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Abstract— In this paper, we present monviso (monotone
variational inequalities solver), a novel open-source Python
package for solving monotone variational inequalities. We detail
the package’s structure and baseline functionality, discussing
a simple example that illustrates the essential methods and
parameters. Moreover, we characterize how the proximal op-
erator, which is the foundation of many iterative schemes,
is handled through cvxpy, an open-source Python library
for convex optimization. We list the available algorithms and
describe the basic implementation of any general iterative
method to enable users to build additional and (possibly new)
algorithms. Finally, we illustrate several examples of possible
use cases for monviso, showcasing the different applications
the package can support across various fields, including control,
optimization, dynamic game theory, and machine learning.

I. INTRODUCTION

The proliferation of open-source projects that allow to eas-
ily implement control and decision-making problems is pos-
itively impacting both the academic and industrial communi-
ties. On the one hand, it allows researchers to accelerate the
pace of research by providing unified frameworks for testing
and benchmarking new ideas and approaches. On the other
hand, it enables practitioners to solve real-world problems,
often by means of quick prototyping before devising ad-hoc
tailored implementations. Such projects serve as essential
resources to democratize access to often advanced com-
putational tools, removing the financial burden associated
with proprietary software and allowing for customization and
extensions aimed at satisfying specific needs. Moreover, they
allow users even from outside the control and optimization
community to tackle their own problems without the need
of delving into technical details. Among the available mathe-
matical tools, variational inequalities (VIs) unify many of the
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problems that appear in control and decision science at large,
encompassing, e.g., optimal control [1], [2], optimization [3],
[4], machine learning [5], game theory [6], [7], [8], and
finance [9], making it a deeply studied topic of research [10].
Although the majority of existing projects strongly focus on
optimization [11], and, to a lesser extent, control and dynam-
ical systems [12], VIs have received limited attention from
the perspective of systematic numerical implementations.
Nevertheless, the research literature on iterative methods
for solving monotone VIs keeps growing consistently. To
the best of the authors’ knowledge, only one package for
solving VI targets Python (imgemp/VI-Solver), while
two packages for Julia are dedicated to finite-dimensional
VIs (VariationalInequality.jl) and complemen-
tarity problems (Complementarity.jl). A dedicated
suite is provided by GAMS; albeit being closed source, this
encompasses tools for modelling and solving VIs, quasi-VIs,
and equilibrium problems. Note that we are here focusing on
modelling protocols, i.e., the package/language that allows
for declaring the problem at hand, and not solvers, i.e., the
software that computes its solution. Except for GAMS, the
surveyed pieces of software have not yet reached a mature
development stage. Moreover, the number of methods and
algorithms they implement for VI resolution is limited.

In this paper, we provide an overview of monviso
(monotone variational inequalities solver), a novel Python
package for solving monotone VIs. Although programming
languages such as MATLAB and Julia are specifically tai-
lored to numerical programming, Python has been chosen as
the base language for monviso due to its ever-increasing
popularity and ease of use. Essentially, monviso acts as a
wrapper around cvxpy [13], one of the most used pieces
of software for convex optimization, in order to simplify the
process of implementing montone VIs. Differently from the
aforementioned projects, monviso has been designed to be
modular and simple to extend: the algorithms implemented
in the current version, in fact, do not include all the ones
existing in literature. Therefore, allowing for simply adding
(possibly new) iterative methods is crucial for the package’s
fruibility. monviso, together with all the code snippets
discussed in the following, is publicly available at

github.com/nicomignoni/monviso

Moreover, all details here reported refer to the current
package version, i.e., 0.1.

https://github.com/imgemp/VI-Solver
https://github.com/chkwon/VariationalInequality.jl
https://github.com/chkwon/Complementarity.jl
https://github.com/nicomignoni/monviso


II. NOTATION AND PRELIMINARIES

In the sequel, set R and N represent the real and nat-
ural numbers, respectively. We denote [x⊤

