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ABSTRACT. In this paper we propose a compositional framework for the construction of approximations of the interconnection
of a class of stochastic hybrid systems. As special cases, this class of systems includes both jump linear stochastic systems and
linear stochastic hybrid automata. In the proposed framework, an approximation is itself a stochastic hybrid system, which
can be used as a replacement of the original stochastic hybrid system in a controller design process. We employ a notion
of so-called stochastic simulation function to quantify the error between the approximation and the original system. In the
first part of the paper, we derive sufficient conditions which facilitate the compositional quantification of the error between
the interconnection of stochastic hybrid subsystems and that of their approximations using the quantified error between the
stochastic hybrid subsystems and their corresponding approximations. In particular, we show how to construct stochastic
simulation functions for approximations of interconnected stochastic hybrid systems using the stochastic simulation function
for the approximation of each component. In the second part of the paper, we focus on a specific class of stochastic hybrid
systems, namely, jump linear stochastic systems, and propose a constructive scheme to determine approximations together with
their stochastic simulation functions for this class of systems. Finally, we illustrate the effectiveness of the proposed results by
constructing an approximation of the interconnection of four jump linear stochastic subsystems in a compositional way.

1. INTRODUCTION

Stochastic hybrid systems are a general class of dynamical systems consisting of continuous and discrete dynamics
subject to probabilistic noise and events. In the past few years, this class of systems has become ubiquitous in many
different fields due to the need for a rigorous modeling framework for many safety-critical applications. Examples of
those applications include air traffic control [GL04], biochemistry [SH10], communication networks [Hes04], and sys-
tems biology [HWS04]. The design of controllers to enforce certain given complex specifications, e.g. those expressed
via formulae in linear temporal logic (LTL) [BK08], in a reliable and cost effective way is a grand challenge in the study
of many of those safety-critical applications. One promising direction to achieve those objectives is the use of simpler
(in)finite approximations of the given systems as a replacement in the controller design process. Those approximations
allow us to design controllers for them and then refine the controllers to the ones for the concrete complex systems,
while provide us with the quantified errors in this detour controller synthesis scheme.

In the past few years there have been several results on the (in)finite approximations of continuous-time stochastic
(hybrid) systems. Existing results include the construction of finite approximations for stochastic dynamical systems
under contractivity assumptions [Aba09], restricted to models with no control inputs, a finite Markov decision process
approximation of a linear stochastic control system [LAB09], however without a quantitative relationship between
approximation and concrete model, and the construction of finite bisimilar abstractions for stochastic control systems
[ZMM+14, ZTA14], for stochastic switched systems [ZAG15], and for randomly switched stochastic systems [ZA14].
Further, the results in [JP09] check the relationship between infinite approximations and a given class of stochastic
hybrid systems via a notion of stochastic (bi)simulation functions. However, the results in [JP09] do not provide any
approximations and moreover appear to be computationally intractable in the case of systems with inputs because one
requires to solve a game in order to quantify the appoximation error. Note that all the proposed results in [Aba09, LAB09,
ZMM+14, ZTA14, ZAG15, ZA14, JP09] take a monolithic view of continuous-time stochastic (hybrid) systems, where
the entire system is approximated. This monolithic view interacts badly with the construction of approximations, whose
complexity grows (possibly exponentially) in the number of continuous state variables in the model.

In this paper, we provide a compositional framework for the construction of infinite approximations of the interconnec-
tion of a class of stochastic hybrid systems, in which the continuous dynamics are modeled by stochastic differential
equations and the switches are modeled as Poisson processes. As special cases, this class of systems includes both jump
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linear stochastic systems (JLSS) and linear stochastic hybrid automata [JP09]. Our approximation framework is based
on a new notion of stochastic simulation functions. In this framework, an approximation, which is itself a stochastic
hybrid system (potentially with lower dimension and less interconnections), acts as a substitute in the controller design
process. The stochastic simulation function is used to quantify the error in this detour controller synthesis scheme.
Although an approximation in our framework might not be directly amenable to algorithmic synthesis methods based
on automata-theoretic concepts [MPS95] which require finite approximations, our approach facilitates the construction
of potentially lower-dimensional less-interconnected stochastic hybrid systems as approximations and, hence, can be
interpreted as the first pre-processing step in the construction of a finite approximation.

In the first part of the paper, we derive sufficient small-gain type conditions, similar to the ones in [DIW11], under which
one can quantify the error between the interconnection of stochastic hybrid subsystems and that of their approximations
in a compositional way by using the errors between stochastic hybrid subsystems and their approximations. In the
second part of the paper, we focus on JLSS and propose a computational scheme to construct infinite approximations of
this class of systems, together with the corresponding stochastic simulation functions. To show the effectiveness of the
proposed results, we construct an approximation (two disjoint 3 dimensional JLSS) of the interconnection of four JLSS
(overall 10 dimensions) in a compositional way and then use the approximation in order to design a safety controller for
the original interconnected system.

The recent work in [RZ15] provides a compositional scheme for the construction of infinite approximations of inter-
connected deterministic control systems without any hybrid dynamic. The results in this paper are complementary to
the ones in [RZ15] as we extend our focus to the class of stochastic hybrid systems. A preliminary investigation of
our results on the compositional construction of infinite approximations of interconnected stochastic hybrid systems
appeared in [Zam14]. In this paper we present a detailed and mature description of the results announced in [Zam14],
including proposing a new notion of stochastic simulation functions which is computationally more tractable in the case
of systems with inputs and providing constructive means to compute approximations of JLSS.

2. STOCHASTIC HYBRID SYSTEMS

2.1. Notation. We denote by N the set of nonnegative integer numbers and by R the set of real numbers. We annotate
those symbols with subscripts to restrict them in the obvious way, e.g. R>0 denotes the positive real numbers. The
symbols In, 0n, and 0n×m denote the identity matrix, zero vector, and zero matrix in Rn×n, Rn, and Rn×m, respectively.
For a, b ∈ R with a ≤ b, we denote the closed, open, and half-open intervals in R by [a, b], ]a, b[, [a, b[, and ]a, b],
respectively. For a, b ∈ N and a ≤ b, we use [a; b], ]a; b[, [a; b[, and ]a; b] to denote the corresponding intervals in N.
Given N ∈ N≥1, vectors xi ∈ Rni , ni ∈ N≥1 and i ∈ [1;N ], we use x = [x1; . . . ;xN ] to denote the vector in Rn

with n =
∑N
i=1 ni. Similarly, we use X = [X1; . . . ;XN ] to denote the matrix in Rn×m with n =

∑N
i=1 ni, given

N ∈ N≥1, matrices Xi ∈ Rni×m, ni ∈ N≥1, and i ∈ [1;N ]. Given a vector x ∈ Rn, we denote by ‖x‖ the Euclidean
norm of x. The distance of a point x ∈ Rn to a set D ⊆ Rn is defined as ‖x‖D = infd∈D ‖x − d‖. Given a matrix
P = {pij} ∈ Rn×n, we denote by Tr(P ) =

∑n
i=1 pii the trace of P .

Given a function f : Rn → Rm and x̄ ∈ Rm, we use f ≡ x̄ to denote that f(x) = x̄ for all x ∈ Rn. If x is the
zero vector, we simply write f ≡ 0. Given a function f : R≥0 → Rn, the (essential) supremum of f is denoted by
‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0}. Measurability throughout this paper refers to Borel measurability. A continuous
function γ : R≥0 → R≥0, is said to belong to class K if it is strictly increasing and γ(0) = 0; γ is said to belong to class
K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous function β : R≥0 × R≥0 → R≥0 is said to belong to class KL
if, for each fixed t, the map β(r, t) belongs to class K with respect to r and, for each fixed nonzero r, the map β(r, t) is
decreasing with respect to t and β(r, t)→ 0 as t→∞.

2.2. Stochastic hybrid systems. Let (Ω,F ,P) be a probability space endowed with a filtrationF = (Fs)s≥0 satisfying
the usual conditions of completeness and right continuity [KS91, p. 48]. Let (Ws)s≥0 be a p̃-dimensional F-Brownian
motion and (Ps)s≥0 be a q̃-dimensional F-Poisson process. We assume that the Poisson process and the Brownian mo-
tion are independent of each other. The Poisson process Ps :=

[
P 1
s ; . . . ;P q̃s

]
model q̃ kinds of events whose occurrences

are assumed to be independent of each other.
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Definition 2.1. The class of stochastic hybrid systems with which we deal in this paper is the tuple
Σ = (Rn,Rm,Rp,U ,W, f, σ, r,Rq, h), where

• Rn is the state space;
• Rm is the external input space;
• Rp is the internal input space;
• U is a subset of the set of all F-progressively measurable processes with values in Rm; see [KS91, Def. 1.11];
• W is a subset of the set of all F-progressively measurable processes with values in Rp;
• f : Rn × Rm × Rp → Rn is the drift term which is globally Lipschitz continuous: there exist constants
Lx, Lu, Lw ∈ R≥0 such that: ‖f(x, u, w) − f(x′, u′, w′)‖ ≤ Lx‖x − x′‖ + Lu‖u − u′‖ + Lw‖w − w′‖ for
all x, x′ ∈ Rn, all u, u′ ∈ Rm, and all w,w′ ∈ Rp;

• σ : Rn → Rn×p̃ is the diffusion term which is globally Lipschitz continuous;
• r : Rn → Rn×q̃ is the reset function which is globally Lipschitz continuous;
• Rq is the output space;
• h : Rn → Rq is the output map.

