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Abstract. This article presents a novel perspective along with a scalable methodology to

design a fault detection and isolation (FDI) filter for high dimensional nonlinear systems.

Previous approaches on FDI problems are either confined to linear systems or they are only

applicable to low dimensional dynamics with specific structures. In contrast, shifting attention

from the system dynamics to the disturbance inputs, we propose a relaxed design perspective

to train a linear residual generator given some statistical information about the disturbance

patterns. That is, we propose an optimization-based approach to robustify the filter with

respect to finitely many signatures of the nonlinearity. We then invoke recent results in ran-

domized optimization to provide theoretical guarantees for the performance of the proposed

filer. Finally, motivated by a cyber-physical attack emanating from the vulnerabilities intro-

duced by the interaction between IT infrastructure and power system, we deploy the developed

theoretical results to detect such an intrusion before the functionality of the power system is

disrupted.

1. Introduction

The task of FDI in control systems involves generating a diagnostic signal sensitive to the

occurrence of specific faults. This task is typically accomplished by designing a filter with all

available information as inputs (e.g., control signals and given measurements) and a scalar output

that implements a non-zero mapping from the fault to the diagnostic signal, which is known as

the residual, while decoupling unknown disturbances. The concept of residual plays a central

role for the FDI problem which has been extensively studied in the last two decades.

In the context of linear systems, Beard and Jones [Bea71, Jon73] pioneered an observer-based

approach whose intrinsic limitation was later improved by Massoumnia et al. [MVW89]. Follow-

ing the same principles but from a game theoretic perspective, Speyer and coauthors thoroughly

investigated the approach in the presence of noisy measurements [CS98, DS99]. Nyberg and Frisk

extended the class of systems to linear differential-algebraic equation (DAE) apparently subsum-

ing all the previous linear classes [NF06], which recently also studied in the context of stochastic

linear systems [EFK13]. This extension greatly enhanced the applicability of FDI methods since

the DAE models appear in a wide range of applications, including electrical systems, robotic

manipulators, and mechanical systems.

For nonlinear systems, a natural approach is to linearize the model at an operating point,

treat the nonlinear higher order terms as disturbances, and decouple their contributions from the

residual by employing robust techniques [SF91, HP96]. This strategy only works well if either

the system remains close to the chosen operating point, or the exact decoupling is possible. The
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former approach is often limited, since in the presence of unknown inputs the system may have

a wide dynamic operating range, which in case linearization leads to a large mismatch between

linear model and nonlinear behavior. The latter approach was explored in detail by De Persis and

Isidori, who in [PI01] proposed a differential geometric approach to extend the unobservibility

subspaces of [Mas86, Section IV], and by Chen and Patton, who in [CP82, Section 9.2] dealt with

a particular class of bilinear systems. These methods are, however, practically limited by the

need to verify the required conditions on the system dynamics and transfer them into a standard

form, which essentially involve solving partial differential equations, restricting the application

of the method to relatively low dimensional systems.

Motivated by this shortcoming, in this article we develop a novel approach to FDI which

strikes a balance between analytical and computational tractability, and is applicable to high

dimensional nonlinear dynamics. For this purpose, we propose a design perspective that basically

shifts the emphasis from the system dynamics to the family of disturbances that the system may

encounter. We assume that some statistical information of the disturbance patterns is available.

Following [NF06] we restrict the FDI filters to a class of linear operators that fully decouple the

contribution of the linear part of the dynamics. Thanks to the linearity of the resulting filter, we

then trace the contribution of the nonlinear term to the residual, and propose an optimization-

based methodology to robustify the filter to the nonlinearity signatures of the dynamics by

exploiting the statistical properties of the disturbance signals. The optimization formulation is

effectively convex and hence tractable for high dimensional dynamics. Some preliminary results

in this direction were reported in [MVAL12], while an application of our approach in the presence

of measurement noise was successfully tested for wind turbines in [SMEKL13].

The performance of the proposed methodology is illustrated in an application to an emerging

problem of cyber security in power networks. In modern power systems, the cyber-physical in-

teraction of IT infrastructure (SCADA systems) with physical power systems renders the system

vulnerable not only to operational errors but also to malicious external intrusions. As an exam-

ple of this type of cyber-physical interaction we consider here the Automatic Generation Control

(AGC) system, which is one of the few control loops in power networks that are closed over the

SCADA system without human operator intervention. In earlier work [MVM+10, MVM+11] we

have shown that, having gained access to the AGC signal, an attacker can provoke frequency

deviations and power oscillations by applying sophisticated attack signals. The resulting dis-

ruption can be serious enough to trigger generator out-of-step protection relays, leading to load

shedding and generator tripping. Our earlier work, however, also indicated that an early de-

tection of the intrusion may allow one to disconnect the AGC and limit the damage by relying

solely on the so-called primary frequency controllers. In this work we show how to mitigate

this cyber-physical security concern by using the proposed FDI scheme to develop a protection

layer which quickly detects the abnormal signals generated by the attacker. This approach to

enhancing the cyber-security of power transmission systems led to an EU patent sponsored by

ETH Zurich [MEVAL].

The article is organized as follows. In Section 2 a formal description of the FDI problem as

well as the outline of the proposed methodology is presented. A general class of nonlinear models

is described in Section 3. Then, reviewing residual generation for the linear models, we develop

an optimization-based framework for nonlinear systems in Section 4. Theoretical guarantees are

also provided in the context of randomized algorithms. We apply the developed methodology

to the AGC case study in Section 5, and finally conclude with some remarks and directions for
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System Dynamics FDI Filter

Figure 1. General configuration of the FDI filter

future work in Section 6. For better readability, the technical proofs of Sections 4.2 and 4.3 are

moved to the appendices.

Notation. The symbols N and R+ denote the set of natural and nonnegative real numbers,

respectively. Let A ∈ Rn×m be an n×m matrix with real values, Aᵀ ∈ Rm×n be its transpose,

and ‖A‖2 := σ(A) where σ is the maximum singular value of the matrix. Given a vector

v := [v1, · · · , vn]ᵀ, the infinite norm is defined as ‖v‖∞ := maxi≤n |vi|. Let G be a linear matrix

transfer function. Then ‖G‖H∞ := supω∈R σ
(
G(jω)

)
, where σ is the maximum singular value

of the matrix G(jω). The function space Wn denotes the set of piece-wise continuous (p.w.c)

functions taking values in Rn, andWn
T is the restriction ofWn to the time interval [0, T ], which is

endowed with the L2-inner product, i.e., 〈e1, e2〉 :=
∫ T

0
eᵀ1(t)e2(t)dt with the associated L2-norm

‖e‖L2
:=
√
〈e, e〉. The linear operator p : Wn → Wn is the distributional derivative operator.

In particular, if e : R+ → Rn is a smooth mapping then p[e(t)] := d
dte(t). Given a probability

space (Ω,F ,P), we denote the n-Cartesian product space by Ωn :=
⊗n

i=1 Ω and the respective

product measure by Pn.

2. Problem Statement and Outline of the Proposed Approach

In this section, we provide the formal description of the FDI problem as well as our new design

perspective. We will also outline our methodology to tackle the proposed perspective.

2.1. Formal Description. The objective of the FDI design is to use all information to generate

a diagnostic signal to alert the operators to the occurrence of a specific fault. Consider a general

dynamical system as in Figure 1 with its inputs categorized into (i) unknown inputs d, (ii) fault

signal f , and (iii) known inputs u. The unknown input d represents unknown disturbances that

the dynamical system encounters during normal operation. The known input u contains all

known signals injected to the system which together with the measurements y are available for

FDI tasks. Finally, the input f is a fault (or an intrusion) which cannot be directly measured

and represents the signal to be detected.

The FDI task is to design a filter whose input are the known signals (u and y) and whose

output (known as the residual and denoted by r) differentiates whether the measurements are a

consequence of some normal disturbance input d, or due to the fault signal f . Formally speaking,

the residual can be viewed as a function r(d, f), and the FDI design is ideally translated as the

mapping requirements

d 7→ r(d, 0) ≡ 0,(1a)

f 7→ r(d, f) 6= 0, ∀d(1b)
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where condition (1a) ensures that the residual of the filter, r, is not excited when the system is

perturbed by normal disturbances d, while condition (1b) guarantees the filter sensitivity to the

fault f in the presence of any disturbance d.

The state of the art in FDI concentrates on the system dynamics, and imposes restrictions

to provide theoretical guarantees for the required mapping conditions (1). For example, the

authors in [NF06] restrict the system to linear dynamics, whereas [HKEY99, PI01] treat nonlinear

systems but impose necessary conditions in terms of a certain distribution connected to their

dynamics. In an attempt to relax the perfect decoupling condition, one may consider the worst

case scenario of the mapping (1) in a robust formulation as

RP :


min
γ,F

γ

s.t.
∥∥r(d, 0)

∥∥ ≤ γ, ∀d ∈ D
f 7→ r(d, f) 6= 0, ∀d ∈ D,

(2)

where D is set of normal disturbances, γ is the alarm threshold of the designed filter, and the

minimization is running over a given class of FDI filters denoted by F. Note that the residual r is

influenced by the choice of the filter in F, but we omit this dependence for notational simplicity.