1 , . . . ,x
⊤
N ]⊤ =:

col(xi)
M
i=1 and [x1, . . . ,xN ] =: row(xi)

M
i=1. The all-zeros

and all-ones vectors are denoted with 1 and 0, respectively;
the identity matrix of size N ×N is IN , while vector ei,N
denotes the i-th row of IN . Given a square matrix A ∈
Rn×n, its positive (negative) semidefiniteness is denoted with
A ⪰ 0 (A ⪯ 0). The diagonal block matrix made by
matrices A1, . . . ,An is denoted as blkdiag(A1, . . . ,An).
Symbols ⊗ and ⊙ denote the Kronecker and Hadamard
(i.e., element-wise) product, respectively. The golden ratio
constant is denoted as φ := 1+

√
5

2 . The uniform distribution
bounded between a, b ∈ R is denoted as U(a, b). Given a
set S ⊆ Rn, the associated indicator function is denoted
as ιS : R → {0,+∞}, so that ιS(x) = 0 if x ∈ S and
ιS(x) = +∞ otherwise. The normal cone associated with
set S is NS : S ⇒ Rn, defined as NS(x) := {y ∈ Rn :
y⊤(x − z) ≥ 0, ∀z ∈ S}. A mapping F : Rn → Rn

is L-Lipschitz iff ∥F(x) − F(y)∥ ≤ L∥x − y∥, for an
arbitrary L < +∞. Moreover, a mapping F(·) is monotone
if (F(x)−F(y))⊤(x−y) ≥ 0 holds for all x,y ∈ Rn, and
strongly monotone if (F(x)−F(y))⊤(x− y) ≥ µ∥x− y∥2
holds for all x,y ∈ Rn and some µ > 0. The constrained
proximal operator for a given point x ∈ Rn and a scalar
function g : Rn → R, with respect to set S, is defined as

proxg,S(x) = argmin
y∈S

{
g(y) +

1

2
∥y − x∥2

}
. (1)

The projection operator for point x ∈ Rn with respect to set
S can be defined as (1) when g(y) = 0, i.e.,

projS(x) = prox0,S(x) = argmin
y∈S

1

2
∥y − x∥2. (2)

Given a vector mapping F : Rn → Rn and a scalar convex
(possibly non-smooth) function g : Rn → R, solving a VI
consists of finding a point x∗ ∈ Rn such that the following
holds:

inf
x∈Rn

(x− x∗)⊤F(x∗)− g(x)− g(x∗) ≥ 0. (3)

The standing assumptions for (3) are (i) the monotonicity
of F(·) always holds; (ii) g(·) being proper convex lower-
semicontinuous; the iii) the non-emptiness of the solution set
of (3). When a VI is constrained to a set S ⊂ Rn, by letting
g(x) = ιS(x), the problem in (3) becomes

inf
x∈S

(x− x∗)⊤F(x∗) ≥ 0. (4)

III. THE PACKAGE OVERVIEW

monviso is a novel open-source Python package for
solving monotone VIs. The proposed package is a wrapper
around cvxpy [13], which allows to conveniently define
the proximal and projection operators. These operators, in
fact, usually represent the most computationally intense steps
of iterative schemes, being themselves fully-fledged opti-
mization problems. Albeit some proximal operators can be
explicitly expressed in analytical form, the majority requires

a (usually convex) solver for retrieving the solution. A list
of proximal-friendly operators is reported in [14], specifically
cataloging g(·) functions in (3), which yields an exact for-
mulation for the proximity operator. Nonetheless, evaluating
its analytic form, even when possible, is usually tedious and
error-prone, binding the resulting iterative approach to the
specific application at hand. Therefore, monviso follows
the same philosophy of several existing optimization mod-
elling language, which allow for a degree of expressiveness
close to mathematical statements. This enables the user to
input a generic form for g and S, which will be used to
automatically construct (1).

A. The Basic Functionality

In order to illustrate the inner working of monviso, let
us provide a simple example as a starting point.

