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Abstract. We consider the Scenario Convex Program (SCP) for two classes of optimization

problems that are not tractable in general: Robust Convex Programs (RCPs) and Chance-
Constrained Programs (CCPs). We establish a probabilistic bridge from the optimal value

of SCP to the optimal values of RCP and CCP in which the uncertainty takes values in a

general, possibly infinite dimensional, metric space. We then extend our results to a certain
class of non-convex problems that includes, for example, binary decision variables. In the

process, we also settle a measurability issue for a general class of scenario programs, which to

date has been addressed by an assumption. Finally, we demonstrate the applicability of our
results on a benchmark problem and a problem in fault detection and isolation.

1. Introduction

Optimization problems under uncertainty have considerable applications in disciplines ranging
from mathematical finance to control engineering. For example most control systems involve
some level of uncertainty; the aim of a robust control design is to provide a guaranteed level
of performance for all admissible values of the uncertain parameters. In the convex case, two
well-known approaches for dealing with such uncertain programs are robust convex programs
(RCPs) and chance-constrained programs (CCPs). RCPs consider constraint satisfaction for all,
possibly infinitely many, realizations of the uncertainty. While it is known that certain classes of
RCPs can be solved as effectively as their non-robust counterparts [BS06] in other cases RCPs
can be intractable [BtN98, BtN99, GOL98, BtNR01]. For example, the class of parametric linear
matrix inequalities, which occur in many control problems, is NP-hard [BGFB94, Gah96]. CCPs,
on the other hand, allow constraint violation with a low probability. The resulting optimization
problem, however, is in general non-convex [Pré95, SDR09].

Computationally tractable approximations to the aforesaid optimization problems can be
obtained through the scenario convex programs (SCPs) in which only finitely many uncertainty
samples are considered. A natural question in this case is how many samples would be “enough”
to provide a good solution. To answer this question, one may view the problem from two
perspectives: feasibility and objective performance. The literature mainly focuses on the first
perspective. In this direction, the authors in [CC05, CC06] initialized a feasibility theory for CCP
refined subsequently in [CG08, Cal10]. They established an explicit probabilistic lower bound
for the sample size to guarantee the feasibility of the SCP solutions from a chance-constrained
perspective. By contrast, the issue of performance bounds for both RCP and CCP via SCP has
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not been settled up to now. [CG11] provides a novel perspective in this direction that leads to
optimal performance bounds for CCPs. However, it involves the problem of optimal constraint
removal, which in general is computationally intractable.

The first contribution of this article is to address the SCP Performance issue from the objective
viewpoint. The key element of our analysis relies on the concept of the worst-case violation
inspired by the recent work [KT12]. The authors of [KT12] derived an upper bound of the worst-
case violation for the SCPs where the uncertainty takes values in a finite dimensional Euclidean
space. This result leads to a performance bound for a particular class of RCPs where the
uncertainly appears in the objective function, e.g., min-max optimization problems. Motivated
by different applications such as control problems with saturation constraints [CGP09], fault
detection and isolation in dynamical systems [MEL13], and approximate dynamic programming
[DPR13], in this article we first extend this result to infinite dimensional uncertainty spaces. In
the sequel, we establish a theoretical bridge from the optimal values of SCP to the optimal values
of both RCP and CCP. Along this direction, under mild assumptions on the constraint function
(measurability with respect to the uncertainty and lower semicontinuity with respect to the
decision variables), we shall also rigorously settle a measurability issue of the SCP optimizer,
which to date has been addressed in the literature by an assumption, e.g. [CC06, CG08].
Our second contribution is to extend these results to a class of non-convex programs that, in
particular, allows for binary decision variables. In the context of mixed integer programs, the
recent work [CLF12] investigates the feasibility perspective of CCPs, which leads to a bound of
the required number of scenarios with exponential growth rate in the number of integer variables,
whereas our proposed bound scales linearly.

The layout of this article is as follows: In Section 2 we formally introduce the optimization
problems that will be addressed. Our results on probabilistic objective performance for both
RCPs and CCPs based on SCPs are reported in Section 3. In Section 4 we extend our results
to a class of non-convex programs, including mixed-integer programs with binary variables.
To illustrate the proposed methodology, in Section 5 the theoretical results are applied to two
examples: a benchmark problem whose solution can be computed explicitly, and a fault detection
and isolation study with an application to the security of power networks. We conclude in Section
6 with a summary of our work and comment on possible subjects of further research. For better
readability, some of the technical proofs and details are given in the appendices.

Notation

Let R+ denote the non-negative real numbers. Given a metric space D, its Borel σ-algebra is
denoted by B(D). Throughout this article, measurability always refers to Borel measurability.
Given a probability space

(
D,B(D),P

)
, we denote the N -Cartesian product set of D by DN

and the respective product measure by PN . An open ball in D with radius r and center v is
denoted by Br(v) := {d ∈ D : ‖d− v‖ < r}. The symbol |= refers to the feasibility satisfaction,
i.e., x |= RCP means that x is a feasible solution for the program RCP. Similarly, x 6|= RCP
implies that x is not a feasible solution for the optimization problem RCP.

2. Problem Statement

Let X ⊂ Rn be a compact convex set and c ∈ Rn a constant vector. Let
(
D,B(D),P

)
be a

probability space where D is a metric space with the respective Borel σ-algebra B(D). Consider
the measurable function f : X×D → R, which is convex in the first argument for each d ∈ D, and
bounded in the second argument for each x ∈ X. We then consider the following optimization
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problems:

RCP :





min
x

cᵀx

s.t. f(x, d) ≤ 0, ∀d ∈ D
x ∈ X

, CCPε :





min
x

cᵀx

s.t. P[f(x, d) ≤ 0] ≥ 1− ε
x ∈ X

,(1)

where ε ∈ [0, 1] is the constraint violation level for the chance-constrained program. We denote
the optimal value of the program RCP (resp. CCPε) by J?RCP (resp. J?CCPε

). Suppose (di)
N
i=1 are

N independent and identically distributed (i.i.d.) samples drawn according to the probability
measure P. The centerpiece of this study is the scenario program

SCP :





min
x

cᵀx

s.t. f(x, di) ≤ 0, ∀i ∈ {1, · · · , N}
x ∈ X

,(2)

where the optimal solution and optimal value of SCP are denoted, respectively, by x?N and J?N .
Notice that SCP is naturally random as it depends on the random samples (di)

N
i=1.

We assume throughout our subsequent analysis that the following measurability assumption
holds, though we shall show in Subsection 3.3 how one may rigorously address this issue without
any assumption for a large class of optimization programs (not necessarily convex).

Assumption 2.1. The SCP optimizer generates a Borel measurable mapping from
(
DN ,B(DN )

)

to
(
X,B(X)

)
that associates each (di)

N
i=1 with a unique x?N .