In view of formulation (2), an alarm is only raised whenever the residual exceeds γ, i.e., the

filter avoids any false alarm. This, however, comes at the cost of missed detections of the faults

whose residual is not bigger than the threshold γ. In the literature, the robust perspective RP

has also been studied in order for a trade-off between disturbance rejection and fault sensitivity

for a certain class of dynamics, e.g., see [CP82, Section 9.2] for bilinear dynamics and [FF12] for

multivariate polynomial systems.

2.2. New Design Perspective. Here we shift our attention from the system dynamics to the

class of unknown inputs D. We assume that the disturbance signal d comes from a prescribed

probability space and relax the robust formulation RP by introducing probabilistic constraints

instead. In this view, the performance of the FDI filter is characterized in a probabilistic fashion.

Assume that the signal d is modeled as a random variable on the prescribed probability space

(Ω,F ,P), which takes values in a metric space endowed with the corresponding Borel sigma-

algebra. Assume further that the class of FDI filters ensures the measurability of the mapping

d 7→ r where r also belongs to a metric space. In light of this probabilistic framework, one may

quantify the filter performance from different perspectives; in the following we propose two of

them:

AP :


min
γ,F

γ

s.t. E
[
J
(
‖r(d, 0)‖

)]
≤ γ

f 7→ r(d, f) 6= 0, ∀d ∈ D,

CP :


min
γ,F

γ

s.t. P
(
‖r(d, 0)‖ ≤ γ

)
≥ 1− ε

f 7→ r(d, f) 6= 0, ∀d ∈ D,

(3)

where E[ · ] in AP is meant with respect to the probability measure P, and ‖ · ‖ is the corre-

sponding norm in the r space. The function J : R+ → R+ in AP and ε ∈ (0, 1) in CP are design

parameters. To control the filter residual generated by d, the payoff function J is required to

be in class K∞, i.e., J is strictly increasing and J(0) = 0 [Kha92, Definition 4.2, p. 144]. The

decision variables in the above optimization programs are F, a class of FDI filters which is cho-

sen a priori, and γ which is the filter threshold; we shall explain these design parameters more

explicitly in subsequent sections.
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Two formulations provide different probabilistic interpretations of fault detection. The pro-

gram AP stands for “Average Performance” and takes all possible disturbances into account,

but in accordance with their occurrence probability in an averaging sense. The program CP

stands for “Chance Performance” and ignores an ε-fraction of the disturbance patterns and only

aims to optimize the performance over the rest of the disturbance space. Note that in the CP

perspective, the parameter ε is an additional design parameter to be chosen a priori.

Let us highlight that the proposed perspectives rely on the probability distribution P, which

requires prior information about possible disturbance patterns. That is, unlike the existing liter-

ature, the proposed design prioritizes between disturbance patterns in terms of their occurrence

likelihood. From a practical point of view this requirement may be natural; in Section 5 we will

describe an application of this nature.

2.3. Outline of the Proposed Methodology. We employ randomized algorithms to tackle

the formulations in (3). We generate n independent and identically distributed (i.i.d.) scenarios

(di)
n
i=1 from the probability space (Ω,F ,P), and consider the following optimization problems

as random counterparts of those in (3):

ÃP :


min
γ,F

γ

s.t. 1
n

∑n
i=1 J

(
‖r(di, 0)‖

)
≤ γ

f 7→ r(d, f) 6= 0, ∀d ∈ D

C̃P :


min
γ,F

γ

s.t. max
i≤n
‖r(di, 0)‖ ≤ γ

f 7→ r(d, f) 6= 0, ∀d ∈ D,

(4)

Notice that the optimization problems ÃP and C̃P are naturally stochastic as they depend on

the generated scenarios (di)
n
i=1, which is indeed a random variable defined on n-fold product

probability space (Ωn,Fn,Pn). Therefore, their solutions are also random variables. In this

work, we first restrict the FDI filters to a class of linear operators in which the random programs

(4) are effectively convex, and hence tractable. In this step, the FDI filter is essentially ro-

bustified to n signatures of the dynamic nonlinearity. Subsequently, invoking existing results on

randomized optimization, in particular [Han12, MSL15], we will provide probabilistic guarantees

on the relation of programs (3) and their probabilistic counterparts in (4), whose precision is

characterized in terms of the number of scenarios n.

We should highlight that the true empirical approximation of the chance constraint in CP is

indeed 1
n

∑n
i=1 1

{
||r(di,0)||≤γ

} ≥ 1 − ε, where 1 is the indicator function. This approximation,

as opposed to the one proposed in (4), leads to a non-convex optimization program which is, in

general, computationally intractable. In addition, note that the design parameter ε of CP in (3)

does not explicitly appear in the random counterpart C̃P in (4). However, as we will clarify in

4.3, the parameter ε contributes to the probabilistic guarantees of the design.

3. Model Description and Basic Definitions

In this section we introduce a class of nonlinear models along with some basic definitions,

which will be considered as the system dynamics in Figure 1 throughout the article. Consider

the nonlinear differential-algebraic equation (DAE) model

E(x) +H(p)x+ L(p)z + F (p)f = 0,(5)

where the signals x, z, f are assumed to be piece-wise continuous (p.w.c.) functions from R+ into

Rnx ,Rnz ,Rnf , respectively; we denote the spaces of such signals byWnx ,Wnz ,Wnf , respectively.
5
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Let nr be the number of rows in (5), and E : Rnx → Rnr be a Lipschitz continuous mapping.

The operator p is the distributional derivative operator [Ada75, Section I], and H,L, F are

polynomial matrices in the operator p with nr rows and nx, nz, nf columns, respectively. In the

setup of Figure 1, the signal x represents all unknowns signals, e.g., internal states of the system

dynamics and unknown disturbances d. The signal z contains all known signals, i.e., it is an

augmented signal including control input u and available measurements y. The signal f stands

for faults or intrusion which is the target of detection. We refer to [Shc07] and the references

therein for general theory of nonlinear DAE systems and the regularity of their solutions.

One may extend the space of functions x, z, f to Sobolev spaces, but this is outside the scope

of our study. On the other hand, if these spaces are restricted to the (resp. right) smooth

functions, then the operator p can be understood as the classical (resp. right) differentiation

operator. Throughout this article we will focus on continuous-time models, but one can obtain

similar results for discrete-time models by changing the operator p to the time-shift operator. We

will think of the matrices H(p), L(p) and F (p) above either as linear operators on the function

spaces (in which case p will be interpreted as a generalized derivative operator as explained

above) or as algebraic objects (in which case p will be interpreted as simply a complex variable).

The reader is asked to excuse this slight abuse of the notation, but the interpretation should be

clear from the context.

Let us first show the generality of the DAE framework of (5) by the following example.

Consider the classical nonlinear ordinary differential equation{
GẊ(t) = EX

(
X(t), d(t)

)
+AX(t) +Buu(t) +Bdd(t) +Bff(t)

Y (t) = EY
(
X(t), d(t)

)
+ CX(t) +Duu(t) +Ddd(t) +Dff(t)

(6)

where u( · ) is the input signal, d( · ) the unknown disturbance, Y ( · ) the measured output, X( · )
the internal variables, and f( · ) a faults (or an attack) signal to be detected. Parameters G,

A, Bu, Bd, Bf , Du, Dd, and Df are constant matrices and functions EX , EY are Lipschitz

continuous mappings with appropriate dimensions. One can easily fit the model (6) into the

DAE framework of (5) by defining

x :=

[
X

d

]
, z :=

[
Y

u

]
,

E(x) :=

[
EX(x)

EY (x)

]
, H(p) :=

[
−pG+A Bd

C Dd

]
, L(p) :=

[
0 Bu
−I Du

]
, F (p) :=

[
Bf
Df

]
.

Following [NF06], with a slight extension to a nonlinear dynamics, let us formally characterize

all possible observations of the model (5) in the absence of the fault signal f :

(7) M :=
{
z ∈ Wnz

∣∣ ∃x ∈ Wnx : E(x) +H(p)x+ L(p)z = 0
}

;

This set is known as the behavior of the system [PW98].

Definition 3.1 (Residual Generator). A proper linear time invariant filter r := R(p)z is a

residual generator for (5) if for all z ∈M, it holds that lim
t→∞

r(t) = 0.

