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Abstract

Lagrangian duality in mixed integer optimization is a useful framework for problem decomposition and for producing tight lower
bounds to the optimal objective. However, in contrast to the convex case, it is generally unable to produce optimal solutions directly.
In fact, solutions recovered from the dual may not only be suboptimal, but even infeasible. In this paper we concentrate on large
scale mixed—integer programs with a specific structure that appears in a variety of application domains such as power systems and
supply chain management. We propose a solution method for these structures, in which the primal problem is modified in a certain
way, guaranteeing that the solutions produced by the corresponding dual are feasible for the original unmodified primal problem.
The modification is simple to implement and the method is amenable to distributed computation. We also demonstrate that the
quality of the solutions recovered using our procedure improves as the problem size increases, making it particularly useful for
large scale problem instances for which commercial solvers are inadequate. We illustrate the efficacy of our method with extensive
experimentations on a problem stemming from power systems.

Keywords: optimization; decomposition methods; large-scale systems; integer programming; duality; electric vehicles;
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1. Introduction coupled through a small number of complicating constraints
Yier Hix; < b. These coupling constraints determine the lim-
its on the available resources to be shared among the subsys-
tems. Simple examples of problems in this form include classi-

cal combinatorial programs such as the multidimensional knap-

In this paper we investigate mixed-integer optimization prob-
lems in the form

minimize ¢/ x; sack problem, in which X; = {0, 1}, and ¢; > 0, H; > 0 [38].
X i€l
subject to 2} Hix; <b () More complicated instances of problems in the form P, with
1€
X €X; Viel more detailed models for the subsystems X;, arise in a variety of

contexts. In power systems, scheduling the operation of power

We refer to b € R™ as the resource vector, and to the sets X; as
the subsystems. We assume that each of the sets X; is a non-
empty, compact, mixed-integer polyhedral set that can be writ-
ten as

X; = {x eRxZ"

Aix < d,} s

with A; € R™>" and d; € R™. We further assume that the prob-
lem P is feasible and that the total number of subsystems |/| is
greater than the length m of the resource vector. Our principal
interest is in large-scale optimization problems, i.e. those for
which |I| > m, while remaining finite.

Problem % can be viewed generically as modeling any problem
for which a large number of subproblems defined on the do-
mains X;, whose description can include integer variables, are
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generation plants [39] is a decision problem in which the sub-
systems are the generating units, integer variables in the local
models arise due to, e.g., start-up and shut-down costs, and the
coupling constraints are related to the requirement that genera-
tion must match load. In supply chain management, models fit-
ting P appear in the problem of partial shipments [15, 37]. Port-
folio optimization for small investors, for which mixed-integer
models have been proposed, is another example application [4].
Finally, some sparse problems that do not naturally possess the
structure of # can be reformulated to fit our framework by ap-
propriately permuting rows and columns of the constraints ma-
trix; [5] proposes a method to automate this procedure.

A direct solution of P is typically problematic when the prob-
lem is very large, since the problem amounts to a mixed-integer
linear program of possibly very large size. As a result, the La-
grange dual of P is often taken as a useful alternative, because
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the resulting dual problem is separable in the subsystems de-
spite the presence of the complicating constraints. When this
dual problem is solved by an iterative method, e.g. using the
subgradient method [7], a candidate (primal) solution to # can
be computed at each iteration.

For problems affected by non-zero duality gap such as P, how-
ever, this approach suffers from a major drawback. Namely, any
guarantee about the properties of these candidate solutions is
lost. Even at the dual optimal solution, the associated candidate
primal solutions may be suboptimal and can even be infeasible.

The principal goal of this paper is to propose a new solution
method for problem % that preserves the attractive features of
solution via the Lagrange dual, while at the same time protect-
ing the recovered primal solutions from infeasibilty.

Literature. Lagrangian relaxation for mixed integer programs
was first introduced by [21], and many of its theoretical proper-
ties were described in [19]. Properties of the inner solutions in
the convex case are well known [31, Thm. 28.1]. It is also well
known that in general these properties are lost in the mixed-
integer case [7, Section 5.5.3]. Because of this, primal recov-
ery methods based on Lagrangian duality are often two-phase
schemes in which an infeasible solution is found through dual-
ity in the first stage, and in the second stage it is rectified into a
feasible one using heuristics, see, e.g., [10, 29].

Duality for problems specifically in the form % has been studied
at least as early as in [2], where some of its special features were
first characterized. In particular, it was noted that the duality
gap for this program structure decreases in relative terms as the
problem increases in size, as measured by the cardinality of 1.
We will show that the mechanism behind this vanishing gap
effect can also be used to recover “good” primal solutions for
the mixed-integer program % directly from the dual, in a way
that resembles the convex (zero gap) case.

In practical applications, this behaviour of the duality gap has
been observed in [10] in the context of unit commitments for
power systems. In this case it is exploited in an algorithm that
provides solutions to the extended master problem, but no con-
nection to the solutions of the inner problem is provided. It
also appears in the multistage stochastic integer programming
literature [11, 14], where it is used to gauge the strength of the
Lagrangian relaxation, but in which no relations to primal solu-
tions are drawn. Another domain in which diminishing gap has
been used is in communications, more precisely in optimization
of multicarrier communication systems [40]. However, in this
case non-convexity is in the objective function rather than due
to the presence of integer variables.

Current Contribution. In this paper we further investigate du-
ality for programs structured as ¥ and focus on the primal so-
lutions recovered at the dual optimum.

e We provide a new relation between the optimizers of a
convexified form of ¥ and the solutions obtained from the
dual problem. This relation holds under mild conditions
that are commonly satisfied in practice.

o Using this relation we can bound the magnitude of the con-
straint violations of the solutions recovered from the dual.
In light of this bound, we propose a new solution method
which is guaranteed to produce feasible solutions for #.
The method is based on an appropriate contraction of the
resources b.

e We also provide a performance bound of the solutions re-
covered, which indicates that their quality improves as the
problem size increases. For particular structures, arising
e.g. from underlying physical networks, we refine our the-
oretical results to improve the performance of the method.

From a practical point of view, we note that our proposed pro-
cedure is straightforward to implement and is amenable to dis-
tributed computation. The performance bound indicates that the
method is particularly attractive for large problem instances, for
which generic purpose solvers may be inadequate. We show
that the theoretical results are effective in practice via extensive
numerical experiments on difficult problems stemming from the
field of power systems control. Our method substantially out-
performs commercial solvers on these problems. The limita-
tions of the proposed method, as well as ideas to mitigate them,
are also discussed in the paper.

Structure of the Paper. The paper is structured as follows: in
Section 2 we review some of the known results concerning du-
ality for the specific structure of °, and we provide a new result
related to the primal solutions recovered from the dual. In Sec-
tion 3 we propose a new method for primal solution recovery,
and provide performance bounds for these solutions. We also
give some results on how to further improve the solutions’ qual-
ity in some special cases. In Section 4 we verify the efficacy of
our proposed method on a difficult optimization problem stem-
ming from power systems, and in Section 5 we conclude the

paper.