The optimization program SCP in (2) is convex and hence tractable even for cases where
the problems (1) are NP-hard. Motivated by this, a natural question is whether there exist
theoretical links from SCP to RCP and CCPε. As mentioned in the introduction, this question
can be addressed from two different perspectives: feasibility and objective performance. From
the feasibility perspective, we recall the explicit bound of [CG08] which measures the finite
sample behavior of SCP:

Theorem 2.2 (CCPε Feasibility). Let β ∈ [0, 1] and N ≥ N(ε, β) where

(3) N(ε, β) := min

{
N ∈ N

∣∣∣
n−1∑

i=0

(
N

i

)
εi(1− ε)N−i ≤ β

}
.

Then, the optimizer of SCP is a feasible solution of CCPε with probability at least 1− β.

With “|=” notation, the assertion of Theorem 2.2 is alternatively stated by PN
[
x?N |=

CCPε
]
≥ 1− β, where PN stands for the N -fold product probability measure.1

To the best of our knowledge, there is no clear connection between the feasibility of RCP and
the solution of SCP. Furthermore, in Subsection 3.2 we provide an example to challenge the
possibility of such a connection. The focus of our study is on the second perspective to seek a
(probabilistic) bound for the optimal values J?RCP and J?CCPε

in terms of J?N .

3. Probabilistic Objective Performance

3.1. Confidence interval for the objective functions. The following definition inspired by
the recent work [KT12] is the key object for our analysis.

1Note that P is the probability measure on B(D); for simplicity we slightly abuse the notation, and will be
doing so hereinafter. Strictly speaking, one has to define a new probability measure, say Q, which is the induced

measure on B(X) via the mapping introduced in Assumption 2.1.
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Figure 1. Pictorial representation of Definition 3.1

Definition 3.1. The tail probability of the worst-case violation is the function p : X×R+ → [0, 1]
defined as

p(x, δ) := P
[

sup
v∈D

f(x, v)− δ < f(x, d)
]
.

We call h : [0, 1]→ R+ a uniform level-set bound (ULB) of p if for all ε ∈ [0, 1]

h(ε) ≥ sup
{
δ ∈ R+

∣∣ inf
x∈X

p(x, δ) ≤ ε
}
.

A pictorial representation of Definition 3.1 is given in Figure 1. Note that from a statistical
perspective the ULB function may be alternatively viewed as an upper bound for the quantile
function of the R-valued random variable d 7→

(
supv∈D f(x, v) − f(x, d)

)
uniformly in decision

variable x ∈ X (cf. [Sha03, Section 5.2]). Proposition 3.8 at the end of this subsection provides
sufficient conditions under which a candidate ULB can be constructed. If the uncertainty set D
is a specific compact subset of a Euclidean space, namely a norm-constrained or more generally
a star-shaped set, the authors in [KT12] provide a constructive approach to obtain an admissible
ULB.

Consider the relaxed version of the program RCP for γ > 0:

RCPγ :





min
x

cᵀx

s.t. f(x, d) ≤ γ, ∀d ∈ D
x ∈ X

,(4)

with the optimal value J?RCPγ
.

Lemma 3.2. Let h : [0, 1]→ R+ be a ULB. Then,

x |= CCPε =⇒ x |= RCPh(ε)

that is, the feasible set of the program CCPε with constraint violation level ε is a subset of the
feasible set of the relaxed program RCPγ with γ := h(ε).

Proof. See Appendix A. �

Assumption 3.3 (Slater Point). There exists an x0 ∈ X such that sup
d∈D

f(x0, d) < 0.

Under Assumption 3.3, we define the constant

LSP :=
minx∈X cᵀx− cᵀx0

supd∈D f(x0, d)
.(5)
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The following lemma is a classical result in perturbation theory of convex programs, which is a
significant ingredient for the first result of this article.

Lemma 3.4. Consider the relaxed program RCPγ and its optimal value J?RCPγ
as introduced in

(4). Under Assumption 3.3, the mapping R+ 3 γ 7→ J?RCPγ
∈ R is Lipschitz continuous with

constant bounded by LSP in (5), i.e., for all γ2 ≥ γ1 ≥ 0 we have

0 ≤ J?RCPγ1
− J?RCPγ2

≤ LSP(γ2 − γ1).

Proof. See Appendix A. �

Assumption 3.3 requires the existence of a strictly feasible solution x0 which, in general, may
not exist. However, in applications where a “risk-free” decision is available such an assumption
is not really restrictive; the portfolio selection problem is an example of this kind [PRC12]. In
addition, for the class of min-max problems, as a particular case of the program RCP, it is not
difficult to see that Assumption 3.3 holds; see the following remark for more details and Section
5.2 for an application to the problem of fault detection and isolation.

Remark 3.5 (LSP for Min-Max Problems). In min-max problems, one may inspect that there
always exists a Slater point (in the sense of Assumption 3.3) with the corresponding constant
LSP arbitrarily close to 1. In fact, it is straightforward to observe that for min-max problems
J?RCPγ

= J?RCP − γ, which readily implies that the Lipschitz constant of Lemma 3.4 is 1.

The following results are the main contributions of the first part of the article.

Theorem 3.6 (RCP Confidence Interval). Consider the programs RCP and SCP in (1) and
(2) with the associated optimal values J?RCP and J?N , respectively. Suppose Assumption 3.3 holds
and LSP is the constant in (5). Given a ULB h and ε, β in [0, 1], for all N ≥ N(ε, β) as defined
in (3), we have

PN
[
J?RCP − J?N ∈

[
0, I(ε)

]]
≥ 1− β,(6)

where

I(ε) := min
{
LSPh(ε), max

x∈X
cᵀx−min

x∈X
cᵀx
}
.(7)

Proof. Due to the definition of the optimization problems RCP and SCP, the second term of
the confidence interval (7) is a trivial bound. It then suffices to establish the bound for the first
term of (7). By Theorem 2.2, we know PN

[
x?N |= CCPε

]
≥ 1 − β that in view of Lemma 3.2

implies

PN
[
x?N |= RCPh(ε)

]
≥ 1− β =⇒ PN

[
J?RCPh(ε)

≤ J?N
]
≥ 1− β,

where h is the ULB, and J?RCPh(ε)
is the optimal value of the relaxed robust program (4) with

γ := h(ε). By virtue of Lemma 3.4, we have J?RCP ≤ J?RCP
h(ε)

+ LSPh(ε), that in conjunction

with the above implication leads to

PN
[
J?RCP ≤ J?N + LSPh(ε)

]
≥ 1− β.