Note that by Definition 3.1 the class of residual generators in this study is restricted to a class

of linear transfer functions where R(p) is a matrix of proper rational functions of p.
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Definition 3.2 (Fault Sensitivity). The residual generator introduced in Definition 3.1 is sen-

sitive to fault fi if the transfer function from fi to r is nonzero, where fi is the ith elements of

the signal f .

One can inspect that Definition 3.1 and Definition 3.2 essentially encode the basic mapping

requirements (1a) and (1b), respectively.

4. Fault Detection and Isolation Filters

The main objective of this section is to establish a scalable framework geared towards the

design perspectives AP and CP as explained in Section 2. To this end, we first review a polyno-

mial characterization of the residual generators and its linear program formulation counterpart

for linear systems (i.e., the case where E(x) ≡ 0). We then extend the approach to the nonlinear

model (5) to account for the contribution of E( · ) to the residual, and subsequently provide

probabilistic performance guarantees for the resulting filter.

4.1. Residual Generators for Linear Systems. In this subsection we assume E(x) ≡ 0, i.e.,

we restrict our attention to the class of linear DAEs. One can observe that the behavior set M
can alternatively be defined as

M =
{
z ∈ Wnz

∣∣ NH(p)L(p)z = 0
}
,

where the collection of the rows of NH(p) forms an irreducible polynomial basis for the left

null-space of the matrix H(p) [PW98, Section 2.5.2]. This representation allows one to describe

the residual generators in terms of polynomial matrix equations. That is, by picking a linear

combination of the rows of NH(p) and considering an arbitrary polynomial a(p) of sufficiently

high order with roots with negative real parts, we arrive at a residual generator in the sense of

Definition 3.1 with transfer operator

(8) R(p) = a−1(p)γ(p)NH(p)L(p) := a−1(p)N(p)L(p),

where γ(p) is a polynomial row vector representing a linear combination of the rows of NH(p).

Note that the role of γ(p) is implicitly taken into consideration by N(p) := γ(p)NH(p). The

above filter can easily be realized by an explicit state-space description with input z and output

r. Multiplying the left hand-side of (5) by a−1(p)N(p) leads to

r = −a−1(p)N(p)F (p)f.

Thus, a sensitive residual generator, in the sense of Definition 3.1 and Definition 3.2, is charac-

terized by the polynomial matrix equations

N(p)H(p) = 0,(9a)

N(p)F (p) 6= 0,(9b)

where (9a) implements condition (1a) above (cf. Definition 3.1) while (9b) implements condition

(1b) (cf. Definition 3.2). Both row polynomial vector N(p) and denominator polynomial a(p)

can be viewed as design parameters. Throughout this study we, however, fix a(p) and aim to find

an optimal N(p) with respect to a certain objective criterion related to the filter performance.

In case there are more than one faults (nf > 1), it might be of interest to isolate the impact

of one fault in the residual from the others. The following remark implies that the isolation

problem is effectively a detection problem.
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Remark 4.1 (Fault Isolation). Consider model (5) and suppose nf > 1. In order to detect only

one of the fault signals, say f1, and isolate it from the other faults, fi, i ∈ {2, · · · , nf}, one may

consider the detection problem for the same model but in new representation

E(x) + [H(p) F̃ (p)]

[
x

f̃

]
+ L(p)z + F1(p)f = 0,

where F1(p) is the first column of F (p), and F̃ (p) := [F2(p), · · · , Fnf
(p)], and f̃ := [f2, · · · , fnf

].

In light of Remark 4.1, one can build a bank of filters where each filter aims to detect a

particular fault while isolating the impact of the others; see [FKA09, Theorem 2] for more

details on fault isolation. Next, we show how to transform the matrix polynomial equations (9)

into a linear programming framework.

Lemma 4.2. Let N(p) be a feasible polynomial matrix of degree dN for the inequalities (9),

where

H(p) :=

dH∑
i=0

Hip
i, F (p) :=

dF∑
i=0

Fip
i, N(p) :=

dN∑
i=0

Nip
i,

and Hi ∈ Rnr×nx , Fi ∈ Rnr×nf , and Ni ∈ R1×nr are constant matrices. Then, the polynomial

matrix inequalities (9) are equivalent, up to a scalar, to

N̄H̄ = 0,(10a) ∥∥N̄ F̄∥∥∞ ≥ 1,(10b)

where ‖ · ‖∞ is the infinity vector norm, and

N̄ :=
[
N0 N1 · · · NdN

]

H̄ :=


H0 H1 · · · HdH 0 · · · 0

0 H0 H1 · · · HdH 0
...

...
. . .

. . .
. . . 0

0 · · · 0 H0 H1 · · · HdH

 ,

F̄ :=


F0 F1 · · · FdF 0 · · · 0

0 F0 F1 · · · FdF 0
...

...
. . .

. . .
. . . 0

0 · · · 0 F0 F1 · · · FdF

 .

Proof. It is easy to observe that

N(p)H(p) = N̄H̄[I pI · · · piI]ᵀ, i := dN + dH ,

N(p)F (p) = N̄ F̄ [I pI · · · pjI]ᵀ, j := dN + dF .

Moreover, in light of the linear structure of equations (9), one can simply scale the inequality

(9b) and arrive at the assertion of the lemma. �

Strictly speaking, the formulation in Lemma 4.2 is not a linear program, due to the non-convex

constraint (10b). It is, however, easy to show that the characterization (10) can be understood

as a number of linear programs, which grows linearly in the degree of the filter:
8
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Lemma 4.3. Consider the sets

Nj :=
{
N̄ ∈ Rnr(dN+1)

∣∣ N̄H̄ = 0, N̄ F̄ vj ≥ 1
}
, vj :=

↓ jth[
0, · · · , 1, · · · , 0

]ᵀ
,

and let N :=
⋃m
j=1Nj where m := nf (dF + dN + 1) is the number of columns of F̄ (the param-

eters H̄, F̄ , nf , dF , dN are as considered in Lemma 4.2). Then, the set characterized by (10) is

equivalent to N ∪−N .

Proof. Notice that ‖N̄ F̄‖∞ ≥ 1 if and only if there exists a coordinate j such that N̄ F̄ vj ≥ 1 or

N̄ F̄ vj ≤ −1. Thus, the proof readily follows from the fact that each of the set Nj focuses on a

component of the vector N̄ F̄ in (10b). �

Fact 4.4. There exists a solution N(p) to (9) if and only if Rank [H(p) F (p)] > Rank H(p).

Fact 4.4 provides necessary and sufficient conditions for the feasibility of the linear program

formulation in Lemma 4.2; proof is omitted as it is an easy adaptation of the one in [FKA09,

Corollary 3].

4.2. Extension to Nonlinear Systems. In the presence of nonlinear terms E(x) 6= 0, it is

straightforward to observe that the residual of filter (8) consists of two terms:

r := R(p)z = − a−1(p)N(p)F (p)f︸ ︷︷ ︸
(i)

− a−1(p)N(p)E(x)︸ ︷︷ ︸
(ii)

.(11)

Term (i) is the desired contribution of the fault f and is in common with the linear setup. Term

(ii) is due to the nonlinear term E( · ) in (5). Our aim here will be to reduce the impact of

E(x) while increasing the sensitivity to the fault f . To achieve this objective, we develop two

approaches to control each of the two terms separately; in both cases we assume that the degree

of the filter (i.e., dN in Lemma 4.2) and the denominator (i.e., a(p) in (11)) are fixed, and the

aim is to design the numerator coefficients (i.e., N(p) in (11)).

Approach (I) (Fault Sensitivity). To focus on fault sensitivity while neglecting the contribution of

the nonlinear term, we assume that the system operates close to an equilibrium point xe ∈ Rnx .

Even though in case of a fault the system may eventually deviate substantially from its nominal

operating point, if the FDI filter succeeds in identifying the fault early the system will not have

time to deviate too far. Hence, one may hope that a filter based on linearizing the system

dynamics around the equilibrium would suffice. Then we assume, without loss of generality,

that

lim
x→xe

∥∥E(x)
∥∥

2

‖x− xe‖2
= 0,

where ‖ · ‖2 stands for the Euclidean norm of a vector. If this is not the case, the linear part of

E( · ) can be extracted and included in the linear part of the system.

To increase the sensitivity of the linear filter to the fault f , we revisit the linear programming

formulation (10) and seek a feasible numerator N(p) such that the coefficients of the transfer

function N(p)F (p) attain maximum values within the admissible range. This gives rise to the
9
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following optimization problem: 
max
N̄

∥∥N̄ F̄∥∥∞
s.t. N̄H̄ = 0∥∥N̄∥∥∞ ≤ 1

(12)

where the objective function targets the contribution of the signal f to the residual r. Let us

recall that N̄ F̄ is the vector containing all numerator coefficients of the transfer function f 7→ r.

