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Abstract

We propose an iterative method for approximately computing the capacity of discrete memoryless channels,

possibly under additional constraints on the input distribution. Based on duality of convex programming, we derive

explicit upper and lower bounds for the capacity. The presented method requires O(M
2N
√
logN

ε
) to provide an

estimate of the capacity to within ε, where N and M denote the input and output alphabet size; a single iteration has

a complexity O(MN). We also show how to approximately compute the capacity of memoryless channels having a

bounded continuous input alphabet and a countable output alphabet under some mild assumptions on the decay rate

of the channel’s tail. It is shown that discrete-time Poisson channels fall into this problem class. As an example, we

compute sharp upper and lower bounds for the capacity of a discrete-time Poisson channel with a peak-power input

constraint.

Index Terms

Channel capacity, convex optimization, duality, smoothing techniques, entropy maximization, fast gradient meth-

ods

1. INTRODUCTION

A discrete memoryless channel (DMC) comprises a finite input alphabet X = {1, 2, . . . , N}, a finite output

alphabet Y = {1, 2, . . . ,M}, and a conditional probability mass function expressing the probability of observing

the output symbol y given the input symbol x, denoted by W (y|x). In his seminal 1948 paper [1], Shannon proved

that the channel capacity for a DMC is

C(W ) = max
p∈∆N

I(p,W ) , (1)

where ∆N:={x ∈ RN : x ≥ 0,
∑N
i=1 xi = 1}denotes the N -simplex and I(p,W ):=

∑
x∈X p(x)D(W (·|x)||(pW )(·))

the mutual information. W (y|x) = P[Y = y|X = x] describes the channel law and (pW )(·) is the probability

distribution of the channel output induced by p and W , i.e., (pW )(y) :=
∑
x∈X p(x)W (y|x). D(·||·) denotes the

relative entropy that is defined as D(W (·|x)||(pW )(·)) :=
∑
y∈YW (y|x) log

(
W (y|x)
(pW )(y)

)
. Shannon also showed
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that in case of an additional average cost constraint on the input distribution of the form E[s(X)] ≤ S, where

s : X → R≥0 denotes a cost function and S ≥ 0, the capacity is given by

CS(W ) =





max
p

I(p,W )

s. t. E[s(X)] ≤ S
p ∈ ∆N .

(2)

For a few DMCs it is known that the capacity can be computed analytically, however in general there is no closed-

form solution. It is therefore of interest to have an algorithm that solves (2) in a reasonable amount of time. Since

for a fixed channel the mutual information is a concave function in p, the optimization problem (2) is a finite

dimensional convex optimization problem. Solving (2) with convex programming solvers, however, turned out to

be computationally inefficient even for small alphabet sizes [2].

Shannon’s formula for the capacity of a DMC generalizes to the case of memoryless channels with continuous

input and output alphabets, i.e. X = Y = R. However, when considering such channels, it is essential to introduce

additional constraints on the channel input to obtain physically meaningful results, more details can be found in

[3, Chapter 7]. In addition to average cost type constraints, peak-power constraints are also often considered. A

peak-power constraint demands that X ∈ A for some compact set A ⊂ X with probability one. For such a setup,

i.e., having average and peak-power constraints, the capacity is given by

CA,S(W ) =





sup
p

I(p,W )

s. t. E[s(X)] ≤ S
p ∈ P(A),

(3)

where P(A) denotes the set of all probability distributions on the Borel σ-algebra B(A) and the mutual infor-

mation is defined as I(p,W ) :=
∫
AD(W (·|x)||(pW )(·)) p(dx). The channel is described by a transition density

defined by P[Y ∈ dy|X = x] = W (y|x)dy and (pW )(·) is the probability distribution of the channel output

induced by p and W which is given by (pW )(y) :=
∫
AW (y|x)p(dx) and the relative entropy that is defined

as D(W (·|x)||(pW )(·)) :=
∫
YW (y|x) log

(
W (y|x)
(pW )(y)

)
dy. The optimization problem (3) is an infinite dimensional

convex optimization problem and as such in general computationally intractable (NP-hard).

Previous Work and Contributions.— Historically one of the first attempts to numerically solve (2) is the so-

called Blahut-Arimoto algorithm [2], [4], that exploits the special structure of the mutual information and ap-

proximates iteratively the capacity of any DMC. Each iteration step has a computational complexity O(MN2). It

was shown that this algorithm, in case of no additional input constraints has an a priori error bound of the form

|C(W )− C(n)
approx(W )| ≤ O( log(N)

n ), where n denotes the number of iterations [4, Corollary 1]. Hence, the overall

computational complexity of finding an additive ε-solution is given by O(MN2 log(N)
ε ). As such the computational

cost required for an acceptable accuracy for channels with large input alphabets can be considerable. This undesirable

property together with the complexity per iteration prevents the algorithm from being useful for a large class of

channels, e.g., a Rayleigh channel with a discrete input alphabet [5]. There have been several improvements of the

Blahut-Arimoto algorithm [6], [7], [8], which achieve a better convergence for certain channels. However, since
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they all rely on the original Blahut-Arimoto algorithm they inherit its overall computational complexity as well

as its complexity per iteration step. Therefore, even with improved Blahut-Arimoto algorithms, approximating the

capacity for channels having large input alphabets remains computationally expensive. Based on sequential Monte-

Carlo integration methods (a.k.a. particle filters), the Blahut-Arimoto algorithm has been extended to memoryless

channels with continuous input and output alphabets [9], [10], [11], [12]. As shown in several examples, this

approach seems to be powerful in practice, however a rate of convergence has not been proven.

Another recent approach towards approximating (2) is presented in [13] by Mung and Boyd, where they introduce

an efficient method to derive upper bounds on the channel capacity problem, based on geometric programming.

Huang and Meyn [14] developed a different approach based on cutting plane methods, where the mutual information

is iteratively approximated by linear functionals and in each iteration step, a finite dimensional linear program is

solved. It has been shown that this method converges to the optimal value, however no rate of convergence is

provided.

In this article, we present a new approach to solve (2) that is based on its dual formulation. It turns out that the dual

problem of (2) has a particular structure that allows us to apply Nesterov’s smoothing method [15]. In the absence

of input cost constraints, this leads to an a priori error bound of the order |C(W )−C(n)
approx(W )| ≤ O(

M
√

log(N)

n ),

where n denotes the number of iterations and each iteration step has a computational complexity of O(NM).

Thus, the overall computational complexity of finding an ε-solution is given by O(
M2N
√

log(N)

ε ). In particular for

large input alphabets our method has a considerable computational advantage over the Blahut-Arimoto algorithm.

In addition the novel method provides primal and dual optimizers leading to an a posteriori error which is often

much smaller than the a priori error.

Due to the favorable structure of the capacity problem and its dual formulation, the presented method can be

extended to approximate the capacity of memoryless channels having a bounded continuous input alphabet and

a countable output alphabet, under some assumptions on the tail of W (·|x), i.e., problem (3) is addressed for a

countable output alphabet. As a concrete example, this is demonstrated on the discrete-time Poisson channel with

a peak-power constraint. To the best of our knowledge, for this scenario up to now only lower bounds exist [16].

Structure.— Section 2 introduces our method for approximating the channel capacity for DMCs. We provide a

priori and a posteriori bounds for the approximation error and present two numerical examples that illustrate its

computational performance compared to the Blahut-Arimoto algorithm. In Section 3, we generalize the approxima-

tion scheme to channels having bounded continuous input alphabets and countable output alphabets. We then show

how the presented results can be used to compute the capacity of discrete-time Poisson channels under a peak-

power constraint and possibly average-power constraints on the input. We conclude in Section 4 with a summary

and potential subjects of further research. In the interest of readability, some of the technical proofs and details are

given in the appendices.

Notation.— The logarithm with basis 2 is denoted by log(·) and the natural logarithm by ln(·). In Section 2 we

consider DMCs with a finite input alphabet X = {1, 2, . . . , N} and a finite output alphabet Y = {1, 2, . . . ,M}.
The channel law is summarized in a matrix W ∈ RN×M , where Wij := P[Y = j|X = i] = W (j|i). We define the
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standard n−simplex as ∆d :=
{
x ∈ Rd : x ≥ 0,

∑d
i=1 xi = 1

}
. The input and output probability mass functions

are denoted by the vectors p ∈ ∆N and q ∈ ∆M . The input cost constraint can be written as E[s(X)] = p>s ≤ S,

where s ∈ RN≥0 denotes the cost vector and S ∈ R≥0 is the given total cost. The binary entropy function is denoted

by Hb(α) := −α log(α)− (1− α) log(1− α), for α ∈ [0, 1]. For a probability mass function p ∈ ∆N we denote

the entropy by H(p) :=
∑N
i=1−pi log(pi). It is convenient to introduce an additional variable for the conditional

entropy of Y given {X = i} as r ∈ RN , where ri = −∑M
j=1 Wij log(Wij). For a probability density p supported

at a measurable set B ⊂ R we denote the differential entropy by h(p) = −
∫
B
p(x) log(p(x))dx. For two vectors

x, y ∈ Rn, we denote the canonical inner product by 〈x, y〉 := x>y. We denote the maximum (resp. minimum)

between a and b by a ∨ b (resp. a ∧ b). For A ⊂ R and 1 ≤ p ≤ ∞, let Lp(A) denote the space of Lp-functions

on the measure space (A,B(A),dx), where B(A) denotes the Borel σ-algebra and dx the Lebesgue measure. The

capacity of a channel W is denoted by C(W ). For the channel law matrix W ∈ RN×M we consider the norm

‖W‖ := max
λ∈RM , p∈RN

{〈
Wλ, p

〉
: ‖λ‖2 = 1, ‖p‖1 = 1

}
, and note that an upper bound is given by

‖W‖ = max
‖p‖1=1

max
‖λ‖2=1

λ>W>p ≤ max
‖p‖1=1

‖W>p‖2 ≤ max
‖p‖1=1

‖W>p‖1 = max
‖p‖1=1

‖p‖1 = 1. (4)

2. DISCRETE MEMORYLESS CHANNEL

To keep notation simple we consider a single average-input cost constraint as the extension to multiple average-

input cost constraints is straightforward. In a first step, we introduce the output distribution q ∈ ∆M as an additional

decision variable, as done in [17], [13], [18] and note that the mutual information I(X;Y ) is equal to H(Y ) −
H(Y |X).

Lemma 2.1. Let F := arg max
p∈∆N

I(p,W ) and Smax := min
p∈F

s>p. If S ≥ Smax the optimization problem (2) has the

same optimal value as

P :





max
p,q

−r>p+H(q)

s. t. W>p = q

p ∈ ∆N , q ∈ ∆M .

(5)

If S < Smax the optimization problem (2) has the same optimal value as

P :





max
p,q

−r>p+H(q)

s. t. W>p = q

s>p = S

p ∈ ∆N , q ∈ ∆M .