Notation. Given some optimization problem A, we denote
with J7 its optimal objective and with Jz(x) the performance
of the solution x with respect to the objective of A. For a given
set X, we denote by conv(X) its convex hull and by vert(X)
the set of vertices of conv(X). With “>” we always intend
component-wise inequalities (between vectors or matrices), and
with ® we indicate the cartesian product of sets. The support of
a vector supp(x) is the set of indexes of the non-zero elements:
supp(x) = {i : x; # 0}, while (x)* is the projection of x onto
the positive orthant, i.e., (x)* = max(0,x). For the specific
structure of P, we use the overbar symbol to indicate quantities
related to the contracted version of #, as introduced in Section
3. Thus, for instance, P is the contracted form of # and D is



its dual. We use parenthesis to avoid confusing the sub- and
superscripts, e.g., we denote by (xp); the part of xp related to
subproblem i € I of problem #. Finally, we use the superscript
HF to denote the k—th row of matrix H.

2. Duality for Problem

Consider the dual function d : R” — R of problem %, defined

as
- . T, T VO
d) = r){lem( E c;xi+A( E H;x; b)),

i€l i€l

and then associate to this function the optimization problem

sup —ATh+ Y min(c'x; + ATH;x;
{ ; goal ) o

s.t. 4>0.

We call D the dual problem of P, and we refer collectively to
the minimizations within D, i.e.,
: T T

min (cTxi+ ATHix;), (1)
as the inner problem. There is substantial practical interest in
understanding the properties of the solutions to the inner prob-
lem (1) because they are obtained by solving |I| independent
(and lower dimensional) minimization problems, in contrast to
the single large coupled problem #. Additionally, they are usu-
ally obtained as by-products of methods used to solve D (e.g.
the subgradient method). These solutions, in particular those
attained at the vertices of conv(X;), are the central object of this

paper:

Definition 2.1 (inner problem solutions). For a given multi-
plier 2 > 0, the set X;(1) C R" is defined as the set of inner
solutions that are attained at the vertices of X;, i.e.

Xi(A) = vert(X;) N arg mi)r(l (ciTxi + /lTHix;) ) 2)
Xi€EX;

Furthermore, we denote by x(1) any selection from the set X(Q),
and refer to it as an inner solution.

Fact 2.2. The sets Xi(1), i € I, are non-empty for any A > 0.

Proor. See Appendix A.1.

2.1. Bound on Duality Gap

For a general mixed integer linear program, the inner solutions
x(1*) € X(2*), in which A* is an optimizer of D, do not possess
any “nice” property in general: they can be non-unique, sub-
optimal and even infeasible. In this paper we show that inner
solutions for programs structured specifically as # do acquire
some useful properties. Informally speaking, these additional
properties arise mainly from the fact that, as # grows in size,
it tends to closely approximate a convex program. One known
result of this is that the duality gap between £ and D vanishes,
in relative terms, as |I| increases [0, 9, 2].

Theorem 2.3 (bound on duality gap). Assume that for any
x; € conv(X;), there exists an X; € X; such that H;X; < H;x;.
Then

J5 —JX < m-max y; ; = max ¢, x; —min ¢, x;. 3
£ "D o Ye i xex, |0 xex, 17 )

In consideration of Theorem 2.3, let |I| increase, while m re-
mains constant and the sets {X;};c; are uniformly bounded. If
Jp, increases linearly with |/, then

J5 = JF

i D 50 as
J*
P

|| = 0. @)

An early proof of this result appears in [2], while a more recent
version is in [6, Prop. 5.26, p. 374]. The same result also holds
for more general problems; see [9, Prop. 5.7.4, p. 223].

Note that while Theorem 2.3 ensures the existence of a primal
feasible solution satisfying the performance bound (3), it does
not provide an algorithmic way to produce it. ~ An example
in which the assumption of Theorem 2.3 is met is the supply
chain problem presented in [37]. In this case it is straightfor-
ward to observe that the assumption is satisfied since Vx; € X;,
H;x; > 0 and 0 € X;. However this assumption may, in general,
be restrictive; an example that does not fulfil it is discussed in
Section 4, see Remark 4.1. In this work we lift this assump-
tion, at the cost of conservatism and thus performance of the
solutions recovered.

2.2. Geometric Properties of the Inner Solutions x(1*)

Here we present a new connection between the inner solutions
x(2*) and the optimizers of the following optimization program

minimize ¢/ x;
x i€l
subjectto Y Hix; <b
i€l
x; € conv(X;)

(Prp)
Yiel,

which amounts to a linear program. We denote by J;,LP its op-
timal value, and by x{, one of its optimizers. The relaxation
PLp plays a central role in Lagrangian duality for mixed integer
programs; it is in fact well known that P p satisfies the (non-
obvious) relation J;;LP = J7 [19, Thm. 1b, p.87]. Accordingly,
PLp is often used to gain insight into the strength of the relax-
ation, i.e., the tightness of the lower bounds to Jj; provided by
the Lagrangian dual. While in most practical cases one can-
not solve P p directly since an explicit description of the poly-
hedral sets conv(X;) is required, column generation techniques
construct approximations of Prp [3, 16, 35]. It must be further
emphasized that even though Ppp is a relaxation of £ and is
a linear program, it does not coincide with the standard linear
relaxation in which the integrality constraints on the discrete
variables are relaxed to intervals. In fact, Py p is usually tighter;
see [19, Thm. 1a].



In consideration of the Shapley—Folkman—Starr theorem [2,
p-233], one can expect the vertices of the convexified problem
%P p to have “structure”, i.e. for (XEP),- to belong to X; for at least
|| —=m~— 1 subproblems, and (x{'), € conv(X;) for the remaining
m + 1 ones, see [37, Thm. 1]. This number can be improved to
|I] — m using an argument based on simplex tableaus instead of
the Shapley—Folkman—Starr theorem. We use this tighter ver-
sion here, and in the following new result, the crucial technical
theorem of the paper, we extend it by establishing that the sub-
problems for which (x{},), € X; also “freeze” the corresponding
inner solutions x;(1*).

Assumption 2.4 (uniqueness for P, p and D). The programs
PrLp and D have unique solutions x}', and A*, respectively.

Assumption 2.4 concerns two LPs (see program 9y, in Section
A.2 for the LP version of ©). Uniqueness of primal and dual
optimizers in the LP case is discussed in [27], where necessary
and sufficient conditions are provided. The same paper also
provides an algorithmic way to verify uniqueness of primal and
dual optimizers in the LP setting, see [27, Remark 2]. There are
cases for which this assumption may fail, in particular when the
problem’s data is affected by a high degree of symmetry. These
cases, however, can always be avoided by adding negligible per-
turbations to the cost and resource vectors. These additions are
also guaranteed not to affect the optimal values J;LP and J7,
substantially, since these quantities are continuous with respect
to the perturbation size of the cost and resource vectors.

Theorem 2.5 (relation between x]', and x(1*)). Under  As-
sumption 2.4, the solutions x{, and x(A1*) differ in at most m
subproblem components, for any selection of x(1*) € X(1*).
That is, for all x(1*) € X(A*) there exists I, C I, with
I 2 || = m, such that x;,(A*) = (x{p),.

Proor. See Appendix A.2.

Note that while the structural properties of x{', appeared in the
literature [10, 9, 37], the contribution here is to ensure that, un-
der Assumption 2.4, these advantageous properties are trans-
ferred to the inner solutions x(4*). This is of substantial practi-
cal interest, because it is the inner solutions that one has direct
access to when solving the dual. In the following we provide
an analytical example that further illustrates the significance of
Theorem 2.5. It also includes a counterexample, showing how
the desired assertion may fail in absence of Assumption 2.4.