A stochastic hybrid system Σ satisfies

Σ :

{
d ξ(t) = f(ξ(t), ν(t), ω(t)) d t+ σ(ξ(t)) dWt + r(ξ(t)) dPt,
ζ(t) = h(ξ(t)),

(2.1)

P-almost surely (P-a.s.) for any ν ∈ U and any ω ∈ W , where stochastic process ξ : Ω× R≥0 → Rn is called a
solution process of Σ and stochastic process ζ : Ω× R≥0 → Rq is called an output trajectory of Σ. We call the tuple
(ξ, ζ, ν, ω) a trajectory of Σ, consisting of a solution process ξ, an output trajectory ζ, and input trajectories ν and ω, that
satisfies (2.1) P-a.s.. We also write ξaνω(t) to denote the value of the solution process at time t ∈ R≥0 under the input
trajectories ν and ω from initial condition ξaνω(0) = a P-a.s., in which a is a random variable that is F0-measurable.
We denote by ζaνω the output trajectory corresponding to the solution process ξaνω. Here, we assume that the Poisson
processes P is , for any i ∈ [1; q̃], have the rates of λi. We emphasize that the postulated assumptions on f , σ, and r
ensure existence, uniqueness, and strong Markov property of the solution processes [Bor89].

Remark 2.2. We refer the interested readers to Section IV in [JP09] showing how one can cast linear stochastic hybrid
automata (LSHA) as jump linear stochastic systems (JLSS) (c.f. Section 5) which are a specific class of the ones
introduced in Definition 2.1.

3. STOCHASTIC SIMULATION FUNCTION

Here, we introduce a notion of stochastic simulation functions, inspired by the notion of simulation function in [RZ15],
for non-probabilistic control systems distinguishing the role of internal and external inputs.

Definition 3.1. Let Σ = (Rn,Rm,Rp,U ,W, f, σ, r,Rq, h) and Σ̂ = (Rn̂,Rm̂,Rp, Û ,W, f̂ , σ̂, r̂,Rq, ĥ) be two sto-
chastic hybrid systems with the same internal input and output space dimension. A twice continuously differentiable
function V : Rn × Rn̂ → R≥0 is called a stochastic simulation function from Σ̂ to Σ in the kth moment (SSF-Mk),
where k ≥ 1, if it has polynomial growth rate and for every x ∈ Rn, x̂ ∈ Rn̂, û ∈ Rm̂, ŵ ∈ Rq , there exists u ∈ Rm
such that for all w ∈ Rq the inequalities

α(‖h(x)− ĥ(x̂)‖k) ≤ V (x, x̂), (3.1)

and

LV (x, x̂) := [∂xV ∂x̂V ]

[
f(x, u, w)

f̂ (x̂, û, ŵ)

]
+

1

2
Tr
([

σ(x)
σ̂ (x̂)

] [
σT (x) σ̂T (x̂)

] [∂x,xV ∂x,x̂V
∂x̂,xV ∂x̂,x̂V

])

+

q̃∑
i=1

λi (V (x+ r(x)ei, x̂+ r̂(x̂)ei)− V (x, x̂))

≤ −η(V (x, x̂)) + ρext(‖û‖) + ρint(‖w − ŵ‖), (3.2)
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hold for some K∞ functions α, η, ρext, ρint, where ei ∈ Rq̃ denotes the vector with 1 in the ith coordinate and 0’s
elsewhere, α, η are convex functions, and ρext, ρint are concave ones.

In the above definition, L is the infinitesimal generator of the process Ξ = [ξ; ξ̂] [ØS05, Section 1.3] and the symbols
∂x and ∂x,x̂ denote the first and the second order partial derivatives with respect to x and x and x̂, respectively.

We say that a stochastic hybrid system Σ̂ is approximately alternatingly simulated in the kth moment by a stochastic
hybrid system Σ or Σ approximately alternatingly simulates in the kth moment Σ̂, denoted by Σ̂ �kAS Σ, if there exists
a SSF-Mk function V from Σ̂ to Σ. We call Σ̂ an abstraction of Σ.

Remark 3.2. Note that the notion of SSF-Mk here is different from the notion of stochastic simulation function in
[JP09, Definition 2] requiring the existences of a supermartingale function [Oks02, Appendix C] whose construction
is computationally intractable in the case of (even linear) systems with inputs because one requires to solve a game to
compute this function.

The following theorem shows the importance of the existence of a SSF-Mk function by quantifying the error between
the behaviors of Σ and the ones of its abstraction Σ̂.

Theorem 3.3. Let Σ = (Rn,Rm,Rp,U ,W, f, σ, r,Rq, h) and Σ̂ = (Rn̂,Rm̂,Rp, Û ,W, f̂ , σ̂, r̂,Rq, ĥ). Suppose V
is an SSF-Mk function from Σ̂ to Σ. Then, there exist a KL function β and K∞ functions γext, γint such that for any
ν̂ ∈ Û , any ω̂ ∈ W , and any random variable a and â that are F0-measurable1, there exists ν ∈ U such that for all
ω ∈ W the following inequality holds:

E[‖ζaνω(t)−ζ̂âν̂ω̂(t)‖k] ≤ β (E[V (a, â)], t) + γext(E[‖ν̂‖∞]) + γint(E[‖ω − ω̂‖∞]). (3.3)

The proof of Theorem 3.3 requires the following preparatory lemma and is provided in the Appendix.

Lemma 3.4. Let g be a non-negative constant and η be a K∞ function. Suppose that the function y : R≥0 → R≥0 is
continuous and we have y(t) ≤ y(t0) +

∫ t
t0

[−η
(
y(τ)

)
+ g] d τ for all t ≥ t0 ≥ 0. Then, there exists a KL function ϑ

such that

y(t) ≤ max
{
ϑ
(
y(0), t

)
, η−1

(
2g
)}
, ∀t ≥ 0.

The proof of Lemma 3.4 is provided in the Appendix.

Note that the importance of the result provided in Theorem 3.3 is that one can synthesize a controller for the abstraction
Σ̂, which is potentially easier (e.g., lower dimension and less interconnections) to enforce some complex specification,
for example given in LTL. Then there exists a controller for the concrete stochastic hybrid system Σ satisfying the
same complex specification. The error, introduced in the design process by taking the detour through the abstraction, is
quantified by inequality (3.3). In Section 5, we show how one can actually refine a controller designed for the abstract
JLSS to a controller for the original JLSS via a so-called interface function.

The notion of stochastic simulation function in this work can also be used to lower bound the probability that the
Euclidean distance between any output trajectory of the abstract model and the corresponding one of the concrete model
remains close.

We make the above statement more precise with the following result.

Proposition 3.5. Let Σ and Σ̂ be two stochastic hybrid systems with the same internal input and output space dimension.
Suppose V is an SSF-Mk function from Σ̂ to Σ and the K∞ function η in (3.2) satisfies η(r) ≥ θr for some θ ∈ R>0

and any r ∈ R≥0. For any ν̂ ∈ Û , any ω̂ ∈ W , and any random variable a and â that are F0-measurable, there exists
ν ∈ U such that for all ω ∈ W the following inequalities (3.4) and (3.5) hold provided that there exists a constant ε ≥ 0

1Note that F0 may be the trivial sigma-algebra, i.e., a and â are non-probabilistic initial conditions.
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satisfying ε ≥ ρext(‖ν̂‖∞) + ρint(‖ω − ω̂‖∞):

P

{
sup

0≤t≤T
‖ζaνω(t)− ζ̂âν̂ω̂(t)‖ ≥ ε | [a; â]

}
≤ 1−

(
1− V (a, â)

α (εk)

)
e
− εT

α(εk) , if α
(
εk
)
≥ ε

θ
, (3.4)

P

{
sup

0≤t≤T
‖ζaνω(t)− ζ̂âν̂ω̂(t)‖ ≥ ε | [a; â]

}
≤ θV (a, â) +

(
eTθ − 1

)
ε

θα (εk) eTθ
, if α

(
εk
)
≤ ε

θ
. (3.5)

The proof of Proposition 3.5 is provided in the Appendix.

As an alternative to the previous result, we now use the notion of stochastic simulation function to lower bound the
probability of the Euclidean distance between any output trajectory of the abstract model and the corresponding one
of the concrete model point-wise in time: this error bound is sufficient to work with those specifications for which
satisfiability can be achieved at single time instances, such as next (©) and eventually (3) in LTL. Please look at the
explanation after the proof of Proposition 5.11 in [ZMM+14] for more details.

Proposition 3.6. Let Σ and Σ̂ be two stochastic hybrid systems with the same internal input and output space dimension.
Suppose V is an SSF-Mk function from Σ̂ to Σ. For any ν̂ ∈ Û , any ω̂ ∈ W , and any random variable a and â that are
F0-measurable, there exists ν ∈ U such that for all ω ∈ W the following inequality holds for all t ∈ R≥0:

P
{
‖ζaνω(t)− ζ̂âν̂ω̂(t)‖ ≥ ε

}
≤ (β (E[V (a, â)], t) + γext(E[‖ν̂‖∞]) + γint(E[‖ω − ω̂‖∞]))

1
k

ε
, (3.6)

where β, γext, and γint are the functions appearing in (3.3).

The proof of Proposition 3.6 is provided in the Appendix.

In the next section, we work with interconnected stochastic hybrid systems without internal inputs, resulting from the
interconnection of stochastic hybrid subsystems having both internal and external signals. In this case, the interconnected
stochastic hybrid systems reduce to the tuple Σ = (Rn,Rm,U , f, σ, r,Rq, h) and the drift term becomes f : Rn×Rm →
Rn. In this view, inequality (3.2) is not quantified overw, ŵ ∈ Rq , and, hence, the term ρint(‖w−ŵ‖) is omitted as well.
Similarly, the results in Theorem 3.3 and Propositions 3.5 and 3.6 are modified accordingly, i.e., for systems without
internal inputs the inequalities (3.3), (3.4), (3.5), and (3.6) are not quantified over ω, ω̂ ∈ W and, hence, the term
γint(E[‖ω − ω̂‖∞]) is omitted in inequalities (3.3) and (3.6) and ε is lower bounded as ε ≥ ρext(‖ν̂‖∞) in Proposition
3.5 as well.

