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Abstract

We propose an iterative method for approximating the capacity of classical-quantum channels with a discrete

input alphabet and a finite-dimensional output under additional constraints on the input distribution. Based on duality

of convex programming, we derive explicit upper and lower bounds for the capacity. To provide an additive ε-close

estimate to the capacity, the presented algorithm requires O((N ∨M)M3 log(N)1/2ε−1) steps, where N denotes

the input alphabet size and M the output dimension. We then generalize the method to the task of approximating the

capacity of classical-quantum channels with a bounded continuous input alphabet and a finite-dimensional output.

This, using the idea of a universal encoder, allows us to approximate the Holevo capacity for channels with a finite-

dimensional quantum mechanical input and output. In particular, we show that the problem of approximating the

Holevo capacity can be reduced to a multi-dimensional integration problem. For certain families of quantum channels

we prove that the complexity to derive an additive ε-close solution to the Holevo capacity is subexponential or even

polynomial in the problem size. We provide several examples to illustrate the performance of the approximation

scheme in practice.

Index Terms

Quantum capacity, Holevo capacity, convex optimization, duality, smoothing techniques, entropy maximization,

universal encoder

1. INTRODUCTION

Consider the scenario where a sender wants to transmit information over a noisy channel to a receiver. Information

theory says that there exist fundamental quantities called channel capacities characterizing the maximal amount

of information that can be transmitted on average, asymptotically reliably, per channel use [1]. Depending on the

channel and allowed auxiliary resources, there is a variety of capacities for different communication tasks. An

excellent overview can be found in [2], [3]. For a lot of these tasks, their corresponding capacity can be recast
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as an optimization problem. Some of them seem to be intrinsically more difficult than others and in general no

closed form solution is available. Moreover, to the best of our knowledge, no efficient algorithm to compute these

formulas is known.

In this article, we focus on two cases. First, we consider the task of sending classical information over a classical-

quantum (cq) channel which maps each element of a classical input alphabet to a finite-dimensional quantum state.

We do not allow any additional resources such as entanglement shared between the sender and receiver nor feedback.

The capacity for this task has been shown in [4], [3], [5] to be the maximization of a quantity called the Holevo

information over all possible input distributions. Unlike the classical channels where a specific efficient method —

the Blahut-Arimoto algorithm [6], [7] — is known for numerical computation of the capacity with a provable rate

of convergence, there is no counterpart for cq channels to date. On a superficial level, there are proposals [8], [9],

[10] of algorithmic ideas that might be useful (such as interior point or ellipsoid methods), however to the best of

our knowledge they have not been analyzed rigorously and as a result it is unclear if they lead to a provable rate

of convergence or not.

The second case considered in this article is to send classical information over a quantum-quantum (qq) channel

with a finite-dimensional quantum mechanical input and output. Similarly we do not allow additional resources

such as entanglement shared between the sender and receiver nor feedback. In comparison with the setup of a

cq channel, this task is more delicate as one could make use of entangled input states at the encoding. Indeed, it

has been shown that the classical capacity of a qq channel is still poorly understood [11], as only a regularized

expression is known that describes it [4], [3], [5], which in general is computationally intractable. The best known

generic lower bound for the classical capacity of a qq channel with a single letter expression is the Holevo capacity,

which is mathematically described by a finite-dimensional non-convex optimization problem. It has been shown

that the respective optimization problem is NP-hard and also difficult to approximate [12], [13]. In [14], Shor

suggests an approach to approximate the Holevo capacity that is heavily based on linear programming methods,

though the convergence of the proposed approach is not discussed. There are numerous different ad hoc attempts

to approximate the Holevo capacity, where however no convergence guarantees are given [9], [10], [15], [16].

In this work, we show how recent techniques from convex optimization can be utilized to approximate the classical

capacity of cq and qq channels. For cq channels, we propose an algorithm that, to the best of our knowledge, is

the first practical method to efficiently find an additive ε-close solution. For the second task described above, the

idea of a universal encoder allows us to apply similar methods to compute close upper and lower bounds for the

Holevo capacity that coincide asymptotically. This leads to the first algorithm, as far as we know, for approximating

the Holevo capacity with a provable rate of convergence. Further, we show that for certain classes of channels the

Holevo capacity can be approximated up to an arbitrary precision in subexponential or even polynomial time. Thus

whenever the capacity of a cq or a qq channel has to be evaluated (e.g., in a physical experiment involving quantum

communciation) the methods presented in this article could find practical use.

Summary of results.— Our main results are efficient approximation algorithms for the capacity of cq and qq
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channels with a provable rate of convergence. Deriving an additive ε-close solution1 to the capacity of a cq channel

requires O
(
(N∨M)M3 log(N)1/2 ε−1

)
, where N is the input alphabet size, M the output dimension of the channel

and N ∨M denotes the maximum between N and M (see Theorem 3.15). We show that the task of approximating

the Holevo capacity of a qq channel can be reduced to a multi-dimensional integration problem and characterize

families of channels for which an additive ε-close solution can be found in subexponential or even polynomial time.

The precise complexity required to compute an additive ε-close solution is given in Theorem 5.4. The overall idea

of the presented approximation schemes is summarized in Figure 1.

primal
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dual
problem

dual
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Fig. 1. Illustration of the approach. In a first step the capacity formula (called the primal problem, given in (11) and (28))

is dualized and strong duality is established. The favorable structure of the dual problem (given in (12) and (29)) allows us to

apply smoothing techniques which then leads to an entropy maximization problem that admits a closed form solution. Thanks

to these analytical preliminaries, a fast gradient method can be applied that iteratively constructs feasible points to the primal

and dual problem, yielding an a posteriori error. In addition, we derive an a priori error bound for this method.

Notation.— The logarithm with basis 2 is denoted by log(·) and the natural logarithm by ln(·). The space of

all Hermitian operators in a finite-dimensional Hilbert space H is denoted by HM , where M is the dimension of

H. The cone of positive semidefinite Hermitian operators is HM
+ . For σ ∈ HM we denote its set of eigenvalues

by spec(σ) = {λ1(σ), . . . , λM (σ)}. We denote the set of density operators on a Hilbert space H by D(H) :=

1Within this article an (additive) ε-close solution denotes an approximate solution with an additive error of at most ε.
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{ρ ∈ HM
+ : tr [ρ] = 1}. We consider cq channels ρ : X → D(H), x 7→ ρx having a finite input alphabet

X = {1, 2, . . . , N} and a finite output dimension dimH = M . Each symbol x ∈ X at the input is mapped to a

density operator ρx at the output and therefore the channel can be represented by a set of density operators {ρx}x∈X .

The input probability mass function is denoted by the vector p ∈ RN where pi = P[X = i]. A possible input cost

constraint can be written as E[s(X)] = p>s ≤ S, where s ∈ RN denotes the cost vector and S ∈ R≥0 is the given

total cost. We define the standard n−simplex as ∆n := {x ∈ Rn : x ≥ 0,
∑n
i=1 xi = 1}. For a probability mass

function p ∈ ∆N we denote the entropy by H(p) := −
∑N
i=1 pi log pi. The binary entropy function is defined as

Hb(x) := −x log(x)− (1−x) log(1−x) with x ∈ [0, 1]. For a probability density p supported at a measurable set

B ⊂ R we denote the differential entropy by h(p) := −
∫
B
p(x) log p(x) dx. The von Neumann entropy is defined

by H(ρx) := −tr [ρx log ρx] where ρx ∈ D(H) is a density operator. Let Φ : B(HA) → B(HB), where B(H)

denotes the space of bounded linear operators in some Hilbert space H that are equipped with the trace norm, be

a quantum channel that is described by a complete positive trace preserving (cptp) map. We denote the canonical

inner product by 〈x, y〉 := x>y where x, y ∈ Rn. For two matrices A,B ∈ Cm×n, we denote the Frobenius inner

product by 〈A,B〉F := tr
[
A†B

]
and the induced Frobenius norm by ‖A‖F :=

√
〈A,A〉F . The trace norm is

defined as ‖A‖tr := tr[
√
A†A]. The operator norm is denoted by ‖A‖op := {supX ‖AX‖F : ‖X‖F = 1}. For

a cptp map Φ : B(HA) → B(HB) its diamond norm is defined by ‖Φ‖� := ‖Φ⊗ idHA‖tr, where ‖·‖tr denotes

the trace norm for resources which is defined as ‖Θ‖tr := maxρ∈D(HA) ‖Θ(ρ)‖tr. We denote the maximum and

minimum between a and b by a∨ b respectively a∧ b. The symbol 4 denotes the semidefinite order on self-adjoint

matrices. The identity matrix of appropriate dimension is denoted by 1.

Structure.— The remainder of this article is structured as follows. Section 3 shows how to efficiently compute

tight upper and lower bounds for the capacity of cq channels having a discrete input alphabet. In Section 4 we

then show how to extend the methods introduced in Section 3 to approximate the capacity of cq channels with

a continuous input alphabet. Using the concept of a universal encoder, this allows us to approximate the Holevo

capacity of finite-dimensional quantum channels as shown in Section 5. We conclude in Section 6 with a summary

and possible subjects of further research. In the interest of readability, some of the technical proofs and details are

given in the appendices.