(6)

Proof: The proof can be found in Appendix A-A.

Note that we later add an assumption on our channel (Assumption 2.3) that guarantees uniqueness of the optimizer

maximizing the mutual information, i.e., F is a singleton. In this case the optimizer to (6) (resp. (5)) is also feasible

for the original problem (2). Computing Smax is straightforward once F is known. The singleton F can be seen as

the maximizer of a channel capacity problem with no additional input cost constraint and can as such be computed

with the scheme we present in this article.
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For the rest of the section we restrict attention to (6), since the less constrained problem (5) can be solved in

a similar, more direct way. We tackle this optimization problem through its Lagrangian dual problem. The dual

function turns out to be a non-smooth function. As such, it is known that the efficiency estimate of a black-box

first-order method is of the order O
(

1
ε2

)
if no specific problem structure is used, where ε is the desired abolute

accuracy of the approximate solution in function value [19]. We show, however, that P has a certain structure that

allows us to use Nesterov’s approach for approximating non-smooth problems with smooth ones [15] leading to

an efficiency estimate of the order O
(

1
ε

)
. This, together with the low complexity of each iteration step in the

approximation scheme leads to a numerical method for the channel capacity problem that has a very attractive

computational complexity.

A. Preliminaries

Some preliminaries are needed in order to present our capacity approximation method. We begin by recalling

Nesterov’s seminal work [15] in the context of structural convex optimization, which is our main tool in the proposed

capacity approximation scheme.

Nesterov’s smoothing approach [15]

Consider finite-dimensional real vector spaces Ei endowed with a norm ‖ · ‖i and denote its dual space by E?i

for i = 1, 2. Each dual pair of vector spaces comes with a bilinear form
〈
·, ·
〉
i

: E?i ×Ei → R. For a linear operator

A : E1 → E?2 the operator norm is defined as ‖A‖1,2 = maxx,u{
〈
Ax, u

〉
2

: ‖x‖1 = 1, ‖u‖2 = 1}. We are

interested in the following optimization problem

min
x
{f(x) : x ∈ Q1}, (7)

where Q1 ⊂ E1 is a compact convex set and f is a continuous convex function on Q1. We assume that the objective

function has the following structure

f(x) = f̂(x) + max
u
{
〈
Ax, u

〉
2
− φ̂(u) : u ∈ Q2}, (8)

where Q2 ⊂ E2 is a compact convex set, f̂ is a continuously differentiable convex function whose gradient is

Lipschitz continuous with constant L on Q1 and φ̂ is a continuous convex function on Q2. It is assumed that φ̂

and Q2 are simple enough such that the maximization in (8) is available in closed form. The dual program to (7)

can be given as

max
u

{
−φ̂(u) + min

x
{
〈
Ax, u

〉
2

+ f̂(x) : x ∈ Q1} : u ∈ Q2

}
. (9)

The main difficulty in solving (7) efficiently is its non-smooth objective function. Without using any specific

problem structure the complexity for subgradient-type methods is O
(

1
ε2

)
, where ε is the desired abolute accuracy

of the approximate solution in function value. Nesterov’s work suggests that when approximating problems with the

particular structure (8) by smooth ones, a solution to the non-smooth problem can be constructed with complexity in

order of O
(

1
ε

)
. In addition, Nesterov shows that when solving the smooth problem, a solution to the dual problem
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(9) can be obtained, and as such an a posteriori statement about the duality gap is available that often is significantly

tighter than the O
(

1
ε

)
complexity bound. Consider the the smooth approximation to problem (7) given by

min
x
{fν(x) : x ∈ Q1}, (10)

where ν > 0 and the objective function is given by

fν(x) = f̂(x) + max
u
{
〈
Ax, u

〉
2
− φ̂(u)− νd(u) : u ∈ Q2}, (11)

where d : Q2 → R is continuous and strongly convex with convexity parameter σ. It can be shown that fν has a

Lipschitz continuous gradient with Lipschitz constant L +
‖A‖21,2
νσ [15, Theorem 1]. In this light, the optimization

problem (10) belongs to a class of problems that can be solved in O
(

1√
ε

)
using a fast gradient method. The result

[15, Theorem 3] explicitly details how, having solved the smooth problem (10), primal and dual solutions to the

non-smooth problems (7) and (9) can be obtained and how good they are.

Entropy maximization

As a second preliminary result for some c ∈ RN we consider the following optimization problem, that, if feasible,

has an analytical solution 



max
p

H(p)− c>p

s.t. s>p = S

p ∈ ∆N .

(12)

Lemma 2.2. Let p? = [p?1, . . . , p
?
N ] with p?i = 2µ1−ci+µ2si , where µ1 and µ2 are chosen such that p? satisfies the

constraints in (12). Then p? uniquely solves (12).

Proof: See Appendix A-B.

B. Capacity Approximation Scheme

In the following we focus on the input constrained channel capacity problem (6) and the scenario of no input

constraints (5) is discussed as a special case within this section. Consider the convex optimizaton problem (6),

whose optimal value, according to Lemma 2.1 is the capacity CS(W ). The Lagrange dual program to (6) is

D :





min
λ

G(λ) + F (λ)

s.t. λ ∈ RM ,
(13)

where F,G : RM → R are given by

G(λ) =





max
p

−r>p+ λ>W>p

s.t. s>p = S

p ∈ ∆N

and F (λ) =





max
q

H(q)− λ>q

s.t. q ∈ ∆M

. (14)

Note that since the coupling constraint W>p = q in the primal program (6) is affine, the set of optimal solutions to

the dual program (13) is nonempty [20, Proposition 5.3.1] and as such the optimum is attained. It can be seen that

the dual program (13) structurally resembles the problem (7) with (8), without a bounded feasible set, however.
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To ensure that the set of dual optimizers is compact, we need to impose the following assumption on the channel

matrix W, that we will maintain for the remainder of Section 2.

Assumption 2.3. γ := min
i,j

Wij > 0

Assumption 2.3 excludes situations where the channel matrix has zero entries. Even though this may seem

restrictive at first glance, it holds for a large class of channels. Moreover, in a finite dimensional setting, for a

fixed input distribution, the mutual information is well known to be continuous in the channel matrix entries.

Therefore, singular cases where the channel matrix contains zero entries can be avoided by slight perturbations of

those entries. (This is discussed in more detail in Remark 2.13.) Under Assumption 2.3 for a fixed channel, the

mutual information can be seen to be a strictly concave function in the input distribution. Therefore, the capacity

achieving input distribution is unique. With Assumption 2.3 one can derive an explicit bound on the norm of the

dual optimizers, which is crucial in the subsequent derivation of the main result in this section, namely Theorem 2.9.

Lemma 2.4. Under Assumption 2.3, the dual program (13) is equivalent to




min
λ

G(λ) + F (λ)

s.t. λ ∈ Q,
(15)

where Q :=
{
λ ∈ RM : ‖λ‖2 ≤M

(
log(γ−1) ∨ 1

ln 2

)}
.

Proof: See Appendix A-C.

Lemma 2.5. Strong duality holds between (6) and (13).

Proof: The proof follows by a standard strong duality result of convex optimization, see [20, Proposition 5.3.1,

p. 169].

Note that the optimization problem defining F (λ) is of the form given in (12). Hence, according to Lemma 2.2,

F (λ) has a unique optimizer q? with components q?j = 2µ−λj , where µ ∈ R needs to be chosen such that q? ∈ ∆M ,

i.e.,

µ = − log




M∑

j=1

2−λj


 .

Therefore,

F (λ) =

M∑

j=1

(
−q?j log(q?j )− λjq?j

)
= −

M∑

j=1

µ 2µ−λj = −µ 2µ
M∑

j=1

2−λj = log




M∑

j=1

2−λj


 . (16)

F (λ) is a smooth function with gradient

(∇F (λ))i =
−2−λi

∑M
j=1 2−λj

. (17)

According to [15, Theorem 1] and the fact that the negative entropy is strongly convex with convexity parameter

1 [15, Lemma 3], ∇F (λ) is Lipschitz continuous with Lipschitz constant 1. The main difficulty in solving (15)

efficiently is that G(·) is non-smooth. Following Nesterov’s smoothing technique [15], we alleviate this difficulty
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by approximating G(·) by a function with a Lipschitz continuous gradient. This smoothing step is efficient in our

case because of the particular structure of (15). Following [15] and (11), consider

Gν(λ) =





max
p

λ>W>p− r>p+ νH(p)− ν log(N)

s.t. s>p = S

p ∈ ∆N ,

(18)

with smoothing parameter ν ∈ R>0 and denote by pν(λ) the optimizer to (18), which is unique because the objective

function is strictly concave. Clearly for any λ ∈ Q, Gν(λ) is a uniform approximation of the non-smooth function

G(λ), since Gν(λ) ≤ G(λ) ≤ Gν(λ) + ν log(N). Using Lemma 2.2, the optimizer pν(λ) to (18) is analytically

given by

pν(λ, µ)i = 2µ1+
1
ν (Wλ− r)i+µ2si , (19)

where µ1, µ2 ∈ R have to be chosen so that s>pν(λ, µ) = S and pν(λ, µ) ∈ ∆N ; for this choice of µ1, µ2 we

denote the solution by pν(λ).

Remark 2.6. In case of no input constraints, the unique optimizer to (18) is given by

pν(λ)i =
2

1
ν (Wλ−r)i

∑N
i=1 2

1
ν (Wλ−r)i

for i = 1, . . . , N,

whose straightforward evaluation is numerically difficult for small ν. One can circumvent this problem, however, by

following the numerically stable technique that we present in Remark 2.11. By Dubin’s theorem it can be shown that

the capacity of a memoryless channel with a discrete output alphabet of size M and input alphabet size N ≥M , is

achieved by a discrete input distribution with M mass points [3], [21]. Computing the exact positions and weights

of this optimal input distribution may be difficult, though it is worth noting that our analytical solution in (19)

converges to this optimal input distribution as ν tends to 0.