The next corollary provides a similar result as the one of Proposition 3.5 but by considering an infinite time horizon and
interconnected stochastic hybrid systems and assuming ν̂ ≡ 0, resulting in ε = 0. The relation proposed in this corollary
recovers the one proposed in [JP09, Theorem 3].

Corollary 3.7. Let Σ and Σ̂ be two interconnected stochastic hybrid systems with the same output space dimension.
Suppose V is an SSF-Mk function from Σ̂ to Σ. For ν̂ ≡ 0 and any random variable a and â that are F0-measurable,
there exists ν ∈ U such that the following inequality holds:

P

{
sup

0≤t<∞
‖ζaν(t)− ζ̂â0(t)‖ > ε | [a; â]

}
≤ V (a, â)

α (εk)
.

The proof of Corollary 3.7 is provided in the Appendix.

4. COMPOSITIONALITY RESULT

In this section, we analyze interconnected stochastic hybrid systems and show how to construct an abstraction of an
interconnected stochastic hybrid system together with the corresponding stochastic simulation function. The definition
of the interconnected stochastic hybrid system is based on the notion of interconnected systems introduced in [TI08].
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4.1. Interconnected stochastic hybrid systems. We consider N ∈ N≥1 stochastic hybrid subsystems

Σi = (Rni ,Rmi ,Rpi ,Ui,Wi, fi, σi, ri,Rqi , hi) , i ∈ [1;N ]

with partitioned internal inputs and outputs

wi =
[
wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN

]
, wij ∈ Rpij

yi = [yi1; . . . ; yiN ], yij ∈ Rqij (4.1)

and output function

hi(xi) = [hi1(xi); . . . ;hiN (xi)], (4.2)

as depicted schematically in Figure 1.

⌃i
yi2

yiN

yi1ui

wi1

wiN

FIGURE 1. Input/output configuration of stochastic hybrid subsystem Σi.

We interpret the outputs yii as external ones, whereas the outputs yij with i 6= j are internal ones which are used to
define the interconnected stochastic hybrid systems. In particular, we assume that the dimension of wij is equal to the
dimension of yji, i.e., the following interconnection constraints hold:

pij = qji, ∀i, j ∈ [1;N ], i 6= j. (4.3)

If there is no connection from stochastic hybrid subsystem Σi to Σj , then we assume that the connecting output function
is identically zero for all arguments, i.e., hij ≡ 0. We define the interconnected stochastic hybrid system as the following.

Definition 4.1. Consider N ∈ N≥1 stochastic hybrid subsystems Σi = (Rni ,Rmi ,Rpi ,Ui,Wi, fi, σi, ri,Rqi , hi),
i ∈ [1;N ], with the input-output configuration given by (4.1)-(4.3). The interconnected stochastic hybrid system Σ =

(Rn,Rm,U , f, σ, r,Rq, h), denoted by I(Σ1, . . . ,ΣN ), follows by n =
∑N
i=1 ni, m =

∑N
i=1mi, q =

∑N
i=1 qii, and

functions

f(x, u) := [f1(x1, u1, w1); . . . ; fN (xN , uN , wN )],

σ(x) := [σ1(x1); . . . ;σN (xn)],

r(x) := [r1(x1); . . . ; rN (xn)],

h(x) := [h11(x1); . . . ;hNN (xN )],

where u = [u1; . . . ;uN ] and x = [x1; . . . ;xN ] and with the interconnection variables constrained by wij = yji for all
i, j ∈ [1;N ], i 6= j.

The interconnection of two stochastic hybrid subsystems Σi and Σj from a group of N subsystems is illustrated in
Figure 4.1.

4.2. Compositional construction of abstractions and simulation functions. We assume that we are givenN stochas-
tic hybrid subsystems Σi = (Rni ,Rmi ,Rpi ,Ui,Wi, fi, σi, ri,Rqi , hi) , together with their corresponding abstractions
Σ̂i = (Rn̂i ,Rm̂i ,Rpi , Ûi,Wi, f̂i, σ̂i, r̂i,Rqi , ĥi) and with an SSF-Mk functions Vi from Σ̂i to Σi. In order to provide
the main compositionality result, we require the following assumption:
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ui

uj

yii

yi1

⌃i

⌃j

yij

yiN

yj1

yjj

yji

yjN

wi1

wij
wiN

wj1
wji

wjN

FIGURE 2. Interconnection of two stochastic hybrid subsystems Σi and Σj .

Assumption 1. For any i, j ∈ [1;N ], i 6= j, there existK∞ convex functions γi and constants λ̃i ∈ R>0 and δij ∈ R≥0
such that for any s ∈ R≥0

ηi(s) ≥ λ̃iγi(s) (4.4a)
hji ≡ 0 =⇒ δij = 0 and (4.4b)

hji 6≡ 0 =⇒ ρiint((N − 1)(α−1j )
1
k (s)) ≤ δijγj(s), (4.4c)

where ηi, αi, and ρiint represent the corresponding K∞ functions of subsystems Σi appearing in Definition 3.1.

For notational simplicity in the rest of the paper, we define matrices Λ and ∆ in RN×N with their components given
by Λii = λ̃i, ∆ii = 0 for i ∈ [1;N ] and Λij = 0, ∆ij = δij for i, j ∈ [1;N ], i 6= j. Moreover, we define
Γ(
→
s ) := [γ1(s1); . . . ; γN (sN )], where

→
s = [s1; . . . ; sN ].

The next theorem provides a compositional approach on the construction of abstractions of interconnected stochastic
hybrid systems and that of the corresponding SSF-Mk functions.

Theorem 4.2. Consider the interconnected stochastic hybrid system Σ = I(Σ1, . . . ,ΣN ) induced by N ∈ N≥1 sto-
chastic hybrid subsystems Σi. Suppose that each stochastic hybrid subsystem Σi approximately alternatingly simulates
a stochastic hybrid subsystem Σ̂i with the corresponding SSF-Mk function Vi. If Assumption 1 holds and there exists a
vector µ ∈ RN>0 such that the inequality

µT (−Λ + ∆) < 0 (4.5)

is satisfied2, then

V (x, x̂) :=

N∑
i=1

µiVi(xi, x̂i)

is an SSF-Mk function from Σ̂ = I(Σ̂1, . . . , Σ̂N ) to Σ.

Proof. Let us first show that inequality (3.1) holds for some convex K∞ function α. For any x = [x1; . . . ;xN ] ∈ Rn
and x̂ = [x̂1; . . . ; x̂N ] ∈ Rn̂, one gets:

‖ĥ(x̂)− h(x)‖ ≤
N∑
i=1

‖ĥii(x̂i)− hii(xi)‖ ≤
N∑
i=1

‖ĥi(x̂i)− hi(xi)‖ ≤
N∑
i=1

(α−1i )1/k(Vi(xi, x̂i))

≤
N∑
i=1

(α−1i )1/k
(
µiVi(xi, x̂i)

µ̂

)
≤

N∑
i=1

α1/k

(
µiVi(xi, x̂i)

µ̂

)
≤ Nα1/k

(
N∑
i=1

µiVi(xi, x̂i)

µ̂

)
2We interpret the inequality component-wise, i.e., for x ∈ RN we have x < 0 iff every entry xi < 0, i ∈ {1, · · · , N}.
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LV (x, x̂) =

N∑
i=1

µiLVi (xi, x̂i) ≤
N∑
i=1

µi (−ηi(Vi(xi, x̂i)) + ρiint (‖wi − ŵi‖) + ρiext(‖ûi‖))

≤
N∑
i=1

µi

−ηi(Vi(xi, x̂i)) +

N∑
j=1,j 6=i

ρiint ((N − 1) ‖wij − ŵij‖) + ρiext(‖ûi‖)


≤

N∑
i=1

µi

−ηi(Vi(xi, x̂i)) +

N∑
j=1,j 6=i

ρiint ((N − 1) ‖yji − ŷji‖) + ρiext(‖ûi‖)


≤

N∑
i=1

µi

−ηi(Vi(xi, x̂i)) +

N∑
j=1,j 6=i

ρiint

(
(N − 1)

∥∥∥hj(xj)− ĥj(x̂j)∥∥∥)+ ρiext(‖ûi‖)


≤

N∑
i=1

µi

−ηi(Vi(xi, x̂i)) +

N∑
j=1,j 6=i

ρiint

(
(N − 1)(α−1j )

1
k (Vj(xj , x̂j))

)
+ ρiext(‖ûi‖)


≤

N∑
i=1

µi

−λ̃iγi(Vi(xi, x̂i)) +

N∑
i 6=j,j=1

δijγj (Vj (xj , x̂j)) + ρiext (‖ûi‖)


= µ> (−Λ + ∆) Γ ([V1 (x1, x̂1) ; . . . ;VN (xN , x̂N )]) +

N∑
i=1

µiρiext (‖ûi‖) . (4.6)

where µ̂ = min {µ1, . . . , µN} and α is a concave K∞ function such that α−1i (s) ≤ α(s) for any i ∈ [1;N ] and any
s ∈ R≥0. Note that the existence of a concave function α ∈ K∞ is guaranteed because α−1i ∈ K∞ are concave3

functions as well. As an example, one can choose α(s) =
∑N
i=1 α

−1
i (s), ∀s ∈ R≥0. By defining the convex4 K∞

function α(s) = µ̂α−1(s/Nk), ∀s ∈ R≥0, one obtains

α(‖ĥ(x̂)− h(x)‖k) ≤
N∑
i=1

µiVi(xi, x̂i) = V (x, x̂),

satisfying inequality (3.1). Now we show that inequality (3.2) holds as well. Consider any x = [x1; . . . ;xN ] ∈ Rn,
x̂ = [x̂1; . . . ; x̂N ] ∈ Rn̂, and û = [û1; . . . ; ûN ] ∈ Rm̂. For any i ∈ [1;N ], there exists ui ∈ Rmi , consequently, a
vector u = [u1; . . . ;uN ] ∈ Rm, satisfying (3.2) for each pair of subsystems Σi and Σ̂i with the internal inputs given by
wij = hji(xj) and ŵij = ĥji(x̂j). We derive the chain of inequalities in (4.6), where we use the inequality:

ρiint(r1 + · · ·+ rN−1) ≤
N−1∑
i=1

ρiint(ri + · · ·+ ri),

which is valid for any ρiint ∈ K∞ and any ri ∈ R≥0, i ∈ [1;N [. Note that if ρiint satisfies the triangle inequality, one
gets the less conservative inequality

ρiint(r1 + · · ·+ rN−1) ≤
N−1∑
i=1

ρiint(ri),

and it suffices that (4.8) holds instead of (4.4c). Define the functions

3Note that the inverse of a strictly increasing convex function is a strictly increasing concave one.
4Note that convexity is closed under composition with an affine mapping.
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ŷi1ûi
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FIGURE 3. Compositionality results.