2. PRELIMINARIES

In this section we recall two standard preliminary results that are used in the derivation of the approximation

scheme. One of them is Nesterov’s seminal work on how to efficiently solve convex optimization problems with a

specific structure by applying smoothing techniques [17]. The second preliminary result we recall is a famous

concentration of measure inequality that is known as McDiarmid’s inequality or also as bounded differences

inequality. It states that a function of independent random variables that satisfies a regularity property (the bounded

differences property) exhibits exponential concentration.
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A. Nesterov’s smoothing technique [17]

Consider finite-dimensional normed vector spaces V1 and V2. The dual spaces are denoted by V ∗1 and V ∗2 and

〈·, ·〉i : V ∗i ×Vi → R for i ∈ {1, 2} denotes a bilinear form on the vector spaces. We are interested in the optimization

problem

min
x∈Q1

f(x) , (1)

where Q1 ⊆ V1 is a compact convex set and f is a continuous convex function. We consider objective functions f

with a particular structure, i.e.,

f(x) = f̂(x) + max
y∈Q2

{〈Ax, y〉2 − φ̂(y)} , (2)

for a linear operator A : V1 → V ∗2 and Q2 ⊂ V2 a compact convex set. The function f̂ is continuously differentiable,

convex and has a Lipschitz continuous gradient with constant L. The function φ̂ is convex and continous. Since

the objective function in (1) is non-smooth in general the complexity to compute an additive ε-close solution

using subgradient type methods is O(1/ε2). Nesterov’s work shows that for objective functions with the particular

structure (2), one can compute an additive ε-close solution within O(1/ε) steps. The main idea is to consider a

smoothed version of (1) given by

min
x∈Q1

fν(x) , (3)

where

fν(x) = f̂(x) + max
y∈Q2

{〈Ax, y〉2 − φ̂(y)− νd(y)} . (4)

d : Q2 → R is a regularization term that is assumed to be strongly convex. It can be shown that fν has a Lipschitz

continuous gradient and therefore can be solved efficiently by a fast gradient method. Nesterov’s work [17] shows

that by solving the smoothed optimization problem (3) (which can be done more efficiently) we can construct good

upper and lower bounds to the original problem (1). Furthermore, it is proven how fast these bounds converge to

the optimal solution of (1).

B. McDiarmid’s inequality

A function f : Xn → R for some set X has the bounded differences property if there exist non-negative constants

c1, . . . , cn such that

sup
x1,...,xn,x′i∈X

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci , 1 ≤ i ≤ n . (5)

McDiarmid’s inequality (also known as bounded differences inequality) shows that such functions satisfy a sub-

Gaussian tail inequality. Let f satisfy the bounded difference assumption with constants c1, . . . , cn, let κ :=

1
4

∑n
i=1 c

2
i and let X1, . . . , Xn be independent random variables then we have

P[f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] > t] ≤ exp
(−t2

2κ

)
. (6)

We note that there also exists a version of (6) that applies for matrices [18, Cor. 7.5]. McDiarmid’s inequality is

one of many different concentration of measure inequalities, see [19] for a comprehensive overview.
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3. CAPACITY OF A DISCRETE-INPUT CLASSICAL-QUANTUM CHANNEL

In this section we show that concepts introduced in [20] for a purely classical setup can be generalized to compute

the capacity of cq channels with a discrete input alphabet and a bounded output. We consider a discrete input alphabet

X = {1, . . . , N} and a finite-dimensional Hilbert space H with dimH =: M . The map ρ : X → D(H), x 7→ ρx,

represents a cq channel. Let s : X → R+ be some cost function, p ∈ ∆N and consider the input constraint〈
p, s
〉
≤ S, (7)

where S is some non-negative constant. As shown by Holevo, Schumacher and Westmoreland [4], [3], [5], the

capacity of a cq channel ρ satisfying the input constraint (7) is given by

Ccq,S(ρ) =


max
p

I(p, ρ) := H
(∑N

i=1 piρi

)
−
∑N
i=1 piH(ρi)

s.t.
〈
p, s
〉
≤ S

p ∈ ∆N .

(8)

To keep the notation simple we consider a single input constraint as the extension to multiple input constraints is

straightforward.

In the following, we reformulate (8) such that it exhibits a well structured dual formulation and show that strong

duality holds. We then show how to smooth the objective function of the dual problem such that it can be solved

efficiently using a fast gradient method. Doing so leads to an algorithm that iteratively computes lower and upper

bounds to the capacity which converge with a given rate. A key concept in our analysis is that the following problem

— called entropy maximization — with λ ∈ HM features an analytical solution max
ρ

H(ρ) + tr [ρλ]

s.t. ρ ∈ D(H).
(9)

Lemma 3.1 (Entropy maximization [21]). Let ρ? = 2−µ1+λ, where µ is chosen such that ρ? ∈ D(H). Then ρ?

uniquely solves (9).

We next derive the dual problem of (8) and show how to solve it efficiently. We therefore reformulate (8) by

introducing an additional decision variable σ :=
∑N
i=1 piρi.

Lemma 3.2. Let F := arg max
p∈∆N

I(p, ρ) and Smax := min
p∈F

〈
p, s
〉
. If S ≥ Smax, the optimization problem (8) has

the same optimal value as

(primal problem) :


max
p,σ

H(σ)−
∑N
i=1 piH(ρi)

s.t. σ =
∑N
i=1 piρi

p ∈ ∆N , σ ∈ D(H).

(10)

If S < Smax, the optimization problem (8) has the same optimal value as

(primal problem) :



max
p,σ

H(σ)−
∑N
i=1 piH(ρi)

s.t. σ =
∑N
i=1 piρi〈

p, s
〉

= S

p ∈ ∆N , σ ∈ D(H).

(11)
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Proof: See Appendix A.

Note that the constraint σ ∈ D(H) in (10) and (11) is redundant since ρi ∈ D(H) and p ∈ ∆N imply that

σ ∈ D(H). The Lagrange dual program to (11) is given by

(dual problem) :

 min
λ

G(λ) + F (λ)

s.t. λ ∈ HM ,
(12)

with F,G : HM → R of the form

G(λ) =


max
p

∑N
i=1 pi (−H(ρi) + tr [ρiλ])

s.t.
〈
p, s
〉

= S

p ∈ ∆N

and F (λ) =

 max
σ

H(σ)− tr [σλ]

s.t. σ ∈ D(H).
(13)

Note that since the coupling constraint σ =
∑N
i=1 piρi in the primal program (11) is affine, the set of optimal

solutions to the dual program (12) is nonempty [22, Prop. 5.3.1] and as such the optimum is attained. The function

G(λ) is a (parametric) linear program and F (λ) is of the form given in Lemma 3.1, i.e., F (λ) has a unique

optimizer σ? = 2−µ1−λ, where µ is chosen such that σ? ∈ D(H), which gives

µ = log
(
tr
[
2−λ

])
. (14)

We thus obtain

F (λ) = H(σ?)− tr [σ?λ]

= −tr
[
2−µ1−λ log

(
2−µ1−λ

)]
− tr

[
2−µ1−λλ

]
= 2−µµ tr

[
2−λ

]
= log

(
tr
[
2−λ

])
, (15)

where the last step uses (14). The gradient of F (λ) is given by [23, p. 639 ff.]

∇F (λ) = − 2−λ

tr [2−λ]
. (16)

Remark 3.3. Note that the dual formulation for the capacity given in (12) can be shown to be equivalent to the

formula for the divergence radius of the channel image as discussed in [24], [25], [26].

The following proposition shows that the gradient (16) is Lipschitz continuous, which is essential for the

optimization algorithm that we will use to solve (12).

Proposition 3.4 (Lipschitz constant of ∇F ). The gradient ∇F (λ) as given in (16) is Lipschitz continuous with

respect to the Frobenius norm with Lipschitz constant 2.

Proof: To prove the Lipschitz continuity of ∇F (λ), we focus on the representation of F (λ) as an optimization

problem, given in (13). According to [17, Thm. 1], the function ∇F (λ) is Lipschitz continuous with Lipschitz

constant L = 1
κ , where κ is the strong convexity parameter of the convex function D(H) 3 σ 7→ −H(σ) ∈ R,

where according to [27, Thm. 16] κ = 1
2 .
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Another requirement to solve (12) with a specific rate of convergence using a fast gradient method is that the

set of feasible optimizers is compact. In order to assure that and to precisely characterize the size of the set of all

feasible optimizers (with respect to the Frobenius norm), we need to impose the following assumption on the cq

channel ρ, that we will maintain for the remainder of this article.

Assumption 3.5 (Regularity). γ := min
x∈X

min spec (ρx) > 0.

Even though Assumption 3.5 may seem restrictive at first glance, it holds for a large class of cq channels.

Moreover, according to the Fannes-Audenaert inequality [28], [29] the von Neumann entropy is uniformly continuous

in its argument with respect to the trace norm. Furthermore as shown in [30] even the conditional entropy is

uniformly continuous with respect to the trace norm. Therefore, cq channels having density operators ρx that

violate Assumption 3.5 can be avoided by slight perturbations of these density operators (see Example 3.17 for

a numerical illustration) and by using the explicit continuity statements for the conditional entropy [30], we get

an explicit error term as a function of the perturbation parameter. Furthermore, it can be seen that the mutual

information is strictly concave as a function of the input distribution, for a fixed channel under Assumption 3.5.

This implies the uniqueness of the optimal input distribution.

Lemma 3.6. Under Assumption 3.5, the dual program (12) is equivalent to

min
λ
{G(λ) + F (λ) : λ ∈ Λ} ,

where Λ :=
{
λ ∈ HM : ‖λ‖F ≤M log

(
γ−1 ∨ e

)}
.

Proof: See Appendix B.

Lemma 3.7. Strong duality holds between (11) and (12).

Proof: The assertion follows by a standard strong duality result of convex optimization, see [22, Prop. 5.3.1,

p. 169].