Since the program SCP is just a restricted version of RCP, it is trivial that J?N ≤ J?RCP pointwise
on ΩN , which concludes (6). �

In accordance with the optimization problem CCPε, the following theorem provides similar
performance assessment but in both a priori and a posteriori fashions.
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Theorem 3.7 (CCPε Confidence Interval). Consider the programs CCPε and SCP in (1) and
(2) with the associated optimal values J?CCPε

and J?N , respectively. Suppose Assumption 3.3 holds
and LSP is the constant in (5). Let h be a ULB and λ?N the dual optimizer of SCP. Given β in
[0, 1], for all N ≥ N(ε, β) defined in (3), we have

A Priori Assessment: PN
[
J?CCPε − J?N ∈

[
− I(ε), 0

]]
≥ 1− β,(8a)

A Posteriori Assessment: PN
[
J?CCPε − J?N ∈

[
− IN (ε), 0

]]
≥ 1− β,(8b)

where the a priori interval I(ε) is defined as in (7), and the a posteriori interval is

IN (ε) := min
{∥∥λ?N

∥∥
1
h(ε), max

x∈X
cᵀx−min

x∈X
cᵀx
}
.(9)

Proof. Similar to the proof of Theorem 3.6, we only need to show the first term of the confidence
interval (9). In light of Theorem 2.2 and Lemma 3.2, we know that

PN
[
J?RCPh(ε)

≤ J?CCPε ≤ J?N
]
≥ 1− β.(10)

In the same spirit as the previous proof, Lemma 3.4 ensures J?N ≤ J?RCP ≤ J?RCPh(ε)
+ LSPh(ε)

everywhere on ΩN , which together with (10) arrives at (8a).

To show (8b), let us consider the scenario counterpart of the relaxed program RCPγ in (4)
with γ := h(ε). We denote the optimal value of this scenario program by J?N,h(ε). Thus, we have

J?N,h(ε) ≤ J?RCPh(ε)
with probability 1. Notice that Assumption 3.3 also holds for the scenario

program SCP, and consequently Lemma 3.4 is applicable to SCP as well. In fact, following the
proof of Lemma 3.4 [BV04, p. 250], one can infer that the Lipschitz constant of the perturbation
function can be over approximated by the `1-norm of a dual optimizer of the optimization
program. Therefore, applying Lemma 3.4 to SCP yields to J?N−‖λ?N‖1h(ε) ≤ J?N,h(ε) ≤ J?RCPh(ε)

pointwise on ΩN . Substituting into (10) leads to (8b). �

The parameter ε in Theorem 3.6 is a design choice which can be tuned to shrink the confidence
interval [0, I(ε)]. On the contrary, in Theorem 3.7 the parameter ε is part of the problem data
associated with the program CCPε. That is, in Theorem 3.7 I(ε) is indeed fixed and the number
of scenarios N in SCP only improves the confidence level β. In a same spirit but along a
different approach, [Cal10, Theorem 6.1] bounds J?N by the optimal solutions of two chance-
constrained programs associated with different constraint violation levels, say ε̄ < ε. This value
gap between the chance-constrained program and its scenario counterpart (either as explicitly
derived in Theorem 3.7 or implicitly by two chance-constrained programs in [Cal10, Theorem
6.1]) represents an inherent difference. To arbitrarily reduce the gap for CCPε, one may resort
to optimally discarding a fraction of scenarios, which is in general computationally intractable;
see for example [CG11, Theorem 6.1] and [Cal10, Theorem 6.2].

By virtue of Theorem 3.6, the gap between J?RCP and J?N is effectively quantified by a ULB
h(ε) as introduced in Definition 3.1. To control the behavior of h(ε) as ε→ 0, one may require
more structure on the measure P defined on

(
D,B(D)

)
. Proposition 3.8 addresses this issue by

introducing sufficient conditions concerning the measure of open balls in B(D) and the continuity
of the constraint mapping in the uncertainty argument.

Proposition 3.8. Assume that the mapping D 3 d 7→ f(x, d) ∈ R is Lipschitz continuous with
constant Ld uniformly in x ∈ X. Suppose there exists a strictly increasing function g : R+ → [0, 1]
such that

P
[
Br(d)

]
≥ g(r), ∀d ∈ D,
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where Br(d) ⊂ D is an open ball centered at d with radius r. Then, h(ε) := Ld g
−1(ε) is a ULB

in the sense of Definition 3.1, where g−1 is the inverse function of g.

Proof. See Appendix A. �

Proposition 3.8 generalizes the corresponding result of [KT12, Lemma 3.1] by allowing the
uncertainty space D to be possibly an infinite dimensional space. Note that the required as-
sumptions in Proposition 3.8 implicitly require D to be bounded, though in practice this may
not be really restrictive.

Remark 3.9. Two remarks regarding the function g in Proposition 3.8 are in order:

(i) Explicit expression: Under the hypotheses of Proposition 3.8, Theorem 3.6 can be
expressed in more explicit form. Let ε and β be in [0, 1], Ld be the Lipschitz constant of
the constraint function f in d, LSP be the constant (5), and N( · , · ) be as defined in (3).
Then, for any N ≥ N

(
g( ε
LSPLd

), β
)

we have

PN
[
J?RCP − J?N ∈

[
0, ε
]]
≥ 1− β.

(ii) Curse of dimensionality: For an nd-dimensional uncertainty set D, the number of
disjoint balls in D with radius r grows proportional to r−nd as r decreases. Thus, the
assumptions of Proposition 3.8 imply that g(r) is of the order of rnd . Therefore, for the
desired precision ε, as detailed in the preceding remark, the required number of samples
N grows exponentially as ε−nd . This appears to be an inherent feature when one seeks
to bound the optimal value via scenario programs; see [LVLM08, LVLM10] for similar
observations.

3.2. Feasibility of RCP via SCP. In this subsection we provide an example to show the
inherent difficulty of the feasibility connection from SCP to the original problem RCP. Consider
the following RCP with its SCP counterpart in which both decision and uncertainty space are
compact subsets of R:





min
x

−x
s.t. x− d ≤ 0, ∀d ∈ D := [0, 1]

x ∈ X := [−1, 1]





min
x

−x
s.t. x− di ≤ 0, ∀i ∈ {1, · · · , N}

x ∈ X := [−1, 1]

.

It is not difficult to see that the feasible set of the robust program is [−1, 0] with the optimizer
x? = 0, whereas the optimizer of its scenario program is x?N = mini≤N di. If the probability
measure P does not have atoms (point measure), we have PN

[
mini≤N di > 0

]
= 1. Thus, one

can deduce that

PN
[
x?N |= RCP

]
= 0, ∀P ∈ P, ∀N ∈ N,

where P is the family of all nonatomic measures on
(
D,B(D)

)
. More generally, if the set

arg maxd∈D f(x, d) has measure zero for any x |= RCP (e.g., when f is convex in d and the
boundary of D has zero measure), then the program SCP will almost surely return infeasible
solutions to the program RCP, as the worst-case scenarios are almost surely neglected.