η(s) :=

 min
→
s≥0

−µT (−Λ + ∆) Γ(
→
s )

s.t. µT
→
s = s,

(4.7a)

ρext(s) :=

 max
→
s≥0

∑N
i=1 µiρiext(si)

s.t. ‖→s ‖ ≤ s.
(4.7b)

By construction, we readily have

V̇ (x, x̂) ≤ −η (V (x, x̂)) + ρext (‖û‖) ,

where the functions η and ρext are K∞ functions. It remains to show that η is a convex function and ρext is a concave
one. Let us recall that by assumptions µT (−Λ + ∆) < 0 and γi, the i-th element of Γ, is convex. Thus, from an
optimization point of view, the function η in (4.7a) is a perturbation function which is known to be a convex function;
see [BV09, Section 5.6.1, p. 249] for further details. Note that by assumption each function ρiext is concave, and for the
same reason as above, the function (4.7b) is also concave. Hence, we conclude that V is an SSF-Mk function from Σ̂ to
Σ. �

Remark 4.3. As shown in [DIW11, Lemma 3.1], a vector µ ∈ RN>0 satisfying µT (−Λ + ∆) < 0 exists if and only if the
spectral radius of Λ−1∆ is strictly less than one.

Remark 4.4. If the functions ρiint, i ∈ [1;N ], satisfy the triangle inequality, ρiint(a + b) ≤ ρiint(a) + ρiint(b) for all
non-negative values of a and b, then the condition (4.4c) reduces to

hji 6≡ 0 =⇒ ρiint((α
−1
j )

1
k (s)) ≤ δijγj(s). (4.8)

Figure 4.2 illustrates schematically the result of Theorem 4.2.

5. JUMP LINEAR STOCHASTIC SYSTEMS

In this section, we focus on a specific class of stochastic hybrid systems, namely, jump linear stochastic systems (JLSS)
[JP09] and quadratic SSF-M2 functions V . In the first part, we assume that we are given an abstraction Σ̂ and provide
conditions under which V is an SSF-M2 function. In the second part we show how to construct the abstraction Σ̂
together with the SSF-M2 function V .
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A JLSS is defined as a stochastic hybrid system with the drift, diffusion, reset, and output functions given by

d ξ(t) =(Aξ(t) +Bν(t) +Dω(t)) d t+ Eξ(t) dWt +

q̃∑
i=1

Riξ(t) dP it ,

ζ(t) =Cξ(t), (5.1)

where

A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×p, E ∈ Rn×n, Ri ∈ Rn×n, ∀i ∈ [1; q̃], C ∈ Rq×n.

The matrices Ri, ∀i ∈ [1; q̃], parametrize the jump associated with event i. We use the tuple

Σ = (A,B,C,D,E,R),

where R = {R1, . . . , Rq̃}, to refer to a JLSS of the form (5.1). Note that in this section we consider JLSS driven by a
scalar Brownian motion for the sake of simple presentation, though the proposed results can be readily generalized for
the systems driven by multi-dimensional Brownian motions as well.

5.1. Quadratic SSF-M2 functions. In this section, we assume that for some constant κ̂ ∈ R>0 there exist a postitive
definite matrix M ∈ Rn×n and matrix K ∈ Rm×n such that the matrix inequalities

CTC �M, (5.2)(
A+BK +

q̃∑
i=1

λiRi

)T
M +M

(
A+BK +

q̃∑
i=1

λiRi

)
+M + ETME +

q̃∑
i=1

λiR
T
i MRi � −κ̂M, (5.3)

hold.

The matrices K and M can be computed jointly using semidefinite programming as explained in the following lemma.

Lemma 5.1. Denoting K = KM−1 and M = M−1, matrix inequalities (5.2) and (5.3) are equivalent to the following
linear matrix inequalities: [

M MCT

CM Iq

]
� 0 (5.4)

M 0 · · · 0 EM

0 M
. . .

... λ
1
2

q̃ Rq̃M
...

. . .
. . . 0

...

0 · · · 0 M λ
1
2
1 R1M

MET λ
1
2

q̃MRTq̃ · · · λ
1
2
1MRT1 Q


� 0, (5.5)

where 0’s denote zero matrices of appropriate dimensions and

Q := −κ̂M −M
(
A+

q̃∑
i=1

λiRi

)T
−
(
A+

q̃∑
i=1

λiRi

)
M −KT

BT −BK −M.

The proof is a simple consequence of using Schur complements [BV09] and is omitted here for the sake of brevity.

Here, we consider a quadratic SSF-M2 function of the following form

V (x, x̂) = (x− Px̂)TM(x− Px̂), (5.6)
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where P is a matrix of appropriate dimension. Assume that the equalities

AP = PÂ−BQ (5.7a)
D = PD̂ −BS (5.7b)

CP = Ĉ (5.7c)
EP = PÊ (5.7d)
RiP = PR̂i, ∀i ∈ [1; q̃], (5.7e)

hold for some matrices Q and S of appropriate dimensions. In the following theorem, we show that those conditions
imply that (5.6) is an SSF-M2 function from Σ̂ to Σ.

Theorem 5.2. Consider two JLSS Σ = (A,B,C,D,E,R) and Σ̂ = (Â, B̂, Ĉ, D̂, Ê, R̂) with p = p̂ and q = q̂. Suppose
that there exist matrices M , K, P , Q, and S satisfying (5.2), (5.3), and (5.7), for some constant κ̂ ∈ R>0. Then, V
defined in (5.6) is an SSF-M2 function from Σ̂ to Σ.

Proof. Note that V is twice continuously differentiable. We show that for every x ∈ Rn, x̂ ∈ Rn̂, û ∈ Rm̂, ŵ ∈ Rq ,
there exists u ∈ Rm such that for all w ∈ Rq , V satisfies ‖Cx− Ĉx̂‖2 ≤ V (x, x̂) and

LV (x, x̂) :=
∂V (x, x̂)

∂x
(Ax+Bu+Dw) +

∂V (x, x̂)

∂x̂
(Âx̂+ B̂û+ D̂ŵ)

+
1

2
Tr
([
Ex

Êx̂

] [
xTET x̂T ÊT

] [∂x,xV ∂x,x̂V
∂x̂,xV ∂x̂,x̂V

])
+

q̃∑
i=1

λi

(
V
(
x+Rix, x̂+ R̂ix̂

)
− V (x, x̂)

)
≤− κ̂V (x, x̂) + 2‖

√
MD‖2‖w − ŵ‖2 + 2‖

√
M(BR̃− PB̂)‖2‖û‖2, (5.8)

for some matrix R̃ of appropriate dimension.

From (5.7c), we have ‖Cx − Ĉx̂‖2 = (x − Px̂)TCTC(x − Px̂) and using M � CTC, it can be readily verified that
‖Cx− Ĉx̂‖2 ≤ V (x, x̂) holds for all x ∈ Rn, x̂ ∈ Rn̂. We proceed with showing the inequality in (5.8). Note that

∂xV (x, x̂) = 2(x− Px̂)TM, ∂x̂V (x, x̂) = −2(x− Px̂)TMP, ∂x,xV (x, x̂) = 2M,

∂x̂,x̂V (x, x̂) = PT∂x,xV (x, x̂)P, and ∂x,x̂V (x, x̂) = (∂x̂,xV (x, x̂))
T

= −∂x,xV (x, x̂)P

holds. Given any x ∈ Rn, x̂ ∈ Rn̂, û ∈ Rm̂, and ŵ ∈ Rq , we choose u ∈ Rm via the following linear interface
function:

u = νν̂(x, x̂, û, ŵ) := K(x− Px̂) +Qx̂+ R̃û+ Sŵ, (5.9)

for some matrix R̃ of appropriate dimension.