The goal is to efficiently solve (12), which is not straightforward since G(·) is non-smooth and as therefore in

general the subgradient method is optimal to solve such problems [31]. The idea is to use the particular structure

of (12) that allows us to invoke Nesterov’s smoothing technique [17]. Therefore, we consider

Gν(λ) :=


max
p

〈
p, b(λ)

〉
−
〈
p, a
〉

+ νH(p)− ν logN

s.t.
〈
p, s
〉

= S

p ∈ ∆N ,

(17)

with smoothing parameter ν ∈ R>0 and a, b(λ) ∈ RN defined as ai := H(ρi) and bi(λ) := tr [ρiλ]. We denote by

pν(λ) the optimal solution that is unique since the objective function is strictly concave. Clearly for any p ∈ ∆N ,

Gν(λ) ≤ G(λ) ≤ Gν(λ) + ν log(N), i.e., Gν(λ) is a uniform approximation of the non-smooth function G(λ).

According to Lemma 2.2 in [20] an analytical optimizer pν(λ) is given by

pν(λ)i = 2µ1+ 1
ν (bi(λ)−ai)+µ2si , 1 ≤ i ≤ N, (18)
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where µ1, µ2 ∈ R have to be chosen such that
〈
pν(λ), s

〉
= S and pν(λ) ∈ ∆N .

Remark 3.8. In case of no input constraints, the unique optimizer to (17) is given by

pν(λ)i =
2

1
ν (bi(λ)−ai)∑N

j=1 2
1
ν (bj(λ)−aj)

, 1 ≤ i ≤ N,

whose straightforward evaluation is numerically difficult for small ν. A numerically stable method for this compu-

tation is presented in [20, Rmk. 2.6].

Remark 3.9 ([20]). In case of an additional input constraint, we need an efficient method to find the coefficients

µ1 and µ2 in (18). In particular if there are multiple input constraints (which will lead to multiple µi) the efficiency

of the method computing them becomes important. Instead of solving a system of non-linear equations, it turns out

that the µi can be found by solving the following convex optimization problem [32, p. 257 ff.]

sup
µ∈R2

{〈
y, µ
〉
−

N∑
i=1

pν(λ, µ)

}
, (19)

where y := (1, S). Note that (19) is an unconstrained maximization of a concave function, whose gradient and

Hessian can be easily computed, which would allow us to use second-order methods.

Finally, we can show that the uniform approximation Gν(λ) is smooth and has a Lipschitz continuous gradient

with known Lipschitz constant.

Proposition 3.10 (Lipschitz constant of ∇Gν). Gν(λ) is well defined and continuously differentiable at any λ ∈ Λ.

Moreover, it is convex and its gradient ∇Gν(λ) =
∑N
i=1 ρi pν(λ)i is Lipschitz continuous with respect to the

Frobenius norm with constant 1
ν .

Proof: See Appendix C.

We consider the smooth, convex optimization problem

(smoothed dual problem) :

 min
λ

F (λ) +Gν(λ)

s.t. λ ∈ Λ,
(20)

whose objective function has a Lipschitz continuous gradient with respect to the Frobenius norm with Lipschitz

constant Lν := 2 + 1
ν . According to [27, Thm. 16] the function HM 3 A 7→ d(A) := 1

2 ‖A‖
2
F ∈ R≥0 is 1

2 -strongly

convex with respect to the Frobenius norm. As such (20) can be be approximated with Nesterov’s optimal scheme

for smooth optimization [17], which is summarized in Algorithm 1, where πΛ denotes the projection operator onto

the set Λ, defined in Lemma 3.6, that is the Frobenius norm ball with radius r := M log
(
γ−1 ∨ e

)
.

Proposition 3.11 (Projection on Frobenius norm ball). Consider the Frobenius norm ball Λ := {A ∈ HM :

‖ς(A)‖2 ≤ r} of radius r ≥ 0, where ς(A) ∈ RM denotes the vector of singular values of A. The unique projection

of a matrix B ∈ HM onto Λ in the Frobenius norm is given by

πΛ(B) = Udiag (πΛ(ς(B)))V >,
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where B = Udiag (ς(B))V > is the singular value decomposition of B and πΛ is the projection operator of the

`2-norm ball of radius r, i.e.,

πΛ(x) :=

 r x
‖x‖2

, ‖x‖2 > r

x, otherwise.

Proof: The proof follows the lines in [33, Prop. 5.3].

Algorithm 1: Optimal scheme for smooth optimization for cq channels

Choose some λ0 ∈ HM

For m ≥ 0 do∗ Step 1: Compute ∇F (λm) +∇Gν(λm)

Step 2: ym = πΛ

(
− 1
Lν

(∇F (λm) +∇Gν(λm)) + λm
)

Step 3: zm = πΛ

(
− 1

2Lν

∑m
i=0

i+1
2

(∇F (λi) +∇Gν(λi))
)

Step 4: λm+1 = 2
m+3

zm + m+1
m+3

ym

[*The stopping criterion is explained in Remark 3.13]

The following lemma ensures that by solving the dual smooth problem (20) using Algorithm 1, we can generate

approximate solutions to the non-smooth problems (11) and (12).

Lemma 3.12 ([17]). Let D = 1
2

(
M log(γ−1 ∨ e)

)2
, pν(·) be given by (18), and consider a smoothing parameter

ν = 2
k+1

(
2D

logN

) 1
2 . Then, after k iterations of Algorithm 1 we can generate the approximate solutions to the problems

(12) and (11), namely, λ̂ = yk ∈ Λ and p̂ =
∑k
i=0

2(i+1)
(k+1)(k+2)pν(λi) ∈ ∆N which satisfy

0 ≤ F (λ̂) +G(λ̂)− I(p̂, ρ) ≤ 4

k + 1

√
2D logN +

16D

(k + 1)2
. (21)

Note that Lemma 3.12 provides an explicit error bound given in (21), also called a priori error. In addition this

theorem predicts an approximation to the optimal input distribution (denoted by p̂), i.e., the optimizer of the primal

problem. Thus, by comparing the values of the primal and the dual optimization problem, one can also compute

an a posteriori error which is the difference of the dual and the primal problem, namely F (λ̂) + G(λ̂) − I(p̂, ρ)

with Ccq,UB(ρ) := F (λ̂) +G(λ̂) and Ccq,LB(ρ) := I(p̂, ρ). In practice the a posteriori error is often much smaller

than the a priori error (see Section 3-A).

Remark 3.13 (Stopping criterion of Algorithm 1). There are two immediate approaches to define a stopping

criterion for Algorithm 1.

(i) A priori stopping criterion: Choose an a priori error ε > 0. Setting the right hand side of (21) equal to ε

defines a number of iterations kε that has to be run in order to ensure an ε-close solution.

(ii) A posteriori stopping criterion: Choose an a posteriori error ε > 0. Choose the smoothing parameter ν(kε)

for kε as defined above in the a priori stopping criterion. Fix a (small) number of iterations ` that are run

using Algorithm 1. Compute the a posteriori error e` := F (λ̂) +G(λ̂)− I(p̂, ρ) as given by Lemma 3.12. If

e` ≤ ε terminate the algorithm otherwise continue with another ` iterations. Continue until the a posteriori

error is below ε.
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Remark 3.14 (No input cost constraint & numerical stability). In the absence of an input cost constraint (i.e.,

s(·) = 0), we can derive a closed form expression for Gν(λ) and its gradient. Using (18) we obtain

Gν(λ) = ν log

(
N∑
i=1

2
1
ν (b(λ)−a)i

)
− ν logN

∂Gν(λ)

∂λm,`
= (∇Gν(λ))m,` =

1

S(λ)

N∑
i=1

2
1
ν (b(λ)−a)i(ρi)`,m, (22)

where S(λ) =
∑N
i=1 2

1
ν (b(λ)−a)i and we have used ∂tr[ρλ]

∂λm,`
= ρ`,m [23, Prop. 10.7.2]. Recall that as introduced

above we consider a, b(λ) ∈ RN , such that ai = H(ρi) and bi(λ) = tr [ρiλ]. In order to achieve an ε-precise

solution the smoothing factor ν has to be chosen in the order of ε, according to Lemma 3.12. A straightforward

computation of ∇Gν(λ) via (22) for a small enough ν is numerically difficult. In the light of [17, p. 148], we present

a numerically stable technique for computing ∇Gν(λ). By considering the functions RM 3 λ 7→ f(λ) = b(λ)− a

and RN 3 x 7→ Rν(x) = ν log
(∑N

i=1 2
xi
ν

)
∈ R it is clear that ∇λRν(f(λ)) = ∇Gν(λ). The basic idea is to

define f̃(λ) := max1≤i≤N fi(λ) and then consider a function g : RM → RN given by gi(λ) = fi(λ)− f̃(λ), such

that all components of g(λ) are non-positive. One can show that

∇λRν(f(λ)) = ∇λRν(g(λ)) +∇f̃(λ),

where the term on the right-hand side can be computed with a small numerical error.

With the help of Lemma 3.12 we can state the main result of this section that quantifies the complexity of

Algorithm 1 to compute an additive ε-close solution to the capacity of a cq-channel.

Theorem 3.15 (Complexity of Algorithm 1). Consider a cq channel with input alphabet size N and output dimension

M . Then, Algorithm 1 requires O((N ∨M)M3 log(N)1/2 ε−1) to compute an additive ε-close approximation to

its capacity.

Proof: Recall that a singular value decomposition of a matrix A ∈ CM×M can be done with complexity O(M3)

[34, Lect. 31] which is needed for the projection operator πΛ as explained in Proposition 3.11. A closer look at

Algorithm 1 reveals that in case of no input constraint the complexity of a single iteration is O(M2(N ∨M)).

Lemma 3.12 implies that Algorithm 1 requires at most 4
√

2D logN ε−1 + 4
√
D/ε iterations to find an ε-solution.

Thus, the complexity to compute an ε-close solution using Algorithm 1 is O((N ∨M)M3 log(N)1/2 ε−1).