3.3. Measurability of the SCP optimizer. The objective of this subsection is to address the
standing Assumption 2.1. The measurability of the optimizer x?N for the scenario program SCP
is a rather involved technical issue. In fact, to the best of our knowledge, in the literature this
issue is always resolved by introducing an assumption. Let us highlight that the measurability
of optimal values and the set of optimizers as well as the existence of a measurable selection are
classical results in this context, see for instance [RW10, Theorem 14.37, p. 664]. However, there
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is no a priori guarantee that the obtained optimizer of the program SCP can be viewed as a
measurable mapping from DN to X. Toward this issue, we propose a “two-stage” optimization
program, in the lexicographic sense in the context of multi-objective optimization problems
[MA04], in which the measurability of this mapping is ensured for a large class of programs (not
necessarily convex).

For the rest of this section we assume that X ⊂ Rn is closed and the mapping x 7→ f(x, d)
is lower semicontinuous. Consider the scenario program SCP as defined in (2) with the corre-
sponding optimal value J?N ; SCP is assumed to be feasible with probability one. Given the same
uncertainty samples (di)

N
i=1 as in SCP, we introduce the second program




min
x

φ(x)

s.t. f(x, di) ≤ 0, ∀i ∈ {1, · · · , N}
cᵀx ≤ J?N
x ∈ X

,(11)

where φ : Rn → R is a strictly convex function. Let us denote the optimizer of the above program
by x̃?N . It is straightforward to observe that x̃?N is indeed an optimizer of the program SCP.

Proposition 3.10 (Measurability of the Optimizer). Consider the sequential two-stage programs
SCP and (11), with the optimizer x̃?N for the latter program. Then, the mapping DN 3 (di)

N
i=1 7→

x̃?N ∈ X is a singleton and measurable.

Proof. See Appendix A along with some preparatory lemmas. �

The above two-stage program may be viewed as a tie-break rule [CC05] or a regularization
procedure [Cal10, Section 2.1], which was proposed to resolve the uniqueness property of the
SCP optimizer. Proposition 3.10 indeed asserts that the same trick ensures the measurability of
the optimizer as well.

Remark 3.11 (Measurability of the Feasible Set). The measurability of the feasibility event
x̃?N |= CCPε (equivalently the measurability of the mapping x 7→ P[f(x, d) ≤ 0]) is a straightfor-
ward consequence of Proposition 3.10 and Fubini’s Theorem [Bil95, Thm. 18.3, p. 234].

4. Extension to a Class of Non-Convex Programs

This section extends the results developed in Section 3.1 to a class of non-convex problems.
Consider a family of programs introduced in (1) in which the program data are indexed by k,
i.e., (Xk, fk, εk)mk=1. We assume that each tuple (Xk, fk, εk) satisfies the required conditions in
Section 2 (i.e., Xk is a compact convex set and the mapping x 7→ fk(x, d) is convex for every

d ∈ D), and the corresponding programs are denoted by RCP(k) and CCP
(k)
εk as defined in (1).

Consider the following (non-convex) optimization problems:

RP :





min
x

cᵀx

s.t. x |=
m⋃
k=1

RCP(k) CP :





min
x

cᵀx

s.t. x |=
m⋃
k=1

CCP
(k)
εk

,(12)

where x |= ⋃m
k=1 RCP(k)

(
resp. x |= ⋃m

k=1 CCP
(k)
εk

)
indicates that there exists k ∈ {1, · · · ,m}

such that x |= RCP(k)
(
resp. x |= CCP

(k)
εk

)
. In other words, the programs (12) seek an optimal

solution which is feasible for at least one of the subprograms indexed by k, while the uncertainty
space D as well as the associated measure P is shared between all the subprograms. Similarly,
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given i.i.d. samples (di)
N
i=1 ⊂ D with respect to the probability measure P, consider the scenario

(non-convex) program

SP :





min
x

cᵀx

s.t. x |=
m⋃
k=1

SCP(k) .(13)

Each subprogram SCP(k) is defined according to the scenario convex program (2) associated
with the program data (Xk, fk) while the uncertainty samples (di)

N
i=1 are the same for all k ∈

{1, · · · ,m}. Before proceeding with the main result of this section, let us point out that the
programs (12) contain, for example, a class of mixed integer programs. Let f : Rn×{0, 1}`×D →
R be the constraint function in (1). It is straightforward to see that a chance-constrained mixed
integer program can be formulated as





min
x,y

cᵀx

s.t. P[f(x, y, d) ≤ 0] ≥ 1− ε
x ∈ X, y ∈ {0, 1}`

⇐⇒





min
x

cᵀx

s.t. max
k∈{1,··· ,2`}

P[fk(x, d) ≤ 0] ≥ 1− ε
x ∈ X

,

where fk(x, d) := f(x, yk, d) for each selection of the binary variables yk ∈ {0, 1}`. Then, by
setting m := 2`, Xk := X, εk := ε, the right-hand side of the above relation is readily in
the framework of (12). A similar argument also holds for the robust mixed integer problems
counterparts.

As a first step, we extend the feasibility result of Theorem 2.2 to the non-convex setting in
(12).

Theorem 4.1 (CP Feasibility). Let ~ε := (ε1, · · · , εm), β ∈ (0, 1], and N ≥ Ñ(~ε, β) where

(14) Ñ(~ε, β) := min

{
N ∈ N

∣∣∣
m∑

k=1

n−1∑

i=0

(
N

i

)
εik(1− εk)N−i ≤ β

}
.

Then, the optimizer of SP is a feasible solution of CP with probability at least 1− β.

Proof. Let x?N,k be the optimizer of the subprogram SCP(k). By virtue of Theorem 2.2, one can
infer that

PN
[
x?N,k 6|= CCP(k)

εk

]
<

n−1∑

i=0

(
N

i

)
εik(1− εk)N−i.

On the other hand, it is straightforward to observe that the optimizer of the program SP, denoted
by x?N , belongs to the set (x?N,k)mk=1. Therefore,

PN
[
x?N 6|= CP

]
≤ PN

[
∃k ∈ {1, · · · ,m}

∣∣ x?N,k 6|= CCP(k)
εk

]
≤

m∑

k=1

PN
[
x?N,k 6|= CCP(k)

εk

]

<

m∑

k=1

n−1∑

i=0

(
N

i

)
εik(1− εk)N−i,

leading to the desired assertion. �

Remark 4.2 (Growth rate). Notice that the number of subprograms, m, contributes to the
confidence level β in a linear fashion. As an illustration, suppose εk := ε. In this case, one
can easily verify that the confidence level of the non-convex program SP can be set equal to
β
m , where β is the confidence level of each of the subprograms SCP(k). From a computational
perspective, one can follow the same calculation as in [Cal09], and deduce that the contribution

9
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of m to the number of the required samples Ñ appears in a logarithm. Thus, in our example of
mixed integer programming above, the required number of samples grows linearly in the number
of binary variables, which for most of applications could be considered a reasonable growth rate.