By using the equations (5.7a) and (5.7b) and the definition of the interface function in (5.9), we simplify

Ax+Bνν̂(x, x̂, û, ŵ) +Dw − P (Âx̂+ B̂û+ D̂ŵ)
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to (A+BK)(x− Px̂) +D(w − ŵ) + (BR̃− PB̂)û and obtain the following expression for LV (x, x̂):

LV (x, x̂) =2(x− Px̂)TM
[
(A+BK)(x− Px̂) +D(w − ŵ) + (BR̃− PB̂)û

]
+

[
x
x̂

]T [
ET 0

0 ÊT

] [
M −MP

−PTM PTMP

] [
E 0

0 Ê

] [
x
x̂

]

+

[
x
x̂

]T q̃∑
i=1

λi

[
RTi 0

0 R̂Ti

] [
M −MP

−PTM PTMP

] [
x
x̂

]

+

[
x
x̂

]T [
M −MP

−PTM PTMP

] q̃∑
i=1

λi

[
Ri 0

0 R̂i

] [
x
x̂

]

+

[
x
x̂

]T q̃∑
i=1

λi

[
RTi 0

0 R̂Ti

] [
M −MP

−PTM PTMP

] [
Ri 0

0 R̂i

] [
x
x̂

]
,

where 0’s denote zero matrices of appropriate dimensions. We use (5.7d) and (5.7e) to obtain the following expression
for LV (x, x̂):

LV (x, x̂) =(x− P x̂)T
[(

A+BK +

q̃∑
i=1

λiRi

)T
M +M

(
A+BK +

q̃∑
i=1

λiRi

)
+ ETME +

q̃∑
i=1

λiR
T
i MRi

]
(x− P x̂)

+ 2(x− P x̂)TM
[
D(w − ŵ) + (BR̃− PB̂)û

]
and with the help of Cauchy-Schwarz inequality and (5.3) to get the following upper bound

LV (x, x̂) ≤ −κ̂V (x, x̂) + 2‖
√
MD‖2‖w − ŵ‖2 + 2‖

√
M(BR̃− PB̂)‖2‖û‖2.

Using this computed upper bound, we obtain (5.8) which completes the proof. Note that the K∞ functions α, η,
ρext, and ρint, in Definition 3.1 associated with the SSF-M2 function in (5.6) are given by α(s) := s, η(s) := κ̂s,
ρext(s) := 2‖

√
M(BR̃− PB̂)‖2s2 and ρint(s) := 2‖

√
MD‖2s2, ∀s ∈ R≥0.

�

Remark 5.3. Using the linear functions α and η, as computed in Theorem 5.2, the functions β, γext, and γint, appearing
in Theorem 3.3, are simplified as the following: β(r, t) := re−κ̂t, γext(r) := 1

κ̂ρext(r), and γint(r) := 1
κ̂ρint(r) for any

r, t ∈ R≥0.

Remark 5.4. Note that Theorem 5.2 does not impose any condition on matrix R̃. Similar to the results in [GP09,
Proposition 1] for the non-probabilistic case, we propose a choice of R̃ which minimize function ρext for V . The choice
of R̃ minimizing ρext is given by

R̃ = (BTMB)−1BTMPB̂. (5.10)

Remark 5.5. Consider a JLSS Σi = (Ai, Bi, Ci, Di, Ei,Ri) and its abstraction Σ̂i = (Âi, B̂i, Ĉi, D̂i, Êi, R̂i). Assume
Di =

[
d1i · · · dpi

]
and D̂i =

[
d̂1i · · · d̂pi

]
. Using equation (5.7b), one can readily conclude that if dji ∈ imB,

for some j ∈ [1; p], then the corresponding d̂ji can be chosen as d̂ji = 0n̂. This choice for columns of D̂ makes
the interconnection of abstract subsystems potentially less interconnected and, hence, its analysis easier. We refer the
interested readers to Section 6 for an example of such choice for D̂.

As of now, we derived various conditions on the original system Σ, the abstraction Σ̂, and the matrices appearing in (5.6)
and (5.9), to ensure that (5.6) is an SSF-M2 function from Σ̂ to Σ with the corresponding interface function in (5.9) lifting
any control policy designed for Σ̂ to the one for Σ. However, those conditions do not impose any requirements on the
abstract external input matrix B̂. As an example, one can choose B̂ = In̂ which makes the abstract system Σ̂ fully
actuated and, hence, the synthesis problem over Σ̂ much easier. Similar to [GP09, Subsection 4.1] in the context of
non-probabilistic control systems, one can also choose an external input matrix B̂ which preserves all the behaviors of
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the original JLSS Σ on the abstraction Σ̂: for every trajectory (ξ, ζ, ν, ω) of Σ there exists a trajectory (ξ̂, ζ̂, ν̂, ω̂) of Σ̂

such that ζ̂ = ζ P-a.s..

Note that using the following choice of external input matrix B̂, the results in [RZ15] for the linear deterministic control
system are fully recovered by the corresponding ones here providing that the JLSS is not affected by any noise, implying
that E, Ê, Ri, and R̂i, ∀i ∈ [1; q̃], are identically zero.

Theorem 5.6. Consider two JLSS Σ = (A,B,C,D,E,R) and Σ̂ = (Â, B̂, Ĉ, D̂, Ê, R̂) with p = p̂ and q = q̂. Suppose
that there exist matrices P , Q, and S satisfying (5.7) and that the abstract external input matrix B̂ is given by

B̂ = [P̂B P̂AG], (5.11)

where P̂ and G are assumed to satisfy

C = ĈP̂ (5.12a)
In = PP̂ +GF (5.12b)
In̂ = P̂P (5.12c)

0n̂×n = P̂EGF (5.12d)
0n̂×n = P̂RiGF, ∀i ∈ [1; q̃], (5.12e)

for some matrix F . Then, for every trajectory (ξ, ζ, ν, ω) of Σ there exists a trajectory (ξ̂, ζ̂, ν̂, ω̂) of Σ̂ so that ζ = ζ̂
holds P-a.s..

Proof. Let (ξ, ζ, ν, ω) be a trajectory of Σ. We are going to show that (ξ̂, ζ̂, ν̂, ω) with

ζ̂ = ζ, ξ̂ = P̂ ξ, and ν̂ =

[
ν −QP̂ξ − Sω

Fξ

]
,

P-a.s. is a trajectory of Σ̂. We use (5.7d), (5.7e), (5.12b), (5.12c), (5.12d), and (5.12e) and derive

d P̂ ξ = (P̂Aξ + P̂Bν + P̂Dω) d t+ P̂Eξ dWt +

q̃∑
i=1

P̂Riξ dP it

= (P̂AP P̂ ξ + P̂A(In − PP̂ )ξ + P̂Bν + P̂Dω) d t+ P̂E(PP̂ +GF )ξ dWt +

q̃∑
i=1

P̂Ri(PP̂ +GF )ξ dP it

= (P̂AP P̂ ξ + P̂AGFξ + P̂Bν + P̂Dω) d t+ P̂P ÊP̂ ξ dWt +

q̃∑
i=1

P̂P R̂iP̂ ξ dP it

= (P̂AP P̂ ξ + P̂AGFξ + P̂Bν + P̂Dω) d t+ ÊP̂ ξ dWt +

q̃∑
i=1

R̂iP̂ ξ dP it .

Now we use the equations (5.7a) and (5.7b) and the definition of B̂ and ν̂ to derive

d P̂ ξ =
(
P̂ (PÂ−BQ)P̂ ξ + P̂AGFξ + P̂Bν + P̂ (PD̂ −BS)ω

)
d t+ ÊP̂ ξ dWt +

q̃∑
i=1

R̂iP̂ ξ dP it

=(ÂP̂ ξ + [P̂B P̂AG]ν̂ + D̂ω) d t+ ÊP̂ ξ dWt +

q̃∑
i=1

R̂iP̂ ξ dP it

=(ÂP̂ ξ + B̂ν̂ + D̂ω) d t+ ÊP̂ ξ dWt +

q̃∑
i=1

R̂iP̂ ξ dP it

showing that (P̂ ξ, ζ̂, ν̂, ω) is a trajectory of Σ̂. From C = ĈP̂ in (5.12a), it follows that ζ̂ = ζ P-a.s. which concludes
the proof. �
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5.2. Construction of abstractions. In this subsection, we provide constructive methods to compute the abstraction Σ̂
along with the various matrices involved in the definition of the stochastic simulation function and its corresponding
interface function.

First, let us recall Lemma 2 in [GP09], showing that there exist matrices Â andQ satisfying (5.7a) if and only if columns
of P span an (A,B)-controlled invariant subspace, see e.g. [BM92, Definition 4.1.1].

Lemma 5.7. Consider matrices A, B, and P . There exist matrices Â and Q satisfying (5.7a) if and only if

imAP ⊆ imP + imB. (5.13)

Given that P satisfies (5.13), it is straightforward to compute Â and Q such that (5.7a) holds, by solving n̂ linear
equations.

Similar to Lemma 5.7, we give necessary and sufficient conditions for the existence of matrices D̂ and S appearing in
condition (5.7b).

Lemma 5.8. Given P and B, there exist matrices D̂ and S satisfying (5.7b) if and only if

imD ⊆ imP + imB. (5.14)

The proof of Lemma 5.8 is provided in the Appendix.

Now we provide necessary and sufficient conditions for the existence of matrices Ê and R̂i, ∀i ∈ [1; q̃], appearing in
conditions (5.7d) and (5.7e).

Lemma 5.9. Given P and E, there exists a matrix Ê satisfying (5.7d) if and only if

imEP ⊆ imP. (5.15)

The proof is recovered from the one of Lemma 5.7 by substituting A, Â, and B with E, Ê, and 0n×m, respectively.

Lemma 5.10. Given P and Ri, ∀i ∈ [1; q̃], there exists matrices R̂i, ∀i ∈ [1; q̃], satisfying (5.7e) if and only if

imRiP ⊆ imP, (5.16)

for any i ∈ [1; q̃].

The proof is recovered from the one of Lemma 5.7 by substituting A, Â, and B with Ri, R̂i, ∀i ∈ [1; q̃], and 0n×m,
respectively.

Lemmas 5.7, 5.8, 5.9, and 5.10 provide necessary and sufficient conditions on P which lead to the construction of
matrices Â, D̂, Ê, and R̂i, ∀i ∈ [1; q̃], together with the matrices Q, S appearing in the definition of the interface
function in (5.9). The output matrix Ĉ simply follows by Ĉ = CP . As we already discussed, the abstract external input
matrix can be chosen arbitrarily. For example one can choose B̂ = In̂ making the abstract system Σ̂ fully actuated and,
hence, the synthesis problem over it much simpler. One can also choose B̂ as in (5.11) guaranteeing preservation of
all behaviors of Σ on Σ̂ under extra conditions in (5.12). Lemma 3 in [GP09], as recalled next, provides necessary and
sufficient conditions on P and C for the existence of P̂ , G, and F satisfying (5.12a), (5.12b), and (5.12c).