Remark 2.7 (Additional input constraints). In case of additional input constraints, we need an efficient method

to find the coefficients µ1 and µ2 in (19). In particular if there are multiple input constraints (leading to multiple

µi) the efficiency of the method computing them becomes important. Instead of solving a system of nonlinear

equations, one can show ([22, Theorem 4.8], [23, p. 257 ff.]) that the coefficients µi are the unique maximizers to

the following convex optimization problem

max
µ∈R2

{
y>µ−

N∑

i=1

pν(λ, µ)i

}
, (20)

where y := (1, S). Notice that (20) is an unconstrained maximization of a strictly concave function, whose gradient

and Hessian can be directly computed as

 y1 − ln 2

∑N
i=1 pν(λ, µ)i

y2 − ln 2
∑N
i=1 sipν(λ, µ)i


 and


 −(ln 2)2

∑N
i=1 pν(λ, µ)i −(ln 2)2

∑N
i=1 sipν(λ, µ)i

−(ln 2)2
∑N
i=1 sipν(λ, µ)i −(ln 2)2

∑N
i=1 s

2
i pν(λ, µ)i


 ,

which allows the use of efficient second-order methods such as Newton’s method. This method directly extends to

multiple input constraints. Let us point out that Theorem 2.9, quantifying the approximation error of the presented



9

algorithm, is based on the assumption that the maximum entropy solution (19) is available, meaning that one can

solve (20) for optimality. In the case of a finite input alphabet this assumption is not restrictive as we have argued

that (20) is easy to solve. For a continuous input alphabet, that we shall discuss in the subsequent section, however,

finding the maximum entropy solution is numerically difficult as it involves integration problems. Therefore, in

Remark 3.12, we comment on how the presented channel capacity algorithm behaves, when having access only to

an approximate solution to the mentioned maximum entropy problem.

Finally, we can show that the uniform approximation Gν(λ) is smooth and has a Lipschitz continuous gradient,

with known Lipschitz constant.

Proposition 2.8. Gν(λ) is well defined and continuously differentiable at any λ ∈ Q. Moreover, it is convex and

its gradient ∇Gν(λ) = W>pν(λ) is Lipschitz continuous with Lipschitz constant 1
ν .

Proof: The proof follows directly from the proof of Theorem 1 and Lemma 3 in [15] together with (4).

We consider the smooth, convex optimization problem

Dν :





min
λ

F (λ) +Gν(λ)

s.t. λ ∈ Q,
(21)

whose objective function has a Lipschitz continuous gradient with Lipschitz constant 1 + 1
ν . As such Dν can be be

approximated with Nesterov’s optimal scheme for smooth optimization [15], which is summarized in Algorithm 1,

where πQ(x) denotes the projection operator of the set Q, defined in Lemma 2.4, with R := M
(
log(γ−1) ∨ 1

ln 2

)

πQ(x) :=





R x
‖x‖2

, ‖x‖2 > R

x, otherwise.

Algorithm 1: Optimal scheme for smooth optimization

Choose some λ0 ∈ Q
For k ≥ 0 do∗ Step 1: Compute ∇F (xk) +∇Gν(xk)

Step 2: yk = πQ

(
− 1
Lν

(∇F (xk) +∇Gν(xk)) + xk

)
Step 3: zk = πQ

(
− 1
Lν

∑k
i=0

i+1
2

(∇F (xi) +∇Gν(xi))
)

Step 4: xk+1 = 2
k+3

zk + k+1
k+3

yk

[*The stopping criterion is explained in Remark 2.10]

The following theorem provides explicit error bounds for the solution provided by Algorithm 1 after n iterations.

Define the constants D1 := 1
2 (M log(γ−1) ∨ 1

ln 2 )2 and D2 := log(N).

Theorem 2.9 ([15]). Under Assumption 2.3, for n ∈ N consider a smoothing parameter

ν = ν(n) =
2

n+ 1

√
D1

D2
.
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Then after n iterations of Algorithm 1 we can generate the approximate solutions to the problems (13) and (2),

namely,

λ̂ = yn ∈ Q and p̂ =

n∑

k=0

2(k + 1)

(n+ 1)(n+ 2)
pν(xk) ∈ ∆N , (22)

which satisfy

0 ≤ F (λ̂) +G(λ̂)− I(p̂,W ) ≤ 4

n+ 1

√
D1D2 +

4D1

(n+ 1)2
. (23)

Thus, the complexity of finding an ε-solution to the problems (13) and (2) does not exceed

4
√
D1D2

1

ε
+ 2

√
D1

ε
. (24)

Proof: The proof follows along the lines of [15, Theorem 3] and in particular requires Lemma 2.4, Lemma 2.5

and Proposition 2.8.

Note that Theorem 2.9 provides an explicit error bound (23), also called a priori error. In addition this theorem

gives an approximation to the optimal input distribution (22), i.e., the optimizer of the primal problem. Thus, by

comparing the values of the primal and the dual optimization problem, one can also compute an a posteriori error

which is the difference of the dual and the primal problem, namely F (λ̂) +G(λ̂)− I(p̂,W ).

Remark 2.10 (Stopping criterion of Algorithm 1). There are two immediate approaches to define a stopping

criterion for Algorithm 1.

(i) A priori stopping criterion: Choose an a priori error ε > 0. Setting the right hand side of (23) equal to ε

defines a number of iterations nε required to ensure an ε-close solution.

(ii) A posteriori stopping criterion: Choose an a posteriori error ε > 0. Choose the smoothing parameter ν(nε)

for nε as defined above in the a priori stopping criterion. Fix a (small) number of iterations ` that are run

using Algorithm 1. Compute the a posteriori error e` := F (λ̂) + G(λ̂) − I(p̂, ρ) according to Theorem 2.9.

If e` ≤ ε terminate the algorithm otherwise continue with another ` iterations. Continue until the a posteriori

error is below ε.

Remark 2.11 (Computational stability). In the special case of no input cost constraints, one can derive an analytical

expression for Gν(λ) and its gradient as

Gν(λ) = ν log

(
N∑

i=1

2
1
ν (Wλ− r)i

)
− ν log(N)

∇Gν(λ) =
1

S(λ)

N∑

i=1

2
1
ν (Wλ− r)iWi,·, (25)

where S(λ) :=
∑N
i=1 2

1
ν (Wλ− r)i . In order to achieve an ε-precise solution the smoothing factor ν has to be chosen

in the order of ε, according to Theorem 2.9. A straightforward computation of ∇Gν(λ) via (25) for a small enough ν

is numerically difficult. In the light of [15, p. 148], we present a numerically stable technique for computing∇Gν(λ).

By considering the functions RM 3 λ 7→ f(λ) = Wλ− r ∈ RN and RN 3 x 7→ Rν(x) = ν log
(∑N

i=1 2
xi
ν

)
∈ R

it is clear that ∇λRν(f(λ)) = ∇Gν(λ). The basic idea is to define f̄(λ) := max1≤i≤N fi(λ) and then consider a
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function g : RM → RN given by gi(λ) = fi(λ) − f̄(λ), such that all components of g(λ) are non-positive. One

can show that

∇λRν(f(λ)) = ∇λRν(g(λ)) +∇f̄(λ),

where the term on the right-hand side can be computed with a small numerical error.

Remark 2.12 (Computational complexity). In case of no input cost constraint, one can see by (25) that the

computational complexity of a single iteration step of Algorithm 1 is O(MN). Furthermore, according to (24),

the complexity in terms of number of iterations to achieve an ε-precise solution is O
(
M
√

logN
ε

)
. This finally

gives a computational complexity for finding an additive ε-solution of O(M
2N
√

logN
ε ). Let us point out that that

the constants in the computational complexity, explicitly given in (24) and in particular the dependency on the

parameter γ, can have a significant impact on the runtime of the proposed approximation method in practice. In

the following remark, however, we presents a way to circumvent ill-conditioned channels with very small (or even

vanishing) γ parameter.

Remark 2.13 (Removing Assumption 2.3). The continuity of the channel capacity can be used to remove Assump-

tion 2.3. Let W1 ∈ RN×M be an channel transition matrix that does not satisfy Assumption 2.3, i.e., that contains

zero entries. Define a new channel matrix W2 ∈ RN×M by adding a perturbation ε > 0 to all zero entries of W1

and then normalizing the rows. According to [24]

|C(W1)− C(W2)| ≤ 3 ‖W1 −W2‖. log(M ∨N) + 2η(‖W1 −W2‖.), (26)

where η(t) = −t log t and the norm ‖·‖. on RN×M is defined as ‖A‖. := maxb∈∆N
‖bb>A‖tr. Since W2 by

construction satisfies Assumption 2.3, we can run Algorithm 1 for channel W2 and as such get the following upper

and lower bounds for the capacity of the singular channel W1

CLB(W1) := CLB(W2)− 3 ‖W1 −W2‖. log(M ∨N)− 2η(‖W1 −W2‖.)

CUB(W1) := CUB(W2) + 3 ‖W1 −W2‖. log(M ∨N) + 2η(‖W1 −W2‖.).

See in Example 2.16 how this perturbation method behaves numerically.

C. Simulation Results

This section presents three examples to illustrate the theoretical results developed in the preceding sections and

their performance. All the simulations in this section are performed on a 2.3 GHz Intel Core i7 processor with 8

GB RAM.

Example 2.14. Consider a DMC W having a channel matrix W ∈ RN×M with N = 10000 and M = 100, such that

Wij =
Vij∑M
j=1 Vij

, where Vij is chosen i.i.d. uniformly distributed in [0, 1] for all 1 ≤ i ≤ N and 1 ≤ j ≤ M . The

parameter γ happens to be 1.0742 · 10−8. Figure 2.14 and Table I compare the performance of the Blahut-Arimoto

algorithm with that of Algorithm 1, which has the a priori error bound predicted by Theorem 2.9, namely

CUB(W )− CLB(W ) ≤ 2M
√

2 log(N)

n+ 1

(
log(γ−1) ∨ 1

ln 2 )
)

+
2M2

(n+ 1)2

(
log(γ−1) ∨ 1

ln 2 )
)2
,
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where n denotes the number of iterations and γ is equal to the smallest entry in the channel matrix W . Recall that

the Blahut-Arimoto algorithm has an a priori error bound of the form C(W )−CLB(W ) ≤ log(N)
n [4, Corollary 1].

Moreover, the new method provides us with an a posteriori error, which the Blahut-Ariomoto algorithm does not.

10−310−210−1

102

103

104

approximation error

ru
nn

in
g

tim
e

[s
]

Blahut-Arimoto
A priori error
A posteriori error

Fig. 1. For Example 2.14, this plot depicts the runtime of Algorithm 1 with respect to the a priori and a posteriori stopping criterion, as

explained in Remark 2.10. As a reference, the runtime of the Blahut-Arimoto algorithm is shown.

TABLE I

SOME SPECIFIC SIMULATION POINTS OF EXAMPLE 2.14.

Blahut-Arimoto Algorithm Algorithm 1

A priori error 1 0.1 0.01 0.001 1 0.1 0.01 0.001

CUB(W ) — — — — 0.4419 0.4131 0.4092 0.4088

CLB(W ) 0.2930 0.4008 0.4088 0.4088 0.3094 0.4069 0.4088 0.4088

A posteriori error — — — — 0.1325 0.0063 4.0·10−4 3.7·10−5

Time [s] 7.4 69 693 7306 114 1127 11 036 110 987

Iterations 14 133 1329 13 288 27 797 273 447 2 729 860 27 294 000

Example 2.15. Consider a DMC W having a channel matrix W ∈ RN×M with N = 100000 and M = 10, such

that Wij =
Vij∑M
j=1 Vij

, where Vij is chosen i.i.d. uniformly distributed in [0, 1] for all 1 ≤ i ≤ N and 1 ≤ j ≤ M .