The literature on computational schemes on non-convex problems is mainly based on statis-
tical learning methods. A recent example of this nature is [ATC09], which considers a class of
problems involving Boolean expressions of polynomial functions. Given the degree and number
of polynomial functions (α and k, respectively), the explicit sample bounds of [ATC09] scale
with ε−1 log(αkε−1) as opposed to our result in (14) which grows proportional to ε−1 log(m).
We now proceed to extend the main results of Subsection 3.1, i.e., Theorems 3.6 and 3.7, to the
non-convex settings (12) and (13) at once.

Theorem 4.3 (RP & CP Confidence Intervals). Consider the programs RP, CP, and SP in
(12) and (13) with the corresponding optimal values J?RP, J?CP, and J?N . Given k ∈ {1, · · · ,m}
and the program data (Xk, fk), let Assumption 3.3 hold and I(k) and I

(k)
N be the a priori and

a posteriori confidence intervals of the kth subprogram as defined in (7) and (9). Then, given

β ∈ [0, 1] and ~ε := (ε1, · · · , εm) ∈ [0, 1]m, for all N ≥ Ñ(~ε, β) as defined in (14) we have

A Priori Assessment:





PN
[
J?RP − J?N ∈

[
0, max

k≤m
I(k)(ε)

]]
≥ 1− β,

PN
[
J?CP − J?N ∈

[
−max
k≤m

I(k)(ε), 0
]]
≥ 1− β,

A Posteriori Assessment: PN
[
J?CP − J?N ∈

[
−max
k≤m

I
(k)
N (ε), 0

]]
≥ 1− β.

Sketch of the proof. The proof effectively follows the same lines as in the proofs of Theorems
3.6 and 3.7. To adapt the required preliminaries, let us recall again that the optimizer of the
programs (12) is one of the optimizers of the respective subprograms. The same assertion holds
for the random program (13) as well. Moreover, since each subprogram of (13) fulfills the
assumptions of Subsection 3.1, Lemmas 3.2 and 3.4 also hold for each subprogram with the
corresponding data (Xk, fk). Therefore, in light of Theorem 4.1, it only suffices to consider the
worst-case possibility among all the subprograms. �

5. Simulation Results

This section presents two examples to illustrate the theoretical results developed in the pre-
ceding sections and their performance. We first apply the results to a simple example whose
analytical solution is available.

5.1. Example 1: Quadratic Constraint via Infinite Hyperplanes. Let x = [x1, x2]ᵀ be
the decision variables selected in the compact set X := [0, 1]2 ⊂ R2, the linear objective function
defined by c := [−1,−1]ᵀ, and the constraint function f(x, d) := x1 cos(d)+x2 sin(d)−1 where the
uncertainty d comes from the set D := [0, 2π]. Consider the optimization problems introduced
in (1) where P is the uniform probability measure on D. It is not difficult to infer that the
infinitely many hyperplane constraints can be replaced by a simple quadratic constraint. That
is, for any γ ≥ 0

max
d∈[0,2π]

x1 cos(d) + x2 sin(d)− 1 ≤ γ ⇐⇒ x21 + x22 ≤ (γ + 1)2.

In the light of the above observation, we have the analytical solutions

J?RCPγ = max
{
−
√

2(γ + 1),−2
}
, J?CCPε = max

{ −
√

2

cos(πε)
,−2

}
,(15)

10
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Figure 2. Analytical solutions
of Example 1
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Figure 3. Behavior of the
confidence level β∗(ε) in terms
of scenarios numbers N

where J?RCPγ
and J?CCPε

are the optimal values of the optimization problems RCPγ and CCPε
as defined in (4) and (1), respectively. The pictorial representation of the solutions is in Figure
2.

Let us fix the number of scenarios N for SCP in (2) with the optimal value J?N . Given N and
ε ∈ [0, 1], the confidence level β ∈ [0, 1] associated with our theoretical results is

β∗(ε) :=

n−1∑

i=0

(
N

i

)
εi(1− ε)N−i = (1− ε)N +Nε(1− ε)N−1,

where n = 2 in this example. Figure 3 depicts the behavior of β∗(ε) for different values of N .
Note that x0 = [0, 0]ᵀ is a Slater point in the sense of Assumption 3.3 with the corresponding
constant LSP := −2−0

−1 = 2 (cf. (5)). Moreover, it is easy to see that the mapping d 7→ f(x, d) has

the Lipschitz constant Ld =
√

2 over the compact set X = [0, 1]2. Thanks to Proposition 3.8 (and
periodicity of the constraint function over the interval [0, 2π]), it is straightforward to introduce

g(r) = r
π , and consequently obtain the ULB candidate h(ε) :=

√
2πε. Then, the confidence

interval defined in (7) is I(ε) := max{2
√

2πε, 2}. As shown in Theorem 3.6 (resp. Theorem 3.7)
we know that J?RCP − J?N ∈ [0, I(ε)]

(
resp. J?CCPε

− J?N ∈ [−I(ε), 0]
)

with probability at least
1 − β∗(ε) for any ε ∈ [0, 1]. To validate this result, we solve the program SCP for M different

experiments. For each experiment k ∈ {1, · · · ,M}, we draw N scenarios
(
di(k)

)N
i=1
⊂ [0, 2π]

with respect to the uniform probability distribution P and solve the program SCP. Let J?N (k)
be the optimal value of the kth experiment. Given β ∈ [0, 1], the empirical confidence interval of

the program RCP can be represented by the minimal Ĩ(β) so that the interval [0, Ĩ(β)] contains
J?N (m)− J?RCP for at least m experiments where m

M ≥ 1− β, i.e.,

Ĩ(β) := min
{
Ĩ ∈ R+

∣∣ ∃A ⊂ {1, · · · ,M} :

|A| ≥ (1− β)M and J?RCP − J?N (k) ∈ [0, Ĩ] ∀k ∈ A
}
.