Example 1: Let F(x) = Hx for some H ≻ 0, g(x) =
∥x∥1, and S = {x ∈ Rn : Ax ≤ b}, for some A ∈ Rm×n

and b ∈ Rn. It is straightforward to verify that F(·) is
strongly monotone with µ = λmin(H) and Lipschitz with
L = ∥H∥2. Therefore, the resulting VI in (3) could be solved
using the well-known proximal gradient descent method
[NEM83], where convergence is guaranteed for a step size
λ ∈

(
0, 2µ

L2

)
. The following Python code illustrates how to

solve the VI in (3) using monviso.
1 import numpy as np
2 import cvxpy as cp
3

4 from monviso import VI
5

6 # Create the problem data
7 n, m = 30, 40
8 H = np.random.uniform(2, 10, size=(n, n))
9 A = np.random.uniform(45, 50, size=(m, n))

10 b = np.random.uniform(3, 7, size=(m,))
11

12 # Make H positive definite
13 H = H @ H.T
14

15 # Lipschitz and strong monotonicity constants
16 mu = np.linalg.eigvals(H).min()
17 L = np.linalg.norm(H, 2)
18

19 # Define F, g, and S
20 F = lambda x: H @ x
21 g = lambda x: cp.norm(x)
22 S = [lambda x: A @ x <= b]
23

24 # Define and solve the VI
25 vi = VI(n, F, g, S)
26

27 x0 = np.random.uniform(4, 5, n)
28 algorithm_params = {
29 "x": x0,
30 "step_size": 2 * mu / L**2
31 }
32 sol = vi.solution(
33 "pg", algorithm_params, max_iters=25,
34 eval_tol=-np.inf, log_path="result.log"
35 )

Except for lines 1-25, which simply define the problem
parameters and needed constants, the core implementation of
the VI problem is expressed by lines 27-37. In monviso,
a VI is an instance of the class VI(), which takes the
following objects as attributes:

https://epubs.siam.org/doi/10.1137/1027074


• n: the size of the vector space n. This is necessary
since monviso cannot infer the size of the vector space
solely from F or g.

• F: any Python function1 taking a numpy array as input,
and returning another numpy array of the same size. It
corresponds to the operator F(·).

• g: a function having a single cvxpy Variable as
argument and returning a scalar. Moreover, such a
variable must be a 1-dimension array, i.e., a vector.
This characterization corresponds to the mathematical
definition of g(·) in (3). As default, g = 0.

• S: a Python list of callables returning a cvxpy’s
Constraints. Each of them has a single cvxpy’s
Variable as variable. As for g, such a variable must
be a 1-dimension array, i.e., a vector. As default, S =
[].

The rationale for requiring the vector space size and the
variable characterizing g and S is detailed in the following.
In case g and S are provided, monviso will check whether
they are characterized by a single and identical variable
vector, in order to ensure consistency with the VI definition
in (3). An initial solution is randomly generated in line 30,
while the parameters characterizing the employed algorithm
are declared in line 31. The parameters to be declared depend
on the chosen iterative method, although they generally
comprise (at least) one starting solution and the (possibly
initial) value of λ, referred to as step size. The VI solu-
tion is evaluated in line 34 through the vi.solution()
function, which takes as mandatory arguments: i) the name
of the algorithm to use, ii) its parameters (i.e., the key-value
map previously discussed), and iii) the maximum number of
iterations. Additional optional parameters are also available:

• eval func: unless the maximum number of allowed
iterations is reached, iterative algorithm stop when a
certain (arbitrarily small) small tolerance is reached.
monviso allows for defining custom evaluation func-
tions, which take the k-th iteration solution, xk, as
single argument. As default, the residual magnitude
J : Rn → R≥0 is set, defined as J(xk) := ∥xk −
proxg,S(xk − F(xk))∥

• eval tol: the tolerance value for the evaluation func-
tion, under which the chosen iterative algorithm stops.
As tolerance value of 1−9 is set as the default.