The parameter γ happens to be 3.7140 · 10−7. Table II shows the performance of Algorithm 1 with a priori and

a posteriori errors given by Theorem 2.9. Note that for the Blahut-Arimoto algorithm we were not able to run a

single iteration, as the computation run out of memory.

Example 2.16. Consider a binary erasure channel with erasure probability α whose channel transition matrix is

given by W =
(

1−α α 0
0 α 1−α

)
and as such does not satisfy Assumption 2.3. We use the perturbation method introduced

in Remark 2.13 to approximate its capacity that is analytically known to be 1−α [25, p. 189]. Table III shows the

performance of this perturbation method and Algorithm 1.
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TABLE II

SOME SPECIFIC SIMULATION POINTS OF EXAMPLE 2.15.

A priori error 1 0.1 0.01 0.001

CUB(W ) 1.0938 1.0543 1.0516 1.0514

CLB(W ) 1.0100 1.0512 1.0514 1.0514

A posteriori error 0.0837 0.0031 2.5·10−4 2.4 ·10−5

Time [s] 46 456 4553 45 617

Iterations 2498 24 659 246 264 2 462 310

TABLE III

SOME SPECIFIC SIMULATION POINTS OF EXAMPLE 2.16 FOR α = 0.4

Perturbation ε 10−4 10−5 10−6 10−7

A priori error 0.01 0.01 0.01 0.01

CUB(W ) 0.6024 0.6003 0.6000 0.6000

CLB(W ) 0.5949 0.5994 0.5999 0.6000

A posteriori error 0.0075 9.2 · 10−4 1.1 · 10−4 1.2 · 10−5

Time [s] 0.70 0.54 0.66 0.78

Iterations 9056 7402 8523 9896

3. CHANNELS WITH CONTINUOUS INPUT AND COUNTABLE OUTPUT ALPHABETS

In this section we generalize the approximation scheme introduced in Section 2 to memoryless channels with

continuous input and countable output alphabets. The class of discrete-time Poisson channels is an example of

such channels with particular interest in applications, for example to model direct detection optical communication

systems [26], [27], [10]. Consider X ⊆ R as the input alphabet set and Y = N0 as the output alphabet set. The

channel is described by the conditional probability W (i|x) := P[Y = i | X = x]. Given a channel W and an

integer M , we introduce an M -truncated version of the channel by

WM (i|x) :=





W (i|x) + 1
M

∑
j≥M

W (j|x), i ∈ {0, 1, . . . ,M − 1}

0, i ≥M.

(27)

WM can be seen as a channel with input alphabet X and output alphabet {0, 1, . . . ,M − 1}. Figure 2 shows a

pictorial representation of a channel and its M -truncated counterpart. The finiteness of the output alphabet of WM

allows us to deploy an approximation scheme similar to the one developed in Section 2 to numerically approximate

C(WM ).

The following definition is a key feature of the channel required for the theoretical results developed in this

section which, roughly speaking, imposes a certain decay rate for the output distribution uniformly in the input

alphabet.
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N0
0 M

∑
i≥M

W (i|x)

1
M

∑
i≥M

W (i|x)

W (·|x)
WM (·|x)

Fig. 2. Pictorial representation of the M -truncated channel counterpart.

Definition 3.1 (Polynomial tail). The channel W features a k-ordered polynomial tail if for M ∈ N0 and k ∈ R≥0

Rk(M) :=
∑

i≥M

(
sup
x∈X

W (i|x)
)k
<∞. (28)

The following assumptions hold throughout this section.

Assumption 3.2.

(i) The channel W has a k-ordered polynomial tail for some k ∈ (0, 1) in the sense of Definition 3.1.

(ii) The mapping x 7→W (i|x) is Lipschitz continuous for any i ∈ N0 with Lipschitz constant L.

Assumption 3.2 allows us to relate the capacity of the original channel to that of its truncated counterpart.

Theorem 3.3. Suppose channel W satisfies Assumption 3.2(i) with the order k ∈ (0, 1). Then, for any M ∈ N0

and for any probability distribution p ∈ P(X ) we have

∣∣I(p,W )− I(p,WM )
∣∣ ≤ 2 log(e)

e(1− k)

[
M1−k(R1(M)

)k
+Rk(M)

]
,

where Rk(M) is as defined in (28).

Proof: See Appendix A-D.

Note that Theorem 3.3 directly implies an upper bound to the capacity since

|C(W )− C(WM )| =
∣∣ sup
p∈P(X )

I(p,W )− sup
p∈P(X )

I(p,WM )
∣∣ ≤ sup

p∈P(X )

∣∣I(p,W )− I(p,WM )
∣∣.

We consider two types of input cost constraints: a peak-power constraint P[X ∈ A] = 1 for a compact set A ⊆ X
and an average-power constraint E[s(X)] ≤ S for S ∈ R≥0 and a continuous function s on X . The primal capacity

problem for the channel WM is given by

CA,S(WM ) =





sup
p

I(p,WM )

s. t. E[s(X)] ≤ S
p ∈ P(A),

(29)

where P(A) denotes the space of all probability distributions supported on A, cf. (3). Our method always requires

a peak-power constraint, whereas the average-power constraint is optimal. The following proposition allows us to

restrict the optimization variables from probability distributions to probability densites.
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Proposition 3.4. The optimization problem (29) is equivalent to

CA,S(WM ) =





sup
p

I(p,WM )

s. t. E[s(X)] ≤ S
p ∈ D(A),

where D(A) is the set of probability densities functions, i.e., D(A) := {f ∈ L1(A) : f ≥ 0,
∫
A f(x)dx = 1}.

Proof: See Appendix A-E.

We consider the pair of vector spaces (L1(A),L∞(A)) together with the bilinear form

〈
f, g
〉

:=

∫

X
f(x)g(x)dx.

In the light of [28, Theorem 243G] this is a dual pair of vector spaces; we refer to [29, Section 3] for the details of

the definition of dual pairs of vector spaces. Considering the standard inner product as a bilinear form on the dual

pair (RM ,RM ), we define the linear operator W : RM → L∞(A) and its adjoint operator W? : L1(A) → RM ,

given by

Wλ(x) :=

M∑

i=1

WM (i− 1|x)λi, (W?p)i :=

∫

X

WM (i− 1|x)p(x)dx.

Let Smax := infp∈D(A){
〈
p, s
〉

: I(p,WM ) = supq∈D(A) I(q,WM )}. Following similar lines as in Lemma 2.1,

one can deduce that in problem (29) the inequality input constraint can be replaced by equality (resp. removed) is

S < Smax (resp. S ≥ Smax). That is, in view of Proposition 3.4, Lemma 2.1 and the discussion there, problem

(29) (under Assumption 3.6, that we require later) is equivalent to

P :





sup
p,q

−
〈
p, r
〉

+H(q)

s. t. W?p = q
〈
p, s
〉

= S

p ∈ D(A), q ∈ ∆M ,

(30)

where r(·) := −∑M−1
j=0 WM (j|·) log(WM (j|·)) is an element in L∞(A) by Assumption 3.2(ii). For the rest of the

section we restrict attention to (30), since unconstrained problem can be solved in a similar way. We call (30) the

primal program. Thanks to the dual vector space framework, the Lagrange dual program of P is given by

D :





inf
λ

G(λ) + F (λ)

s.t. λ ∈ RM ,
(31)

where

G(λ) =





sup
p

〈
p,Wλ

〉
−
〈
p, r
〉

s.t.
〈
p, s
〉

= S

p ∈ D(A)

and F (λ) =





max
q

H(q)− λ>q

s.t. q ∈ ∆M .

Lemma 3.5. Strong duality holds between (30) and (31).
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Proof: Note that the dualized constraint is a linear equality constraint. Therefore the conditions of (1) in [30,

Theorem 5] holds and as such strong duality follows by [30, Theorem 4].

In the remainder of this article we impose the following assumption on the channel.

Assumption 3.6. γM := min
y∈{0,1,...,M−1}

min
x∈A

WM (y|x) > 0

In case
∑
j≥M W (j|x) > 0 for all x, Assumption 3.6 holds according to (27) and a lower bound can be given

by γM ≥ 1
M minx

∑
j≥M W (j|x). Under Assumption 3.6 we can show that we can again assume without loss of

generality that λ takes values in a compact set.

Lemma 3.7. Under Assumption 3.6, the dual program (31) is equivalent to




min
λ

G(λ) + F (λ)

s.t. λ ∈ Q,

where Q :=
{
λ ∈ RM : ‖λ‖2 ≤M

(
log(γ−1

M ) ∨ 1
ln 2

)}
.

Proof: The proof follows the same lines as in the proof of Lemma 2.4.

Note that F (λ) is the same as in Section 2 and therefore given by (16) and its gradient by (17). As in Section 2,

we consider the smooth approximation

Gν(λ) =





sup
p

〈
p,Wλ

〉
−
〈
p, r
〉

+ νh(p)− ν log(ρ)

s.t.
〈
p, s
〉

= S

p ∈ D(A),

(32)

with smoothing parameter ν ∈ R>0 and ρ denoting the Lebesgue measure of A. To analyze the properties of Gν(λ)

we need one more auxiliary lemma.

Lemma 3.8. The function D(A) 3 p 7→ −h(p) + log(ρ) ∈ R≥0 is strongly convex with convexity parameter σ = 1.

Proof: See Appendix A-F.

Furthermore, we can show that the uniform approximation Gν(λ) is smooth and has a Lipschitz continuous

gradient, with known constant. The following result is a generalization of Proposition 2.8.

Proposition 3.9. Gν(λ) is well defined and continuously differentiable at any λ ∈ RM . Moreover, this function is

convex and its gradient ∇Gν(λ) =W?pλν is Lipschitz continuous with constant Lν = 1
ν .

Proof: See Appendix A-G.

We denote by pλν the optimizer to (32), that is unique since the objective function is strictly concave. To analyze

the solution to (32) we consider the following optimization problem, that, if feasible, has a closed form solution




sup
p

h(p) +
〈
p, c
〉

s.t.
〈
p, s
〉

= S

p ∈ D(A),

(33)
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with c, s ∈ L∞(A).

Lemma 3.10. Let p?(x) = 2µ1+c(x)+µ2s(x), where µ1, µ2 ∈ R are chosen such that p? satisfies the constraints in

(33). Then p? uniquely solves (33).