The second constraint in (12) is added to ensure that the solutions remain bounded; note that

thanks to the linearity of the filter this constraint does not influence the performance. Though

strictly speaking (12) is not a linear program, in a similar fashion as in Lemma 4.3 it is easy to

transform it to a family of m different linear programs, where m is the number of columns of F̄ .

How well the filter designed by (12) will work depends on the magnitude of the second term

in (11), which is due to the nonlinearities E(x) and is ignored in (12). If the term generated by

E(x) is large enough, the filter may lead to false alarms, whereas if we set our thresholds high to

tolerate the disturbance generated by E(x) in nominal conditions, the filter may lead to missed

detections. A direct way toward controlling this trade-off involving the nonlinear term will be

the focus of the second approach.

Approach (II) (Robustify to Nonlinearity Signatures). This approach is the main step toward

the theoretical contribution of the article, and provides the principle ingredients to tackle the

proposed perspectives AP and CP introduced in (3). The focus is on term (ii) of the residual

(11), in relation to the mapping (1a). The idea is to robustify the filter against certain signatures

of the nonlinearity during nominal operation. In the following we restrict the class of filters to

the feasible solutions of polynomial matrix equations (9), characterized in Lemma 4.2.

Let us denote the space of all p.w.c. functions from the interval [0, T ] to Rn byWn
T . We equip

this space with the L2-inner product and the corresponding norm

‖e‖L2
:=
√
〈e, e〉, 〈e, g〉 :=

∫ T

0

eᵀ(t)g(t)dt, e, g ∈ Wn
T .

Consider an unknown signal x ∈ Wnx

T . In the context of the ODEs (6) that means we excite

the system with the disturbance d( · ) for the time horizon T . We then stack d( · ) together with

the internal state X( · ) to introduce x := [Xd ]. We define the signals ex ∈ Wnr

T and rx ∈ W1
T as

follows:

ex(t) := E
(
x(t)

)
, rx(t) := −a−1(p)N(p)[ex](t), ∀t ∈ [0, T ].(13)

The signal ex is the “nonlinearity signature” in the presence of the unknown signal x, and the

signal rx is the contribution of the nonlinear term to the residual of the linear filter. Our goal

now is to minimize ‖rx‖L2 in an optimization framework in which the coefficients of polynomial

N(p) are the decision variables and the denominator a(p) is a fixed stable polynomial with the

degree at least the same as N(p).

Lemma 4.5. Let N(p) be a polynomial row vector of dimension nr and degree dN , and a(p)

be a stable scalar polynomial with the degree at least dN . For any x ∈ Wnx

T there exists ψx ∈
Wnr(dN+1)
T such that

rx(t) = N̄ψx(t), ∀t ∈ [0, T ](14a)

‖ψx‖L2 ≤ C‖ex‖L2 , C :=
√
nr(dN + 1)‖a−1‖H∞ ,(14b)

10
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where N̄ is the vector collecting all the coefficients of the numerator N(p) as introduced in Lemma

4.2, and the signals ex and rx are defined as in (13).

Proof. See Appendix I.1. �

Given x ∈ Wnx

T and the corresponding function ψx as defined in Lemma 4.5, we have

‖rx‖2L2
= N̄QxN̄

ᵀ, Qx :=

∫ T

0

ψx(t)ψᵀ
x(t)dt.(15)

We call Qx the “signature matrix” of the nonlinearity signature t 7→ ex(t) resulting from the

unknown signal x. Given x and the corresponding signature matrix Qx, the L2-norm of rx in

(13) can be minimized by considering an objective which is a quadratic function of the filter

coefficients N̄ subject to the linear constraints in (10):
min
N̄

N̄QxN̄
ᵀ

s.t. N̄H̄ = 0∥∥N̄ F̄∥∥∞ ≥ 1

(16)

The program (16) is not a true quadratic program due to the second constraint. Following

Lemma 4.3, however, one can show that the optimization program (16) can be viewed as a

family of m quadratic programs where m = nf (dF + dN + 1).

In the rest of the subsection, we establish an algorithmic approach to approximate the matrix

Qx for a given x ∈ Wnx

T , with an arbitrary high precision. We first introduce a finite dimensional

subspace of W1
T denoted by

B := span{b0, b1, · · · , bk},(17)

where the collection of bi : [0, T ] → R is a basis for B. Let Bnr :=
⊗nr

i=1 B be the nr Cartesian

product of the set B, and TB :Wnr

T → Bnr be the L2-orthogonal projection operator onto Bnr ,

i.e.,

TB(ex) =

k∑
i=0

β?i bi, β? := arg min
β

∥∥ex − k∑
i=0

βibi
∥∥
L2

(18)

Let us remark that if the basis of B is orthonormal (i.e., 〈bi, bj〉 = 0 for i 6= j), then β?i =
T∫
0

bi(t)ex(t)dt; we refer to [Lue69, Section 3.6] for more details on the projection operator.

Assumption 4.6. We stipulate that

(i) The basis functions bi of subspace B are smooth and B is closed under the differentiation

operator p, i.e., for any b ∈ B we have p[b] = d
dtb ∈ B.

(ii) The basis vectors in (17) are selected from an L2-complete basis for W1
T , i.e., for any

e ∈ Wnr

T , the projection error
∥∥e − TB(e)

∥∥
L2

can be made arbitrarily small by increasing

the dimension k of subspace B.

The requirements of Assumptions 4.6 can be fulfilled for subspaces generated by, for example,

the polynomial or Fourier basis. Thanks to Assumption 4.6(i), the linear operator p can be
11
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viewed as a matrix operator. That is, there exists a square matrix D with dimension k+ 1 such

that

p[B(t)] =
d

dt
B(t) = DB(t), B(t) := [b0(t), · · · , bk(t)]ᵀ.(19)

In Section 5.2 we will provide an example of such matrix operator for the Fourier basis. By

virtue of the matrix representations of (19) we have

N(p)TB(ex) =

dN∑
i=0

Nip
iβ?B =

dN∑
i=0

Niβ
?DiB = N̄D̄B, D̄ :=


β?

β?D
...

β?DdN

 ,(20)

where the vector β? := [β?0 , · · · , β?k ] is introduced in (18). If we define the positive semidefinite

matrix G := [Gij ] of dimension k + 1 by

Gij :=
〈
a−1(p)[bi], a

−1(p)[bj ]
〉
,(21)

we arrive at ∥∥a−1(p)N(p)TB(e)
∥∥2

L2
= N̄QBN̄

ᵀ, QB := D̄GD̄ᵀ,(22)

where D̄ and G are defined in (20) and (21), respectively. Note that the matrices G and D are

built by the data of the subspace B and denominator a(p), whereas the nonlinearity signature

only influences the coefficient β?. The above discussion is summarized in Algorithm 1 with an

emphasis on models described by the ODE (6), while Proposition 4.7 addresses the precision of

the approximation scheme.

Proposition 4.7 (Signature Matrix Approximation). Consider an unknown signal x : [0, T ]→
Rnx in Wnx

T and the corresponding nonlinearity signature ex and signature matrix Qx as defined

in (13) and (15), respectively. Let (bi)i∈N ⊂ W1
T be a family of basis functions satisfying As-

sumptions 4.6, and let B be the finite dimensional subspace in (17). If ‖ex − TB(ex)‖L2
< δ,

where TB is the projection operator onto Bnr , then∥∥Qx −QB∥∥2
< C̄δ, C̄ :=

(
1 + 2‖ex‖L2

)
C‖a−1‖H∞ ,(23)

where QB is obtained by (22) (the output of Algorithm 1), and C is the same constant as in

(14b).

Proof. See Appendix I.1. �

Remark 4.8 (Multi Signatures Training). In order to robustify the FDI filter to more than

one unknown signal, say {xi( · )}ni=1, one may introduce an objective function as an average cost

N̄
(

1
n

∑n
i=1Qxi

)
N̄ᵀ or the worst case viewpoint maxi≤n N̄QxiN̄

ᵀ, where Qxi is the signature

matrix corresponding to xi as defined in (15).

4.3. Proposed Methodology and Probabilistic Performance. The preceding subsection

proposed two optimization-based approaches to enhance the FDI filter design from linear to

nonlinear system dynamics. Approach (I) targets the fault sensitivity while neglecting the non-

linear term of the system dynamics, and Approach (II) offers a QP framework to robustify the

residual with respect to signatures of the dynamic nonlinearities. Here our aim is to achieve a
12
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Algorithm 1 Computing the signature matrix Qx in (15)

(i) Initialization of the Filter Paramters:

(a) Select a stable filter denominator a(p), a numerator degree dN not higher than a(p)

order, and horizon T

(b) Select a basis {bi}ki=1 ⊂ W1
T satisfying Assumptions 4.6

(c) Compute the differentiation matrix D in (19)

(d) Compute the matrix G in (21) 1

(ii) Identification of the Nonlinearity Signature:

(a) Input the disturbance pattern d( · ) for time horizon T

(b) Solve (6) under inputs d( · ) and f ≡ 0 to obtain the internal state X( · )

(c) Set the unknown signal x(t) := [Xᵀ(t), dᵀ(t)]ᵀ

(d) Set the nonlinearity signature ex(t) :=
[
Eᵀ
X

(
x(t)

)
, Eᵀ

Y

(
x(t)

)]ᵀ
(iii) Computation of the Signature Matrix

(a) Compute β? from (18) (in case of orthonormal basis β?i =
T∫
0

bi(t)ex(t)dt)

(b) Compute D̄ from (20)

(c) Ouput QB := D̄GD̄ᵀ in (22)

reconciliation between these two approaches. We subsequently provide theoretical results from

the proposed solutions to the original design perspectives (3).