Lemma 5.11. Consider matrices C and P with P being injective and let Ĉ = CP . There exists matrix P̂ satisfy-
ing (5.12a), (5.12b), and (5.12c), for some matrices G and F of appropriate dimensions, if and only if

imP + kerC = Rn. (5.17)

The conditions (5.13)-(5.16) (resp. (5.13)-(5.17)) complete the characterization of matrix P , together with the system
matrices {A,B,C,D} leading to the abstract matrices {Â, B̂, Ĉ, D̂}, where B̂ can be chosen arbitrarily (resp. B̂ is
computed as in (5.11) for the sake of preservation of all behaviors of Σ on Σ̂ as long as conditions (5.12d) and (5.12e)
are also satisfied). Note that there always exists an injective matrix P ∈ Rn×n̂ that satisfies the conditions (5.13)-(5.17).
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FIGURE 4. The interconnected system Σ = I(Σ1,Σ2,Σ3,Σ4).

In the worst-case scenario, we can pick the identity matrix with n̂ = n. Of course, we would like to have the abstraction
Σ̂ as simple as possible and, therefore, we should aim at a P with n̂ as small as possible.

We summarize the construction of the abstraction Σ̂ in Table 1.

1. Compute matrices M and K satisfying (5.2) and (5.3).
2. Pick an injective P satisfying (5.13)-(5.16) (resp. (5.13)-(5.17) only

if the computed matrices P̂ , G, and F satisfy (5.12d) and (5.12e));
3. Compute Â and Q from (5.7a);
4. Compute D̂ and S from (5.7b);
5. Compute Ĉ = CP ;
6. Choose B̂ arbitrarily (resp. B̂ = [P̂B P̂AG]);
7. Compute R̃, appearing in (5.9), from (5.10);
8. Compute Ê from (5.7d) (resp. Ê = P̂EP );
9. For any i ∈ [1; q̃], compute R̂i from (5.7e) (resp. R̂i = P̂RiP ).

TABLE 1. Construction of an abstract JLSS Σ̂ for a given JLSS Σ.

6. AN EXAMPLE

Let us demonstrate the effectiveness of the proposed results by synthesizing a controller for an interconnected system
consisting of four JLSS Σ = I(Σ1,Σ2,Σ3,Σ4). The interconnection scheme of Σ is illustrated in Figure 4. The system
has two outputs and we synthesize a controller to enforce them to stay approximately (in the 2nd moment metric) within
the safety constraint

S = [0 5]× [0 5].

In designing a controller for Σ we proceed as follows. In the first step, we compute abstractions Σ̂i of the individual
subsystems to obtain an abstraction Σ̂ = I(Σ̂1, Σ̂2, Σ̂3, Σ̂4) of the interconnected system Σ. The interconnection
scheme changes for Σ̂ (see Remark 5.5) and the abstract system is given by two identical independent interconnected
systems Σ̂14 = I(Σ̂1, Σ̂4) and Σ̂23 = I(Σ̂2, Σ̂3). The abstract system Σ̂ is illustrated in Figure 5. In the second step,
we determinize the stochastic systems Σ̂14 and Σ̂23 by neglecting the diffusion and reset terms. We obtain two identical
deterministic control systems Σ̃14 and Σ̃23. We show that Σ̃i is an abstraction of Σ̂i, i ∈ {14, 23} by computing
an SSF-M2 function from Σ̃i to Σ̂i. In the third step, we fix a sampling time τ > 0 and use the MATLAB Toolbox
MPT [HKJM13] to synthesize a safety controller that enforces the safety constraints on Σ̃ = I(Σ̃14, Σ̃23) at all sampling
times kτ , k ∈ N. In the final step, we refine the computed controller for Σ̃ to a controller for Σ. We use Theorem 3.3 to
establish a bound on the distance in the 2nd moment metric between the output trajectories of Σ and the safe set S.
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FIGURE 5. The abstract interconnected system Σ̂ = I(Σ̂1, Σ̂2, Σ̂3, Σ̂4).

6.1. The interconnected system. Let us consider the system illustrated in Figure 4. The subsystems Σ1 and Σ2 are
double integrators and Σ3 and Σ4 are autonomous triple integrators. All systems are affected by a scalar Brownian
motion and a Poisson process. For j ∈ {1, 2} the system matrices are given by

Aj =

[
0 1
2 0

]
, Bj =

[
0
1

]
, CTj =

[
1
0

]
, Ej = 0.4I2, Rj = 0.1I2,

and for i ∈ {3, 4} by

Ai =

 0 1 0
0 0 1

−24 −26 −9

 , Bi = 0, CTi =

1
0
0

 , Ei = 0.4I3, Ri = 0.1I3.

The rate of the Poisson process Pt is λ = 4.2. The output of Σ1 (resp. Σ2) is connected to the internal input of Σ4

(resp. Σ3) and the output of Σ3 (resp. Σ4) connects to the internal input of Σ1 (resp. Σ2). The output functions
hij(xi) = Cijxi are determined by Cii = Ci(i−2) =

[
1 0 0

]
for i ∈ {3, 4}, C23 = C14 =

[
1 0

]
and hij ≡ 0 for

the remaining i, j ∈ [1; 4]. Correspondingly, the internal input matrices are given by

D41 = D32 =

 0
−d
5d

 , Dj(j+2) =

[
0
d

]
, d 6= 0, j ∈ {1, 2}.

Subsequently, we use C1 = C14, C2 = C23, Ci = Cii, i ∈ {3, 4}, D1 = D13, D2 = D24, D3 = D32, D4 = D41, and
denote the JLSS by Σi = (Ai, Bi, Ci, Di, Ei, Ri).

6.2. The abstract subsystems. In order to construct an abstraction for I(Σ1,Σ2,Σ3,Σ4) we construct an abstraction
Σ̂i of each individual subsystem Σi, i ∈ {1, 2, 3, 4}. We begin with i ∈ {1, 2} and follow the steps outlined in Table 1.
First, we fix κ̂ = 2 and solve an appropriate LMI (see Lemma 5.1) to determine the matrices Mi and Ki so that (5.2)
and (5.3) hold. We obtain

Mi =

[
1.68 0.4
0.4 0.23

]
, KT

i =

[
−9
−4

]
.

We continue with step 2. and determine

PTi =
[
1 −2

]
,

so that (5.13)-(5.17) hold. The matrices P̂i, Fi, and Gi that (5.12b)-(5.12e) hold, follow by P̂i =
[
1 0

]
, GTi =

[
0 2

]
,

and Fi =
[
1 0

]
. We continue with steps 3.-8. and get the scalar abstract JLSS subsystems Σ̂i, i ∈ {1, 2} with

Âi = −2, B̂i = 1, D̂i = 0, Ĉi = 1, Êi = 0.4, R̂i = 0.1.

Simultaneously, we compute Qi = 2 and Si = −d. As already discussed in Remark 5.5, Di ∈ imBi and we can
choose D̂i = 0. It follows that the subsystems Σ̂i, i ∈ {1, 2}, are not affected by internal inputs, which implies that the
interconnection between Σ3 (resp. Σ4) and Σ1 (resp. Σ2) is absent on the abstract interconnected system Σ̂; compare
also Figure 4 and Figure 5.
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We continue with the construction of Σ̂i for i ∈ {3, 4}. We repeat the procedure and obtain

Mi =

6.924 3.871 0.468
3.871 2.534 0.315
0.468 0.315 0.054

 , Ki = 0.

In step 2., we compute

PTi =

[
1 −2 4
1 −3 9

]
,

so that (5.13)-(5.17) hold. The equations (5.12b)-(5.12e) are satisfied by

P̂i = 1
6

[
0 −9 −3
0 4 2

]
,

GTi =
[
1 0 0

]
, and Fi = 1

6

[
6 5 1

]
. We follow steps 3.-8. and get the 2D abstract JLSS subsystems Σ̂i, i ∈ {3, 4},

where

Âi =

[
−2 0
0 −3

]
, B̂i =

[
12
−8

]
, D̂i = d

[
−1

1

]
, Ĉi =

[
1 1

]
,

with the diffusion and reset terms again given by Êi = 0.4I2 and R̂i = 0.1I2. Moreover, Qi = 0 and Si = 0.

For all i ∈ {1, 2, 3, 4}, equations (5.2), (5.3), and (5.7) hold. Hence, Theorem 5.2 applies and we see that Vi(xi, x̂i) =

(xi − Pix̂i)
TMi(xi − Pix̂i) is an SSF-M2 function from Σ̂i to Σi for all i ∈ [1; 4]. Moreover, (5.12) holds and

Theorem 5.6 implies that all the behaviors of Σi are preserved on Σ̂i. Following the proof of Theorem 5.2, we see that
the interface function for i ∈ {1, 2} follows by (5.9) as

νiν̂i(xi, x̂i, ûi, ŵi) = Ki(xi − Pix̂i)− 2x̂i − 2.5ûi − dŵi, (6.1)

and νiν̂i ≡ 0 for i ∈ {3, 4}. Here we used (5.10) to compute R̃i = −2.5 for i ∈ {1, 2}. Although the internal input
matrices for Σ1 and Σ2 are zero, the internal inputs ŵ1 = ŷ3 and ŵ2 = ŷ4 still appear in the interface function. As
provided in the proof of Theorem 5.2, the K∞ functions for i ∈ {1, 2} and j ∈ {3, 4} are given by

αi(s) = s, ηi(s) = 2s, ρiext(s) = 0.16s2, ρiint(s) = 1.3d2s2,

αj(s) = s, ηj(s) = 2s, ρjext(s) = 150s2, ρjint(s) = 7.9d2s2,

for any s ∈ R≥0.