Regarding the program CCPε, notice that the empirical confidence interval depends on both
parameters ε and β since the analytical optimal values J?CCPε

depends on ε as well. Hence, we
define

Ĩε(β) := min
{
Ĩ ∈ R+

∣∣ ∃A ⊂ {1, · · · ,M} :

11
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|A| ≥ (1− β)M and J?CCPε − J?N (k) ∈ [−Ĩ , 0] ∀k ∈ A
}
.
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Figure 4. Numerical results for Example 1

The sets Ĩ(β) and Ĩε(β) are in close relation with sample quantiles in the sense of [Sha03,
Section 5.3.1]. In the following simulations the number of experiments is set to M = 2000.
Figures 4(a) and 4(b) depict our theoretical performance bound I(ε) for N = 6 and N = 60 in

comparison with the empirical bounds Ĩ
(
β∗(ε)

)
and Ĩε

(
β∗(ε)

)
where β∗(ε) is the confidence level

in Figure 3. As our theoretical results suggest, the confidence interval [0, I(ε)] (resp. [−I(ε), 0])

contains the empirical interval
[
0, Ĩ
(
β∗(ε)

)]
(resp.

[
− Ĩε

(
β∗(ε)

)
, 0
]
). Moreover, to demonstrate

the a posteriori confidence interval in Theorem 3.7, we choose one of the experiments and depict
the corresponding confidence interval IN (ε) versus β∗(ε) as well. Note that in both cases of
Figure 4 the a posteriori confidence interval proposes a tighter bound than the a priori confidence
interval. With this observation, we conjecture that in general the dual optimizer of SCP may
happen to be a better approximation in comparison with the constant LSP introduced in (5).

5.2. Example 2: Fault Detection and Isolation. The task of fault detection and isolation
(FDI) involves generating a diagnosis signal to detect the occurrence of a specific fault. This
is typically accomplished by designing a filter with all available signals as inputs (e.g., control
signals and given measurements) and a scalar output that implements a non-zero mapping from
the fault to the residual while decoupling unknown disturbances. In [MEVAL12], a scalable
optimization based approach is proposed to design an FDI filter for a class of nonlinear differential
algebraic equation (DAE) where the filter is trained for finite number of disturbance signatures.
The class of disturbances is further extended to a probability space in [MEL13] where the filter
performance is quantified in a probabilistic fashion.

As a particular subclass of DAEs, consider the nonlinear differential equation
{
Ẋ(t) = E

(
X(t)

)
+AX(t) +Bdd(t) +Bff(t)

Y (t) = CX(t)
,(16)

where the matrices A,Bd, Bf , C and the function E( · ) describe the linear and nonlinear dynam-
ics of the model, respectively. Following [MEVAL12, MEL13], we restrict the class of filters to
linear transfer functions whose residual consists of two terms: r = G[x](f)+r[x](d) where G[x] is
a linear time invariant transfer function expressing the mapping from the fault f( · ) to the resid-
ual, and r[x](d) is the contribution of the unknown disturbance d( · ), and x ∈ Rn denotes the

12
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coefficients of the FDI filter to be designed. For linear systems (i.e., E ≡ 0) perfect decoupling
between d and r may be possible (i.e., r[x](d) ≡ 0 for all d). For nonlinear systems, however,
may not be the case. In this light, to minimize the impact of nonlinearities and disturbances on
the residual, an optimal FDI filter can be obtained by the min-max program





min
x,γ

γ

s.t. xᵀQdx ≤ γ, ∀d ∈ D
Hx = 0∥∥Fx

∥∥
∞ ≥ 1

,(17)

where the quadratic term xᵀQdx represents the L2-norm of r[x](d) over a given receding horizon,
D is the space of possible disturbance patterns, and the last (non-convex) constraint is concerned
with the norm of G[x] as an operator. The matrices H and F are determined by the linear terms
of the system dynamics (16), and the positive semidefinite matrix Qd reflects the nonlinearity
signature of the system dynamics in the presence of a disturbance pattern d; it depends on d
and the nonlinear term E( · ) of (16). We refer interested readers to [MEL13] for details of the
derivation of the above program.

For numerical case study, we consider an application of the above FDI design to detect a cyber
intrusion in a two-area power network discussed in [MEVAL12]. The setup in this example is
a simplified version of [MEVAL12, Section IV] where each power area contains one generator.
Thus, the state in (16) comprises X :=

[
∆φ, {∆fi}1:2, {∆Pmi}1:2, {∆Pagci}1:2

]ᵀ
where ∆φ is the

voltage angle difference between the ends of the tie line, ∆fi the generator frequency, ∆Pmi the
generated mechanical power, and ∆Pagci the automatic generation control (AGC) signal in each

area.2. The system dynamics is modeled in the framework of (16); the details are provided in
Appendix B.1. The disturbance signal d( · ) represents a load deviation that may occur in the first
area. The signal f models the intrusion signal in the AGC of the first area, and the measurement
signals are the frequencies and output power of the turbines, i.e., Y =

[
{∆fi}1:2, {∆Pmi}1:2

]ᵀ
. For

a given horizon T > 0, we consider the class of disturbance signatures

D :=

{
d : [0, T ]→ R

∣∣∣ ∃α ∈ [0, 1], d(t) :=

p∑

k=0

ak(α) cos(
2π

T
kt)

}
,

where ak(α) are the constant coefficients parametrized by α. The choice ofD allows one to exploit
available spectrum information of the disturbance signals. In this example, motivated by the
emphasis on both low and high frequency regions, we assume ak(α) := 5

(
α0.5k+(1−α)0.5|10−k|

)
,

p = 30, and T = 4 sec. For scenario generation, we consider a uniform probability distribution
for the parameter α ∈ [0, 1], which in fact induces the probability measure P on D. Let d0 ∈ D
be a disturbance signature with the corresponding parameter α0. It is straightforward to observe
that

P
[
‖d− d0‖L2

< r
]

= P

[
T

2

p∑

k=0

∣∣ak(α)− ak(α0)
∣∣2 < r2

]

= P

[
|α− α0| <

√
2 r

5

√
T
∑p
k=0

(
0.5k − 0.5|10−k|

)2

]

= P
[
|α− α0| < 0.142r

]
≥ 0.142r =: g(r),

where the function g, denoted in view of Proposition 3.8, is an invertible lower bound for the
measure of open balls in D. For the particular set of parameters in this example and specific
operating region of interest, one can show that the mapping d 7→ Qd is Lipschitz continuous

2The symbol ∆ stands for the deviation from the nominal value.
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Figure 5. Numerical results for Example 2

with the constant Ld = 0.02; see Appendix B.2 for more details. By virtue of Proposition 3.8
and normalizing3 the optimizer of the SCP counterpart of the program (17), we can introduce
the ULB candidate

h(ε) := Ld g
−1(ε) = 0.14ε.