Example 2.6. Suppose we have to

i=1%i
st Y4 Hix <111 )

minimize 4 cTx
i=1,...,4

x; € X;

AL re T I N\, %
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Figure 1: Illustration of the sets X; in Example 2.6.

and X; = {x € Z2 | Aix; < d; | with
0 1] [1.2]

A=l di =5 e =[1,1] Hy =[1,1]
0 1] [0.6]

M={] ol d=|yy| G=0211 H=[51]
10 2.2]

Az = ~05 1] d; = 11 C3T =[0.5,-1] Hz=[1,1]
[1 0] [1.2]

A4 = 0 1 d4 = 2 CI = [_37 05] H4 = [17 1]’

see Figure 1. Relaxing the constraint Y3 | Hix; < 11.1 in this
problem leads to the dual function

84091 0<A<2/5
| —4-801  2/5<a<1
dD=Y 3_991 1<a<3
~10.92 1> 3.

so that the dual optimizer is A* = 2/5, and d(1*) = J, = —7.64,
while the primal optimal objective is Jj, = =7 (note the duality
gap). The corresponding sets of inner solutions are, according

T el e (3
AR

On the other hand, x', is unique and is given by

(g =[8] <xfp>z=[1'§2} (xgp)3=[(1’] (xfp>4=[é}.

Notice how the relationship x;(A*) = (x{), holds for i €
{1,3,4} = I, and that the cardinality of |I|| satisfies |I| >
|I| =m = 4 —1 = 3. The validity of Theorem 2.5 is thus verified.

On the other hand, to see how the Theorem may fail in the ab-
sence of Assumption 2.4, consider again problem (5), but now
with b = 6 and with the subsystems determined by

10 32] . -
A,-:[O 1] d,:[m] T =[-1,11 Hi=[1,1]

fori=1,...,4. Notice that all the subsystems are identical and
the problem is highly symmetric. The dual function in this case

is
-12+ 64

0<as<l
d(/l):{ el

A>1,



and the unique dual optimizer is A* = 1. However, x*, is not

LP
unique. For example

0.7 1.6 0.6 3.1
(Xph = [ 0 } ()_C]tp)Z = [ 0 ] (X[p)3 = [ 0 ] (X[pla = [ 0 }

and

@MZH @m=m @m=m @m=m

are both valid optimizers of Prp. Assumption 2.4 is therefore
not fulfilled. The sets of inner solutions are

&Whﬂ%ﬂ}i=gw¢

and the relationship of Theorem 2.5 is violated. Note, however,
that the addition of a small perturbation to the cost vector is
sufficient to make the problem fulfil Assumption 2.4 again, and
thus recover the relationship of Theorem 2.5.

Remark 2.7 (nonlinear extension). Theorem 2.5 holds even
when the objective and the coupling constraints functions are
This is immediate by noticing that, in either case,
local solutions are found at the vertices of X;, according to a
more general version of the Fundamental Theorem of Linear
Programming, see [9, Prop. 2.4.2]. The passage (A.l) in the
proof of Lemma 2.2 remains unchanged, and the proof of The-
orem 2.5 follows verbatim.

concave.

3. A Distributed Solution Method for

Theorem 2.5 says that the inner solutions x(1*) differ from x],
in at most m subsystems, where m is the dimension of the cou-
pling constraint. Since x;, is feasible with respect to the cou-
pling constraints and attains a better objective than J75, one can
expect the solutions obtained by solving the dual to be nearly
feasible and to attain good objective values. In this section
we exploit this result to propose a method aimed at obtaining
“good” feasible solutions to problem # in a distributed fashion.

3.1. Contraction of the Resources

Our proposed method is to contract the resources vector b by an
appropriate amount, which is determined by the results of the
previous section. We show that any inner solution recovered
at the dual optimum A* of the contracted problem is a feasible
solution for . We also provide a performance bound for these
solutions, which indicates that their quality improves with in-
creasing problem size.

Consider the following modified version of problem

minimize Y, ¢/ x;
iel —
subjectto Y Hix; <b (P)
i€l
x; € X; Yiel.

The resource vector b has been contracted to b = b — p, where
the k-th element of the contraction p € R™ is given by

(6)

max H¥x; — min H'x; |,
x;€X; x;€X;

[olk = m - max
i€l
where Hf‘ is the k-th row of H;. Correspondingly, we introduce
the problems ?Lp and 5, defined similarly to #rp and D, re-
placing the resource vector b with b. We next establish that the
primal solutions recovered from the dual of  are feasible for
P.

Theorem 3.1 (feasible solutions). If Assumption 2.4 holds for
the programs Prp and D, then any selection x(/_l*)_e X(A%) is
feasible for P, where A* is the optimal solution of D.

Proor. See Appendix A.3.

The method is simple to implement and determining the amount
of contraction required only necessitates local computations,
which can be parallelized. Furthermore, knowledge of the sys-
tem is sometimes sufficient to determine an upper bound for p
without having to explicitly carry out the optimizations in (6);
in Section 4 we discuss an example in which this is the case. Fi-
nally, well established methods exist for solving the dual prob-
lem (e.g., the subgradient [33], cutting planes [32] and bundle
methods [24]) and they can be applied directly here.

The critical assumption of Theorem 3.1 is that the resources
available should be sufficiently abundant, such that the prob-
lem remains feasible after the contraction has been applied. In
Section 3.2 we discuss practical cases in which it is possible to
safely decrease the necessary resource reduction.

In the next Theorem we assess the performance of the solutions
x(2*). In order to obtain an explicit bound, we first make the
following assumption.

Assumption 3.2 (Slater point with increasing slack). There
exist { > 0 and X; € conv(X;) for alli € I such that

Z Hik <b- I (7

i€l

Theorem 3.3 (performance guarantee). Suppose that the
programs Prp and D satisfy Assumption 2.4 and Assumption
3.2 holds. Then any solution x(A*) € X(A*) recovered satisfies

Jp(x(A*) = Jp < (m +llplle/{) - max y;, ®)

where y; and p are as defined in (3) and (6), respectively.
Proor. See Appendix A 4.

In view of Theorem 3.3, if the sets {X;};; are uniformly
bounded and Jj grows linearly in terms of |/], then

Jx(*)) = I3

—0 as |I| > oo.
Iy

®



Accordingly, the quality of the solutions recovered increases the
larger the problem becomes, as the optimality gap decreases at
a “1/|]” rate. In Section 3.3 we will discuss Assumption 3.2
and show this asymptotic behavior can be expected even in the
absence of a Slater point.

Theorem 3.1 and 3.3 provide a systematic way to produce so-
lutions that are guaranteed to be feasible and that satisfy the
performance bound (8). This bound resembles (3), where the
additional term “||p||/{”” may be viewed as the price to ensure
feasibility and to lift the assumption required by Theorem 2.3.

3.2. Reducing Conservatism

The contraction proposed in Theorem 3.1 can be interpreted as
a robustification of problem % toward alterations of m local so-
lutions x;. In this section we take a closer look at the coupling
constraints matrix H = [H,, Ha, ..., H] and discuss some spe-
cial cases in which its structure can be exploited to safely reduce
the necessary contraction.

