Gridworld, the
Bellman error at the absorbing state is not immediately zero, hence the second term in R1-VI contributes to improve
convergence.

B.4. Policy performance

Throughout Section 5, we compared both the planning and learning algorithms, including our proposed R1VI and R1QL
methods, using the value and Bellman error metrics. However, rapid convergence in value does not necessarily translate into
equally rapid convergence in policy space, which is the ultimate criterion of policy optimization. In this section, we present
a comparative analysis based on the policy evaluation metric in the Graph and Garnet MDPs.

Figure 8 shows that the planning algorithms yield exactly the same policy evaluation, except for PI and Anderson-VI.
Anderson-VI initially struggles to find the optimal policy due to instabilities in the value space (shown in Figures 3 and 4),
but eventually converges to the optimal policy. In both MDPs, policy convergence occurs in fewer than five steps, except for
Anderson-VI, whereas convergence in the value space requires several orders of magnitude more steps.

The convergence of policies among the learning algorithms is more varied than that of the planning algorithms. Figure 9
shows that, for the Graph MDP, all algorithms except Zap-QL achieve almost identical performance, converging within
five steps for every value of γ. In the Garnet MDP, convergence requires more steps, and improvements over iterations are
slower.

In both Figures 9 and 8, the proposed R1VI and R1QL algorithms match the policy performance of VI and QL, respectively,
across all iterations. Moreover, VI in the planning setting and QL in the learning setting produce among the highest policy
performance observed across both MDPs, despite exhibiting the slowest convergence in the value space.

18



Rank-One Modified Value Iteration

1 2 5 10 2 5 100 2 5 1000 2 5 10k

1

2

3

4

5

6

7

8

9

1 2 5 10 2 5 100 2 5 1000 2 5 10k

0

5

10

15

1 2 5 10 2 5 100 2 5 1000 2 5 10k

0

20

40

60

80

100

1 2 5 10 2 5 100 2 5 1000 2 5 10k

0

200

400

600

800

1000

1 2 5 10 2 5 100 2 5 1000 2 5 10k

5

5.2

5.4

5.6

5.8

6

6.2

1 2 5 10 2 5 100 2 5 1000 2 5 10k

10

10.5

11

11.5

12

12.5

1 2 5 10 2 5 100 2 5 1000 2 5 10k

50

52

54

56

58

60

62

1 2 5 10 2 5 100 2 5 1000 2 5 10k

500

520

540

560

580

600

620

PI R1-VI Anderson-VI Nesterov-VI VI

iterations iterations iterations iterations

iterations iterations iterations iterations

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Graph MDP 
 discount (γ) = 0.9

Graph MDP 
 discount (γ) = 0.95

Graph MDP 
 discount (γ) = 0.99

Graph MDP 
 discount (γ) = 0.999

Garnet MDP 
 discount (γ) = 0.9

Garnet MDP 
 discount (γ) = 0.95

Garnet MDP 
 discount (γ) = 0.99

Garnet MDP 
 discount (γ) = 0.999

Figure 8: Comparison of the value of the greedy policy produced by various planning algorithms (R1-VI, VI, PI, Anderson-VI, and
Nesterov-VI) on Garnet and Graph MDPs over a range of discount factors γ. Note that R1-VI, VI, and Nesterov-VI yield essentially
overlapping results.

1 2 5 10 2 5 100 2 5 1000 2 5

2

3

4

5

6

7

8

9

1 2 5 10 2 5 100 2 5 1000 2 5

4

6

8

10

12

14

16

18

1 2 5 10 2 5 100 2 5 1000 2 5

0

20

40

60

80

100

1 2 5 10 2 5 100 2 5 1000 2 5

0

200

400

600

800

1000

10 2 5 100 2 5 1000 2

5.8

5.9

6

6.1

6.2

10 2 5 100 2 5 1000 2
11.4

11.6

11.8

12

12.2

12.4

10 2 5 100 2 5 1000 2
52

54

56

58

60

62

10 2 5 100 2 5 1000 2

500

520

540

560

580

600

620

QL Zap QL Speedy QL R1-QL

iterations iterations iterations iterations

iterations iterations iterations iterations

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Po
lic

y 
ev

al
ua

ti
on

Graph MDP 
 discount (γ) = 0.9

Graph MDP 
 discount (γ) = 0.95

Graph MDP 
 discount (γ) = 0.99

Graph MDP 
 discount (γ) = 0.999

Garnet MDP 
 discount (γ) = 0.9

Garnet MDP 
 discount (γ) = 0.95

Garnet MDP 
 discount (γ) = 0.99

Garnet MDP 
 discount (γ) = 0.999

Figure 9: Comparison of the value of the greedy policy produced by the R1-QL and QL learning algorithms on Garnet and Graph
MDPs as a function of the discount factor γ. Results for R1-QL and QL coincide. The y-axis shows the median policy-evaluation
score of the corresponding greedy policies across 5 different seeds.

19