A. Simulation results

This section presents two examples to illustrate the performance of the approximation method introduced above.

We consider two channels which both exhibit an analytical closed form solution for the capacity. The first example

is a channel that satisfies Assumption 3.5, whereas the second one does not. To save computation time we have

chosen two channels with a binary input alphabet. All the simulations in this section are performed on a 2.3 GHz

Intel Core i7 processor with 8 GB RAM with Matlab.
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Example 3.16. Consider a cq channel ρ with a binary input alphabet, i.e., X = {0, 1}, such that 0 7→ ρ0 =

1
2 ( 1 0

0 1 ) and 1 7→ ρ1 = 1
4 ( 2 1

1 2 ). A simple calculation leads to an analytical expression of the capacity Ccq(ρ) =

Hb

(
16
43

)
− 21

43 −
22
43 Hb

(
1
4

)
≈ 0.048821003204. Note that spec(ρ0) = { 1

2 ,
1
2} and spec(ρ1) = { 1

4 ,
3
4}, which gives

γ := minx∈X min spec(ρx) = 1
4 . As predicted by Lemma 3.12, Algorithm 1 has the following a priori error bound

0 ≤ Ccq,UB(ρ)− Ccq,LB(ρ) ≤ 4
√

2D logN

k + 1
+

16D

(k + 1)2
,

where k denotes the number of iterations, D = 1
2 (M log

(
γ−1 ∨ e

)
)2 = 8, N = 2, and M = 2. Table I shows the

performance of Algorithm 1 for this example.

TABLE I

EXAMPLE 3.16 WITH D = 8

A priori error 10−1 10−2 10−3 10−4

Ccq,UB(ρ) 0.049 841 307 3 0.048 972 899 3 0.048 837 263 6 0.048 822 641 1

Ccq,LB(ρ) 0.048 820 977 3 0.048 820 982 7 0.048 821 003 3 0.048 821 003 6

A posteriori error 1.00·10−3 1.52·10−4 1.63·10−5 1.64·10−6

Time [s] 0.05 0.8 4.6 47

Iterations 167 1607 16 007 160 007

Example 3.17. Consider a cq channel ρ with a binary input alphabet, i.e., X = {0, 1}, such that 0 7→ ρ0 =

|0〉〈0| = ( 1 0
0 0 ) and 1 7→ ρ1 = |+〉〈+| = 1

2 ( 1 1
1 1 ). The capacity of this channel can be computed to be Ccq(ρ) =

Hb

(
1
2 (1 + 1√

2
)
)
≈ 0.600876. Note that spec(ρ0) = spec(ρ1) = {0, 1} which violates Assumption 3.5. As

mentioned above a possible solution is to perturb the cq channel by some small parameter ε ∈ (0, 1
2 ) such

that Assumption 3.5 is valid. We consider the perturbed cq channel ρ̃ that maps 0 7→ ρ̃0 =
(

1−ε 0
0 ε

)
and

1 7→ ρ̃1 =

( 1
2 +ε

1
2−ε

1
2−ε

1
2−ε

)
. By continuity of the von Neumann entropy [28], [29], when choosing ε being small

we only change the value of the capacity by a small amount. More precisely, let us consider ε = 10−10. A simple

calculation gives

|Ccq(ρ)− Ccq(ρ̃)| ≤ 2.53474 · 10−9.

Using the triangle inequality and Lemma 3.12, we can bound the a priori error of Algorithm 1 as

|Ccq,UB(ρ̃)− Ccq(ρ)| ≤ |Ccq,UB(ρ)− Ccq(ρ̃)|+ |Ccq(ρ̃)− Ccq(ρ)|

≤ 4
√

2D logN

k + 1
+

16D

(k + 1)2
+ 2.53474 · 10−9,

where k denotes the number of iterations, D = 1
2 (M log(γ−1 ∨ e))2 ≈ 2207.04, N = 2, and M = 2. The a

posteriori error is given by Ccq,UB(ρ̃)− Ccq,LB(ρ̃) + 2.53474 · 10−9.

4. CAPACITY OF A CONTINUOUS-INPUT CLASSICAL-QUANTUM CHANNEL

In this section we generalize the approach introduced in Section 3 to cq channels having a continuous bounded

input alphabet and a finite-dimensional output. There are two major challenges compared to the discrete input

alphabet setup treated in Section 3. The first difficulty is that the differential entropy is in general not bounded.
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TABLE II

EXAMPLE 3.17 WITH D ≈ 2207.04 USING A PERTURBATION PARAMETER ε = 10−10 .

A priori error 1 10−1 10−2

Ccq,UB(ρ̃) 0.600 876 033 385 197 0.600 876 033 316 571 0.600 876 033 316 571

Ccq,LB(ρ̃) 0.600 876 033 160 937 0.600 876 033 315 310 0.600 876 033 316 571

A posteriori error 2.54·10−9 2.53·10−9 2.53·10−9

Time [s] 0.1 0.8 7.9

Iterations 181 1392 13 353

This makes the smoothing step more difficult and in particular complicates the task of proving an a priori error

bound. A second difficulty in the continuous input alphabet setting is the evaluation of the gradient of the Lagrange

dual function which involves an integration that can only be computed approximately. Thus the robustness of the

iterative protocol needs to be analyzed.2

Within this section, we consider cq channels of the form ρ : P(R)→ D(H), x 7→ ρx, where R is a compact subset

of the non-negative real line, P(R) denotes the space of all probability distributions on R and M := dimH <∞.

In addition we consider an input constraint of the form3

〈
p, s
〉

=

∫
R

s(x) p(dx) ≤ S, (23)

for s ∈ L∞(R) and p ∈ P(R). To properly state a formula describing the capacity of the channel ρ with an input

constraint (23), we need to assume certain regularity conditions on the function s. Let {|ei〉} be an orthonormal

basis in the Hilbert space H and {fi} a sequence of real numbers bounded from below. The expression

K |ψ〉 =
∑
i

fi |ei〉 〈ei|ψ〉 , (24)

defines a self adjoint operator K on the dense domain

D(K) =

{
ψ ∈ H :

∑
i

|fi|2 |〈ei|ψ〉|2 <∞

}
, (25)

where fi are the eigenvalues and |ei〉 the corresponding eigenvectors.

Definition 4.1 ([3, Def. 11.3]). An operator defined on the domain (25) by the formula (24) is called an operator

of type K.

Assumption 4.2 (Assumptions on the input constraint function). In the reminder of this section we impose the

following assumption on the input constraint function s : R→ R.

(i) There exists a self-adjoint operator K of type K satisfying tr [exp(−θK)] < ∞ for all θ > 0 such that

s(x) ≥ tr [ρxK], x ∈ R.

(ii) s is lower semicontinuous and for all k ∈ R≥0 the set {x : s(x) ≤ k} ⊂ R is compact.

2This point will become especially important in Section 5.
3The extension to multiple average input cost constraints is straightforward.
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Assumption 4.2(i) implies that supp∈P(R)H
(∫
R
ρx p(dx)

)
< ∞ and Assumption 4.2(ii) ensures that the set

{p ∈ P(R) :
〈
p, s
〉
≤ S} is weakly compact [3, Lem. 11.14]. Under Assumption 4.2, the capacity of channel ρ is

given by [3, Thm. 11.15]

Ccq,S(ρ) =


max
p

I(p, ρ) := H
(∫
R
ρx p(dx)

)
−
〈
p,H(ρ)

〉
s.t.

〈
p, s
〉
≤ S

p ∈ P(R).

(26)

Proposition 4.3. The optimization problem (26) is equivalent to

Ccq,S(ρ) = sup
p∈D(R)

{
I(p, ρ) :

〈
p, s
〉
≤ S

}
, (27)

where D(R) is the space of probability densities with support R, i.e., D(R) := {f ∈ L1(R) : f ≥ 0,
∫
R
f(x) dx =

1}.

Proof: The proof follows by the proof of [20, Prop. 3.4] and the lower semicontinuity of the von Neumann

entropy [3, Thm. 11.6].

We consider the pair of vector spaces (L1(R),L∞(R)) along with the bilinear form〈
f, g
〉

:=

∫
R

f(x)g(x) dx.

In the light of [35, Thm. 243G] this is a dual pair of vector spaces; we refer to [36, Sec. 3] for the details of the

definition of dual pairs of vector spaces. Considering the Frobenius inner product as a bilinear form on the dual

pair (HM ,HM ), we define the linear operator W : HM → L∞(R) and its adjoint operator W? : L1(R)→ HM by

Wλ(x) := tr [ρxλ] , W?p :=

∫
R

ρx p(dx).

We next derive the dual problem of (27) and show how to solve that efficiently. To this end, we introduce an

additional decision variable σ :=W?p and reformulate problem (27).

Lemma 4.4. Let F := arg max
p∈D(R)

I(p, ρ) and Smax := min
p∈F

〈
p, s
〉
. If S ≥ Smax the optimization problem (27) has

the same optimal value as

(primal problem) :


sup
p,σ

H(σ)−
〈
p,H(ρ)

〉
s.t. σ =W?p

p ∈ D(R), σ ∈ D(H).

If S < Smax the optimization problem (27) has the same optimal value

(primal problem) :



sup
p,σ

H(σ)−
〈
p,H(ρ)

〉
s.t. σ =W?p〈

p, s
〉

= S

p ∈ D(R), σ ∈ D(H).

(28)

Proof: Follows by a similar argument as given in Appendix A for the finite-dimensional input setup.
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The Lagrange dual program to (28) is given by

(dual problem) :

 inf
λ

G(λ) + F (λ)

s.t. λ ∈ HM ,
(29)

where F,G : HM → R are given by

G(λ) =


sup
p

〈
p,Wλ

〉
−
〈
p,H(ρ)

〉
s.t.