• log path: the path where the algorithm log is saved.
Such a log is a comma separated value file, comprising
the following fields: i) iter, i.e., the iteration number,
ii) eval func value, i.e., the value of the evaluation
function, and iii) time, i.e., the time (in seconds)
elapsed from the first to the k-th iteration.

B. Stateful Constrained Proximal Operator

As per its definition in (1), the evaluation of the proximal
operator corresponds to finding its minimizer. In monviso,
this is accomplished by defining (1) as a cvxpy.Problem.
Usually, optimization modelling languages that allow the

1In Example 1, an anonymous function.

user to define the problem declaratively need to parse it
in order to provide the solver at hand with the accepted
canonical form. This is often done through an epigraphic
reformulation, which casts the constraint to a suitable conic
representation. In our use case, the challenge arises because
this parsing process would occur at each iteration, possibly
multiple times when the proximal operator needs to be eval-
uated more than once (e.g., extragradient method [KOR76]).
Such a repeated parsing process would dramatically worsen
the overall computation time.

In order to mitigate this potential overhead, we ex-
ploited the disciplined parametrized programming (DPP) that
cvxpy implements. DPP defines a ruleset for parsing an
optimization problem in canonical form while keeping track
of constant terms that might be changed from one solution in-
stance to another. A detailed discussion of the DPP principles
can be found in [15]. For our case, the term x is a parameter
for (1) and (2): on such a basis, monviso implements the
proximal and projection2 operators as invariant objects upon
instantiating the VI(). Their statefulness resides in the fact
that the same instance is used in all the iterations for any
given algorithm, with only x (i.e., the state) being updated.

Moreover, the definition of proximal operator in (1) in-
cludes a constraint set, differing from the usual definition
where the minimization problem is defined over Rn. The
reason lies in the difficulties behind the computational insta-
bilities that arise from implementing the indicator function.
In fact, since g(·) might be non-smooth, one can set g(x) =
ιS(x) when the VI at hand is constrained by S. However,
gradient-based methods are known to be dramatically sus-
ceptible to the behavior of strongly discontinuous functions
[16]. Characterizing the proximal operator as constrained
counteracts such issues, with S = [] corresponding to S =
Rn.

C. The Implemented Algorithms
Table I lists the algorithms implemented in the current

version of monviso, along with each method’s name and
the required parameters. For the sake of brevity, we will not
delve into the details and properties of each algorithm: the
package documentation reports a brief description of each
method, together with the description of the basic iterations
and its convergence conditions.

Each implemented algorithm shares the same function
signature, which can be summarized as follows:
1 def algorithm_name(
2 x: np.ndarray,
3 step_size: float,
4 **other_params: dict, optional,
5 **cvxpy_solve_params: dict, optional
6 ) -> np.ndarray:
7 # (Eventual) preparatory steps
8 while True:
9 # Iteration steps, out of which at

10 # least one generates x
11 yield x

2Albeit (2) is a special case of (1), it is convenient to instantiate it as
standalone operator, since it is often used for evaluations not (always) strictly
related to algorithms iterates, e.g., the residual metric used for stopping the
convergence.