The proof directly follows from [25, p. 409] and the proof of Lemma 2.2. Hence, Gν(λ) has a (unique) analytical

optimizer

pλν (x, µ) = 2µ1+
1
ν (Wλ(x)−r(x))+µ2s(x), x ∈ X , (34)

where µ1, µ2 ∈ R have to be chosen such that
〈
pλν (·, µ), s

〉
= S and pλν (·, µ) ∈ D(A); for this choice of µ1, µ2

we denote the solution by pλν (·).

Remark 3.11 (No input constraints). In case of no input constraints, the unique optimizer to (32) is given by

pλν (x) =
2

1
ν (Wλ(x)−r(x))

∫
A 2

1
ν (Wλ(x)−r(x))dx

,

whose numerical evaluation can be done in a stable way by following Remark 2.11.

Remark 3.12 (Additional input constraints). As in Remark 2.7, in case of additional input constraints we need

an efficient method to find the coefficients µi in (34). This problem can again be reduced to a finite dimensional

convex optimization problem ([22, Theorem 4.8],[23, p. 257 ff.]), in the sense that the coefficients µi are the unique

maximizers to

max
µ∈R2

{
y>µ−

∫

A
pλν (x, µ)dx

}
, (35)

where y := (1, S). Note that (35) is an unconstrained maximization of a striclty concave function. The evalutation

of the gradient and the Hessian of this objective function involves computing moments of the measure pλν (x, µ)dx,

which unlike to the finite input alphabet case (Remark 2.7) is numerically difficult. In [23, p. 259 ff.], an efficient

approximation of the mentioned gradient and Hessian in terms of two single semidefinite programs involving two

linear matrix inequalities (LMI) is presented, where the desired accuracy is controlled by the size of the LMI

constraints. As mentioned in Remark 2.7, this will provide a suboptimal solution to the maximum entropy problem

(32) and as such the error bounds of Theorem 3.16 do not hold. By following [31], however, one can quantify the

approximation error of Algorithm 1 in case of an inexact gradient. We also refer the interested reader to [32], for

a related work on channel capacity approximation under inexact first-order information.

Note that the differential entropy h(p) ≤ log(ρ) for all p ∈ D(A) and that there exists a function ι : R>0 → R≥0

such that

Gν(λ) ≤ G(λ) ≤ Gν(λ) + ι(ν) for all λ ∈ Q, (36)

i.e., Gν(λ) is a uniform approximation of the non-smooth function G(λ). The following lemma, Lemma 3.15,

provides an explicit expression for the function ι in (36) under some Lipschitz continuity assumptions, implying in

particular that ι(ν)→ 0 as ν → 0.
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Lemma 3.13. Under Assumption 3.2(ii) and Assumption 3.6 the function fλ(·) := Wλ(·) − r(·) is Lipschitz

continuous uniformly in λ ∈ Q with constant Lf = LM2(log 1
γM
∨ 1

ln 2 ) +ML| log 1
γM
− 1

ln 2 |.

Proof: See Appendix A-H.

Assumption 3.14 (Lipschitz continuity of the average-power constraint function). The average-power constraint

function s(·) is Lipschitz continuous with constant Ls.

Lemma 3.15. Under Assumptions 3.2(ii), 3.6 and 3.14 a possible choice of the function ι in (36) is given by

ι(ν) =





ν
(
log
(
T1

ν + T2

)
+ 1
)
, ν < T1

1−T2
or T2 > 1

ν, otherwise,

where T1 := Lfρ + 2LfLsρ
2
(

1
−s ∨ 1

s

)
, T2 := Lsρ(µ ∨ µ), µ := 2

−s log
(

2Lsρ
−s ∨ 1

)
, µ := 2

s log
(

2Lsρ
s ∨ 1

)
,

ρ :=
∫
A dx, s := −S + minx∈A s(x) and s := −S + maxx∈A s(x).

Proof: See Appendix A-I.

We consider the smooth, finite dimensional, convex optimization problem

Dν :





inf
λ

F (λ) +Gν(λ)

s.t. λ ∈ Q,
(37)

whose solution can be approximated with Algorithm 1 presented in Section 2, as follows. Define the constant

D1 := 1
2 (M log(γ−1) ∨ 1

ln 2 )2.

Theorem 3.16. Under Assumptions 3.2(ii), 3.6 and 3.14, let α := 2(T1 + T2 + 1) where T1 and T2 are as defined

in Lemma 3.15. Given precision ε ∈ (0, α4 ), we set the smoothing parameter ν = ε/α
log(α/ε) and number of iterations

n ≥ 1
ε

√
8D1α

√
log(ε−1) + log(α) + 1

4 . Consider

λ̂ = yn ∈ Q and p̂ =

n∑

k=0

2(i+ 1)

(n+ 1)(n+ 2)
pxkν ∈ D(A), (38)

where yk computed at the kth iteration of Algorithm 1 and pxkν is the analytical solution in (34). Then, λ̂ and p̂ are

the approximate solutions to the problems (31) and (29), i.e.,

0 ≤ F (λ̂) +G(λ̂)− I(p̂,WM ) ≤ ε. (39)

Therefore, Algorithm 1 requires O
(

1
ε

√
log (ε−1)

)
iterations to find an ε-solution to the problems (31) and (29).

Proof: See Appendix A-J.

Hence, under Assumption 3.14 we can quantify the approximation error of the presented method to find the

capacity of any channel W , satisfying Assumptions 3.2 and 3.6, by
∣∣∣C(W )− C(n)

approx(WM )
∣∣∣ ≤ |C(W )− C(WM )|︸ ︷︷ ︸

(?)

+
∣∣∣C(WM )− C(n)

approx(WM )
∣∣∣

︸ ︷︷ ︸
(??)

,

where (?) and (??) are addressed by Theorem 3.3 and Theorem 3.16, respectively. Let us highlight that for the

term (??) we have two different quantitative bounds: First, the a priori bound ε for which Theorem 3.16 prescribes
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a lower bound for the required number of iterations; second, the a posteriori bound F (λ̂) + G(λ̂) − I(p̂,WM )

which can be computed after a number of iterations have been executed. In practice, the a posteriori bound often

approaches ε much faster than the a priori bound. Note also that by (36) and Theorem 3.16

0 ≤ F (λ̂) +Gν(λ̂) + ι(ν)− I(p̂,WM ) ≤ ι(ν) + ε,

which shows that F (λ̂) + Gν(λ̂) + ι(ν) is an upper bound for the channel capacity with a priori error ι(ν) + ε.

This bound can be particularly helpful in cases where an evaluation of G(λ) for a given λ is hard.

Remark 3.17 (Optimal tail truncation). Given a fixed number of iterations, the term (??) above is effected by the

truncation level M for two reasons: the higher M the larger the size of the output as well as the lower the parameter

γM . Therefore, term (??) increases as M increases, which can be quantified by (62). On the other hand, term (?)

obviously has the opposite behavior. Namely, the higher M leads to the better approximation of the channel W by

the truncated version WM as quantified in Theorem 3.3. Hence, given a channel W with the polynomial tail order

k, there is an optimal value for the truncation parameter M , which thanks to the monotonicity explained above can

be effectively computed in practice by techniques such as bisection.

Note, that this truncation procedure could also be applied to a finite output alphabet, given that the channel satisfies

Assumption 3.2(i), and for example improve the performance of the method presented in Section 2.

Remark 3.18 (Without average-power constraint). In case of considering only a peak-power constraint and no

average-power constraint, our proposed methodology allows us to access a closed form expression for Gν(λ) and

its gradient,

Gν(λ) = ν log

(∫

A
2

1
ν (Wλ(x)−r(x))dx

)
− ν log(ρ) (40)

∇Gν(λ) =

∫
A 2

1
ν (Wλ(x)−r(x))WM (·|x)dx∫
A 2

1
ν (Wλ(x)−r(x))dx

.

Discrete-Time Poisson Channel

The discrete-time Poisson channel is a mapping from R≥0 to N0, such that conditioned on the input x ≥ 0 the

output is Poisson distributed with mean x+ η, i.e.,

W (y|x) = e−(x+η) (x+ η)y

y!
, y ∈ N0, x ∈ R≥0, (41)

where η ≥ 0 denotes a constant sometimes referred to as dark current. A peak-power constraint on the transmitter

is given by the peak-input constraint X ≤ A with probability one, i.e., A = [0, A] and an average-power constraint

on the transmitter is considered by E[X] ≤ S.

Up to now, no analytic expression for the capacity of a discrete-time Poisson channel is known. However, for

different scenarios lower and upper bounds exist. Brady and Verdú derived a lower and upper bound in the presence

of only an average-power constraint [33]. Later, for η = 0 and only an average-power constraint, Martinez introduced

better upper and lower bounds [34]. Lapidoth and Moser derived a lower bound and an asymptotic upper bound,

which is valid only when the available peak and average power tend to infinity with their ratio held fixed, for the
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presence of a peak and average-power constraint [16]. Lapidoth et al. computed the asymptotic capacity of the

discrete-time Poisson channel when the allowed average-input power tends to zero with the allowed peak power —

if finite — held fixed and the dark current is constant or tends to zero proportionally to the average power [35].

In [11] a numerical algorithm is presented, where the Blahut-Ariomoto algorithm is incorporated into the

deterministic annealing method, that allows the computation of both the channel capacity under peak and average

power constraints and its associated optimal input distribution. Furthermore, the works [11], [12] derive several

fundamental properties of capacity achieving input distributions for the discrete-time Poisson channel.

Here, we numerically approximate the capacity of a discrete-time Poisson channel using the proposed algorithm.

For simplicity, we consider the case where only a peak power constraint is imposed; the case where an additional

average power constraint is present can be treated similarly. It was shown in [27] that in the case of a peak power

constraint (with or without average power constraint), the capacity achieving input distribution is discrete. This, in

the limit as the number of iterations in the proposed approximation method goes to infinity, is consistent with the

optimal input distribution given in Remark 3.11.

The following proposition provides an upper bound for the k-polynomial tail for the Poisson channel W as

defined in (41).

Proposition 3.19 (Poisson tail). The Poisson channel (41) having a bounded input alphabet X = [0, A] and dark

current parameter η has a k-polynomial tail for any k ∈ (0, 1] in the sense of Definition 3.1, which is upper bounded

for all M ≥ A+ η by

Rk(M) ≤
(
αe(α−1)(A+η) (A+ η)M

M !

)k
, α := 2(k−1−1).

Proof: See Appendix A-K.

In the following we present an example to illustrate the theoretical results developed in the preceding sections

and their performance. Note that for the discrete-time Poisson channel Assumption 3.6 clearly holds.