〈
p, s
〉

= S

p ∈ D(R)

and F (λ) =

 max
σ

H(σ)− tr [σλ]

s.t. σ ∈ D(H)
.

Note that G(λ) is a (parametric) infinite-dimensional linear program and F (λ) is exactly of the same form as in

Section 3. According to (15) and (16) we thus have

F (λ) = log
(
tr
[
2−λ

])
and ∇F (λ) = − 2−λ

tr [2−λ]
. (30)

Note that by Proposition 3.4, ∇F (λ) is Lipschitz continuous with respect to the Frobenius norm with Lipschitz

constant 2.

Lemma 4.5. Strong duality holds between (28) and (29).

Proof: The lemma follows from the standard strong duality results of convex optimization, see [37, Thm. 6].

In the remainder of this article we impose the following assumption on the cq channel.

Assumption 4.6 (Assumption on the cq channel). γ := min
x∈R

min spec(ρx) > 0

Lemma 4.7. Under Assumption 4.6, the dual program (29) is equivalent to

min
λ
{G(λ) + F (λ) : λ ∈ Λ} ,

where Λ :=
{
λ ∈ HM : ‖λ‖F ≤M log

(
γ−1 ∨ e

)}
.

Proof: The proof is a direct extension of the one for Lemma 3.6.

As a preliminary result, consider the following entropy maximization problem, with c being a continuous function,

that exhibits an analytical solution 
max
p

h(p) +
〈
p, c
〉

s.t.
〈
p, s
〉

= S

p ∈ D(R).

(31)

Lemma 4.8 (Entropy maximization [38, Thm. 12.1.1]). Let p?(x) = 2µ1+c(x)+µ2s(x), x ∈ R where µ1 and µ2 are

chosen such that p? satisfies the constraints in (31). Then p? uniquely solves (31).

November 22, 2015 DRAFT



16

The goal is to efficiently compute (29) which is not straightforward since G(·) is non-smooth. Similar as in

Section 3 the idea is to use Nesterov’s smoothing technique [17]. Therefore we consider

Gν(λ) =


max
p

〈
p,Wλ−H(ρ)

〉
+ νh(p)− ν log(υ)

s.t.
〈
p, s
〉

= S

p ∈ D(R),

(32)

where υ :=
∫
R

dx. Problem (32) is of the form given in Lemma 4.8 and therefore has a unique optimizer

pλν (x) = 2µ1+ 1
ν (tr[ρxλ]−H(ρx))+µ2s(x), x ∈ R, (33)

where µ1, µ2 are chosen such that pλν ∈ D(R) and
〈
pλν , s

〉
= S. Recall that h(p) ≤ log(υ) for all p ∈ D(R) and

that there exists a function ι : R>0 → R≥0 such that

Gν(λ) ≤ G(λ) ≤ Gν(λ) + ι(ν) for all λ ∈ Λ, (34)

i.e., Gν(λ) is a uniform approximation of the non-smooth function G(λ). In Lemma 4.11 an explicit expression

for ι is given, which implies that ι(ν)→ 0 as ν → 0.

Assumption 4.9 (Lipschitz continuity).

(i) The input constraint function s(·) is Lipschitz continuous with constant Ls.

(ii) The function R 3 x 7→ ρx ∈ D(H) is Lipschitz continuous with constant L with respect to the trace norm.

Lemma 4.10. Assumption 4.9(ii) implies that the function fλ(x) := Wλ(x) − H(ρx) for x ∈ R is Lipschitz

continuous uniformly in λ ∈ Λ with constant Lf := L(M log(γ−1 ∨ e) +
√
M log( 1

γe ∨ e)).

Proof: For x1, x2 ∈ R using the triangle inequality we obtain

|fλ(x1)− fλ(x2)| =
∣∣〈ρx1 , λ

〉
F
−H(ρx1)−

〈
ρx2 , λ

〉
F

+H(ρx2)
∣∣

≤
∣∣〈ρx1 − ρx2 , λ

〉
F

∣∣+ |H(ρx1)−H(ρx2)| . (35)

We can bound the first term of (35) using the Cauchy-Schwarz inequality as∣∣〈ρx1 − ρx2 , λ
〉
F

∣∣ ≤ ‖ρx1 − ρx2‖F ‖λ‖F

≤ ‖ρx1 − ρx2‖tr ‖λ‖F

≤ L|x1 − x2| ‖λ‖F , (36)

where (36) follows by Assumption 4.9(ii) and by assumption ‖λ‖F ≤M log
(
γ−1 ∨ e

)
. Let JM :=

√
M log( 1

γe∨e),

using Claim F.3 and Assumption 4.6 the second term of (35) can be bounded as

|H(ρx1
)−H(ρx2

)| ≤ JM ‖ρx1
− ρx2

‖tr

≤ JML|x1 − x2|, (37)

where (37) follows again by Assumption 4.9(ii).
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Lemma 4.11 ([20]). Under Assumption 4.9 a possible choice of the function ι in (34) is given by

ι(ν) =

 ν
(
log
(
T1

ν + T2

)
+ 1
)
, ν < T1

1−T2
or T2 > 1

ν, otherwise,

where T1 := Lfυ + 2LfLsυ
2
(

1
−s ∨

1
s

)
, T2 := Lsυ(µ ∨ µ), µ := 2

−s log
(

2Lsυ
−s ∨ 1

)
, µ := 2

s log
(

2Lsυ
s ∨ 1

)
,

υ :=
∫
R

dx, s := −S + minx∈R s(x) and s := −S + maxx∈R s(x).

Remark 4.12. In case of no input constraints, the unique optimizer to (32) is given by

pλν (x) =
2

1
ν (tr[ρxλ]−H(ρx))∫

R
2

1
ν (tr[ρxλ]−H(ρx)) dx

,

whose straightforward evaluation is numerically difficult for small ν. A numerically stable technique to evaluate

the above integral for small ν can be obtained by following the method presented in Remark 3.14.

Remark 4.13 ([20]). As already highlighted and discussed in Remark 3.9, in case of additional input constraints,

we seek for an efficient method to find the coefficients µi in (33). Similarly to the finite input alphabet case the

problem of finding µi can be reduced to the finite-dimensional convex optimization problem [32, p. 257 ff.]

sup
µ∈R2

{〈
y, µ
〉
−
∫
R

pλν (x) dx

}
, (38)

where y := (1, S). Note that (38) is an unconstrained maximization of a concave function. However, unlike to the

finite input alphabet case, the evaluation of its gradient and Hessian involves computing moments of the measure

pλν (x, µ) dx, which we want to avoid in view of computational efficiency. There are efficient numerical schemes

known, based on semidefinite programming, to compute the gradient and Hessian (see [32, p. 259 ff.] for details).

Lemma 4.14 ([20, Lem. 3.14]). The function d : D(R)→ R≥0, p 7→ −h(p)+log(υ) with υ :=
∫
R

dx as introduced

in (32) is strongly convex with convexity parameter 1.

Finally, we can show that the uniform approximation Gν(λ) is smooth and has a Lipschitz continuous gradient

with known constant. The following result is a generalization of Proposition 3.10 and follows from Theorem 5.1

in [39].

Proposition 4.15 (Lipschitz constant of ∇Gν). The function Gν(λ) is well defined and continuously differentiable

at any λ ∈ HM . Moreover, this function is convex and its gradient

∇Gν(λ) =

∫
R

ρx p
λ
ν (x) dx

is Lipschitz continuous with constant Lν = 1
ν with respect to the Frobenius norm.

Proof: See Appendix D.

We consider the smooth, convex optimization problem

(smoothed dual problem) :

 min
λ

F (λ) +Gν(λ)

s.t. λ ∈ Λ,
(39)
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whose solution can be approximated with the Algorithm 1 presented in Section 3. For the parameter D1 :=

1
2 (M log(γ−1 ∨ e))2 we have the following result, when running Algorithm 1 on the problem (39).

Theorem 4.16. Let α := 2(T1+T2+1) where T1 and T2 are as defined in Lemma 4.11. Given a precision ε ∈ (0, α4 ),

we set the smoothing parameter ν = ε/α
log(α/ε) and number of iterations k ≥ 1

ε

√
16D1α

√
log(ε−1) + log(α) + 1

2 .

Consider

λ̂ = yk ∈ Λ and p̂ =

k∑
i=0

2(i+ 1)

(k + 1)(k + 2)
pλiν ∈ D(R), (40)

where yi computed at the ith iteration of Algorithm 1 and pλiν is the analytical solution in (33). Then, λ̂ and p̂ are

the approximate solutions to the problems (29) and (28), i.e.,

0 ≤ F (λ̂) +G(λ̂)− I(p̂, ρ) ≤ ε. (41)

Therefore, Algorithm 1 requires O
(

1
ε

√
log (ε−1)

)
iterations to find an ε-solution to the problems (28) and (29).

Proof: The proof is a minor modification of [20, Thm. 3.15].

Let us highlight that we have two different quantitative bounds for the approximation error. First, the a priori

bound ε for which Theorem 4.16 prescribes a lower bound for the required number of iterations. Second, we have

an a posteriori bound F (λ̂) +G(λ̂)− I(p̂, ρ) after k iterations. In practice, the a posteriori bound often approaches

ε within significantly less number of iterations than predicted by Theorem 4.16. Besides, note that by (34) and

Theorem 4.16

0 ≤ F (λ̂) +Gν(λ̂) + ι(ν)− I(p̂, ρ) ≤ ι(ν) + ε,

which shows that F (λ̂) + Gν(λ̂) + ι(ν) is an upper bound for the channel capacity with a priori error ι(ν) + ε.

This bound can be particularly helpful in cases where an evaluation of G(λ) for a given λ is hard.