https://cir.nii.ac.jp/crid/1571698600143951616


TABLE I
THE LIST OF IMPLEMENTED ALGORITHMS

Ref. Method Algorithm Parameters

[NEM83] pg Proximal Gradient x0 ∈ Rn,
λ ∈

(
0, 1

L

)
[KOR76] eg Extragradient x0 ∈ Rn,

λ ∈
(
0, 1

L

)
[POP80] popov Popov’s Method x0,y0 ∈ Rn,

λ ∈
(
0, 1

2L

)
[TSE00] fbf

Forward-Backward-
Forward

x0 ∈ Rn,
λ ∈

(
0, 1

L

)
[MAL20a] frb

Forward-Reflected-
Backward

x0,x1 ∈ Rn,
λ ∈

(
0, 1

2L

)
[MAL15] prg

Projected Reflected
Gradient

x0,x1 ∈ Rn,
λ∈

(
0,

√
2−1
L

)
[YOO21] eag

Extra Anchored
Gradient

x0 ∈ Rn,
λ∈

(
0, 1√

3L

)
[CAI20] arg

Accelerated Reflected
Gradient

x0,x1 ∈ Rn,
λ ∈

(
0, 1

12L

)
[YOO21] fogda (Explicit) Fast OGDA

x0,x1,y ∈ Rn

λ ∈
(
0, 1

4L

)
,

α>2

[SED23] cfogda
Constrained Fast

OGDA

x0,y0 ∈ Rn,
x1 ∈ S

z0 ∈ NS(x1),
λ ∈

(
0, 1

4L

)
,

α>2

[MAL20b] graal
Golden Ratio

Algorithm

x0,x1 ∈ Rn,
λ ∈

(
0, φ

2L

)
,

ϕ ∈ (1, φ]

[MAL20b] agraal
Adaptive Golden Ratio

Algorithm

x0,x1 ∈ Rn,
λ0 > 0,
ϕ ∈ (1, φ]

[BAG24] hgraal 1
Hybrid Golden Ratio

Algorithm 1

x0,x1 ∈ Rn,
λ0 > 0,
ϕ ∈ (1, φ]

[BAG24] hgraal 2
Hybrid Golden Ratio

Algorithm 2

x0,x1 ∈ Rn,
λ0 > 0,
ϕ ∈ (1, φ]

Each iterative algorithm is, thus, implemented as a gen-
erator, indefinitely yielding the new value of x at each
function call. As mentioned in Example 1, each algo-
rithm takes as a mandatory argument at least one starting
point x, as well as the (possibly initial) value for the
step size. More arguments can be declared: for instance,
both the Explicit and Constrained Fast Optimistic Gradi-
ent Descent-Ascent (OGDA) require a further parameter
α to be set. Wherever possible, we set additional argu-
ments with a suitable default in order to simplify the us-
age. The additional set of optional parameters defined by
cvxpy solve params contains the arguments that can
be passed to the cxvpy.Problem.solve() function.
Specifically, since (1) is implemented as cvxpy optimization
problem, as mentioned in Section III-B, the user might need
to pass further arguments to explicitly set cvxpy options on
how to solve such a problem (e.g., which solver to use or
parsing options). The algorithms’ function signature strives
to allow users to possibly implement their own iterative

methods quickly and easily. In fact, one of the core concepts
behind monviso is keeping modularity and ease of use as
the package might grow in the future, anticipating future
growth with the addition of more algorithms for monotone
VIs.

IV. APPLICATION EXAMPLES

In this section, we illustrate some examples related to
control, optimization, game theory, and machine learning
problems, which can be reduced to a VI and solved through
monviso. For the sake of brevity, we provide a short
description of the proposed examples here; further details
can be found in the available repository3.

1) Linear Complementarity Problem [4, Section 3]: A
common problem that can be cast to a VI is the linear
complementarity problem: given b ∈ Rn and 0 ⪯ A ∈
Rn×n, one want to solve the following

find x ∈ Rn
≥0 s.t. y = Ax+ b ≥ 0, y⊤x = 0. (5)

By setting F(x) = −y = −Ax− b and S = R≥0 it can be
readily verified that each solution for (4) is also a solution
for (5). Figure 1a illustrates the convergence results.