Let (di)
n
i=1 ⊂ D be i.i.d. disturbance patterns generated from the probability space (Ω,F ,P).

For each di, let xi be the corresponding unknown signal with the associated signature matrix Qxi

as defined in (15). In regard to the average perspective AP, we propose the two-stage (random)

optimization program

ÃP1 :



min
γ,N̄

γ

s.t. N̄H̄ = 0∥∥N̄ F̄∥∥∞ ≥ 1

1
n

n∑
i=1

J
(√

N̄Qxi
N̄ᵀ
)
≤ γ

(24a)

ÃP2 :



max
N̄

∥∥N̄ F̄∥∥∞
s.t. N̄H̄ = 0∥∥N̄∥∥∞ ≤ 1

1
n

n∑
i=1

J
(
‖N̄?

1 ‖∞
√
N̄QxiN̄

ᵀ
)
≤ γ?1

(24b)

where J : R+ → R+ is an increasing and convex payoff function, and in the second stage

(24b) N̄?
1 and γ?1 are the optimizers of the first stage (24a), i.e., the programs (24) need to be

1A conservative but easy-to-implement approach is to set G an identity matrix with dimension k + 1.

13
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solved sequentially in a lexicographic (multi-objective) sense [MA04]. Let us recall that the filter

coefficients can always be normalized with no performance deterioration. Hence, it is straight-

forward to observe that the main goal of the second stage is only to improve the coefficients

of N̄ F̄ (concerning the fault sensitivity) while the optimality of the first stage (concerning the

robustification to nonlinearity signatures) is guaranteed. Similarly, we also propose the following

two-stage program for the perspective CP:

C̃P1 :



min
γ,N̄

γ

s.t. N̄H̄ = 0∥∥N̄ F̄∥∥∞ ≥ 1

max
i≤n

N̄Qxi
N̄ᵀ ≤ γ

(25a)

C̃P2 :



max
N̄

∥∥N̄ F̄∥∥∞
s.t. N̄H̄ = 0∥∥N̄∥∥∞ ≤ 1

‖N̄?
1 ‖2∞

(
max
i≤n

N̄QxiN̄
ᵀ
)
≤ γ?1

(25b)

Remark 4.9 (Computational Complexity). In view of Lemma 4.3, all the programs in (24)

and (25) can be written as families of convex programs, and hence are tractable. It is, however,

worth noting that in case the payoff function of ÃP is J(α) := α2, the computational complexity

of the resulting programs in (24) is independent of the number of scenarios n, since the problems

effectively reduce to a quadratic programming with a constraint involving the average of all the

respective signature matrices (i.e., 1
n

∑n
i=1Qxi

). This is particularly of interest if one requires

to train the filter for a large number of scenarios.

Clearly, the filter designed by programs (24) and (25) is robustified to only finitely many

most likely events, and as such, it may remain sensitive to disturbance patterns which have not

been observed in the training phase. However, thanks to the probabilistic guarantees detailed in

the sequel, we shall show that the probability of such failures (false alarm) is low. In fact, the

tractability of our proposed scheme comes at the price of allowing for rare threshold violation

of the filter. The rest of the subsection formalizes this probabilistic bridge between the program

(24) (resp. (25)) and the original perspective AP (resp. CP) in (3) when the class of filters is

confined to the linear residuals characterized in Lemma 4.2. For this purpose, we need a technical

measurability assumption which is always expected to hold in practice.

Assumption 4.10 (Measurability). We assume that the mapping D 3 d 7→ x ∈ Wnx

T is mea-

surable where the function spaces are endowed with the L2-topology and the respective Borel

sigma-algebra. In particular, x can be viewed as a random variable on the same probability space

as d.

Assumption 4.10 is referred to the behavior of the system dynamics as a mapping from the

disturbance d to the internal states. In the context of ODEs (6), it is well-known that under

mild assumptions (e.g., Lipschitz continuity of EX) the mapping d 7→ X is indeed continuous

[Kha92, Chapter 5], which readily ensures Assumption 4.10.

4.3.1. Probabilistic performance of ÃP. Here we study the asymptotic behavior of the empirical

average of E
[
J(‖r‖)

]
uniformly in the filter coefficients N̄ , which allows us to link the solutions

14
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of programs (24) to AP. Let N :=
{
N̄ ∈ Rnr(dN+1) : ‖N̄‖∞ ≤ 1

}
and consider the payoff

function of AP in (3) as the mapping φ : N ×Wnx

T → R+:

φ(N̄ , x) := J
(
‖rx‖L2

)
= J

(
‖N̄ψx‖L2

)
,(26)

where the second equality follows from Lemma 4.5.

Theorem 4.11 (Average Performance). Suppose Assumption 4.10 holds and the random vari-

able x is almost surely bounded2. Then, the mapping N̄ 7→ φ(N̄ , x) is a random function.

Moreover, if (xi)
n
i=1 ⊂ W

nx

T are i.i.d. random variables and en is the uniform empirical average

error

en := sup
N̄∈N

{ 1

n

n∑
i=1

φ(N̄ , xi)− E
[
φ(N̄ , x)

]}
,(27)

then,

(i) the Strong Law of Large Numbers (SLLN) holds, i.e., lim
n→∞

en = 0 almost surely.

(ii) the Uniform Central Limit Theorem (UCLT) holds, i.e.,
√
nen converges in law to a

Gaussian variable with distribution N(0, σ) for some σ ≥ 0.

Proof. See Appendix I.2 along with required preliminaries. �

The following Corollary is an immediate consequence of the UCLT in Theorem 4.11 (ii).

Corollary 4.12. Let assumptions of Theorem 4.11 hold, and en be the empirical average error

(27). For all ε > 0 and k < 1
2 , we have

lim
n→∞

Pn
(
nken ≥ ε

)
= 0,

where Pn denotes the n-fold product probability measure on
(
Ωn,Fn

)
.

4.3.2. Probabilistic performance of C̃P. The formulation CP in (3) is known as chance con-

strained program which has received increasing attention due to recent developments toward

tractable approaches, in particular via the scenario counterpart (cf. C̃P in (4)) in a convex

setting [CC06, CG08]. These studies are, however, not directly applicable to our problem due

to the non-convexity arising from the constraint ‖N̄ F̄‖∞ ≥ 1. Here, following our recent work

[MSL15], we exploit the specific structure of this non-convexity and adapt the scenario approach

accordingly.

Let
(
N̄?
n, γ

?
n

)
be the optimizer obtained through the two-stage programs (25) where N̄?

n is the

filter coefficients and γ?n represents the filter threshold; n is referred to the number of disturbance

patterns. Given the filter N̄?
n, let us denote the corresponding filter residual due to the signal x

by rx[N̄∗n]; this is a slight modification of our notation rx in (13) to specify the filter coefficients.

To quantify the filter performance, one may ask for the probability that a new unknown signal x

violates the threshold γ?n when the FDI filter is set to N̄?
n (i.e., the probability that

∥∥rx[N̄∗n]
∥∥2
L2

>

γ∗n). In the FDI literature such a violation is known as a false alarm, and from the CP standpoint

its occurrence probability is allowed at most to the ε level. In this view the performance of the

filter can be quantified by the event

E
(
N̄?
n, γ
∗
n

)
:=
{
P
(∥∥rx[N̄∗n]

∥∥2

L2
> γ∗n

)
> ε
}
.(28)

2This assumption may be relaxed in terms of the moments of x, though this will not be pursued further here.
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The event (28) accounts for the feasibility of the C̃P solution from the original perspective CP.

Note that the measure P in (28) is referred to x whereas the stochasticity of the event stems

from the random solutions
(
N̄?
n, γ
∗
n

)
.3

Theorem 4.13 (Chance Performance). Suppose Assumption 4.10 holds and (xi)
n
i=1 are i.i.d.

random variables on (Ω,F ,P). Let N̄?
n ∈ Rnr(dN+1) and γ∗n ∈ R+ be the solutions of C̃P, and

measurable in Fn. Then, the set (28) is Fn-measurable, and for every β ∈ (0, 1) and any n such

that

n ≥ 2

ε

(
ln
nf (dF + dN + 1)

β
+ nr(dN + 1) + 1

)
,

where dN is the degree of the filter and nf , nr, dF are the system size parameters of (5), we have

Pn
(
E
(
N̄?
n, γ
∗
n

))
< β.