Remark 4.17 (No input constraint). In the absence of an input constraint we can derive an analytical expression

for Gν(λ) and its gradient. As derived above, the optimizer solving (32) is

p?(x) =
2tr[ρxλ]−H(ρx)∫

R
2tr[ρyλ]−H(ρy) dy

, x ∈ R,

which gives

Gν(λ) = ν log

(∫
R

2
1
ν (tr[ρxλ]−H(ρx)) dx

)
− ν log (υ)

and
∂Gν(λ)

∂λm,`
= (∇Gν(λ))m,` =

1

S(λ)

∫
R

2
1
ν (tr[ρxλ]−H(ρx))(ρx)`,m dx, (42)

with S(λ) =
∫
R

2
1
ν (tr[ρxλ]−H(ρx)) dx. Similarly to Remark 3.14, we have used ∂tr[ρλ]

∂λm,`
= ρ`,m [23, Prop. 10.7.2].

November 22, 2015 DRAFT



19

A. Inexact first-order information

Our analysis up to now assumes availability of exact first-order information, namely we assumed that the gradients

∇Gν(λ) and ∇F (λ) are exactly available for any λ. However, in many cases, e.g., in the presence of an additional

input cost constraint (Remark 4.13), the evaluation of those gradients requires solving another auxiliary optimization

problem or a multi-dimensional integral (42), which only can be done approximately. This motivates the question

of how to solve (39) in the case of inexact first-order information which indeed has been studied in detail in

[40]. In our problem (39), ∇F (λ) has a closed form expression (30) and as such can be assumed to be known

exactly. Let us assume, however, that we only have an oracle providing an approximation ∇G̃ν(λ), which satisfies

‖∇G̃ν(λ) − ∇Gν(λ)‖op ≤ δ for any λ ∈ Λ and some δ > 0. Recall that πΛ, as defined in Proposition 3.11,

denotes the projection operator onto the set Λ, defined in Lemma 4.7, that is the Frobenius norm ball with radius

r := M log
(
γ−1 ∨ e

)
.

Algorithm 2: Scheme for inexact first-order information

Choose some λ0 ∈ HM

For m ≥ 0 do∗ Step 1: Compute ∇F (λm) +∇G̃ν(λm)

Step 2: λm+1 = πΛ

(
− 1
Lν

(
∇F (λm) +∇G̃ν(λm)

)
+ λm

)
[*The stopping criterion is explained in Remark 4.19]

Lemma 4.18. For every ν ∈ R>0, after k iterations of Algorithm 2

F (λk) +G(λk)− Ccq,S(ρ) ≤
(2 + 1

ν )D2

2k
+ ι(ν) + 2δD, (43)

where ι(ν) is given in Lemma 4.11 and D := M log
(
γ−1 ∨ e

)
.

Proof: We denote the optimum value to (39) by Cν,cq,S(ρ). According to [40], for every ν ∈ R>0, after k

iterations of Algorithm 2

F (λk) +Gν(λk)− Cν,cq,S(ρ) ≤
(2 + 1

ν )D2

2k
+ 2δD. (44)

By recalling (34), which leads to Cν,cq,S(ρ) ≤ Ccq,S(ρ) the statement can be refined to

F (λk) +G(λk)− Ccq,S(ρ) ≤
(2 + 1

ν )D2

2k
+ ι(ν) + 2δD.

Remark 4.19 (Stopping criterion of Algorithm 2). In case of no average power constraint the following explicit for-

mulas can be used as a stopping criterion of Algorithm 2. Choose an a priori error ε > 0. For β := 1+ log e
e and α :=

log T1 +1, where T1 is as in Lemma 4.11, consider ν ≤ ε
3β(α+log(3βε−1)) , k ≥ 3(M log(γ−1∨e))2(2ε+3β(α+log(3βε−1)))

2ε2

and δ ≤ ε
6M log(γ−1∨e) . For this choice Algorithm 2 guarantees an ε-close solution, i.e., the right hand side of (43)

is upper bounded by ε. This analysis follows by Lemma E.1 that is given in Appendix E.
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5. APPROXIMATING THE HOLEVO CAPACITY

In this section it is shown how ideas developed in the previous sections for cq channels can be extended to quantum

channels with a quantum mechanical input and output, also known as qq channels. Let Φ : B(HA) → B(HB) be

a quantum channel, where B(H) denotes the space of bounded linear operators on some Hilbert space H that are

equipped with the trace norm. The classical capacity describing the maximal amount of classical information that

can be sent on average, asymptotically reliable over the channel Φ per channel use, has proven to be [4], [5]

C(Φ) = lim
k→∞

1

k
CX (Φ⊗k), (45)

where

CX (Φ) = sup
{pi,ρi}

H

(∑
i

piΦ(ρi)

)
−
∑
i

piH(Φ(ρi)) , (46)

denotes the Holevo capacity. It is immediate to verify that C(Φ) ≥ CX (Φ) for all quantum channels Φ. In [11],

the existence of channels satisfying C(Φ) > CX (Φ) has been proven which implies that the limit in (45) which is

called regularization is necessary. Due to the regularization, a direct approximation of C(Φ) seems difficult.

In this section, we present an approximation scheme for the Holevo capacity based on the method explained in

Section 4. It has been shown that the supremum in (46) is attained on an ensemble consisting of no more than

N2 pure states, where N := dimHA [3, Cor. 8.5]. The Holevo capacity is in general hard to compute since (46)

is a non-convex optimization problem as the objective function is concave in {pi} for fixed {ρi} and convex in

{ρi} for fixed {pi} [2, Thms. 12.3.5 and 12.3.6]. Furthermore, Beigi and Shor showed that computing the Holevo

capacity is NP-hard [12]. Their proof also implies that it is NP-hard to compute the Holevo capacity up to 1
poly(N)

accuracy. Based on a stronger complexity assumption, Harrow and Montanaro improved this result by showing that

the Holevo capacity is in general hard to approximate even up to a constant accuracy [13]. However, this does not

preclude the existence of classes of channels for which the Holevo capacity can be computed efficiently.

Using a universal encoder, which is a mapping translating a classical state into a quantum state, we can compute

the Holevo capacity of a quantum channel by calculating the cq capacity of a channel having a continuous, bounded

input alphabet (see Figure 2). A universal encoder is defined as the mapping E : R 3 r 7→ |r〉〈r| =: ρr ∈ D(HA).

From an optimization point of view, by adding the universal encoder we map a finite-dimensional non-convex

optimization problem (of the form (46)) into an infinite-dimensional convex optimization problem (of the form

(27)), which we know how to approximate as discussed in Section 4. To represent an N -dimensional pure state we

need 2N−2 real bounded variables.4 As an example, for N = 2 a possible universal encoder is E : [0, π]× [0, 2π] 3

(φ, θ) 7→ |v〉〈v| ∈ C2×2, with |v〉 = (cos θ, sin θ eiφ)>. A possible universal encoder for a general N -dimensional

setup is discussed in Remark 5.1.

As explained in Figure 2, using the idea of the universal encoder gives Ccq(ρ) = CX (Φ), i.e., we can approximate

CX (Φ) by approximating Ccq(ρ). This can be done as explained in Section 4. For an approximation error ε > 0,

4We need to describe an N -dimensional complex vector, where one real parameter can be removed since the global phase is irrelevant. A

second parameter is determined as the vector must have unit length.
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R 3 r ρr ∈ D(HB)
σrE Φ

Fig. 2. How to embed a qq into a cq channel. A universal encoder is a mapping E : R 3 r 7→ |r〉〈r| =: σr ∈ D(HA)

that translates a classical state r into a quantum state σr . It can be used to embed the qq channel Φ : B(HA) → B(HB) into

a cq channel ρ : R 3 r 7→ (Φ ◦ E)(r) = Φ(|r〉〈r|) =: ρr ∈ D(HB) with a continuous bounded input alphabet, leading to

Ccq(ρ) = CX (Φ).

Theorem 4.16 gives a minimal number of iterations k and a smoothing parameter ν > 0 such that after k iterations

Algorithm 1 generates a lower and upper bound CX ,LB(Φ) ≤ CX (Φ) ≤ CX ,UB(Φ) to the Holevo capacity such that

0 ≤ CX ,UB(Φ)− CX ,LB(Φ) ≤ ε.

We note that in the limit k → ∞, where k denotes the number of iterations, Theorem 4.16 ensues that the

capacity achieving input distribution for the induced cq channel, i.e. ρ : R 3 r 7→ (Φ ◦ E)(r) ∈ D(HB) converges

to a discrete probability distribution which then defines an ensemble that achieves the Holevo capacity of Φ. This

is in agreement with the observations made in [26, Thm. 2].

Remark 5.1 (Universal encoder). For a channel Φ : B(HA) → B(HB) with N = dimHA a possible universal

encoder can be derived using spherical coordinates as

E : R = [0, π]× . . .× [0, π]× [0, 2π]× [0, π]× . . .× [0, π]→ CN×N

(θ1, . . . , θN−2, θN−1, φ1, . . . , φN−1) 7→ |v〉〈v|

with

|v〉 = (cos θ1, sin θ1 cos θ2e
iφ1 , sin θ1 sin θ2 cos θ3e

iφ2 , . . . , sin θ1 . . . sin θN−2 cos θN−1e
iφN−2 ,

sin θ1 . . . sin θN−2 sin θN−1e
iφN−1)>.

It can be verified immediately that the Lebesgue measure of the set R is equal to 2π2N−2 for this setup.

A. Computational complexity

Let {Φ : B(HA) → B(HB)}N,M be a family of quantum channels with N := dimHA and M := dimHB .

For such a family, we derive the complexity of our method presented in this chapter to ensure an ε-close solution.