6.3. The interconnected abstraction. We now proceed with Theorem 4.2 to construct a stochastic simulation function
form Σ̂ to Σ. We start by checking the Assumption 1. Note that ρiint satisfies the triangle inequality and we use
Remark 4.4 to see that Assumption 1 holds for γi(s) = s, λ̃i = 2, and δij are given by

∆ = d2


0 0 1.3 0
0 0 0 1.3
0 7.9 0 0

7.9 0 0 0

 .
Additionally, we require the existence of a vector µ ∈ R4

>0 satisfying (4.5), which is the case if and only if the spectral
radius of ∆ is strictly less than one, i.e., 1/2

√
1.3× 7.9d2 < 1, which holds for example for d = 1/2. One can choose

the vector µ as µ = [2 2 1 1] and, hence, it follows that

V (x, x̂) =

2∑
i=1

2Vi(xi, x̂i) +

4∑
i=3

Vi(xi, x̂i),

is an SSF-M2 from I(Σ̂1, Σ̂2, Σ̂3, Σ̂4) to I(Σ1,Σ2,Σ3,Σ4) where the interface function follows from (6.1). Following
the proof of Theorem 4.2, we see that V satisfies (3.1) with α(s) = s and (3.2) with η(s) = 1.35s, ρext(s) = 150s2,
and ρint ≡ 0. Here, we computed η and ρext according to (4.7a) and (4.7b). Subsequently, we design a controller for Σ

via the abstraction Σ̂. We restrict external inputs for Σ̂3 and Σ̂4 to zero, so that we can set ρjext ≡ 0, j ∈ {3, 4}. As a
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FIGURE 6. Part of the domain of the safety controller. The left figure shows the projection on x̃1 and
x̃2. The right figure shows the projection on x̃2 and x̃3.

result ρext reduces to ρext(s) = 0.16s2, ∀s ∈ R≥0, and we use Theorem 3.3 in combination with Remark 5.3 to derive
the inequality

E[‖ζaν(t)− ζ̂âν̂(t)‖2] ≤ e−1.35tE[V (a, â)] + 0.12E[‖ν̂‖2∞]. (6.2)

6.4. The deterministic system and the controller. The synthesis of the safety controller is based on a deterministic
system Σ̃ which results from Σ̂ by omitting the diffusion and reset terms. In particular, we determinize the identical
systems Σ̂14 = I(Σ̂1, Σ̂4) and Σ̂23 = I(Σ̂2, Σ̂3) and obtain for i ∈ {14, 23} the systems

Σ̃i :


˙̃
ξi(t) =

−2 0 −d
0 −3 d
0 0 −2

 ξ̃i(t) +

0
0
1

 ν̃i(t),
ζ̃i(t) =

[
1 1 0

]
ξ̃i(t).

We compute an SSF-M2 function V̂ (x̂, x̃) = [x̂; x̃]T M̂ [x̂; x̃] from Σ̃ = I(Σ̃14, Σ̃23) to Σ̂, by solving an appropriate
LMI. The matrix M̂ results in

M̂ =


m1 0 −m2 0

0 m1 0 −m2

−mT
2 0 m3 0

0 −mT
2 0 m3


with

m1 =

1.1400 1.3072 0.0052
1.3072 1.6968 0.0228
0.0052 0.0228 0.0104

 , m2 =

1.1437 1.3112 0.0060
1.3365 1.7181 0.0218
0.0089 0.0230 0.0085

 , m3 =

1.1793 1.3649 0.0081
1.3649 1.7631 0.0224
0.0081 0.0224 0.0079

 .
The associated K∞ functions are given by α(r) = r, η(r) = 0.82r, ρext(r) = 0.32r2, and ρint ≡ 0. Again we use
Theorem 3.3 and Remark 5.3 to establish

E[‖ζ̂âν̃(t)− ζ̃ãν̃(t)‖2] ≤ e−0.82tE[V̂ (â, ã)] + 0.4‖ν̃‖2∞. (6.3)

Next we design a safety controller to restrict the output ỹ ∈ R of Σ̃i, i ∈ {14, 23} to [0 5]. Additionally, to control the
mismatch between the trajectories of Σ and Σ̃ we limit the inputs to ũ ∈ [−1 1]

2. We fix the sampling time to τ = 0.1

secs and use the MATLAB Toolbox MPT [HKJM13] to compute a safety controller K : R6 → 2[−1 1]2 , which when
applied in a sample-and-hold manner to Σ̃ enforces the constraints at the sampling instances t = kτ , k ∈ N. A part of
the domain of the controller, which restricts the initial states of Σ̃ is illustrated in Figure 6. Note that K is a set-valued
map that provides, for each state x̃ in the domain of K, possibly a set of admissible inputs K(x) ⊆ [−1 1]

2.
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6.5. Input trajectory generation and performance guarantees. We use the closed-loop system consisting of Σ̃ and
K to generate input trajectories for Σ. Let (ξ̃, ζ̃, ν̃) be a trajectory of Σ̃ that satisfiesK, i.e., ν̃ is constant on the intervals
τ [k, (k + 1)[, k ∈ N, and satisfies ν̃(kτ) ∈ K(ξ̃(kτ)) for all k ∈ N. We use the interface (6.1) to compute the input
trajectory ν for Σ. Using the bounds in (6.2) and (6.3), the overall estimate between output trajectories of Σ̃ and Σ
follows to (

E[‖ζaν(t)− ζ̃ãν̃(t)‖2]
) 1

2 ≤
(
E[‖ζaν(t)− ζ̂âν̃(t)‖2]

) 1
2

+
(
E[‖ζ̂âν̃(t)− ζ̃ãν̃(t)‖2]

) 1
2

≤ e−0.67tE[V (a, â)]
1
2 + e−0.41tE[V̂ (â, ã)]

1
2 + ‖ν̃‖∞. (6.4)

We show some simulation results of the controlled system in Figure 6.5. The initial state of Σ is fixed as a =

[1;−1;−5; 1;−1;−5; 1;−2; 1;−2]. We determine the initial state for Σ̂ as well as Σ̃ as the vector ã ∈ R6 lying in
the domain of the controller and minimizing V (a, ã) which is ã = [1.44;−0.69; 1.44;−0.69; 1; 1]. We randomly pick
the input ν̃(kτ) in K(ξ̃(kτ)). In the top two plots of the figure, we see a realization of the observed process ζ1 (resp.
ζ2) and ζ̂1 (resp. ζ̂2) of Σ and Σ̂, respectively. On the middle plot, we show the corresponding evolutions of the refined
input signals ν1 and ν2 for Σ. On the 2nd plot from bottom, we show the square root of the average value (over 1000
experiments) of the squared distance in time of the output trajectory of Σ to the one of Σ̂, namely, ‖ζaν − ζ̂ãν̃‖2. The
solid black curve denotes the error bound given by the right-hand-side of (6.2). On the bottom part, we show the square
root of the average value (over 1000 experiments) of the squared distance in time of the output trajectory of Σ to the set
S, namely, ‖ζaν(t)‖S . Notice that the square root of this empirical (averaged) squared distances is significantly lower
than the computed bound given by the right-hand-side of (6.4), as expected since the stochastic simulation functions can
lead to conservative bounds. (One can improve the bounds by seeking optimized stochastic simulation functions.)

7. SUMMARY

In this paper we proposed a compositional framework for the construction of infinite approximations of interconnected
stochastic hybrid systems by leveraging some small-gain type conditions. We introduced a new notion of stochastic
simulation functions to quantify the error between the stochastic hybrid systems and their approximations. In compar-
ison with the similar notion in [JP09], our proposed notion of stochastic simulation functions is computationally more
tractable for stochastic hybrid systems with inputs. Moreover, we provided a constructive approach on the construction
of those infinite approximations for a class of stochastic hybrid systems, namely, jump linear stochastic systems. Fi-
nally, we illustrated the effectiveness of the results by constructing an infinite approximation of an interconnection of
four jump linear stochastic systems in a compositional manner.

APPENDIX

Proof of Lemma 3.4. Lemma 3.4 is an extension of Lemma 4.4 in [LSW96] and the proof follows similar ideas. The
proof includes two steps. We first show that the set [0, s0], s0 := η−1(2g), is forward invariant, i.e., if y(t0) ∈ [0, s0],
then y(t) ∈ [0, s0] for all t ≥ t0. For the sake of contradiction, suppose the trajectory y visits [0, s0] and then later
leaves it. Due to the continuity of y, this implies that there exist a time instance t > t0 and positive value ε > 0 such
that y(t0) = s0 and y(t) = s0 + ε, and y(τ) ≥ s0 for all τ ∈ [t0, t]. In view of the lemma hypothesis, we then have

0 < ε = y(t)− y(t0) ≤
∫ t

t0

[−η(y(τ)) + g] ≤ 0,

which concludes the first step. In the second step, we assume that y(0) > s0. Consider the function κ : R>0 → R
defined as

κ(s) :=

∫ s

1

−d r

min{η(r), r} .
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FIGURE 7. Top two plots: One realization of ζ1 (resp. ζ2) ( ) and ζ̂1 (resp. ζ̂2) ( ). The middle
plot: the corresponding realization of external inputs ν1 ( ) and ν2 ( ) of Σ. The 2nd plot from
bottom: Square root of the average values (over 1000 experiments) of the squared distance of the
output trajectory of Σ to the one of Σ̂. The solid black line indicates the error bound given by the
right-hand-side of (6.2). Bottom plot: Square root of the average values (over 1000 experiments) of
the squared distance of the output trajectory of Σ to the safe set S.
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Let ts be the first time that the process y reaches s0, i.e., ts := inf{t ≥ 0 : y(t) ≤ s0}.5 In the following we show that
the function

ϑ(r, t) :=

{
κ−1

(
κ(r) + t/2

)
, r > 0

0 r = 0,
(7.1)

is indeed the desired KL function for the lemma assertion. Note that for all t ∈ [0, ts], we have η
(
y(t)

)
≥ 2g, and that

we have

κ
(
y(t)

)
− κ
(
y(0)

)
=

y(t)∫
y(0)

− d(y(τ))

min{η
(
y(τ)

)
, y(τ)} ≥

t∫
0

η
(
y(τ)

)
− g

min{η
(
y(τ)

)
, y(τ)} d τ ≥

t∫
0

1
2η
(
y(τ)

)
η
(
y(τ)

) d τ ≥ t

2
.