Proof. See Appendix I.2. �

5. Cyber-Physical Security of Power Systems: AGC Case Study

In this section, we illustrate the performance of our theoretical results to detect a cyber

intrusion in a two-area power system. Motivated by our earlier studies [MVM+10, MVM+11],

we consider the IEEE 118-bus power network equipped with primary and secondary frequency

control. While the primary frequency control is implemented locally, the secondary loop, referred

also as AGC (Automatic Generation Control), is closed over the SCADA system without human

operator intervention. As investigated in [MVM+10], a cyber intrusion in this feedback loop may

cause unacceptable frequency deviations and potentially load shedding or generation tripping.

If the intrusion is, however, detected on time, one may prevent further damage by disconnecting

the AGC. We show how to deploy the methodology developed in earlier sections to construct an

FDI filter that uses the available measurements to diagnose an AGC intrusion sufficiently fast,

despite the presence of unknown load deviations.

5.1. Mathematical Model Description. In this section a multi-machine power system, based

only on frequency dynamics, is described [Andb]. The system is arbitrarily divided into two

control areas. The generators are equipped with primary frequency control and each area is under

AGC which adjusts the generating setpoints of specific generators so as to regulate frequency

and maintain the power exchange between the two areas to its scheduled value.

5.1.1. System description. We consider a system comprising n buses and g number of generators.

Let G = {i}g1 denote the set of generator indices and A1 = {i ∈ G | i in Area 1}, A2 = {i ∈
G | i in Area 2} the sets of generators that belong to Area 1 and Area 2, respectively. Let also

Lktie = {(i, j)|i, j edges of a tie line from area k to the other areas},

where a tie line is a line connecting the two independently controlled areas and let also K = {1, 2}
be the set of the indices of the control areas in the system.

Using the classical generator model every synchronous machine is modeled as constant voltage

source behind its transient reactance. The dynamic states of the system are the rotor angle δi
(rad), the rotor electrical frequency fi (Hz) and the mechanical power (output of the turbine)

3The measure P is, with slight abuse of notation, the induced measure via the mapping addressed in Assump-

tion 4.10.
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Pmi (MW ) for each generator i ∈ G. We also have one more state that represents the output of

the AGC ∆Pagck for each control area k ∈ K.

We denote by EG ∈ Cg a vector consisting of the generator internal node voltages EGi =

|E0
Gi|∠δi for i ∈ G. The phase angle of the generator voltage node is assumed to coincide with

the rotor angle δi and |E0
Gi| is a constant. The voltages of the rest of the nodes are included in

VN ∈ Cn, whose entries are VNi = |VNi|∠θi for i = 1, . . . , n. To remove the algebraic constraints

that appear due to the Kirchhoff’s first law for each node, we retain the internal nodes (behind

the transient reactance) of the generators and eliminate the rest of the nodes. This could be

achieved only under the assumption of constant impedance loads since in that way they can be

included in the network admittance matrix. The node voltages can then be linearly connected

to the internal node voltages, and hence to the dynamic state δi. This results in a reduced

admittance matrix that corresponds only to the internal nodes of the generators, where the

power flows are expressed directly in terms of the dynamic states of the system. The resulting

model of the two area power system is described by the following set of equations.

δ̇i = 2π(fi − f0),

ḟi =
f0

2HiSBi

(Pmi
− Pei(δ)−

1

Di
(fi − f0)−∆Ploadi),

Ṗm,ak =
1

Tch,ak
(P 0
m,ak

+ vak∆P satp,ak
+ wak∆P satagc,k − Pm,ak),

∆Ṗagc,k =
∑
j∈Ak

ckj(fj − f0) +
∑
j∈Ak

bkj(Pmj − Pej (δ)−∆Ploadj )

− 1

TNk

gk(δ, f)− Cpkhk(δ, f)− Kk

TNk

(∆Pagc,k −∆P satagc,k).

where i ∈ G, ak ∈ Ak for k ∈ K. Supperscript sat on the AGC output signal ∆Pagc,k and on

the primary frequency control signal ∆Pp,ak highlights the saturation to which the signals are

subjected. The primary frequency control is given by ∆Pp,i = −(fi − f0)/Si. Based on the

reduced admittance matrix, the generator electric power output is given by

Pei =

g∑
j=1

EGiEGj (Gredij cos(δi − δj) +Bredij sin(δi − δj)).

Moreover, gk :=
∑

(i,j)∈Lk
tie

(Pij − PT 0
12

) and hk := dgk
dt , where the power flow Pij , based on the

initial admittance matrix of the system, is given by

Pij = |VNi ||VNj |(Gij cos(θi − θj) +Bij sin(θi − θj))

All undefined variables are constants, and details on the derivation of the models can be found in

[MVAL12]. The AGC attack is modeled as an additive signal to the AGC signal. For instance, if

the attack signal is imposed in Area 1, the mechanical power dynamics of Area 1 will be modified

as

Ṗm,a1 =
1

Tch,a1
(P 0
m,a1 + va1∆P satp,a1 + wa1

(
∆P satagc1 + f(t)

)
− Pm,a1),

The above model can be compactly written as{
Ẋ(t) = h(X(t)) +Bdd(t) +Bff(t)

Y (t) = CX(t),
(29)
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Figure 2. Stochastic load fluctuation and prediction error [Anda, p. 59]

where X :=
[
{δi}1:g, {fi}1:g, {Pm,i}1:g, {∆Pagci}1:2

]ᵀ ∈ R3g+2 denotes the internal states vector
comprising rotor angles δi, generators frequencies fi, generated mechanical powers Pm,i, and the

AGC control signal ∆Pagci for each area. The external input d :=
[
{∆Ploadi}1:g

]ᵀ
represents the

unknown load disturbances (discussed in the next subsection), and f represents the intrusion
signal injected to the AGC of the first area. We assume that the measurements of all the
frequencies and generated mechanical power are available, i.e., Y =

[
{fi}1:g, {Pm,i}1:g]

ᵀ ∈ R2g.
The nonlinear function h( · ) and the constant matrices Bd, Bf and C can be easily obtained by
the mapping between the analytical model and (29). To transfer the ODE dynamic expression
(29) into the DAE (5) it suffices to introduce

x :=

[
X −Xe

d

]
, z := Y − CXe

E(x) :=

[
h(X)−A(X −Xe)

0

]
, H(p) :=

[
−pI +A Bd

C 0

]
, L(p) :=

[
0

−I

]
, F (p) :=

[
Bf

0

]
,

where Xe is the equilibrium of (29), i.e., h(Xe) = 0, and A := ∂h
∂X

∣∣
X=Xe

. Notice that by the

above definition, the nonlinear term E( · ) only carries the nonlinearity of the system while the

linear terms of the dynamic are incorporated into the constant matrices H,L, F . This can always

be done without loss of generality, and practically may improve the performance of the scheme,

as the linear terms can be fully decoupled from the residual of the filter.

5.1.2. Load Deviations and Disturbances. Small power imbalances arise during normal operation

of power networks due, for example, to load fluctuation, load forecast errors, and trading on

electricity market. Each of these sources give rise to deviations at different time scale. High

frequency load fluctuation is typically time uncorrelated stochastic noise on a second or minute

time scale, whereas forecast errors usually stem from the mismatch of predicted and actual

consumption on a 15-minute time scale. Figure 2 demonstrates two samples of stochastic load

fluctuation and forecast error which may appear at two different nodes of the network [Anda,

p. 59]. The trading on the electricity market also introduces disturbances, for example, in an

hourly framework (depending on the market).

To capture these sources of uncertainty we consider a space of disturbance patterns comprising

combinations of sinusoids at different frequency ranges (to model short term load fluctuation

and mid-term forecast errors) and step functions (to model long-term abrupt changes due to the

market). The space of load deviations (i.e., the disturbance patterns D in our FDI setting) is
18
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then described by

∆Pload(t) := α0 +

η∑
i=1

αi sin(ωit+ φi), t ∈ [0, T ],(30)

where the parameters (αi)
η
i=0, (ωi)

η
i=1 (φi)

η
i=1, and η are random variables whose distributions

induce the probability measure on D. We assume that
∑η
i=0 |αi|2 is uniformly bounded with

probability 1 to meet the requirements of Theorem 4.11.

5.2. Diagnosis Filter Design. To design the FDI filter, we set the degree of the filter dN = 7,

the denominator a(p) = (p+ 2)dN , and the finite time horizon T = 10 sec. Note that the degree

of the filter is significantly less than the dimension of the system (29), which is 59. This is

a general advantage of the residual generator approach in comparison to the observer-based

approach where the filter order is effectively the same as the system dynamics. To compute the

signature matrix Qx, we resort to the finite dimensional approximation QB in Proposition 4.7.