Suppose the family of channels {Φ}N,M satisfies the following assumption.

Assumption 5.2 (Regularity). γM := min
ρ∈D(HA)

min spec Φ(ρ) > 0

To simplify notation, define the function R≥0 3 M 7→ p(M) := log
(
γ−1
M

)
∈ R≥0. We will discuss later

in Remark 5.9 how Assumption 5.2 can be removed at the cost of computational complexity proportional to

ε−1 log ε−1 where ε is the preassigned approximation error, i.e., considering ε as a constant Assumption 5.2 can be
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automatically satisfied. As detailed in the preceding section and summarized in Algorithm 1, for the approximation

of the Holevo capacity one requires to efficiently evaluate the gradient ∇Gν(λ) for an arbitrary λ ∈ Λ given by

(42), which involves two integrations over R.

Definition 5.3 (Gradient oracle complexity). Given a family of channels {Φ}N,M , the computational complexity

for Algorithm A to provide an estimate ∇G̃ν(λ) for any λ ∈ Λ of the form

P

[∥∥∥∇Gν(λ)−∇G̃ν(λ)
∥∥∥

op
≥ δ
]
≤ η

is denoted (when it exists) by CΦ,A (N,M, δ−1, η−1).5

In Section 5-B, we discuss two candidates for A and derive their complexity as defined in Definition 5.3.

Theorem 5.4 (Complexity of Algorithm 2). Let {Φ}N,M be a family of quantum channels satisfying Assumption 5.2.

Then, Algorithm 2 together with A require

O
(
ε−2M4p(M)2

(
N + log(Mp(M)) + log(ε−1)

)
CΦ,A

(
N,M, ε−1Mp(M), ξ−1ε−2M2p(M)2(N + log(Mp(M)) + log(ε−1))

))
to compute an additive ε-close solution to the Holevo capacity with probability 1− ξ.

Remark 5.5. Theorem 5.4 establishes a link in terms of computational complexity from the main objective of this

section, the Holevo capacity of a family of quantum channels {Φ}N,M under Assumption 5.2, to the computation of

∇Gν(λ) for a given λ ∈ Λ, the task of Algorithm A in Definition 5.3. That is, if C (N,M, δ−1, η−1) for δ−1 and

η−1 given in Theorem 5.4 is polynomial (resp. sub-exponential) in (N, ε−1), then the complexity of the proposed

scheme to approximate the Holevo capacity is polynomial (resp. sub-exponential) in (N, ε−1).

To prove Theorem 5.4 one requires a few preparatory lemmas. First we need an explicit a priori error bound

in a similar fashion as in Section 4 given that the function fλ,M (x) := tr [Φ(E(x))λ] −H(Φ(E(x))) is Lipschitz

continuous uniformly in λ ∈ Λ. The following lemma shows that this readily follows from Assumption 5.2.

Lemma 5.6. Let {Φ}N,M be a family of channels satisfying Assumption 5.2. The function fλ,M (x) := tr [Φ(E(x))λ]−

H(Φ(E(x))) for x ∈ R is Lipschitz continuous uniformly in λ ∈ Λ with respect to the `1-norm with constant

LN,M = 2N
√
N
(
M log( 1

γM
∨ e) +

√
M log( 1

γMe ∨ e)
)

.

Proof: See Appendix F.

Lemma 5.7. Let η ∈ [0, 1] and n ∈ N. Then 1− (1− η)n ≤ nη.

Proof: For a fixed n ∈ N the function [0, 1] 3 η 7→ f(η) := 1 − (1 − η)n − nη is concave since d2f(η)
dη =

−n(n− 1)(1− η)n−2 ≤ 0. Solving df(η)
dη = 0, gives η? = 0. As f(0) = 0 and f(1) = 1− n ≤ 0 this proves that

f(η) ≤ 0 for all n ∈ N and η ∈ [0, 1].

5Note that CΦ,A (N,M, δ−1, η−1) is increasing in all its components.

November 22, 2015 DRAFT



23

Proof of Theorem 5.4: Recall that according to Lemma 4.18, after k iterations of Algorithm 2, where

the gradient ∇Gν(λi) in each iteration i is approximated with ∇G̃ν(λi) using Algorithm A as introduced in

Definition 5.3, we get

F (λk) +G(λk)− CX (Φ) ≤
(2 + 1

ν )D2

2k
+ ι(ν) + 2δD, (47)

where the function ι(·) is given in (48).

As ensured by Definition 5.3 with probability 1 − η the numerically evaluated gradient ∇G̃ν(λ) is close to

its exact value ∇Gν(λ) or more precisely with probability at least 1 − η, ∇G̃ν(λ) ∈ A, where A := {X ∈

Cn×n : ‖∇Gν(λ)−X‖op < δ} denotes a confidence region. We first derive the complexity of finding an ε-close

solution to CX (Φ) given that in every iteration step the numerically evaluated gradient lies in the confidence region

A. Afterwards we justify that the probability that the gradient in all iteration steps is evaluated approximately

correctly, i.e., such that its value lies inside the confidence region, is high.

Recall that for our setup the function ι(·) in (47) has the form

ι(ν) =

 ν log
(
LN,M2π2N−2

ν

)
+ ν, ν < LN,M (2π2N−2)

ν, otherwise,
(48)

as given in Lemma 4.11 with LN,M defined in Lemma 5.6. Note that we use a universal encoder as introduced in

Remark 5.1 which gives υ =
∫
R

dx = 2π2N−2.

According to Remark 4.19 and (48) we define β = 1 + log e
e and α := log(LN,M ) + (2N −2) log(2π) + 1, which

by Lemma 5.6 scales as α = O(N + log(N3/2Mp(M))). Following Remark 4.19 the number of iterations k and

the gradient approximation accuracy δ are chosen such that

k = O
(
ε−2M2p(M)2

(
N + log(Mp(M)) + log(ε−1)

) )
. (49)

δ ≤ ε
6M log(γ−1∨e) = O

(
ε

Mp(M)

)
. (50)

As shown in Remark 4.19, for these two parameters with a smoothing parameter ν ≤ ε
3β(α+log(3βε−1)) after k

iterations of Algorithm 2 we obtain an ε-close solution. The total complexity for an ε-solution is k times the

complexity of a single iteration which is

k O
(
M2CΦ,A (N,M, δ−1, η−1)

)
= k O

(
M2CΦ,A (N,M, ε−1M log(p(M)), η−1)

)
= O

(
ε−2M4p(M)2

(
N + log(Mp(M)) + log(ε−1)

)
CΦ,A (N,M, ε−1M log(p(M)), η−1)

)
,

where we used (49) and (50).

We next show that the randomized scheme is reliable with probability 1 − ξ. As mentioned in Definition 5.3

each evaluation of the gradient ∇G̃ν(λ) is confident with a probability not smaller than (1 − η). The scheme is

successful if the gradient evaluation lies inside the confidence region in each iteration step. Thus the probability

that the approximation scheme fails can be bounded by

P[scheme fails] ≤ 1− (1− η)k ≤ kη = O(ε−2M2p(M)2
(
N + log(Mp(M)) + log(ε−1)

)
η),
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where the second inequality is due to Lemma 5.7 and (49). Therefore for η−1 = k ξ−1 the scheme is reliable with

probability 1− ξ.

Proposition 5.8 (Continuity of the Holevo capacity [41, Cor. 11]). Let Φ1,Φ2 : B(HA)→ B(HB) be two quantum

channels with M = dimHB such that ‖Φ1 − Φ2‖� ≤ ε for ε ≥ 0, then

|CX (Φ1)− CX (Φ2)| ≤ 8ε log(M) + 4Hb(ε).

Remark 5.9 (Removing Assumption 5.2). The continuity of the Holevo capacity can be used to remove As-

sumption 5.2. Let {Φ1}N,M be a family of quantum channels that violates Assumption 5.2. Consider the family

{Φ2}N,M := {(1− ξN,M )Φ1 + ξN,MΘ}N,M for ξN,M ∈ (0, 1) with Θ(ρ) = tr [ρ] 1
M . Using the triangle inequality

we find for each member of the two families

‖Φ1 − Φ2‖� = ‖ξN,M (Θ− Φ1)‖� ≤ ξN,M (‖Θ‖� + ‖Φ1‖�) ≤ 2ξN,M , (51)

where the final inequality uses the fact that the trace norm of a channel is always upper bounded by one. Note that

the family {Φ2} as defined above clearly satisfies Assumption 5.2 as Φ2(ρ) ≥ ξN,M 1
M for all ρ ∈ D(HA). Hence,

Proposition 5.8 in conjunction with the analysis of Lemma E.1 shows that Assumption 5.2 is not restrictive in the

sense that one can always suggest a family of channel satisfying Assumption 5.2 that is ε-close to the original

channel in terms of diamond norm at the cost of O(ε−1 log ε−1).

B. Gradient approximation

As shown in the previous section, the crucial element for our approximation method is Algorithm A to ap-

proximate the gradient Gν(λ) that is given in (42). In this section we propose two candidates and discuss their

corresponding complexity function CΦ,A . The main idea is to approximate ∇Gν(λ) via a probabilistic method.

First approach: uniform sampling: This approach relies on a simple randomized algorithm generating independent

samples from a uniform distribution. Consider

∇G̃ν(λ) :=

∑n
i=1 2

1
ν (tr[Φ(E(Xi))λ]−H(Φ(E(Xi))))Φ(E(Xi))∑n
i=1 2

1
ν (tr[Φ(E(Xi))λ]−H(Φ(E(Xi))))

, (52)

where {Xi}ni=1 are i.i.d. random variables uniformly distributed on R. In Lemma 5.10 we derive a measure

concentration bound to quantify the approximation error. As above, we denote by LN,M the Lipschitz constant

of the function fλ,M (x) := tr [Φ(E(x))λ]−H(Φ(E(x))) with respect to the `1-norm.