Example 3.20. We consider a discrete-time Poisson channel W as defined in (41) with a peak-power constraint A

and dark current η = 1. Up to now, the best known lower bound for the capacity is given by [16, Theorem 4]

C(W ) ≥ 1

ln 2


1

2
lnA+

(
A

3
+ 1

)
ln

(
1 +

3

A

)
− 1−

√
η + 1

12

A

(
π

4
+

1

2
ln 2

)
− 1

2
ln
πe

2


. (42)

To the best of our knowledge no upper bound for the capacity is known. In [16] an asymptotic upper bound is

given which includes an unknown error term that is vanishing in the limit A → ∞. According to Theorems 3.3

and 3.16, the algorithm introduced in this article leads to an approximation error after n iterations that is given by
∣∣∣C(n)

approx(WM )− C(W )
∣∣∣ ≤

∣∣∣C(n)
approx(WM )− C(WM )

∣∣∣+ |C(WM )− C(W )|

≤ F (λ̂) +G(λ̂)− I(p̂,W ) + E ,

where E = 2 log(e)
e(1−k)

[
M1−k(R1(M)

)k
+ Rk(M)

]
, R`(M) =

(
αe(α−1)(A+η) (A+η)M

M !

)`
and α := 2(`−1−1) for any

k ∈ (0, 1) and ` ∈ (0, 1]. The truncation parameter M was determined as described in Remark 3.17. This finally
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leads to the following upper and lower bounds on C(W )

2I(p̂,W )−
(
F (λ̂) +G(λ̂)

)
− E ≤ C(W ) ≤ 2

(
F (λ̂) +G(λ̂)

)
− I(p̂,W ) + E . (43)

Figure 3.20 compares the two bounds (42) and (43) for different values of A. Further details on the simulation can

be found in Appendix B.
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Fig. 3. This plot depicts the capacity of a discrete-time Poisson channel with dark current η = 1 as a function of the peak-power constraint

parameter A. The red (resp. green) line shows the lower (resp. upper) bound (43) obtained for a moderate number of iterations, see Appendix B.

As a comparison we plot the lower bound of [16], which to the best of our knowledge is the tightest lower bound available to date (blue line).

The parameter A is given in decibels where A[dB] = 10 log10(A).

Remark 3.21 (AWGN channel with a quantized output). Another example of a channel that is well studied and

can be treated by the proposed method is the discrete-time additive white Gaussian noise (AWGN) channel under

output quantization. The output of the channel is described by

Y = Q(X +N),

where X ∈ R is the channel input, N ∼ N (0, σ2) for σ2 > 0 is white Gaussian noise and Q(·) is a quantizer that

maps the real valued input X+N to one of M bins (where we assume M <∞), which gives Y ∈ {y1, . . . , yM}. In

addition an average and/or a peak power constraint at the input is considered. More information about this channel

model and why it is of interest can be found in [36], [37]. By definition, the AWGN channel with a quantized

output has a continuous input alphabet and a discrete output alphabet. Thus, the approximation method discussed

in this section can be used to compute the capacity of such channels.
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4. CONCLUSION AND FUTURE WORK

We introduced a new approach to approximate the capacity of DMCs possibly having constraints on the input

distribution. The dual problem of Shannon’s capacity formula turns out to have a particular structure such that

the Lagrange dual function admits a closed form solution. Applying smoothing techniques to the non-smooth dual

function enables us to solve the dual problem efficiently. This new approach, in the case of no constraints on the

input distribution, has a computational complexity per iteration step of O(MN), where N is the input alphabet

size and M the size of the output alphabet. In comparison, the Blahut-Arimoto algorithm has a computational cost

of O(MN2) per iteration step. More precisely for no input power constraint, the total computational cost to find

an ε-close solution is O(
M2N
√

log(N)

ε ) for the algorithm developed in this article, whereas the Blahut-Arimoto

algorithm requires O(MN2 log(N)
ε ). We would like to emphasize that the computational cost of the smallest unit, i.e.

the cost of one iteration is strictly better for the algorithm introduced in this article. As highlighted by Example 2.15,

this can make a crucial difference especially for large input alphabets. Another strength of the new approach is that

it provides an a posteriori error, i.e., after having run a certain number of iterations we can precisely estimate the

actual error in the current approximation. This is computationally appealing as explicit (or a priori) error bounds

often are conservative in practice. By exploiting this a posteriori bound we can stop the computation once the

desired accuracy has been reached.

As a second contribution, we have shown how similar ideas can be used to approximate the capacity of memoryless

channels with continuous bounded input alphabets and countable output alphabets under a mild assumption on the

channels tail. This assumption holds, for example, for discrete-time Poisson channels, allowing us to efficiently

approximate their capacity. As an example we derived upper and lower bounds for a discrete-time Poisson channel

having a peak-power constraint at the input.

The presented optimization method highly depends on the Lipschitz constant estimate of the objective’s gradient.

The worse this estimate the more steps the method requires for an a priori ε-precision. For future work, we aim

to study the derivation of local Lipschitz constants of the gradient. This technique has recently been shown to be

very efficient in practice (up to three orders of magnitude reduction of computation time), while preserving the

worst-case complexity [38].

In the case of a continuous input alphabet, the proposed method requires to evaluate the gradient ∇Gν(·) in every

step of Algorithm 1, that requires solving an integral over A. As such the method used to compute those integrals

has to be included to the complexity of the proposed algorithm. Therefore, it would be interesting to investigate

under which structural properties on the channel the gradient ∇Gν(·) can be evaluated efficiently.

The approach introduced in this article can be used to efficiently approximate the capacity of classical-quantum

channels, i.e., channels that have classical input and quantum mechanical output, with a discrete or bounded

continuous input alphabet. Using the idea of a universal encoder allows us to compute close upper and lower

bounds for the Holevo capacity [32].
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APPENDIX A

PROOFS

This appendix collects the technical proofs omitted above.

A. Proof of Lemma 2.1

The mutual information I(p,W ) can be expressed as

I(p,W ) =

N∑

i=1

M∑

j=1

Wijpi log

(
Wij∑N

k=1 Wkjpk

)

=

N∑

i=1

M∑

j=1

[
piWij log(Wij)− piWij log

(
N∑

k=1

Wkjpk

)]
.

By adding the constraint
∑N
i=1 piWij = qj for all j = 1, . . . ,M ,

I(p,W ) =

N∑

i=1

M∑

j=1

[piWij log(Wij)− piWij log(qj)]

=

N∑

i=1

M∑

j=1

piWij log(Wij)−
M∑

j=1

qj log(qj)

= −r>p+H(q),

where p ∈ ∆N . Since q = W>p and W> is a stochastic matrix, this implies q ∈ ∆M . By definition of Smax it is

obvious that the input cost constraint s>p ≤ S is inactive for S ≥ Smax, leading to the first optimization problem

in Lemma 2.1. It remains to show that for S < Smax, the input constraint can be written with equality, leading to

the second optimization problem in Lemma 2.1. In oder to keep the notation simple we define C(S) := CS(W ) for

a fixed channel W . We show that C(S) is concave in S for S ∈ [0, Smax]. Let S(1), S(2) ∈ [0, Smax], 0 ≤ λ ≤ 1

and p(i) probability mass functions that achieve C(S(i)) for i ∈ {1, 2}. Consider the probability mass function

p(λ) = λp(1) + (1− λ)p(2). We can write

s>p(λ) = λs>p(1) + (1− λ)s>p(2)

≤ λS(1) + (1− λ)S(2)

=: S(λ) ∈ [0, Smax]. (44)

Using the concavity of the mutual information in the input distribution, we obtain

λC(S(1)) + (1− λ)C(S(2)) = λI
(
p(1),W

)
+ (1− λ)I

(
p(2),W

)

≤ I
(
p(λ),W

)

≤ C(S(λ)),

where the final inequality follows by Shannon’s formula for the capacity given in (1). C(S) clearly is non-decreasing

in S since enlarging S relaxes the input cost constraint. Furthermore, we show that

C(Smax − ε) < C(Smax), for all ε > 0. (45)



24

Suppose C(Smax − ε) = C(Smax) and denote C? := max
p∈∆N

I(p,W ). This then implies that there exists p̄ ∈ ∆N

such that I(p̄,W ) = C? and s>p̄ ≤ Smax − ε, which contradicts the definition of Smax. Hence, the concavity of

C(S) together with the non-decreasing property and (45) imply that C(S) is strictly increasing in S.

B. Proof of Lemma 2.2

This proof is similar to the proof given in [25, Theorem 12.1.1]. Let q satisfy the constraints in (12). Then

J(q) = H(q)− c>q = −
N∑

i=1

qi log(qi)− c>q

= −
N∑

i=1

qi log

(
qi
p?i
p?i

)
− c>q = −D(q||p?)−

N∑

i=1

qi log(p?i )− c>q

≤ −
N∑

i=1

qi log(p?i )− c>q (46)

= −
N∑

i=1

qi (µ1 + µ2si) (47)

= −
N∑

i=1

p?i (µ1 + µ2si)− c>p? + c>p? (48)

= −
N∑

i=1

p?i log(p?i )− c>p? = J(p?).

The inequality follows form the non-negativity of the relative entropy. Equality (47) follows by the definition of

p? and (48) uses the fact that both p? and q satisfy the constraints in (12). Note that equality holds in (46) if and

only if q = p?. This proves the uniqueness.

C. Proof of Lemma 2.4

Consider the following two convex optimization problems

Pβ :





max
p,q,ε

−r>p+H(q)− βε

s.t. ‖W>p− q‖∞ ≤ ε
s>p = S

p ∈ ∆N , q ∈ ∆M , ε ∈ R≥0

and Dβ :





min
λ

F (λ) +G(λ)

s.t. ‖λ‖1 ≤ β
λ ∈ RM .

Claim A.1. Strong duality holds between Pβ and Dβ .

Proof: According to the identity ‖W>p− q‖∞ = max‖λ‖1≤1 λ
> (W>p− q) [39, p. 7] the optimization problem

Pβ can be rewritten as

Pβ :





max
p,q

−r>p+H(q) + min
‖λ‖1≤β

λ> (W>p− q)

s.t. s>p = S

p ∈ ∆N , q ∈ ∆M ,



25

whose dual program, where strong duality holds according to [20, Proposition 5.3.1, p. 169] is given by




min
‖λ‖1≤β

max
p,q

−r>p+H(q) + λ> (W>p− q)

s.t. s>p = S

p ∈ ∆N , q ∈ ∆M ,

.

which clearly is equivalent to Dβ with F (·) and G(·) as given in (14).