Inspired by the class of disturbances in (30), we first choose Fourier basis with 80 harmonics

bi(t) :=

{
cos( i2ωt) i : even

sin( i+1
2 ωt) i : odd

, ω :=
2π

T
, i ∈ {0, 1, · · · , 80}.(31)

We should emphasize that there is no restriction on the basis selection as long as Assumptions

4.6 are fulfilled; we refer to [MVAL12, Section V.B] for another example with a polynomial basis.

Given the basis (31), it is easy to see that the differentiation matrix D introduced in (19) is

D =



0 0 0 · · · 0 0

0 0 ω · · · 0 0

0 −ω 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 0 80ω

0 0 0 · · · −80ω 0


.

We can also compute offline (independent of x) the matrix G in (21) with the help of the basis

(31) and the denominator a(p). To proceed withQx of a sample ∆Pload we need to run the system

dynamic (29) with the input d( · ) := ∆Pload and compute x(t) := [X(t)ᵀ,∆Pload(t)]
ᵀ where X is

the internal states of the system. Given the signal x, we then project the nonlinearity signature

t 7→ ex(t) =: E
(
x(t)

)
onto the subspace B (i.e., TB(ex)), and finally obtain Qx from (22). In

the following simulations, we deploy the YALMIP toolbox [Lof04] to solve the corresponding

optimization problems.

5.3. Simulation Results.

5.3.1. Test system. To illustrate the FDI methodology we employed the IEEE 118-bus system.

The data of the model are retrieved from a snapshot available at [ref]. It includes 19 generators,

177 lines, 99 load buses and 7 transmission level transformers. Since there were no dynamic

data available, typical values provided by [AF02] were used for the simulations. The network

was arbitrarily divided into two control areas whose nonlinear frequency model was developed

in the preceding subsections. Figure 3 depicts a single-line diagram of the network and the

boundaries of the two controlled areas where the first and second area contain, respectively, 12

and 7 generators.
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Area 1

Area 2

Figure 3. IEEE 118-bus system divided into two control areas
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Figure 4. Performance of the FDI filters with step inputs

5.3.2. Numerical results. In the first simulation we consider the scenario that an attacker ma-

nipulates the AGC signal of the first area at Tack = 10 sec. We model this intrusion as a step

signal equal to 14 MW injected into the AGC in Area 1. To challenge the filter, we also assume

that a step load deviation occurs at Tload = 1 sec at node 5. In the following we present the

results of two filters: Figure 4(a) shows the filter based on formulation (12) in Approach (I),

which basically neglects the nonlinear term; Figure 4(b) shows the proposed filter in (24) based

on AP perspective where the payoff function is J(α) := α2; see Remark 4.9 why such a payoff

function is of particular interest.

We validate the filters performance with two sets of measurements: first the measurements

obtained from the linearized dynamic (i.e. E(x) ≡ 0); second the measurements obtained from

the full nonlinear model (29). As shown in Fig. 4(a)(ii) and Fig. 4(b)(ii), both filters work

perfectly well with linear dynamics measurements. It even appears that the first filter seems
20
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Figure 5. The indicator ρ defined in (32)

more sensitive. However, Fig. 4(a)(iii) and Fig. 4(b)(iii) demonstrate that in the nonlinear setting

the first filter fails whereas the robustified filter works effectively similar to the linear setting.

In the second simulation, to evaluate the filter performance in more realistic setup, we robus-

tify the filter to random disturbance patterns, and then verify it with new generated samples.

To measure the performance in the presence of the attack, we introduce the following indicator:

ρ :=

max
t≤Tack

‖r(t)‖∞

max
t≤T
‖r(t)‖∞

,(32)

where r is the residual (11), and Tack is when the attack starts. Observe that ρ ∈ [0, 1], and the

lower ρ the better performance for the filter, e.g., in Fig. 4(a)(iii) ρ = 1, and in Fig. 4(b)(iii)

ρ ≈ 0.

In the training phase, we randomly generate five sinusoidal load deviations as described in

(30), and excite the dynamics for T = 10 sec in the presence of each of the load deviations

individually. Hence, in total we have n = 19×5 = 95 disturbance signatures. Then, we compute

the filter coefficients by virtue of ÃP in (24) with the payoff function J(α) := α2 and these

95 samples. In the operation phase, we generate two new disturbance patterns with the same

distribution as in the training phase and run the system in the presence of both load deviations

simultaneously at two random nodes for the horizon T = 120 sec. Meanwhile, we inject an attack

signal at Tack = 110 sec in the AGC, and compute the indicator ρ in (32). Figure 5 demonstrates

the result of this simulation for 1000 experiments.

6. Conclusion and Future Directions

In this article, we proposed a novel perspective toward the FDI filter design, which is tack-

led via an optimization-based methodology along with probabilistic performance guarantees.

Thanks to the convex formulation, the methodology is applicable to high dimensional nonlinear

systems in which some statistical information of exogenous disturbances are available. Moti-

vated by our earlier works, we deployed the proposed technique to design a diagnosis filter to

detect the AGC malfunction in two-area power network. The simulation results validated the

filter performance, particularly when the disturbance patterns are different from training to the

operation phase.
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The central focus of the work here is to robustify the filter to certain signatures of dynamic

nonlinearities in the presence of given disturbance patterns. As a next step, motivated by ap-

plications that the disruptive attack may follow certain patterns, a natural question is whether

the filter can be trained to these attack patterns. From the technical standpoint, this problem

in principle may be different from the robustification process since the former may involve max-

imization of the residual norm as opposed to the minimization for the robustification discussed

in this article. Therefore, this problem offers a challenge to reconcile the disturbance rejection

and the fault sensitivity objectives.

The proposed methodology in this study is applicable to both discrete and continuous-time

dynamics and measurements. In reality, however, we often have different time-setting in dif-

ferent parts, i.e., we only have discrete-time measurements while the system dynamics follows

a continuous-time behavior. We believe this setup introduces new challenges to the field. We

recently reported heuristic attempts toward this objective in [ETML13], though there is still a

need to address this problem in a rigorous and systematic framework.
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I. Appendix

I.1. Proofs of Section 4.2. Let us start with a preliminary required for the main proof of this

section.

Lemma I.1. Let N(p) :=
∑dN
i=0Nip

i be an Rnr row polynomial vector with degree dN , and a(p)

be a stable polynomial with the degree at least dN . Let N̄ := [N0 N1 · · · NdN ] be the collection

of the coefficients of N(p). Then,∥∥a−1N
∥∥
H∞
≤ C̃‖N̄‖∞, C̃ :=

√
nr(dN + 1) ‖a−1‖H∞ .

Proof. Let b(p) :=
∑dN
i=0 bip

i be a polynomial scaler function. By H∞-norm definition we have

∥∥a−1b
∥∥2

H∞
= sup
ω∈(−∞,∞)

∣∣∣ b(jω)

a(jω)

∣∣∣2 ≤ sup
ω∈[0,∞)

∑dN
i=0 |bi|2ω2i

|a(jω)|2
.(I.1)

Let b̄ :=
[
b0 b1 · · · bdN

]
. It is then straightforward to inspect that

dN∑
i=0

|bi|2ω2i ≤

{
(dN + 1)‖b̄‖2∞ if ω ∈ [0, 1]

(dN + 1)‖b̄‖2∞ω2dN if ω ∈ (1,∞)
(I.2)

Therefore, (I.1) together with (I.2) yields to∥∥a−1b
∥∥2

H∞
≤ (dN + 1)

∥∥a−1
∥∥2

H∞
‖b̄‖2∞.