Suppose that the matrix H has block structure, as depicted in
Figure 2(a). As illustrated, we introduce the set [; as the in-
dex set of the subsystems contributing to the k-th coupling con-
straint, i.e., for which Hl{‘ # 0. We furthermore define the sub-
matrix [H;];, , obtained by collecting the columns of H related
to the subsystems in /.

Such a block structured H may arise in applications in which
the resources present a hierarchical structure, or when the opti-
mization is over tree or tree-star networks, as shown on Figure
2(b). In this case, the uniform contraction proposed in Theorem
3.1 can be safely reduced.

Theorem 3.4 (refinement for block structure). Theorem 3.1
holds with the contraction (6) substituted by

[plk = rank([H;]icz,) - max [maxH'x; — minHfx; . (10)
iely \ x;€X; Xi€X;

Proor. See Appendix A.5.

This theorem implies, as a special case, that we can generally
substitute m with rank(H) in (6), independently of whether the
problem has block structure. This is important when the vectors
determining the coupling constraints are linearly dependent. An
example exploiting this result is discussed in Section 4.

Furthermore, instead of immunizing against rank([H;];c;, ) times
the largest subproblem budget consumption change, it is suffi-
cient to immunize against the rank([H;];c;,) largest ones, i.e.,

Remark 3.5. The contraction (6) can be safely substituted by

[plk =  max Z maxHYx; — minH¥x; |. (11)

Icr, <7 x;€X; xi€X;
[|=rank([Hilie,) e

Subsystems

1 6713147192023 2428
A2 A
N i B

o Z e

- iR
k-th Tow — = VA =z E
= P

(b)

Figure 2: (a) block structure considered in Theorem 3.4; hatched boxes indicate
non-zero submatrices, while the dashed box contains the submatrix [H;lie, . (b)
an example network that would give rise to such a block structured H. In this
illustrative Figure there are 28 subsystems, and 6 sets of coupling constraints
determined by constraints on the network links A—F.

Finally, an important subclass of problems for which we can
suppress the necessary contraction to p = 0 is the following.

Remark 3.6. If H;x; > O for all x; € X;, and 0 € X;, then one
can obtain the same performance bound as in (8) while set-
ting p = 0, and a feasible solution can be recovered by setting
x;(A*) = 0 for at most m subsystem solutions.

This is for instance the case for the (multidimensional) knap-
sack problem and some of its variants. Namely, a feasible so-
lution can be obtained by removing at most m items from the
knapsacks.

3.3. Further Discussion on the Performance Bound

One of the key factors contributing to the optimality gap identi-
fied in Theorem 3.3 is the performance loss due to the contrac-
tion p, determined by [J%LP - J;;LP]; see the proof of Theorem
3.3, in particular the term (ii), in Section A.4. In Theorem 3.3,
Assumption 3.2 allows us to establish an explicit bound on this
term. Here we show that this performance loss can be charac-
terized by the data of only m subsystems, which explains why
one may expect a behavior for the optimality gap similar to (9)
even in the absence of Assumption 3.2.

Proposition 3.7. Consider the perturbed version of the pro-



gram Prp
minimize Y, ¢ x;
iel
subjectto Y Hix; < b+ ¢l
iel
x; € conv(X;)

(Prr(e))
iel,

whose optimal value is denoted by Jz; (€). Let Di = (X;, H;, c;)
be the tuple representing the data of the i" subsystem, where the
sets X; are all compact. Then, there exist a partition [ = 1} U I
and a constant L(I,) = L((Di)er,), only depending on the data
of subsystems indexed by I, such that || < m and

0<Jp (0)-J5 (6) < Ll)e,  VeeR..

Proor. The proof, along with some preliminaries, is in Ap-
pendix A.6.

This result allows us to provide the following performance
bound on the optimality gap for the recovered solutions.

Theorem 3.8 (performance without Slater). Suppose the

programs Prp and D satisfy Assumption 2.4. Then, any
solution x(A*) € X(A*) recovered satisfies
Jp(x(A*)) = Jp < m - maxy; + max L(D) - ||plle (12)
iel Lcl

|L|<m

where y; and p are as defined in (3) and (6), respectively, and
L(I,) is the constant determined by subsystems indexed by I, as
introduced in Proposition 3.7.

The proof of Theorem 3.8 essentially follows the same analysis
of Section A.4. In light of this theorem, it is then clear that if
{vi}ier and {L(I2)}1,c; are uniformly bounded in |/|, and J; grows
linearly with |I|, we reach the same conclusion on the optimality
gap behavior as in (9). These uniform bounds are satisfied if
the diversity of the subsystems added to the problem, when we
increase its size, is limited.

4. Application Example: Charging of Plug-in Electric Ve-
hicles (PEVs)

We consider a fleet of |I| Plug-in (Hybrid) Electric Vehicles
(PEVs) that must be charged by drawing power from the same
electricity distribution network. As the number of PEVs in-
creases, it becomes necessary to manage their charging pattern
in order to avoid excessive stresses on the lines and transformers
of the network. The role of interfacing the fleet of PEVs with
the network operators is taken over by a so-called aggregator.

In this Section we take the perspective of such an aggregator. Its
control task is to assign charging slots to each individual PEV
under its authority. The charging schedules have to be com-
patible with the local requirements (e.g., a desired final state of
charge SoC), as well as global, network wide constraints.

4.1. Model

We will only consider the problem of establishing a feasible
overnight charging schedule, since this is the period when most
charging will occur [34]. We will also assume that at the time
when the schedule is to be decided (e.g., midnight), all PEVs
are connected and their local charging requirements (initial and
final required SoC) have been communicated to the aggregator.
Both of these assumptions can be easily relaxed by buffering
newly connected PEVs, and recomputing every 20 minutes a
charging schedule with the new population information, in a re-
ceding horizon fashion similar to [17]. Further, we assume that
charging can be interrupted and resumed, but in order to avoid
excessive switching, once charging starts it must continue for at
least 20 minutes. This is a reasonable way of charging Lithium-
Ton batteries, the most common in PEVs, because they do not
present memory effect [30]. Non-interruptible charging is not
discussed here as it is uncommon in practice, but those appli-
cations for which it may be necessary (e.g., Nickel-Cadmium
batteries) can be readily incorporated in our proposed frame-
work with an appropriate design of the local constraints. We
thus split the overnight period in intervals of 20 minutes each,
and assume that the aggregator has authority to flag, for each
individual PEV, the available charging time slots.

For each PEV i € I, charging at the time step & is allowed when
u;[k] = 1, otherwise u;[k] = 0. We will also consider as a sep-
arate case the situation in which discharging (or vehicle-to-grid
V2G@) is possible. Then, the discharge requests are modelled
using v;[k] € {0, 1}. Charging and discharging rates P; are as-
sumed to be constant, as done in [17, 13, 23, 18, 36] and reflect-
ing the charging station protocol IEC 61851".

The objective of the aggregator is to maximize the profit while
satisfying the local charging requirements of each individual
PEV and the network constraints, which are established by the
network operator. The optimization problem model we work
with is as follows.

e Subsystems model. The subsystems controlled are the
PEV batteries. Battery’s i charge level is denoted by e;[k],
its initial state of charge is E}“it, which by the end of the
charging period has to attain at least Efef. The charging
conversion efficiency is ' = 1 — ¢, while the discharging
efficiency is £/ = 1 + i} where ¢; > 0 encodes the con-
version losses. We denote by E™" and E;™* the battery’s

!"This is particularly true in case of stations with low power ratings. More
generally, smart charging stations compatible with the IEC 61851 standard
could operate in a semi-continuous fashion, i.e., with a minimum current output
when charging, that can be then modulated in a certain band. This requirement
results in disjunctive models of the corresponding subsystems, which requires
discrete variables and thus fits our proposed framework. However we do not
consider this aspect in the model.