Denote by ε?(β) the optimizer of Pβ with the respective optimal value J?β . We show that for a sufficiently large

β the optimizer ε?(β) of Pβ is equal to zero. Hence, in light of the duality relation, the constraint ‖λ‖1 ≤ β
2 in

Dβ is inactive and as such Dβ is equivalent to D in equation (13). Note that for

J(ε) :=





max
p,q

−r>p+H(q)

s.t. ‖W>p− q‖∞ ≤ ε
s>p = S

p ∈ ∆N , q ∈ ∆M

, (49)

the mapping ε 7→ J(ε), the so-called perturbation function, is concave [40, p. 268]. In the next step we write the

optimization problem (49) in another equivalent form

J(ε) =





max
p,v

−r>p+H(W>p+ εv)

s.t. ‖v‖∞ ≤ 1

s>p = S

p ∈ ∆N , v ∈ Im(W>) ⊂ RM

. (50)

By using Taylor’s theorem, there exists yε ∈ [0, ε] such that the entropy term in the objective function of (50) can

be bounded as

H(W>p+ εv) = H(W>p)−
(
log(W>p) + 1

ln 21
)>
vε−

M∑

j=1

v2
j∑N

i=1 Wijpi + yεvj
ε2 1

ln 2

≤ H(W>p)−
(
log(W>p) + 1

ln 21
)>
vε+

M

γ ln 2
ε2. (51)

Thus, the optimal value of problem Pβ can be expressed as

J?β ≤ max
ε
{J(ε)− βε}

≤ max
ε

{
max
p,v

[
−r>p+H(W>p)−

(
log(W>p) + 1

ln 21
)>
vε : s>p = S

]
+

M

γ ln 2
ε2 − βε

}
(52a)

≤ max
ε

{
max
p,v

[−r>p+H(W>p) : s>p = S] + (ρ− β)ε+
M

γ ln 2
ε2

}
(52b)

= J(0) + max
ε

{
(ρ− β)ε+

M

γ ln 2
ε2

}
, (52c)

where ρ = M
(
log(γ−1) ∨ 1

ln 2

)
. Note that (52a) follows from (50) and (51). The equation (52b) uses the fact that

for ‖v‖∞ ≤ 1, −
(
log(W>p) + 1

ln 21
)>
v ≤M

(
log(γ−1) ∨ 1

ln 2

)
. Thus, for β > ρ and ε1 = γ ln 2

M (β− ρ), we have

max
ε≤ε1

{
(ρ− β)ε+ M

γ ln 2ε
2
}

= 0. Therefore, (52c) together with the concavity of the mapping ε 7→ J(ε) imply that

J(0) is the global optimum of J(ε) and as such ε?(β) = 0 for β > ρ, indicating that Pβ is equivalent to P in
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the sense that J?β = J?0 . By strong duality this implies that the constraint ‖λ‖1 ≤ β in Dβ is inactive. Finally,

‖λ‖2 ≤ ‖λ‖1 concludes the proof.

D. Proof of Theorem 3.3

To prove Theorem 3.3 we need a preliminary lemma.

Lemma A.2. Given k ∈ (0, 1) and p ∈ [0, 1], we have for all x ∈ [0, 1− p]
∣∣(p+ x) log(p+ x)− p log(p)

∣∣ ≤ log(e)

e(1− k)
xk.

Proof: Note that for a fixed x ∈ [0, 1], the mapping p 7→ (p+x) log(p+x)−p log(p) is non-decreasing; observe

that the derivative of the mapping is non-negative for all x ∈ [0, 1]. Therefore, it suffices to verify the claim for p ∈
{0, 1}. For p = 1 and accordingly x = 0, Lemma A.2 holds trivially. Let p = 0 and h(x) := log(e)

e(1−k)x
k−1 + log(x).

Note that h(1) = log(e)
e(1−k) > 0 and h(x)→∞ as x→ 0. Hence, by setting d

dxh(x?) = 0, it can be easily seen that

min
x∈(0,1]

h(x) = h(x?) = 0, x? := e
1
k−1 .

Thus h(x) ≥ 0, and consequently xh(x) ≥ 0 for all x ∈ (0, 1], which concludes the proof.

Proof of Theorem 3.3: We bound the mutual information difference uniformly in the input probability

distribution p ∈ P(X ). Observe that

∣∣I(p,W )− I(p,WM )
∣∣

=

∣∣∣∣
∫

X

[
− h
(
W (·, x)

)
+ h
(
WM (·, x)

)]
p(dx) + h

(∫

X
W (·, x)p(dx)

)
− h
(∫

X
WM (·, x)p(dx)

)∣∣∣∣

=

∣∣∣∣
∫

X

[ ∑

i∈N0

W (i|x) log(W (i|x))−WM (i|x) log(WM (i|x))
]
p(dx)

+
∑

i∈N0

−
(∫

X
W (i|x)p(dx)

)
log
(∫

X
W (i|x)p(dx)

)

+
(∫

X
WM (i|x)p(dx)

)
log
(∫

X
WM (i|x)p(dx)

)∣∣∣∣.

By the definition of the truncated channel in (27) and applying Lemma A.2 to the above relation, we have

∣∣I(p,W )− I(p,WM )
∣∣ ≤ log(e)

e(1− k)

(∫

X

[ ∑

i<M

( 1

M

∑

j≥M

W (j|x)
)k

+
∑

i≥M

(
W (i|x)

)k
]
p(dx)

+
∑

i<M

( 1

M

∑

j≥M

∫

X
W (j|x)p(dx)

)k
+
∑

i≥M

(∫

X
W (i|x)p(dx)

)k)

≤ 2 log(e)

e(1− k)

(
M
(R1(M)

M

)k
+Rk(M)

)
,

which concludes the proof.

E. Proof of Proposition 3.4

We show that the optimization problem (29) is equivalent to

CA,S(WM ) = sup
p∈D(A)

{I(p,WM ) : E[s(X)] ≤ S} ,
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where D(A) is the space of probability measures that are absolutely continuous with respect to the Lebesgue

measure. This completes the proof since optimizing over D(A) is equivalent to optimizing over the space of

probability densities D(A) according to the Radon-Nikodým Theorem [41, Theorem 3.8, p. 90].

It is known that the mapping p 7→ I(p,WM ) is weakly lower semicontinuous [42]. It then suffices to show that

D(A) is weakly dense in P(A). Let B be a countable dense subset of A, and ∆(B) be the family of probability

measures whose supports are finite subsets of B. It is well known that ∆(B) is weakly dense in P(A), i.e.,

P(A) = ∆(B) [43, Theorem 4, p. 237], where ∆ is the weak closure of ∆. Moreover, thanks to the Lebesgue

differentiation theorem [41, Theorem 3.21, p. 98], we know that for any b ∈ B the point measure δ{b} ∈ ∆(B)

can be arbitrarily weakly approximated by measures in D(A), i.e., δ{b} ∈ D(A). Hence, we have ∆(B) = D(A),

which in light of the preceding assertion implies P(A) = D(A).

F. Proof of Lemma 3.8

The proof follows the ideas of [15]. It can easily be shown that for d(p) := −h(p) + log(ρ)

〈
d′′(p) · g, g

〉
=

∫

A

g(x)2

p(x)
dx.

Cauchy-Schwarz then implies

〈
d′′(p) · g, g

〉
≥
(∫

A g(x)dx
)2

∫
A p(x)dx

= ‖g‖2 .

G. Proof of Proposition 3.9

It is known, according to Theorem 5.1 in [44], that Gν(λ) is well defined and continuously differentiable at any

λ ∈ RM and that this function is convex and its gradient ∇Gν(λ) =W?pλν is Lipschitz continuous with constant

Lν = 1
ν ‖W‖

2, where we have also used Lemma 3.8. The operator norm can be simplified to

‖W‖ = sup
λ∈RM, p∈L1(A)

{〈
p,Wλ

〉
: ‖λ‖2 = 1, ‖p‖1 = 1

}

≤ sup
λ∈RM, p∈L1(A)

{‖W?p‖2 ‖λ‖2 : ‖λ‖2 = 1, ‖p‖1 = 1} (53)

≤ sup
p∈L1(A)

{‖W?p‖1 : ‖p‖1 = 1}

= sup
p∈L1(A)

{
M−1∑

i=0

∫

X
WM (i|x)p(x)dx : ‖p‖1 = 1

}

= sup
p∈L1(A)

{∫

X
‖WM (·|x)‖1 p(x)dx : ‖p‖1 = 1

}

≤ sup
x∈A
‖WM (·|x)‖1

≤ 1,

where (53) is due to Cauchy-Schwarz.



28

H. Proof of Lemma 3.13

Let x1, x2 ∈ X , then by definition of fλ(·) we obtain

|fλ(x1)− fλ(x2)|

=

∣∣∣∣∣∣

M∑

i=1

WM (i− 1|x1)λi +

M∑

j=1

WM (j − 1|x1) logWM (j − 1|x1)

−
M∑

i=1

WM (i− 1|x2)λi −
M∑

j=1

WM (j − 1|x2) logWM (j − 1|x2)

∣∣∣∣∣∣

≤
∣∣∣∣∣
M∑

i=1

(WM (i− 1|x1)−WM (i− 1|x2))λi

∣∣∣∣∣+ |H(WM (·|x1))−H(WM (·|x2))| (54a)

≤
M∑

i=1

|(WM (i− 1|x1)−WM (i− 1|x2))λi|+ |H(WM (·|x1))−H(WM (·|x2))| (54b)

≤ LM‖λ‖1|x1 − x2|+ |H(WM (·|x1))−H(WM (·|x2))| (54c)

≤ LM2

(
log

1

γM
∨ 1

ln 2

)
|x1 − x2|+ |H(WM (·|x1))−H(WM (·|x2))| (54d)

≤ LM2

(
log

1

γM
∨ 1

ln 2

)
|x1 − x2|+ML

∣∣∣∣log
1

γM
− 1

ln 2

∣∣∣∣ |x1 − x2|. (54e)

Inequalities (54a) and (54b) use the triangle inequality. Inequality (54c) follows by Assumption 3.2(ii) and (54d)

can be derived by following the proof of Lemma 3.7, which is similar to the one of Lemma 2.4. Finally, (54e)

follows from the fact that the function ∆n 3 xn 7→ H(xn) ∈ R≥0 with min1≤i≤n xi < c is Lipschitz continuous

with constant n
∣∣log 1

c − 1
ln 2

∣∣ and from Assumption 3.2(ii).

I. Proof of Lemma 3.15

We start by the following definitions that simplify the proof below

fλ,ν(x) :=Wλ(x)− r(x) + νµνs(x), f̄λ,ν := max
x∈A

fλ,ν(x)

Bλ,ν(ε) :=
{
x ∈ A | f̄λ,ν − fλ,ν(x) < ε

}
, ηλ,ν(ε) :=

∫

Bλ,ν(ε)

dx.