2) Two Players Zero-Sum Game [17]: Many examples
of non-cooperative behavior between two adversarial agents
can be modelled through zero-sum games. Let us consider
vectors xi ∈ ∆i as the decision variable of the i-th player,
with i ∈ {1, 2}, where ∆i ⊂ Rni is the simplex constraints
set defined as ∆i := {x ∈ Rni : 1⊤x = 1}, for all
i ∈ {1, 2}. Let x := col(xi)

2
i=1. Players try to solve the

following problem:

min
x1∈∆1

max
x2∈∆2

Φ(x1,x2) (6)

whose (Nash) equilibrium solution is achieved for x∗ satis-
fying the following

Φ(x∗
1,x2) ≤ Φ(x∗

1,x
∗
2) ≤ Φ(x1,x

∗
2), ∀x ∈ ∆1 ×∆2 (7)

For the sake of simplicity, we consider Φ(x1,x2) :=
x⊤
1 Hx2, for some H ∈ Rn1×n2 . In doing so, the equilibrium

condition in the previous equation can be written as a VI,
where S = ∆1×∆2 and the mapping F : Rn1+n2 → Rn1+n2

is defined:

F(x) =

[
Hx1

−H⊤x2

]
=

[
H

−H⊤

]
x (8)

The convergence results are reported in Fig. 1b.
3) Feasibility Problem: Finding a point in the intersection

of M balls [3]: Let us consider M balls in Rn, where the
i-th ball of radius ri > 0 centered in ci ∈ Rn is given
by Bi(ci, ri) ⊂ Rn. We are interested in finding a point
belonging to their intersection, i.e., we want to solve the
following:

find x subject to x ∈
M⋂
i=1

Bi(ci, ri) (9)

3github.com/nicomignoni/monviso/tree/master/
examples

https://epubs.siam.org/doi/10.1137/1027074
https://cir.nii.ac.jp/crid/1571698600143951616
https://link.springer.com/article/10.1007/BF01141092
https://epubs.siam.org/doi/10.1137/S0363012998338806
https://epubs.siam.org/doi/abs/10.1137/18M1207260
https://epubs.siam.org/doi/abs/10.1137/14097238X
https://proceedings.mlr.press/v139/yoon21d.html
https://arxiv.org/abs/2210.03096
https://proceedings.mlr.press/v139/yoon21d.html
https://proceedings.mlr.press/v202/sedlmayer23a
https://link.springer.com/article/10.1007/s10107-019-01416-w
https://link.springer.com/article/10.1007/s10107-019-01416-w
https://pure.tudelft.nl/admin/files/222286247/Variational_Inequality.pdf
https://pure.tudelft.nl/admin/files/222286247/Variational_Inequality.pdf
github.com/nicomignoni/monviso/tree/master/examples
github.com/nicomignoni/monviso/tree/master/examples
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Fig. 1. Convergence results for each example, using the currently available
algorithms in monviso.

It is straightforward to verify that the projection of a point
onto Bi(ci, ri) is evaluated as:

projBi(ci,ri)(x) =

ri
x− ci

∥x− ci∥
if ∥x− ci∥ > ri

x otherwise
(10)

Due to the non-expansiveness of the projection in (2), one
can find a solution for (1) as the fixed point of the following
iterate:

xk+1 = T(xk) =
1

M

M∑
i=1

projBi(ci,ri)(xk) (11)

which result from the well-known Krasnosel’skiı̆-Mann it-
erate. By letting F = I − T, where I denotes the identity
operator, the fixed point for (3) can be treated as the
canonical VI. Figure 1c illustrates the convergence results.

4) Skew symmetric operator [18, Example 20.35]: A sim-
ple example of a monotone operator that is not (even locally)
strongly monotone is the skewed-symmetric operator, which
is described as F(x) = blkdiag(A1, . . . ,AM )x for some
arbitrary M ∈ N, where Ai = triu(Bi)− tril(Bi), for some
Bi ⪰ 0, for all i = 1, . . . ,M . The convergence results are
reported in Fig. 1e.