2The discharging efficiency must be greater than 1. This correctly encodes
the fact that the amount of energy fed back to the network is smaller than the
battery’s energy content decrease.



capacity limits. We thus have

e;[0] = EM (13a)
eilk + 11 = e;[k] + PiAT(&'u;[k] — £} vilk]) (13b)
ei[N] > E* (13¢)
EM™ < ejlk] < EM™ (13d)
wilk] + vilk] < 1 (13e)
ui, vi € {0, 1}V (13f)

Condition (13e) removes the possibility of charging and
discharging simultaneously.

e Coupling constraints. Within a distribution system, net-
work congestions typically occur on the lines departing
from the substation, since the power flow at that point is
the sum of all the power loads in the network, and thus
largest [25]. We therefore model congestion avoidance as
a limit on the global aggregate charging and discharging
power flow,

PMk) < 3 Pi(uilk] - vilkD) < PMN[KL (14)
iel
In cases when other network points are susceptible to con-
gestions, similar coupling constraints have to be added, in
which the sum is over a smaller subset of PEVs. Then The-
orem 3.4 can be used to limit the necessary contraction.

e Objective function. The objective function encodes the
cost the aggegator incurs to charge its fleet,

N-1
minimize Z Z P; - (C*[klu;[k] - C'TkIvilk])  (15)
M el k=0
where C* and C” are, respectively, the price vector for
electricity consumption and injection. We allow for time
varying and possibly different charging and discharging
prices. In the simulations we assume a 10% markup on
injection pricing, i.e., C* = 1.1 - C*, which the system op-
erator pays to the aggregator in order to incentivize PEVs
to make the V2G functionality available.

We can write the complete optimization program (13) — (15) as

minimize >, P; (C*-u; — C"-v;)
e,u,v iel
subjectto  P™" < 3 Pi(u; —v;) < P™ (16)
i€l
(ei,u;,vy) € X;
with

€;

Xi={ |u;| e RV xZ?¥ | Eq. (13) }. (17)
Vi

Remark 4.1. Note that the assumption in Theorem 2.3 does
not apply to this model. To see this, we consider the charge—
only case. According to (16), H;x; = Pu;, and a fractional

x; € conv(X;) implies that in at least one time step, charge is
happening at a partial rate. To rectify it, one has to either in-
crease it to the fixed charge rate or decrease it to 0. In the latter
case it may however be necessary to increase charging at an-
other time step, in order to satisfy the energy requirement of the
EV (13c¢). Since any such rectification will cause an increase of
resources used at some time, the assumption cannot be met.

4.2. Solution Method

We apply the method proposed in Theorem 3.1 to problem (16),
which we consider under two different scenarios: in the first,
only charging is allowed (v = 0), while in the second, both
charging and V2G controls are enabled. This allows us to il-
lustrate how the method can be adapted in two cases in which
the combinatorial structure of the subsystems is substantially
different.

In both cases, the number of coupling constraints is 2N. How-
ever, in consideration of Theorem 3.4 we can reduce this num-
ber to N. One generally needs to solve the optimization prob-
lems in (6) to establish p; however, these computations can be
simplified in this example by noting that the corresponding ob-
jectives only entail one individual time step k. Namely, we have
that

[ovac i =an_13x( max_ P;(u;[k] — vi[k]) = min_ P;(u;[k] — v;[k])

e e vieX;
=2N max P;
i€l
[pcharge]k =N rrl_lgx P;.

(18)
Dualizing the complicating constraints leads to the dual prob-
lem

sup 3 min  Pi((C"+ 8¢ = A+ pu; — (C" + 8! = A+ i)
Ap iel (e vi)€X;

+ (/lpmin _ 'upmax)
s.t. A,u=>0,

(19)
in which A[k] is the dual variable associated with the lower
power rating constraint PMin[k] £ PMin[k] + p, and u[k] is the
variable for P™*[k] = P™[k] — p. We note that the cost vector
for the subsystems is highly symmetric — every PEV receives
the same price profile. In order to ensure that Assumption 2.4
is satisfied, we introduce small additive perturbation terms ¢}
and ¢} to the costs C* and, respectively, C".

For the outer (maximization) problem in (19) we use a subgra-
dient method [1] with a constant stepsize rule, which we de-
crease every 20 — 30 iterations.

The inner (minimization) problem, on the other hand, is decom-
posed into |I| decoupled subproblems which are optimal control
problems of 1-dimensional systems. For the sole charging case,
the optimal local strategy can be proven to be greedy’: the least

3Optimality of the greedy strategy can be shown using a Dynamic Program-
ming argument, but since it is straightforward we omit it for brevity.



number of charging steps is performed, and those are selected
at times of “lowest local prices” (i.e., taking into account A and
w as well). The local optimizations are thus computationally in-
expensive in this case. For the V2G case, on the other hand, the
optimal charging and discharging strategy is not as immediate,
so it must be solved either as a generic optimization problem,
or by applying the Dynamic Programming (DP) algorithm, see
e.g [8, p.23]. In our tests we apply DP.

4.3. Simulation Setup

We compare the performance of our proposed method with the
results provided by CPLEX 12.5 [22]. For each fleet size con-
sidered, we generate 10 random instances based on the parame-
ters provided in Table 1 in Appendix B. In order to ensure a fair
comparison, since CPLEX is generally unable to find exact so-
lutions to the model (16), we first run our proposed algorithm on
each problem instance, record the optimality gap (we get a tight
lower bound for free as a by-product of our method), and then
run CPLEX up to the same optimality gap. Furthermore, the
perturbation ¢; is added to the objective function, and the per-
turbed problem is the one on which we deploy both our method
as well as CPLEX. This ensures that both methods are exposed
to exactly the same problem. All our tests are performed on a
Desktop PC with 8GB of RAM and a 3.10 GHz processor.

4.4. Results

Figure 3 illustrates the optimality gap of the recovered solu-
tions (min, max and average); note that the vertical axis is log-
arithmic. The asymptotic behaviour (9) is confirmed. The a—
priori performance bound provided by Theorem 3.3 is reported
on Figure 3 for comparison, which suggests that the bound is
conservative only by a constant factor, i.e., the order of conver-
gence rate 1/|/| is indeed tight. It should be noted that while
the main purpose of our theoretical performance bound is to
ensure good asymptotic behaviour, thanks to our particular ex-
perimental setup we can estimate it explicitly. Namely, while
it may be generally difficult to determine a numeric value for
the Slater constant { defined in Assumption 3.2, in the setup of
this section we can establish a conservative estimate. This is
achieved by considering a worst-case scenario in which all EVs
in the population require the highest possible amount of charg-
ing energy that is allowed by numeric value of the parameters
in Table 1, and that this energy is acquired at the highest rate
possible. Further note that since the Slater point only needs to
be feasible, the discharging capability does not need to be uti-
lized in the V2G case. Using the numbers from Table 1, we
see that the worst-case amount of energy drawn over the period
amounts to 12.8kWh — 3.2kWh = 9.6kWh, which at P; = SkW
results in 1.92h worth of charging, leading to 6 = N™* charg-
ing steps per EV. Thus, by allocating a band of average power
consumption equal to (N™/N) - max; P; = 6/24 - 5kW to

each individual EV, we can ensure that the total amount of en-
ergy that has to be transferred to the fleet, when distributed uni-
formly over the entire horizon, leaves a gap to P™** of at least
(N™2/N) - max;e; P; - |[I| = P™* = 1.75 - |I| kW. Be definition of
the Slater point (7), this leads to a value of = 1.75 kW.
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Figure 3: Optimality gap of the solutions recovered using the proposed method.
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Figure 4: Solve times.