Notice that the Infinite norm constraint in (17) is in fact a non-convex constraint. However,
one may view it as the union of a finite number of constraint sets, see [MEVAL12, Remark 3.2].
Therefore, the optimization problem (17) is already in the framework of RP as introduced in
(12) where m is the number of rows in matrix F . It is remarkable that m− 1 equals the degree
of the FDI filter chosen a priori. Thanks to the min-max structure of the robust program (17),
the Lipschitz constant of Lemma 3.4 for each subprogram of (17) is LSP = 1, see Remark 3.5.

In this example, the dimension of the decision variable x is n = 55, the number of rows in
F is m = 5, and the confidence level is set to β = 0.01. Therefore, to achieve the confidence
interval I(ε) = h(ε) = 5 × 10−4, we need to set ε = 3.57 × 10−3 which, due to Theorem 4.1,
requires to generate N disturbance signatures d ∈ D so that

N ≥ min

{
N ∈ N

∣∣∣
n−1∑

i=0

(
N

i

)
εi(1− ε)N−i ≤ β

m

}
= 22618.

Figures 5 demonstrate the numerical results of Example 2 over the course of 15 seconds. In
Figure 5(a), 30 different realizations of disturbance inputs as well as an intrusion signal starting
from t = 10 are shown in solid and dash curves, respectively. Figure 5(b) depicts the energy
of the filter residual for the last T = 4 seconds (solid), and the threshold level associated with
confidence β = 0.01 (dash). Notice that the proposed threshold is γ? + 0.0005, where γ? is
the optimal solution of the random counterpart of the program (17) with N = 22618 scenarios.
Figure 5(c) presents the filter response which is the same figure as 5(b) but zoomed in on the
period prior to the intrusion.

6. Conclusion and Future Direction

In this article we presented probabilistic performance bounds for both RCP and CCPε via
SCP. The proposed bounds are based on considering the tail probability of the worst-case

3Due to the linearity of the filter operator, one can always normalize the filter coefficients with no performance

deterioration [MEL13].
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constraint violation of the SCP solution as introduced in [KT12] together with some classical
results from perturbation theory of convex optimization. In contrast to earlier approaches, this
methodology is, to the best of our knowledge, the first confidence bounds for the objective
performance of RCPs and CCPs based on scenario programs. Subsequently, we extended our
results to a certain class of non-convex programs allowing for binary decision variables.

For future work, in light of Theorems 3.6 and 3.7, we aim to study the derivation of ULBs as
introduced in Definition 3.1. Meaningful ULBs may depend highly on the individual structure
of the optimization problems, in particular the uncertainty set and the constraint functions.
Another potential direction, as highlighted by Example 1 in Section 5.1, is to investigate the
relation between the constant LSP in (5) and the dual optimizers of the program SCP.

A. Appendix: Technical Proofs

Proof of Lemma 3.2. Let h be a ULB as introduced in Definition 3.1, x0 |= CCPε, and f∗(x0) :=
supv∈D f(x0, v). By definition of CCPε and p, the tail probability of the worst-case violation,
we have

p
(
x0, f

∗(x0)
)
≤ ε =⇒ inf

x∈X
p
(
x, f∗(x0)

)
≤ ε =⇒ f∗(x0) ≤ h(ε) =⇒ x0 |= RCPh(ε) �

Proof of Proposition 3.8. Given x ∈ X, let (vi)i∈N be a sequence in D so that

lim sup
i∈N

f(x, vi) = sup
v∈D

f(x, v).

Thus, in light of Definition 3.1 we have

p(x, δ) = P
[

sup
v∈D

f(x, v)− f(x, d) < δ
]

= P
[

lim sup
i∈N

f(x, vi)− f(x, d) < δ
]

≥ P
[

lim sup
i∈N

Ld‖vi − d‖ < δ
]
≥ lim sup

i∈N
P

[
‖vi − d‖ <

δ

Ld

]
(A.1)

= lim sup
i∈N

P
[
B δ
Ld

(vi)
]
≥ g
( δ
Ld

)
,

where the first inequality in (A.1) follows from the Lipschitz continuity of f with respect to d,
and the second inequality in (A.1) is due to Fatou’s lemma [Rud87, p. 23]. Hence, in view of
the ULB definition and the above analysis, we arrive at

sup
{
δ ∈ R+

∣∣ inf
x∈X

p(x, δ) ≤ ε
}
≤ sup

{
δ ∈ R+

∣∣ g
( δ
Ld

)
≤ ε
}

= Ldg
−1(ε). �

Proof of Lemma 3.4. It is well-known that under the strong duality condition the mapping γ 7→
RCPγ , the so-called perturbation function, is Lipschitz continuous with the constant ‖λ?‖1
where λ? is a dual optimizer of the program RCP; see [BV04, p. 250] for the proof and [Roc97,
Section 28] for more details in this direction. Now Lemma 3.4 follows from [NO08, Lemma 1],
which essentially implies ‖λ?‖1 ≤ LSP where LSP is the constant (5) corresponding to any Slater
point in the sense of Assumption 3.3. �

To prove Proposition 3.10, we need some preliminaries.

Lemma A.1. Let C be the set of all lower semicontinuous functions from X ⊂ Rn to R. Consider
the mapping J : C → R defined by the optimization program





J(g) := min
x

cᵀx

s.t. g(x) ≤ 0
x ∈ X

.(A.2)
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Then, the function J is measurable where the space of C is endowed with the infinite norm and
the respective Borel σ-algebra.4

Proof. The proof is an application of [RW10, Theorem 14.37, p. 664]. Let us define the set-valued
mapping S : C ⇒ X× R as follows:

S(g) :=
{

(x, α) ∈ X× R
∣∣ {g(x) ≤ 0} & {cᵀx ≤ α}

}
.

We first show that S is a normal integrand in the sense of [RW10, Definition 14.27, p. 661].
Since g is lower semicontinuous, then S is clearly closed-valued. We then only need to show
that S is measurable according to [RW10, Definition 14.1, p. 643]. Let O ⊂ X × R be an
open set, (x0, α0) ∈ O and g0 ∈ S−1(x0, α0). Observe that for sufficiently small ε > 0 we have
Bε(g0) ⊂ S−1(O) where Bε(g0) := {g ∈ C | supx∈X ‖g(x)−g0(x)‖ ≤ ε}, that implies that S−1(O)
is open and in particular measurable. Thereby, S is measurable and hence a normal integral.
Now the desired measurability readily follows from [RW10, Theorem 14.37, p. 664]. �

Lemma A.2. Let φ : Rn → R be a strictly convex function, and J̃ : C → R defined as follows:




J̃(g) := min
x

φ(x)

s.t. g(x) ≤ 0
cᵀx ≤ J(g)
x ∈ X

,(A.3)

where J(g) is the function introduced in (A.2). Let x̃?(g) denote the set of optimizers of the
program (A.3). Then, the mapping C 3 g 7→ x̃? ∈ Rd is a measurable singleton.