The above observation together with the fact that the function κ is strictly decreasing on (0,∞) imply that

y(t) ≤ κ−1
(
κ
(
y(0)

)
+ t/2

)
, ∀t ∈ [0, ts].

Note that lims↓0 κ(s) = ∞, and since κ is strictly decreasing on (0,∞), the function ϑ(r, t) defined in (7.1) is a K∞
function in the first argument for each t, and decreasing with respect to the second argument for each nonzero r. As
such, the function ϑ(r, t) is a KL function. Combining the results of the two steps concerning the intervals [0, ts] and
(ts,∞) concludes the desired assertion. �

Proof of Theorem 3.3. For any time instances t ≥ t0 ≥ 0, any ν̂(t) ∈ Rm̂, any ω̂(t) ∈ Rq , and any random variable a
and â that are F0-measurable, there exists ν(t) ∈ Rm such that for all ω(t) ∈ Rq , one obtains

E
[
V (ξaυω(t), ξ̂âυ̂ω̂(t))

]
= E

[
V
(
ξaυω(t0), ξ̂âυ̂ω̂(t0)

)
+

∫ t

t0

LV (ξaνω(s), ξ̂âυ̂ω̂(s)) d s

]
≤ E

[
V
(
ξaυω(t0), ξ̂âυ̂ω̂(t0)

)]
+E

[ ∫ t

t0

−η
(
V
(
ξaνω(s), ξ̂âυ̂ω̂(s)

))
+ ρext(‖ν̂(s)‖) + ρint(‖ω(s)− ω̂(s)‖) d s

]
≤ E

[
V
(
ξaυω(t0), ξ̂âυ̂ω̂(t0)

)]
+

∫ t

t0

−η
(
E
[
V
(
ξaνω(s), ξ̂âυ̂ω̂(s)

)] )
+E

[
ρext(‖ν̂‖∞) + ρint(‖ω − ω̂‖∞)

]
d s,

where the first equality is an application of the Itô’s formula for jump diffusions thanks to the polynomial rate of
the function V [ØS05, Theorem 1.24], and the last inequality follows from Jensen’s inequality due to the convexity
assumption on the function η [Oks02, p. 310]. Let us define the process y(t) := E

[
V (ξaυω(t), ξ̂âυ̂ω̂(t))

]
. Note that in

view of the Itô’s formula, the process y(·) is continuous provided that the solution processes ξaυω and ξ̂âυ̂ω̂ have finite
moments. This is indeed the case under our model setting in Definition 2.1, in particular due to the Lipschitz continuity
of functions f, σ, r, f̂ , σ̂, r̂ [ØS05, 1.19]. Therefore, the process y(t) meets all the required assumptions of Lemma 3.4,
implying that there exists a KL function ϑ such that

E[V (ξaνω(t),ξ̂âν̂ω̂(t))] ≤ ϑ
(
E[V (a, â)], t

)
+ η−1

(
2E
[
ρext(‖ν̂‖∞) + ρint(‖ω − ω̂‖∞)

])
. (7.2)

In view of Jensen’s inequity and using equation (3.1), the convexity of α and the concavity of ρext, ρint, we have

α
(
E
[
‖ζaνω(t)− ζ̂âν̂ω̂(t)‖k

])
≤ E

[
α
(
‖ζaνω(t)− ζ̂âν̂ω̂(t)‖k

)]
≤ E

[
V (ξaνω(t), ξ̂âν̂ω̂(t))

]
≤ ϑ

(
E[V (a, â)], t

)
+ η−1

(
2ρext

(
E[‖ν̂‖∞]

)
+ 2ρint

(
E[‖ω − ω̂‖∞]

))
,

which in conjunction with the fact that α ∈ K∞ leads to

E
[
‖ζaνω(t)− ζ̂âν̂ω̂(t)‖k

]
≤ α−1

(
ϑ
(
E[V (a, â)], t

)
+ η−1

(
2ρext

(
E[‖ν̂‖∞]

)
+ 2ρint

(
E[‖ω − ω̂‖∞]

)))
≤ α−1

(
2ϑ
(
E[V (a, â)], t

))
+ α−1

(
2η−1(4ρext(E[‖ν̂‖∞]

))
+ α−1

(
2η−1(4ρint(E[‖ω − ω̂‖∞]

)))
.

5By convention, inf ∅ =∞.
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Therefore, by introducing functions β, γext, and γint as

β(r, t) := α−1(2ϑ(r, t)),
γext(r) := α−1

(
2η−1(4ρext(r))), (7.3)

γint(r) := α−1
(
2η−1(4ρint(r))),

inequality (3.3) is satisfied. Note that if α−1 and η−1 satisfies the triangle inequality (i.e., α−1(a+b) ≤ α−1(a)+α−1(b)
and η−1(a+ b) ≤ η−1(a) + η−1(b) for all a, b ∈ R≥0), one can divide all the coefficients by factor 2 in the expressions
of β, γext, and γint in (7.3) to get a less conservative upper bound in (3.3). �

Proof of Proposition 3.5. Since V is an SSF-Mk function from Σ̂ to Σ and η(r) ≥ θr for some θ ∈ R>0 and any
r ∈ R≥0, for any ν̂ ∈ Û , any ω̂ ∈ W , and any random variable a and â that are F0-measurable, there exists ν ∈ U such
that for all ω ∈ W one obtains:

LV
(
ξaνω(t), ξ̂âν̂ω̂(t)

)
≤− θV

(
ξaνω(t), ξ̂âν̂ω̂(t)

)
+ ρext(‖ν̂‖∞) + ρint(‖ω − ω̂‖∞).

Since there exists a constant ε ≥ 0 such that ε ≥ ρext(‖ν̂‖∞) + ρint(‖ω − ω̂‖∞), one obtains:

LV
(
ξaνω(t), ξ̂âν̂ω̂(t)

)
≤− θV

(
ξaνω(t), ξ̂âν̂ω̂(t)

)
+ ε, (7.4)

and the following chain of inequalities hold:

P

{
sup

0≤t≤T

∥∥∥ζaνω(t)− ζ̂âν̂ω̂(t)∥∥∥ ≥ ε | [a; â]} = P

{
sup

0≤t≤T
α

(∥∥∥ζaνω(t)− ζ̂âν̂ω̂(t)∥∥∥k) ≥ α(εk) | [a; â]}
≤ P

{
sup

0≤t≤T
V
(
ξaνω(t), ξ̂âν̂ω̂(t)

)
≥ α(εk) | [a; â]

}
. (7.5)

Using inequalities (7.4), (7.5), and Theorem 1 in [Kus67, Chapter III], one obtains the inequalities (3.4) and (3.5). �

Proof of Proposition 3.6. The proof is a simple consequence of Theorem 3.3 and Markov inequality [Oks02], used as
the following:

P
{
‖ζaνω(t)− ζ̂âν̂ω̂(t)‖ ≥ ε

}
≤ E[‖ζaνω(t)− ζ̂âν̂ω̂(t)‖]

ε
≤

(
E
[
‖ζaνω(t)− ζ̂âν̂ω̂(t)‖k

]) 1
k

ε

≤ (β (E[V (a, â)], t) + γext(E[‖ν̂‖∞]) + γint(E[‖ω − ω̂‖∞]))
1
k

ε
.

�

Proof of Corollary 3.7. Since V is an SSF-Mk function from Σ̂ to Σ, for ν̂ ≡ 0 and any random variable a and â that
are F0-measurable, there exists ν ∈ U such that one obtains:

LV
(
ξaν(t), ξ̂â0(t)

)
≤− η

(
V
(
ξaν(t), ξ̂â0(t)

))
,

implying that V
(
ξaν(t), ξ̂â0(t)

)
is a nonnegative supermartingale [Oks02, Appendix C]. As a result, we have the

following chain of inequalities:

P

{
sup

0≤t<∞

∥∥∥ζaν(t)− ζ̂â0(t)∥∥∥ > ε | [a; â]
}

= P

{
sup

0≤t<∞
α

(∥∥∥ζaν(t)− ζ̂â0(t)∥∥∥k) > α(εk) | [a; â]
}

≤ P
{

sup
0≤t<∞

V
(
ξaν(t), ξ̂â0(t)

)
> α(εk) | [a; â]

}
≤ V (a, â)

α(εk)
,

where the last inequality is implied from V (ξaν(t), ξ̂â0(t)) being a nonnegative supermartingale and [Kus67, Lemma1].
�



APPROXIMATIONS OF STOCHASTIC HYBRID SYSTEMS: A COMPOSITIONAL APPROACH 23

Proof of Lemma 5.8. Suppose that imD 6⊆ imP + imB, then there exists w ∈ Rq so that Dw 6= Px̂ − Bu holds for
all x̂ ∈ Rn̂, u ∈ Rm. Hence (5.7b) cannot hold for any matrix D̂ and S. Now suppose imD ⊆ imP + imB. Let ei
denote the columns of Ip. Then there exist d̂i ∈ Rn̂ and si ∈ Rm so that Dei = P d̂i −Bsi holds for all i ∈ {1, . . . , p}
and the matrices D̂ = [d̂1 . . . d̂p] and S = [s1 . . . sp] satisfy (5.7b). �
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