Solution times are shown on Figure 4. Owing to the greedy
subproblem structure when only charging is allowed (discussed
in the previous Section 4.2), computation times in this case are
fast: using our method, the largest instances are consistently
solved within 5 seconds, see Figure 4(a). CPLEX is compara-
bly fast. Figure 4(b) shows solve times when the discharging



functionality is enabled. V2G introduces a much more compli-
cated combinatorial subproblem structure — the optimal local
control is not greedy anymore. In this case solution via CPLEX
is impractical, because solve times are generally long and af-
fected by substantial variances. For the case with 500 PEVs,
solution times vary from 15 minutes to 4 and a half hours, and
up to 6 hours on the two instances that CPLEX wasn’t able
to solve before running out of memory. Our proposed method
has the advantage of providing consistent solution times across
different instances, and the solution times substantially outper-
form CPLEX also on those instances in which CPLEX provides
a solution at all. It should be emphasized that the computations
are carried out on a single processor, so that solve times can be
reduced substantially by exploiting parallelism.
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Figure 5: Dual function value and feasibility violations at each iteration.

Figure 5(a) and 5(b) show the typical convergence behavior for
the dual objective and the coupling constraints violations. Note
that inner solutions are feasible starting from iteration ~ 120,
while one may have interrupted the dual method already at iter-
ation ~ 60 given the dual objective behaviour. We also remark
that the inclusion of a small perturbation, to ensure satisfaction
of Assumption 2.4, has the beneficial side effect of accelerating
dual convergence, by breaking the symmetry in the problem and
reducing oscillations in the iterates, a phenomenon also noted
in [26].

Finally, Figure 6 depicts the local charging behaviour of one
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Figure 6: Local charge profile.

individual PEV. Charge and discharge control signals, as well
as the evolution of the SoC are shown. The desired final state
of charge is achieved by the end of the charging period.

The numeric values of these results are reported in the Ap-
pendix, see Table 2 for the charge-only experiments, and Table
3 for the results with V2G.

5. Conclusion

We have provided new results concerning the primal solutions
recovered from lagrangian duals of problems structured as #.
These results are of direct practical interest, in particular if one
wishes to distribute the computational burden of calculating so-
lutions to very large instances of such mixed integer programs.
The strength of our results lies in the generality of X;, which
can include very sophisticated local models and therefore ac-
commodate a large variety of practical applications.

It appears that many solution approaches can be derived from
the result given in Theorem 2.5; the one we propose in Sec-
tion 3 is amenable to distributed computations and is simple to
implement. It is also independent of the method used to solve
the dual. Depending on the method chosen, convergence results
could also be derived. One can for instance deploy the scheme
exposed in [1] together with our contraction method to recover
an optimizer xj, of Prp. According to Theorem 2.5, this solu-
tion is known to satisfy integrality for at least |I|—m subsystems.
The non-integral components can be resolved by performing at
most m local optimizations, neglecting the coupling constraints.
Owing to the contraction, the resulting solution retains feasibil-
ity, and satisfies performance bounds similar to (8).

Another interesting line of research includes an investigation
of the effectiveness of these methods on non-linear problems.



In Remark 2.7 we mentioned that the method presented here is
directly applicable to problems with concave objective or con-
straint functions. Handling other non-linearities is subject of
future work.

A. Appendix: Proofs

A.l. Proof of Fact 2.2

Proor. Due to the linearity of the objective function and the
definition of the set X;, it is straightforward to observe that

min(ciT +AT H)x;

min (C-r + /ITHZ‘))C,'
xi€X; !

xieconv(X;)
min (ClT + /lTH,').Xl'.
xievert(X;)

(A.1)

Thus, the desired assertion readily follows from the fact that X;
are compact and non-empty. g

A.2. Proof of Theorem 2.5

Proor. Let us introduce two new LPs that are crucial for our
subsequent analysis. First, we denote by xf the j-th element of
vert(X;) for j € J; where J; = {1,...,|vert(X;)]}. In view of
(A.1), one can derive an LP version of the program D as

iel J€Ji
1>0,

maxi}mize —ATb + Y, min (clTxlj + /lTH,-x{)
subject to

which can then be cast as the LP

maximize -ATb+ Y z
Az i€l

subjectto z; < c]x/ +ATHx! i€l jel; (A.2)

>0,

which, after introducing the slack variables s{ , is equivalent to

maximize -ATb+ )z
Azs iel o
subjectto  z; = /x]+ATHix] —s] iel,jel (D)
5120 i€l jel
1=0.
The second LP is described as
minimize Y, > p{ciTx{
p i€l jeJi _
subjectto Y, Y p/Hix] <b
iel jelJ; (Plp)
> pl=1 iel
JeJi
pl =0 iel jel,

where p{ € [0, 1] is the scalar optimization variable associated
to the vertex x{ . In fact, (A.2) is the dual program of #;,,
and in our subsequent analysis we will use its equivalent prob-
lem Dy, since we will need to work with the slack variables
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s. Let us denote by p* an optimizer of #;,. Note that #;, cor-
responds to an extended LP version of #pp, yet they are not
entirely equivalent problems. In particular, each p* leads to a
unique xfp, but the reverse does not hold, i.e., uniqueness of
x;p does not imply uniqueness of p*.* We split the proof of the
theorem by proving the following steps:

(a)

Let I; C I be a subset of indices where (x]fp)i € vert(X;)

for all i € I;. Then, (xEP)i is an optimizer of the inner

problem, i.e., (x{},), € argmin(c; x + A*TH;x) where 1* is
xi€X;

an optimizer of D.

(b) Let (1*,z*, s*) be an optimal solution of D;, and p* be an
optimal solution of #;, with the corresponding optimizer
xp for . If the optimal pair (p*, s*) is strictly comple-
mentary, then (x{). = x;(A*) for all i in the subset I; as

defined in (a).

(©)

If x{'p is a vertex for the program £, then the subset /; in (a)
can be selected such that |I1| > |I| — m.

Before proceeding with the proofs of the above results, let us
highlight how the desired assertion, under the unique primal
and dual optimizers, follows from these three steps. First, note
that if the optimal solution of D is unique, then (1*,z*, s*) is
the unique solution to Dy,: A* coincides for O and D, ac-
cording to [19, p. 89]; z* is the optimal objective of the i-th
inner problem, and is thus uniquely determined for fixed A;
and finally (s*){ is also uniquely determined by the equality
constraints in 9y, in which it is the only variable left unde-
termined. Therefore, s* always belongs to the pair (p*, s*) of
primal-dual optimizers for which strict complementarity holds;
the existence of such pair is guaranteed in the LP setting [20,
Thm. 2.1]. Moreover, if x{', is unique, then it is always a ver-
tex. Hence, the requirements of the above results are fulfilled
and the theorem assertion is concluded.