Proof. Let us define the set-valued mapping S : C ⇒ X× R

S(g) :=
{

(x, α) ∈ X× R
∣∣ {g(x) ≤ 0} & {cᵀx− J(g) ≤ 0} & {φ(x) ≤ α}

}
.

By virtue of the measurability of the mapping g 7→ J(g) in Lemma A.1 and along the same line
of its proof, we know that S is a normal integral. Now, by [RW10, Theorem 14.37, p. 664] the
existence of a measurable selection for the optimizer x̃?(g) as a function of g ∈ C is guaranteed.
On the other hand, since φ : Rn → R is strictly convex, the minimizer of the program (A.3)
is unique. Therefore, x̃?(g) is a singleton and the desired measurability property follows at
once. �

We now have all the required results to prove Proposition 3.10:

Proof of Proposition 3.10. Let g : DN → C defined as

g(d1, · · · , dN ) := max
i∈{1,··· ,N}

f(x, di).(A.4)

The measurability of the mapping (A.4) is ensured by the measurability assumption of the
mapping d 7→ f(x, d) for each x. It is straightforward to observe that the optimizer of the
program (11) can be viewed as the composition x̃?N = x̃?◦g(d1, · · · , dN ) where x̃? is the optimizer
of the program (A.3) and g is defined as in (A.4). Hence, the desired implication follows directly
from the measurability of the mapping (A.4) and Lemma A.2. �

4Under assumptions of Section 2, one can show a stronger assertion that the mapping g 7→ J(g) is indeed

lower semicontinuous; see for instance [BGK+83, Theorem 4.3.2, p. 67]. Thanks to a personal communication
with Diethard Klatte, it turns out that the statement can be even extended to continuity if Assumption 3.3 also

holds.
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B. Appendix: Details of Example 2

B.1. Mathematical model description. The two-area power network is described by the set
of nonlinear ordinary differential equations

∆φ̇ = 2π(∆f1 −∆f2),

∆ḟi =
f0

2HiSBi

(
− 1

Di
∆fi − PT sin ∆φ+ ∆Pmi −∆Ploadi

)
,

∆Ṗmi =
1

Tchi

(
− 1

Si
∆fi −∆Pmi + ∆Pagci

)
,

∆Ṗagci =
( 1

Di

Cif0
2SiHiSBi

− 1

Si

1

TNi

)
∆fi

− Cif0
2SiHiSBi

(
∆Pmi −∆Ploadi

)
− Cif0

2SiHiSBi
∆Pagci

−
( 1

TNi
− Cif0

2SiHiSBi

)
PT sin ∆φ− 2πCiPT (∆f1 −∆f2) cos ∆φ,

where i ∈ {1, 2} is the index of each area, X :=
[
∆φ, {∆fi}1:2, {∆Pmi}1:2, {∆Pagci}1:2

]ᵀ ∈ R7 is
the state vector, and the constant parameters in this example are chosen the same for both areas
as Tchi = 5 sec, SBi = 1.8 GW, f0 = 50 Hz, Hi = 6.5 sec, Di = 428.6 Hz/GW, Si = 1.389 Hz/GW,

Ci = 0.1, TNi = 30, PT = 0.15 GW. We refer to [MEVM+10] for physical interpretation of
these parameters and more details on the model equations. In the example, we assume that
∆Pload1 = d where d ∈ D is the disturbance signal and ∆Pload2 ≡ 0.

B.2. Lipschitz constant of the mapping d 7→ Qd. This mapping can be viewed in two steps:
d 7→ E(X) and E(X) 7→ Qd where X is the solution process in the presence of the disturbance
input d, and E the nonlinear term of the ODE (16). The key step is to approximate the Lipschitz
constant of the first mapping d 7→ E(X). The classical result of the continuity of the ODEs
solution, obtained by Lipschitz continuity of the vector field and Gronwall’s inequality, turns out
to be too conservative in this case. We then invoke a Lyapunov-like approach to address this
issue more efficiently. Let us define the shorthand h(X, d) := E(X) +AX +Bdd. Suppose there

exist a function V : R7 × R7 → R+ and positive constants κ, ρ so that for every X, X̃ ∈ R7 and

d, d̃ ∈ R
∥∥E(X)− E(X̃)

∥∥2 ≤ V (X, X̃)(B.1a)

∂XV (X, X̃)h(X, d) + ∂X̃V (X, X̃)h(X̃, d̃) ≤ −κV (X, X̃) + ρ
∣∣d− d̃

∣∣.(B.1b)

Using standard Gronwall’s inequality, one can show that under conditions (B.1) we have

∥∥E(X)− E(X̃)
∥∥2
L2
≤

T∫

0

∥∥E
(
X(t)

)
− E

(
X̃(t)

)∥∥2dt ≤
T∫

0

V
(
X(t), X̃(t)

)
dt

≤ ρ
T∫

0

e−κt
t∫

0

∣∣d(s)− d̃(s)
∣∣dsdt ≤ 2ρ

3
T
√
T‖d− d̃‖L2 .

In [ZMEAL14, Theorem 3.3], a similar technique is discussed in more detail to establish a
connection between the Lyapunov function and continuity of the solution trajectories. In order
to find a Lyapunov function in the above sense, we limit our search domain to the quadratic
functions, i.e., V (X, X̃) = (X − X̃)ᵀQ(X − X̃) for some positive semidefinite matrix Q. It is not
difficult to deduce that the nonlinear term E effectively depends only on the state ∆φ. Hence,
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to fulfill the requirement (B.1a) it suffices to guarantee Q � vvᵀ where v = [0, 0, 1, 0, 0, 0, 0]ᵀ.
Setting κ = 0.01, we then solve the set of linear matrix inequalities (LMIs)





min
σ,Q

σ

s.t. QAᵀ +AQ � −κQ
vvᵀ � Q � σI

,

which provides a local Lyapunov function in the sense of (B.1). Note that one can always
extract the linear part of E and add it to the matrix A. Now, by numerical inspection, it turns
out that for the specific system parameters of this example, V obtained from the above LMIs is
a Lyapunov function in the domain of ∆fi ∈ [−0.1, 0.1] Hz, ∆φ ∈ [−10◦, 10◦], ∆pmi ∈ [−10, 10] MW,

∆pagci ∈ [−15, 15] MW. Therefore, the parameter ρ in (B.1b) can be numerically approximated
via the optimal σ in the LMIs together with matrix Bd and the region of interest described above.
Besides, since the FDI filter is a stable linear time invariant transfer function with normalized
coefficients, the Lipschitz constant of the second mapping E(X) 7→ Qd can be explicitly computed
based on the filter denominator which is fixed prior to the design procedure; see [MEL13, Lemma
4.5].
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