By the Lipschitz continuity of fλ(·) and s(·) we get the uniform lower bound

ηλ,ν(ε) ≥ ε

Lf + |νµν |Ls
∧ ρ. (55)

By using the solution to Gν(λ), according to (34) we can write

Gν(λ) = −ν log(ρ) + ν log

(∫

A
2

1
ν fλ,ν(x)dx

)
(56a)

≤ inf
`∈R

max
x∈A
{fλ(x) + `s(x)} (56b)

= G(λ), (56c)
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where the equality (56c) follows as (56b) is the dual program to G(λ) and strong duality holds. The inequality

(56b) then is due to Gν(λ) ≤ G(λ) for any λ, see (36). Therefore,

G(λ)−Gν(λ) ≤ f̄λ,ν −Gν(λ) (57a)

= ν

(
− log

(∫

Bλ,ν(ε)

2
1
ν (fλ,ν(x)−f̄λ,ν)dx+

∫

Bc
λ,ν(ε)

2
1
ν (fλ,ν(x)−f̄λ,ν)dx

)
+ log(ρ)

)
(57b)

≤ ν
(
− log

(∫

Bλ,ν(ε)

2
1
ν (fλ,ν(x)−f̄λ,ν)dx

)
+ log(ρ)

)

≤ ν
(
− log

(
ηλ,ν(ε)2−

ε
ν

)
+ log(ρ)

)
(57c)

≤ ν
(
− log

(
ε

Lf+|νµν |Ls ∨ ρ
)

+
ε

ν
+ log(ρ)

)
(57d)

= ν log
(

(Lf+|νµν |Ls)ρ
ε ∨ 1

)
+ ε,

where (57a) follows from (56c) and (57b) is due to (56a). The inequality (57c) results from the definitions of

Bλ,ν(ε) and ηλ,ν(ε) above and (57d) is implied by (55). Finally, it can be seen that for ν < (Lf + |νµν |Ls)ρ, the

optimal choice for ε is ν, which leads to

G(λ)−Gν(λ) ≤ ν
(

1 + log
(

(Lf+|νµν |Ls)ρ
ν ∨ 1

))
. (58)

It remains to upper bound the term |νµν |. Define f := minx,λ fλ(x), f := maxx,λ fλ(x), ∆f := f − f and note

that ∆f ≤ Lfρ. By (56a), (36) and the fact that adding an additional constraint to a maximization problem cannot

increase its objective value

Gν(λ) = ν log

(∫

A
2

1
ν (fλ(x)+νµνs(x))dx

)
− ν log(ρ) ≤ f = ν log

(
2

1
ν f

)
,

which is equivalent to
∫
A 2

1
ν (fλ(x)−f+νµνs(x))dx ≤ ρ and implies

∫

A
2µνs(x)dx ≤ ρ 2

∆f

ν . (59)

From (59) two bounds can be derived. First, (59) implies that
(
ρ ∧ ε

Ls

)
2µν(s−ε) ≤ ρ2

∆f

ν , which by choosing

ε = s
2 leads to 2µν

s
2 ≤

(
2Lsρ
s ∨ 1

)
2

∆f

ν and finally,

νµν ≤ 2
s log

(
2Lsρ
s ∨ 1

)
ν +

2∆f

s . (60)

Similarly one can derive a lower bound

νµν ≥ 2
s log

(
2Lsρ
−s ∨ 1

)
ν +

2∆f

s . (61)

Equation (58) together with (60) and (61) complete the proof.
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J. Proof of Theorem 3.16

Following [15] and using Lemma 3.7, Lemma 3.5, Propostion 3.9 and Lemma 3.15, after n iterations of

Algorithm 1 the following approximation error is obtained

0 ≤ F (λ̂) +G(λ̂)− I(p̂,W ) ≤ ι(ν) +
4D1

ν(n+ 1)2
+

4D1

(n+ 1)2
=: err(ν, n), (62)

where for ν < T1

1−T2
or T2 > 1 we have ι(ν) = ν

(
log
(
T1

ν + T2

)
+ 1
)
, which is strictly increasing in ν. Let us rede-

fine the smoothing term by ν := δ
log(δ−1) for δ ∈ (0, 1) and define the function g(δ) :=

(
log(T1 log(δ−1)+T2δ)+1

log(δ−1) + 1

)
.

One can see that ι(ν) = δg(δ) and that limδ→0 g(δ) = 1. Furthermore δ ≤ 2−1 ∧ 2
− 1
T1+T2 implies

g(δ)− 1 ≤ log
(
2(T1 + T2) log

(
δ−1
))

log (δ−1)
≤ T1 + T2, (63)

where the first inequality is due to δ ≤ 2−1 and the second follows from δ ≤ 2
− 1
T1+T2 . We seek for a lower bound

of n and upper bound δ such that the error term (62) is smaller than the preassigned ε > 0, i.e.,

err( δ
log(δ−1) , n) = g(δ)δ +

4D1

(n+ 1)2

(
log
(
δ−1
)

δ
+ 1

)
≤ ε (64)

To this end, we introduce an auxiliary variable ζ ∈ (0, 1) such that such that g(δ)δ = (1−ζ)ε and 4D1

(n+1)2

(
log(δ−1)

δ + 1

)
≤

ζε, which implies (64). Observe that g(δ)δ = (1 − ζ)ε is equivalent to δ = (1−ζ)
g(δ) ε =: βε. Hence ζ = 1 − βg(δ)

for β ∈ [0, 1
g(δ) ]. Moreover,

4D1

(n+ 1)2

(
log
(
δ−1
)

δ
+ 1

)
=

4D1

(n+ 1)2

(
log
(
(βε)−1

)

βε
+ 1

)
≤ ζε

is equivalent to

4D1

(
log
(
(βε)−1

)
+ βε

β(1− g(δ)β)ε2

)
= 4D1


 log(ε−1) + log 2g(δ) + ε

2g(δ)

ε2

4g(δ)


 ≤ (n+ 1)2, (65)

where we have chosen β = 1
2g(δ) and as such is equivalent to

4

ε

√
D1

(
g(δ) log (ε−1) + g(δ) log (2g(δ)) + ε

2

)
≤ n+ 1

Finally, using (63) implies for ν = ε/α
log(α/ε) , where α := 2(T1 + T2 + 1)

err(ν, n) ≤ ε for n ≥ 1
ε

√
8D1α

√
log(ε−1) + log(α) + 1

4 .

K. Proof of Proposition 3.19

To prove Proposition 3.19, we need two lemmas.

Lemma A.3. For any k ∈ (0, 1] and a, b ≥ 0

ak + bk ≤ 21−k(a+ b)k.
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Proof: Let g(x) := 21−k(1+x)k−xk. By setting d
dxh(x?) = 0, one can easily see that x? = 1 is the minimizer

of function h over the interval [0, 1], i.e., g(x) ≥ g(1) = 1 for all x ∈ [0, 1]. Suppose, without loss of generality,

that a ≥ b. By virtue of the preceding result of function g, we know that

1 ≤ g
(
b

a

)
= 21−k

(
1 +

b

a

)k
−
(
b

a

)k
,

where by multiplying ak it readily leads to the desired assertion.

Lemma A.4. Let (ai)i∈N be a non-negative sequence of real numbers. For any k ∈ (0, 1]

∑

i∈N
aki ≤

(∑

i∈N
αiai

)k
, α := 2(k−1−1).

Proof: For the proof we make use of an induction argument. Note that for any a1 ≥ 0 it trivially holds that

ak1 ≤ 21−kak1 . We now assume that for any sequence (ai)
N
i=1 ⊂ R≥0 we have

N∑

i=1

aki ≤
( N∑

i=1

2(k−1−1)iai

)k
. (66)

Let (ai)
N+1
i=1 ⊂ R≥0. Then,

N+1∑

i=1

aki = ak1 +

N+1∑

i=2

aki ≤ ak1 +
(N+1∑

i=2

2(k−1−1)(i−1)ai

)k
≤ 21−k

(
a1 +

N+1∑

i=2

2(k−1−1)(i−1)ai

)k
(67)

=
(

2(k−1−1)a1 +

N+1∑

i=2

2(k−1−1)iai

)k
=
(N+1∑

i=1

2(k−1−1)iai

)k
,

where the first (resp. second) inequality in (67) follows from (66) (resp. Lemma A.3).

Proof of Proposition 3.19: It is straightforward to see that

max
x∈[0,A]

e−xxi = e−min{A,i}(min{A, i}
)i
. (68)

Moreover, based on a Taylor series expansion, it is well known that for all M ∈ N and x ∈ R≥0

∑

i≥M

xi

i!
≤ ex

M !
xM . (69)

Therefore, it follows that

Rk(M) :=
∑

i≥M

(
sup

x∈[0,A]

e−(x+η) (x+ η)i

i!

)k
≤
∑

i≥M

(
e−(A+η) (A+ η)i

i!

)k
(70a)

≤ e−k(A+η)
( ∑

i≥M

α(i−M+1) (A+ η)i

i!

)k
=

e−k(A+η)

αk(M−1)

( ∑

i≥M

(
α(A+ η)

)i

i!

)k
(70b)

≤ e−k(A+η)

αk(M−1)

(eα(A+η)

M !
αM (A+ η)M

)k
=
(
αe(α−1)(A+η) (A+ η)M

M !

)k
, (70c)

where (70a) results from (68) and the assumption M ≥ A + η, and (70b) (resp. (70c)) follows from Lemma A.4

(resp. (69)).
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APPENDIX B

SIMULATION DETAILS

This section provides some further details on the simulation in Example 3.20. The parameters considered are

k = 1
2 , Lf = 0 and M is chosen according to Table IV. All the simulations in this section are performed on a 2.3

GHz Intel Core i7 processor with 8 GB RAM with Matlab.

TABLE IV

SIMULATION DETAILS TO EXAMPLE 3.20

A [dB] 0 1 2 3 4 5 6 7

M 16 17 19 20 22 25 28 31

Iterations n 4·104 4·104 4·104 5·104 6·104 7·104 9·104 1.2·105

ν 0.0026 0.0029 0.0036 0.0029 0.0027 0.0029 0.0026 0.0022

F (λ̂) +G(λ̂) 0.1144 0.1626 0.2263 0.3063 0.4029 0.5129 0.6293 0.7423

I(p̂,W ) 0.1105 0.1583 0.2206 0.3015 0.3979 0.5072 0.6234 0.7365

E 9.3·10−4 9.7·10−4 4.8·10−4 8.5·10−4 8.2·10−4 4.9 ·10−4 5.0·10−4 9.5·10−4

A [dB] 8 9 10 11 12 13 14

M 36 42 49 59 71 85 104

Iterations n 2·105 5·105 2·106 3·106 4·106 9·106 1.5·107

ν 0.0016 7.1 ·10−5 8.0·10−4 8.3·10−4 9.7·10−4 6.2·10−4 5.8·10−4

F (λ̂) +G(λ̂) 0.8410 0.9422 1.0591 1.1835 1.3070 1.4343 1.5671

I(p̂,W ) 0.8351 0.9388 1.0547 1.1788 1.3013 1.4219 1.5605

E 7.5·10−4 7.1·10−4 8.0·10−4 6.2·10−4 5.2 ·10−4 9.0·10−4 6.7·10−4
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