Proof of (a):. Let (XEP)i € vert(X;). Then, owing to the unique-
ness of x{'p, for any solution p* of #;, we have (p*){ = 1 for the
corresponding j € J;. Therefore, by complementary slackness,
the dual optimizer has (s*){ = 0, and the step (a) follows by
= (), + TH(x), < o] x] + X THx!, Ve,
(A.3)

Proof of (b):. Leti € I and, as explained in the proof of (a),
(p*)! = 1 for the corresponding j € J;. In light of the equality
constraint 3 jc;, p{ = 1, we have (p*)‘ii = 0 forall j # j. The
assumed strict complementarity now implies (s*)lj # 0 for all
Jj # J, which leads to a strict inequality in (A.3). Hence, the
inner problem min, cx,(c; x + A*TH;x) has the unique solution
x;(A*). Now the desired assertion follows from the step (a).

4Since (p*), represents a way to combine the vertices of conv(X;) to produce
a certain (XEP)i’ many such combinations can lead to the same (x]’:l,)i.



Proof of (c):. Problem $;, has m inequality constraints (b €
R™) and |I| equality constraints, plus the positivity constraints
on p!. We can add slack variables to the complicating con-
straints thus obtaining a problem with |/|+m equality constraints
and positivity constraints on all the optimization variables,
which are now the slacks ¢ € R” and the variables 17}'] . The
constraints of ¥, can therefore be rewritten as H(p™,¢")" =
b7, 1...,1)7, p,qg > 0, where the matrix H, is defined as

* J
Hx, | Hixy Hlllx\lu L H\I\X|,||” Lyscm
| I | 0O 1-.-1 0 0
H = \ \ \ \
[ [ o :
0 I I 0 1 I . I 1 0
[ —
H, Hy (A4)

in which we have also defined the submatrices H;, i € I.
It is well known (see [9, Prop. 2.1.4 (b)]) that for a problem
in this form any feasible point is a vertex if and only if the
columns of H corresponding to the non-zero coordinates of the
point are linearly independent. This is then true for any optimal
vertex. Thus, supp(p*) < |I| + m, as the number of rows of H
is || + m. On the other hand, the constraint Y, ,c; p] =1, i € I
in Py, forces any feasible solution to have at least one variable
p{ larger than zero for each i € I, i.e. supp(p*) > |I|. It thus
follows that at least |I| — m entries must be set to 1 at any
feasible vertex solution, including an optimal one.

A.3. Proof of Theorem 3.1

Proor. Note that by construction x(1*) € X(A*) for all i € I.
Then, it only suffices to show 3,c; H;x;(4*) < b. By virtue of
Theorem 2.5, we know that there exists a subset I; C I such that
II}| > |I| — m and x;(1*) = (X]p);. Setting I, = I'\ I}, we have

D VHx() = ) Hix() + Y Hix(1)

i€l i€l i€l
= Z Hy(X{p)i + Z H;x; (%)
iel; iel,
= > Hi&p)i+ ) (Hixi(1) = Hi(5p):) < b.
i€l i€l
~————
<b <p

A.4. Proof of Theorem 3.3
Proor. Note that
Ip(x(*) ~ T =

[Mx(i*)) - ng] + [J%Lp - Jap]

() (ii)
>* >*
+ [JPLP - J,J],
——e
(iii)

where each term can be bounded as follows:

(i) According to Theorem 2.5, there exists an index set I;
with |I1| > |I| = m such that, for all i € I, (Xp); = x;(A%).
Defining I, = I\ I}, we have

Tp(x(A%) = Jp(Fp) = > (e x:(A*) = ¢ (Fp))

i€l

< m - max ( max ¢; x; — min ciTx,-)
iel x;i€X; xieX;

= mmaxy;.
iel

(i) By virtue of [28, Lemma 1], given the Slater’s point & we
can bound ||A*|; by

1 = (3= (Y min(eT + ) ) - 275,
iel el 7

Va1 >0.

Setting A = 0 in the above, we arrive at

¥: = max ¢ x; — min ¢/ x;.

1
%]l < - maxy;,
i€l x€X; xi€Xj

¢
In light of perturbation theory [12, Sec. 5.6.2], one can
bound the term (ii) from above by (1*)" p, where 1* is the
optimizer of the program 9 and p is the contraction vector
as defined in (6). Thus,

lloo

] _ |
IS < < Il < LOTrg;gxyi.

Prp PLe

(iii) By definition, P1p is a relaxed version of . Hence J;; -
J* < 0 LP
> <0.

A.5. Proof of Theorem 3.4

For a given x(1*) € X(1*), let us introduce I =
{i €1l (xp), # x,-(/l*)}. For the k-th complicating constraint we
then have

> Hexa*) D H ), + ) HEx(*)

iel ieNT iel
b+ > H (") = (o))

iel
= b+ )L HNxG() - ()

ielnly

IA

< b+|INI-max|max Hf‘xi — min foi
iely \ xieX; xi€X;

In order to get a bound on [IN I, we resort again to the program
P, We know that, under Assumption 2.4, x;(1*) # (xfp)i if



and only if (xfp)i ¢ vert(X;), as shown in Appendix A.2. Thus,
if i € 1 there are at least two j € J; such that (p*){ > 0 in the
corresponding program #;,. And for every i € I, there is always
at least one j € J; such that (p*)ij > 0. Thus

Isupp([p* 1is)l = 1 \ 11+ 2T 0 Il = || + [T N L.

On the other hand, in view of [9, Prop. 2.1.4 (b)], and as dis-
cussed in Appendix A.2, the columns within the matrix H (de-
fined in Equation (A.4)) corresponding to non-zero (p*){ co-
ordinates must be linearly independent. Hence [supp(p*)| <
rank(HH) and in particular

[supp([p*1ic;,)| < rank([Hilies,).

Finally, from the structure of H defined in Equation (A.4), it is
clear that

rank([H;];e,) < rank([H;lier,) + -
Combining the above inequalities immediately leads to
rank([Hilier,) > 10 Iil,

as desired.

A.6. Proof of Proposition 3.7

The objective is to establish a connection from the sensitivity
of the large scale, but structured, optimization program #pp to
a reduced version in which only m subsystems appear. To this
end, we first start with some preparatory lemmas.

Lemma A.1. Let J : R, — R be a convex function. Suppose
there exist a constant L and a sequence {&,},cn Such that g, — 0
as n goes to infinity and J(0) — J(g,) < Le, for all n € N. Then,
J(0)—J(e) < Leforall € € R,.