5) Sparse logistic regression [5, Section 3]: Consider
a dataset of M rows and N columns, so that A =
col(a⊤i )

M
i=1 ∈ RM×N is the dataset matrix, and ai ∈ RN is

the i-th features’ vector for the i-th dataset row. Moreover,
let b ∈ RM be the target vector, so that bi ∈ {−1, 1} is
the (binary) ground truth for the i-th data entry. The sparse
logistic regression consists of finding the weight vector x ∈
RN that minimizes the loss function V : Rn → R≥0, defined
as follows

V (x) :=

M∑
i=1

log

(
1 +

1

exp(bia⊤i x)

)
+ γ∥x∥1

= 1⊤
M log(1 + exp(−b⊙Ax))︸ ︷︷ ︸

=:s(x)

+ γ∥x∥1︸ ︷︷ ︸
=:g(x)

(12)

where γ ∈ R>0 is the ℓ1-regulation strength. The gradient
for s(·), ∇sx(x), is calculated as

∇sx(x)=−A⊤ ⊙ (1N ⊗ b⊤)⊙ exp(−b⊙Ax)

1 + exp(−b⊙Ax)
1M (13)

The problem of finding the minimizer for (12) can be cast
as (3), with F(x) := ∇sx(x). The convergence trajectory is
reported in Fig. 1d.

6) Markov Decision Process (MDP) [19, Chapter 3]:
A stationary discrete MDP is characterized by the tuple
(X ,A, P, r, γ), i) where X is the (finite countable) set of
states; ii) A is the (finite countable) set of actions; iii)
P : X ×A×X → [0, 1] is the transition probability function,
such that P (x, a, x+) is the probability of ending up in state
x+ ∈ S from state x ∈ X when taking action a ∈ A; iv)
r : X × X → R is the reward function, so that r(x, x+)
returns the reward for transitioning from state x ∈ X to
state x+ ∈ X ; γ ∈ R>0 is a discount factor. The aim is to
find a policy, i.e., a function π : S → A, returning the best
action for any given state. A solution concept for MDP is
the value function, vπ : S → R, defined as

vπ(x) =

=:T(vπ)︷ ︸︸ ︷∑
x+∈X

P (x, π(x), x+)
(
r(x, x+) + γv(x+)

)
(14)



returning the “goodness” of policy π. The expression in (14)
is known as Bellman equation, and can be expressed as an
operator of vπ , i.e., T[vπ(s)] =: T(vπ). It can be shown that
the value function yielded by the optimal policy, v∗, results
from the fixed-point problem v∗ = T(v∗). Therefore, the
latter can be formulated as a canonical VI, with F = I− T.
The convergence results are reported in Fig. 1f.

7) Linear-Quadratic (LQ) Dynamic Games [1]: As
shown in [1, Proposition 2], the receding horizon open-loop
Nash equilibria (NE) can be reformulated as a non-symmetric
VI. Specifically, consider a set of agents N = {1, . . . , N}
characterizing a state vector x[t] ∈ Rn, whose (linear)
dynamics is described as

x[t+ 1] = Ax[t] +
∑
i∈N

Biui[t] (15)

for t = 1, . . . , T . Each agent i selfishly tries to choose
ui[t] ∈ Rm in order to minimize the following cost function

Ji(ui|x0,u−i) =
1

2

T−1∑
t=0

∥x[t|x0,u]∥2Qi
+ ∥ui[t]∥2Ri

(16)

for some 0 ⪯ Qi ∈ Rn×n and 0 ≺ Ri ∈ Rm×m, with u−i =
col(uj)j∈N\{i} and uj = col(uj [t])

T
t=1. Moreover, u =

col(ui)i∈N . The set of feasible inputs, for each agent i ∈ N ,
is Ui(x0,u−i) := {ui ∈ RmT : ui[t] ∈ Ui(u−i[t]), ∀t =
0, . . . , T − 1; x[t|x0,u] ∈ X , ∀t = 1, . . . , T}, where
X ∈ Rn is the set of feasible system states. Finally, U(x0) =
{u ∈ RmTN : ui ∈ U(x0,u−i), ∀i ∈ N}. Following [1,
Definition 1], the sequence of input u∗

i ∈ Ui(x0,u−i), for
all i ∈ N , characterizes an open-loop NE iff

J(u∗
i |x0,u

∗
−i) ≤ inf

ui∈Ui(x0,u∗
−i)