Now, taking the dimension of the vector N(p) into consideration, we conclude the desired asser-

tion. �
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Proof of Lemma 4.5. Let ` ≥ dN be the degree of the scalar polynomial a(p). Then, taking

advantage of the state-space representation of the matrix transfer function a−1(p)N(p), in par-

ticular the observable canonical form [ZD97, Section 3.5], we have

rx(t) =

∫ t

0

C e−A(t−τ)Bex(τ)dτ +Dex(t),

where C ∈ R1×` is a constant vector, A ∈ R`×` is the state matrix depending only on a(p),

and B ∈ R`×nr and D ∈ R1×nr are matrices that depend linearly on all the coefficients of

the numerator N̄ ∈ Rnr(dN+1). Therefore, it can be readily deduced that (14a) holds for some

function ψx ∈ Wnr(dN+1)
T . In regard to (14a) and the definition (13), we have

‖N̄ψx‖L2
= ‖rx‖L2

=
∥∥a−1(p)N(p)ex

∥∥
L2
≤
∥∥a−1N

∥∥
H∞
‖ex‖L2

≤ C̃‖N̄‖∞‖ex‖L2
,(I.3)

where the first inequality follows from the classical result that the L2-gain of a matrix transfer

function is the H∞-norm of the matrix [ZD97, Theorem 4.3, p. 51], and the second inequality

follows from Lemma I.1. Since (I.3) holds for every N̄ ∈ Rnr(dN+1), then

‖ψx‖L2
≤
√
nr(dN + 1) C̃‖ex‖L2

,

which implies (14b). �

Proof of Proposition 4.7. Observe that by virtue of the triangle inequality and linearity of the

projection mapping we have∣∣‖rx‖L2
−
∥∥a−1(p)N(p)TB(ex)

∥∥
L2

∣∣ ≤ ∥∥a−1(p)N(p)
(
ex −TB(ex)

)∥∥
L2
≤ C̃‖N̄‖∞δ,

where the second inequality follows in the same spirit as (I.3) and ‖ex − TB(ex)‖L2 ≤ δ. Note

that by definitions of Qx and QB in (15) and (22), respectively, we have∣∣N̄(Qx −QB)N̄ᵀ
∣∣ =

∣∣‖rx‖2L2
−
∥∥a−1(p)N(p)TB(ex)

∥∥2

L2

∣∣ ≤ C̃‖N̄‖∞δ(C̃‖N̄‖∞δ + 2‖rx‖L2

)
≤ C̃2‖N̄‖2∞δ

(
δ + 2‖ex‖L2

)
≤ C‖a−1‖H∞‖N̄‖22δ

(
1 + 2‖ex‖L2

)
where the inequality of the first line stems from the simple inequality |α2 − β2| ≤ |α − β|

(
2|α| +

|α− β|
)
, and C is the constant as in (14b). �

I.2. Proofs of Section 4.3. To prove Theorem 4.11 we need a preparatory result addressing

the continuity of the mapping φ in (26).

Lemma I.2. Consider the function φ as defined in (26). Then, there exists a constant L > 0

such that for any N̄1, N̄2 ∈ N and x1, x2 ∈ Wnx

T where ‖xi‖L2
≤M , we have∣∣φ(N̄1, x1)− φ(N̄2, x2)

∣∣ ≤ L(∥∥N̄1 − N̄2

∥∥
∞ + ‖x1 − x2‖L2

)
.

Proof. Let LE be the Lipschitz continuity constant of the mapping E : Rnx → Rnr in (13). We

modify the notation of rx in (13) with a new argument as rx[N̄ ], in which N̄ represents the filter

coefficients. Then, with the aid of (I.3), we have

sup
‖x‖L2

≤M
sup
N̄∈N

‖rx[N̄ ]‖L2 ≤ sup
‖x‖L2

≤M
sup
N̄∈N

C̃LE‖N̄‖∞‖x‖L2 ≤ M̃, M̃ := C̃LEM,

where the constant C̃ is introduced in Lemma I.1. As the payoff function J is convex, it is then

Lipschitz continuous over the compact set [0, M̃ ] [Ber09, Proposition 5.4.2, p. 185]; we denote

this Lipschitz constant by LJ . Then for any N̄i ∈ N and ‖xi‖L2 ≤M , i ∈ {1, 2}, we have,∣∣φ(N̄1, x1)− φ(N̄2, x2)
∣∣ ≤ LJ ∣∣∥∥rx1 [N1]

∥∥
L2
−
∥∥rx2 [N2]

∥∥
L2

∣∣
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≤ LJ
(∥∥rx1

[N1]− rx1
[N2]

∥∥
L2

+
∥∥rx1

[N2]− rx2
[N2]

∥∥
L2

)
≤ LJ

(
C̃‖ex1

‖L2
‖N1 −N2‖∞ + C̃‖ex1

− ex2
‖L2
‖N2‖∞

)
(I.4)

≤ LJ C̃LE
(
M‖N1 −N2‖∞ + ‖x1 − x2‖L2

)
.

where (I.4) follows from (I.3) and the fact that the mapping (N̄ , ex) 7→ rx[N̄ ] is bilinear. �

Proof of Theorem 4.11. By virtue of Lemma I.2, one can infer that for every N̄ ∈ N the mapping

x 7→ φ(N̄ , x) is continuous, and hence measurable. Therefore, φ(N̄ , x) can be viewed as a random

variable for each N̄ ∈ N , which yields to the first assertion, see [Bil99, Chapter 2, p. 84] for

more details.

By uniform (almost sure) boundedness and again Lemma I.2, the mapping N̄ 7→ φ(N̄ , x)

is uniformly Lipschitz continuous (except on a negligible set), and consequently first moment

continuous in the sense of [Han12, Definition 2.5]. We then reach (i) by invoking [Han12,

Theorem 2.1].

For assertion (ii), note that the compact set N is finite dimensional, and thus admits a

logarithmic ε-capacity in the sense of [Dud99, Section. 1.2, p. 11]. Therefore, the condition

[Dud99, (6.3.4), p. 209] is satisfied. Since the other requirements of [Dud99, Theorem 6.3.3, p.

208] are readily fulfilled by the uniform boundedness assumption and Lemma I.2, we arrive at

the desired UCLT assertion in (ii). �

To keep the paper self-contained, we provide a proof for Theorem 4.13 in the following, but

refer the interested reader to [MSL15, Theorem 4.1] for a result of a more general setting.

Proof of Theorem 4.13. The measurability of E is a straightforward consequence of the mea-

surability of [N̄?
n, γ

?
n] and Fubini’s Theorem [Bil95, Theorem 18.3, p. 234]. For notational sim-

plicity, we introduce the following notation. Let ` := nr(dN + 1) + 1 and define the function

f : R` ×Wnx

T → R

f(θ, x) := N̄QxN̄
ᵀ − γ, θ := [N̄ , γ]ᵀ ∈ R`,

where Qx is the nonlinearity signature matrix of x as defined in (15), and θ is the augmented

vector collecting all the decision variables. Consider the convex sets Θj ⊂ R`

Θj :=
{
θ = [N̄ , γ]ᵀ

∣∣ N̄H̄ = 0, N̄ F̄ vj ≥ 1
}
, vj :=

↓ jth[
0, · · · , 1, · · · , 0

]ᵀ
,

where the size of vj is m := nf (dF +dN +1). Note that in view of Lemma 4.3, we can replace the

characterization of the filter coefficients in (10) with θ ∈
⋃m
j=1 Θj . We then express the program

CP in (3) and its random counterpart C̃P1 in (25a) as follows:

CP :


min

θ∈
m⋃

j=1
Θj

cᵀθ

s.t. P
(
f(θ, x) ≤ 0

)
≥ 1− ε

C̃P1 :


min

θ∈
m⋃

j=1
Θj

cᵀθ

s.t. max
i≤n

f(θ, xi) ≤ 0,

where c is the constant vector with 0 elements except the last which is 1. It is straightforward

to observe that the optimal threshold γ?n of the two-stage program C̃P in (25) is the same as the

optimal threshold obtained in the first stage C̃P1. Thus, it suffices to show the desired assertion
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considering only the first stage. Let θ?n := [N̄?
n, γ

?
n] denote the optimizer of C̃P1. Now, consider

m sub-programs denoted by CP (j) and C̃P (j) for j ∈ {1, · · · ,m}:

CP (j) :

{
min
θ∈Θj

cᵀθ

s.t. P
(
f(θ, x) ≤ 0

)
≥ 1− ε

C̃P (j) :

 min
θ∈Θj

cᵀθ

s.t. max
i≤n

f(θ, xi) ≤ 0,

Let us denote the optimal solution of C̃P (j) by θ∗n,j . Note that for all j, the set Θj is deterministic

(not affected by x) and convex, and the corresponding random program C̃P (j) is feasible if

Θj 6= ∅, thanks to the min-max structure of C̃P (j). Therefore, we can readily employ the

existing results of the random convex problems. Namely, by [CG08, Theorem 1] we have

Pn
(
E(θ∗n,j)

)
<

`−1∑
i=0

(
n

i

)
εi(1− ε)n−i, ∀j ∈ {1, · · · ,m}

where E is introduced in (28). Furthermore, it is not hard to inspect that θ∗n ∈
(
θ∗n,j

)m
j=1

. Thus,

E(θ∗n) ⊆
⋃m
j=1 E(θ∗n,j) which yields

Pn
(
E(θ∗n)

)
≤ Pn

( m⋃
j=1

E(θ∗n,j)
)
≤

m∑
j=1

Pn
(
E(θ∗n,j)

)
< m

`−1∑
i=0

(
n

i

)
εi(1− ε)n−i.

Now, considering β as an upper bound, the desired assertion can be obtained by similar calcu-

lation as in [Cal09] to make the above inequality explicit for n in terms of ε and β. �
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