Proor. For the sake of contradiction, suppose there exists an
& such that J(0) — J(§) > Lé. Let n be large enough so that
g, €(0,8)and a = % In light of convexity of J, we have

J(E) < —-a)J0)+ alJ(E)
<1 -a)J0)+ a(J0)- Le) = JO) - Lg,,

which is obviously in contradiction with our assumption.  [J
Lemma A.2. Consider the parametrized LP
minimize cx
x (A.5)
subjectto Ax < b+ ¢l,
where £ € R, is the parameter and 1 = [1,...,1]7 € R™,

Suppose the program admits a vertex optimizer whose objective
value is denoted by J(g). Then, there exists a constant indepen-
dent of the resource vector b, denoted by L(A, c¢), such that

0<J0) - Je) < LA, c)e, VeeR,.
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Proor. We only need to prove the right-hand side of the in-
equality as the left-hand side trivially holds since the parameter
€ is non-negative and only relaxes the constraint. Let x*(¢) be
a vertex optimizer for (A.5). By virtue of [9, Prop. 2.1.4 (a)],
given a fixed &, we know that there exists a collection of m
linearly independent rows of the matrix A, denoted by the in-
vertible submatrix [A](g), such that [A](e)x*(g) = b + 1. Note
that the number of submatrices of matrix A is, of course, finite.
Therefore, one can always pick a sequence {g,},cy such that
&, — 0 as n goes to infinity and the corresponding submatrix
[A](ey) is constant; let us denote this submatrix by [A]. We thus
have

J(0) = J(&,) = cx*(0) — cx*(&,) = —c[A] '1&, < L(c, A)s,,

where the constant can be, for example, L(c,A)
mllcl2lI[A]7"]l,. Note that, by construction, the submatrix [A]
is invertible and the norm |[[A]"!|| is bounded. The desired as-
sertion now follows from the convexity of the perturbation map-
ping € = J(&) [12, Sec. 5.6.2] and Lemma A.1. g

Proor (THEOREM 3.7). Given the partition I = I} U I, we intro-
duce a reduced version of P p(¢e) associated with the index set
I, as follows:

minimize Y, ¢/ x;
(Xi)ier i€l
subjectto Y, Hix; < b — 3, Hi(x]p), + &l
icl, iel, !
x; € conv(X;) iel,
(Rp,(€))

where x{, is an optimizer of the program #p. We denote the
optimal value of R, () by J(/*e,z (¢). Let us highlight that for
any partition of the index set I = I; U I, the program Ry, (¢) is
always feasible as (xﬁp)ielz trivially satisfies the constraints for
any € € R,. As a first step in the proof, we show that there
exist an index subset I, and a sequence of {g,},cy such that

|I,] < m and the optimal values J;LP (¢,) and J;;l (e,) have the
2
same sensitivity in terms of the parameter €.

Let x[p(¢) be a vertex optimizer of the program £ p(&); the ex-
istence of such a vertex is always ensured since the feasible set
of P p(€) is a compact polytope. In light of part (c) in the proof
of Theorem 2.5, we know that for each fo (&) there exists a par-
tition I = I;(g) UL,(g) where |I,(£)| < m and (x]p(€)); € vert(X;)
for all i € I;(¢). Due to the fact that the number of the sub-
sets of I as well as the set vert(X;) is finite, then there exists
a partition / = I} U I; and a subsequence of {&,},cy such that
|| < m and (x7,(e,)); are constants for i € I;. By compactness
we can, without loss of generality, assume that this sequence is
convergent. It is a well-known result in the context of perturba-
tion theory that the mapping & — J;LP (&) is convex and closed
on [0, o), and in particular continuous [31, Sec. 28]. Hence,
one can infer that (x7,(e,)); converges to an optimizer of #rp,
which consequently implies (x],(g,)); = (x]p), for all i € I;.
Therefore, by construction of the auxiliary program Ry, (&) we
can deduce

B0 =I5 (e) =I5 (O)=J% (), VneN,

LP



Now, in view of Lemma A.2, we know that the right-hand side
of the above equality is non-negative and can be upper bounded
by a constant only depending on the data of the subsystems
indexed in I, i.e., (Di);er,. Let us denote this constant by L(15).
Then, we have

0< J;LP(O) - ;;LP(‘SI‘L) < L(I2)8ns Vn € N,

that by virtue of Lemma A.1 leads to the desired assertion. [

B. Simulation Tables

Table 1 contains the parameters used in the simulation. Values
in brackets are sampled from a uniform distribution over the
given interval. Tables 2 and 3 report the numeric values of the
performance results derived from the simulations discussed in
Section 4.
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Parameter ‘ ] ‘ P; ‘ E;“i“ ‘ Emx ‘ E;“i‘ ‘ E{ef ‘

Unit PEVSs KW [ kWh [ kWh kWh kWh

Value 200 - 10000 | [3:5] | 1 | [8:16] | [0.2;0.5] - EF** | [0.55;0.8] - E™
Parameter | 4 AT [N [P ] P | C'k] | Clk | &6 |
Unit - min [ - [ kW | kW [€/MWh | €MWh [ €MWh
Value [0.015:0.075] | 20 [ 24 [3-11] | -P™> | [19;35] | I.1-C"[k] | [-0.3;0.3]

Table 1: Parameters used in the simulations. Values in the brackets are sampled from a uniform distribution.

Proposed Method CPLEX
Opt. Gap (%) Solve time™ (sec) Solve time (sec)

#PEVs Min Avg Max Min Avg Max Min  Avg Max

200 324 332 341 * * * 197 216 3.74

350 221 244 258 * * * 1.13 1.79  2.30

500 1.40 146 1.54 * * * 1.02 1.24 1.52

700 1.01 1.05 1.10 0.31 0.31 0.31 1.27 1.29 1.31

1000 0.68 0.72 0.76 044 044 044 1.68 1.70 1.73

1500 0.46 047 049 0.67 0.70 0.70 239 242 245

2000 033 0.35 0.36 0.88 0.88 0.89 322 330 341

5000 0.13 0.14 0.14 217 221 223 8.00 8.18 8.43

7000 0.05 0.05 0.06 3.14 3.15 3.16 1140 11.74 13.25

10000  0.03 0.03 0.04 445 451 452 1741 17.77 1843

(*) < 0.3 sec (imprecise measurements).

Table 2: Charging only.
Proposed Method CPLEX
Opt. Gap (%) Solve time (min) Solve time (min)

#PEVs Min Avg Max  Min Avg  Max Min Avg Max
200 8.82 10.51 1237 1.05 1.06 1.08 0.06 0.07 0.07
350 293 324 351 1.48 1.49 1.52 1.56 6.89 15.81
500 2.05 2.15 2.24 1.85 1.93 2.62  15.21* 65.100 262.81*
700 148 154 1.61 2.43 244 248 - - -
1000 1.01  1.05 1.10 324 326 3.28 - - -
1500 0.65 068 072 472 474 4281 - - -
2000 045 050 053 6.19 6.21 6.23 - - -
5000 0.12 0.15 020 14.88 1490 14.95 - - -
7000 0.09 0.10 0.12 20.59 20.77 21.94 - - -
10000  0.06 0.07 0.07 29.34 2939 29.58 - - -

(*) failed to solve two instances (out of memory)

(-) out of memory before attaining the desired optimality gap

Table 3: Charging and V2G.

15



	Introduction
	Duality for Problem P
	Bound on Duality Gap
	Geometric Properties of the Inner Solutions x()

	A Distributed Solution Method for P
	Contraction of the Resources
	Reducing Conservatism
	Further Discussion on the Performance Bound

	Application Example: Charging of Plug-in Electric Vehicles (PEVs)
	Model
	Solution Method
	Simulation Setup
	Results

	Conclusion
	Appendix: Proofs
	Proof of Fact 2.2
	Proof of Theorem 2.5
	Proof of Theorem 3.1
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Proposition 3.7

	Simulation Tables