{J(u∗
i |x0,u−i)} (17)

which is satisfied by the fixed-point of the best response
mapping of each agent, defined as

u∗
i = argmin

ui∈U(x0,u∗
−i)

Ji(ui|x0,u
∗
−i), ∀i ∈ N (18)

Proposition 2 in [1] states that any solution of (3) is a solution
for (18) when S = U(x0) and F : RmTN → RmTN , defined
as

F(u) = col(G⊤
i Q̄i)i∈N (row(Gi)i∈Nu+Hx0)+

blkdiag(IT ⊗Ri)i∈Nu
(19)

where, for all i ∈ N , Q̄i = blkdiag(IT−1 ⊗ Qi,Pi),
Gi = e⊤1,T ⊗col(At

iBi)
T−1
t=0 +IT ⊗Bi and H = col(At)Tt=1.

Matrix Pi results from the open-loop NE feedback synthesis
as discussed in [1, Equation 6].

V. CONCLUSIONS

In this paper, we have presented monviso, a novel open-
source Python package for solving monotone variational
inequalities (VIs). We have detailed the basic functionalities
of the packages through a simple introductory example and
discussed how monviso integrates cvxpy to implement
the proximal operator in a stateful fashion. Several examples
presented the implemented algorithms, ranging from control

and optimization to machine learning, showcasing monviso
utility across different applications.

Future work will focus on improving the overall perfor-
mance, possibly resorting to just-in-time compilation, as well
as extending monviso to other commonly used program-
ming languages, such as MATLAB and Julia.
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systems: a survey of tools and a case study,” in 20th International
Multiconference Information Society-IS, 2017, pp. 15–18.

[13] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

[14] G. Chierchia, E. Chouzenoux, P. L. Combettes, and J.-C. Pesquet, “The
proximity operator repository,” User’s guide http://proximity-operator.
net/download/guide. pdf. Accessed, vol. 6, 2020.

[15] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z.
Kolter, “Differentiable convex optimization layers,” Advances in neu-
ral information processing systems, vol. 32, 2019.

[16] D. Jeong, S. Ham, J. Yang, Y. Hwang, S. Kwak, H. Hua, X. Xin, and
J. Kim, “Numerical study of an indicator function for front-tracking
methods,” Mathematical Problems in Engineering, vol. 2022, no. 1,
p. 7381115, 2022.

[17] C. E. Lemke and J. T. Howson, Jr, “Equilibrium points of bimatrix
games,” Journal of the Society for industrial and Applied Mathematics,
vol. 12, no. 2, pp. 413–423, 1964.

[18] H. H. Bauschke, P. L. Combettes, H. H. Bauschke, and P. L. Com-
bettes, Convex analysis and monotone operator theory in Hilbert
spaces. Springer, 2017.

[19] R. S. Sutton, “Reinforcement learning: An introduction,” A Bradford
Book, 2018.

https://pure.tudelft.nl/ws/portalfiles/portal/226975637/JOTA_DR_games_final_PRG.pdf
https://pure.tudelft.nl/ws/portalfiles/portal/226975637/JOTA_DR_games_final_PRG.pdf
https://pure.tudelft.nl/ws/portalfiles/portal/226975637/JOTA_DR_games_final_PRG.pdf

	Introduction
	Notation and Preliminaries
	The Package Overview
	The Basic Functionality
	Stateful Constrained Proximal Operator
	The Implemented Algorithms

	Application Examples
	Linear Complementarity Problem [Section 3]harker1990linear
	Two Players Zero-Sum Game lemke1964equilibrium
	Feasibility Problem: Finding a point in the intersection of M balls bauschke1996projection
	Skew symmetric operator [Example 20.35]bauschke2017correction
	Sparse logistic regression [Section 3]mishchenko2023regularized
	Markov Decision Process (MDP) [Chapter 3]sutton2018reinforcement
	Linear-Quadratic (LQ) Dynamic Games benenati2024linear


	Conclusions
	References