Lemma 5.10. For every 0 ≤ δ ≤ 2
−
√
NLN,M
ν −1

P

[∥∥∥∇Gν(λ)−∇G̃ν(λ)
∥∥∥

op
≥ δ
]
≤M exp

(
−δ2nKN,M

)
=: η

for KN,M := 1
5762

−4
√
NLN,M
ν .

Proof: See Appendix G.
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Corollary 5.11. Let {Φ}N,M be a family of channels and ε > 0. With high probability, using Algorithm 2 with a

uniform sampling method as explained in Lemma 5.10, the complexity for an ε-close solution to the Holevo capacity

is

O
(
M6 log(M logM)4

(
N + log

(
M log(M logM)

))
2c(N

3/2+N1/2 log(N3/2M log(M logM)))LN,M
)
,

where c > 0 is a constant.

Proof: See Appendix H.

Corollary 5.12 (Subexponential or polynomial running time). Let ε > 0. Given a family of channels {Φ}N,M with

M = poly(N) such that

(i) 1
LN,M

= Ω(N3/2). Then the method described in this section, using an integration method explained in

Lemma 5.10, provides with high probability an ε-approximation to the Holevo capacity with a complexity

O
(
M6 log(M logM)4(N + log(M log(M logM)))

)
= poly(N).

(ii) 1
LN,M

= Ω(N1/2+α) for α > 0. Then the method described in this section, using an integration method

explained in Lemma 5.10, provides with high probability an ε-approximation to the Holevo capacity with a

complexity O
(
M6 log(M logM)4(N + log(M log(M logM))

)
2cN

1−α
) = subexp(N) for a constant c > 0.

Proof: Follows directly from Corollary 5.11.

The following example presents families of channels {Φ}N,M with an arbitrarily scaling Lipschitz constant LN,M .

Example 5.13 (Family of channels with an arbitrary Lipschitz constant). Consider the family of channels {Φ :

B(HA)→ B(HB)}N,M that maps ρ 7→ (1−φ(N,M)) 1
M +φ(N,M)Θ(ρ), where Θ : B(HA)→ B(HB) denotes an

arbitrary cptp map and φ(N,M) ≥ 0. Following the lines of the proof of Lemma 5.6 using that ‖Φ(ρ1)− Φ(ρ2)‖tr =

φ(N,M) ‖Θ(ρ1)−Θ(ρ2)‖tr ≤ φ(N,M) ‖ρ1 − ρ2‖tr it follows that the Lipschitz constant LN,M with respect to the

`1-norm of the function fλ,M as defined in Lemma 5.6 if given by LN,M = (2M
√
M(log( 1

γM
∨e))+2M(log( 1

γMe∨

e)))φ(N,M).

Second approach: importance sampling: The second approach invokes a non-trivial sampling method, known

as importance sampling [42]. Define the function fλ(x) := tr [Φ(E(x))λ]−H(Φ(E(x))) such that the gradient of

Gν(λ), given in (42), can be expressed as

∇Gν(λ) =

∫
R

2
1
ν fλ(x)Φ(E(x)) dx∫
R

2
1
ν fλ(x) dx

= EQ[Φ(E(x))] ,

where the expectation is with respect to the probability density Q(x) = 2
1
ν
fλ(x)∫

R
2

1
ν
fλ(x) dx

. Consider i.i.d. random

variables {Xi}ni=1 according to the density Q and define the random variable Zn := 1
n

∑n
i=1 Φ(E(Xi)).

Lemma 5.14. For every t ≥ 0 and n ∈ N, P
[
‖∇Gν(λ)− Zn‖op ≥ t

]
≤M exp

(
−t2n

32

)
.
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Proof: The function defined as Rn 3 x 7→ f(x1, . . . , xn) := 1
n

∑n
i=1 Φ(E(xi)) satisfies the following bounded

difference assumption∥∥∥(f(x1, . . . , xi, . . . , xn)− f(x1, . . . , xi−1, xi′ , xi+1, . . . , xn))
2
∥∥∥

op
≤
(

1

n
(Φ(E(xi))−Φ(E(xi′)))

)2

(53)

≤ 4

n2
, (54)

where (53) follows from
∥∥(B − C)2

∥∥
op

=
∥∥B2 −BC − CB − C2

∥∥
op
≤
∥∥B2

∥∥
op

+‖BC‖op+‖CB‖op+
∥∥C2

∥∥
op
≤

‖B‖2op + 2 ‖B‖op ‖C‖op + ‖C‖2op = (‖B‖op + ‖C‖op)2 which uses the submultiplicative property of the operator

norm. Inequality (54) is due to the fact that Φ(E(x)) are density operators for all x ∈ R. Hence, by the matrix

McDiarmid inequality [18, Cor. 7.5], we get the concentration bound

P
[
‖∇Gν(λ)− Zn‖op ≥ t

]
≤M exp

(
−t2n

32

)
.

The main difficulty in this approach is how to obtain samples {Xi}ni=1 according to the density Q given above

and in particular quantifying its computational complexity. It is well known that if the density Q has a particular

structure this samples can be drawn efficiently, e.g., if Q is a log-concave density in polynomial time [43]. Providing

assumptions on the channel Φ such that sampling according to Q can be done efficiently is a topic of further research.

Remark 5.15. Let S (N,M) denote the computational cost of drawing one sample according to the density Q.

Then, Lemma 5.14 shows that the computational complexity the gradient approximation given in Definition 5.3

using the importance sampling algorithm is CΦ,A (N,M, δ−1, η−1) = S (N,M) 32
δ2 ln

(
M
η

)
.

C. Simulation results

The following three examples show the performance of our method to compute the Holevo capacity. In the first

example we compute the classical capacity of a depolarizing channel. In the second example we demonstrate how

to compute the classical capacity of an arbitrary qubit Pauli channel. As a third example, we have chosen a random

qubit-input qubit-output channel for which the Holevo capacity is unknown.

The Choi-Jamiolkowski representation ensures that every quantum channel Φ : B(HA)→ B(HB) can be written

as

σB = Φ(ρA) = N trA((TA(ρA)⊗ idB) τAB) ,

where TA(·) is the transpose mapping and τAB denotes a density operator that fully characterizes the quantum

channel and that satisfies trB(τAB) = 1
N 1. For the following examples we use this representation of the channel.

Note that our method works for arbitrary quantum channels having a finite input dimension. The reason we

have chosen qubit channels is to save computation time. All the simulations in this section are performed on a 2.3

GHz Intel Core i7 processor with 8 GB RAM with Matlab. For the evaluation of the gradient ∇Gν that involves

the computation of an integral over the domain [0, π] × [0, 2π] we used a trapezoidal method with a grid having

100× 200 points.
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Example 5.16 (Qubit depolarizing channel). We consider the depolarizing channel with input and ouput dimension

2, that can be described by the map ρA → (1 − p)ρA + p 1
21, for p ∈ [0, 1]. Its Choi state is given by τAB =

(1 − p) |ω〉〈ω| + p
41, where |ω〉 denotes a maximally entangled state. The Holevo capacity of the depolarizing

channel can be computed analytically being [2, Thm. 19.4.2]

CX (p) = 1 +
(

1− p

2

)
log
(

1− p

2

)
+
p

2
log
(p

2

)
= 1−Hb

(p
2

)
. (55)

Table III shows the performance of our algorithm for the task of approximating the Holevo capacity for the

depolarizing channel with parameter p = 1
3 . According to (55) the precise value of the Holevo capacity is CX (p =

1
4 ) = 1−Hb( 1

6 ) ≈ 0.3499775784.

TABLE III

HOLEVO CAPACITY OF A DEPOLARIZING CHANNEL WITH p = 1
3

.

Iterations 10 102 103

ν 0.1602 0.0174 0.0018

CX ,UB 0.3603 0.3500 0.3500

CX ,LB 0.3500 0.3500 0.3500

A posteriori error 1.029·10−2 3.401·10−5 8.019·10−6

Time [s] 414 4144 41578

Example 5.17 (Qubit Pauli channel). Consider the general Pauli channel Φ for an input and output dimension 2,

which can be described by the map ρA → (1 − pX − pY − pZ)ρA + pXXρAX + pY Y ρAY + pZZρAZ, where

X ,Y ,Z denote the Pauli matrices and pX , pY , pZ ∈ [0, 1] such that pX + pY + pZ ∈ [0, 1]. The Choi state τAB

representing this channel can be computed to be

τAB =
1

2


1− pX − pY 0 0 1− pX − pY − 2pZ

0 pX + pY pX − pY 0

0 pX − pY pX + pY 0

1− pX − pY − 2pZ 0 0 1− pX − pY

 .

King proved that the Holevo capacity is additive for product channels, under the condition that one of the

channels is a unital qubit channel, with the other completely arbitrary [44].6 As Pauli channels are unital channels,

the Holevo capacity is therefore equal to the classical capacity for arbitrary Pauli qubit channels. Due to their

symmetry properties it is possible to derive a close-form expression for the classical capacity of an arbitrary Pauli

channel (as discussed e.g., in [45]). Let α := 1− 2pY − 2pZ , β := 1− 2pX − 2pZ and γ := 1− 2pY − 2pZ , then

C(Φ) = CX (Φ) = 1−Hb

(
1 + (|α| ∨ |β| ∨ |γ|)

2

)
. (56)

Our method introduced above allows us to approximate the Holevo capacity. To demonstrate this we compute upper

and lower bounds for the Holevo capacity of a qubit Pauli channel with pX = 1
7 , pY = 1

10 and pZ = 1
4 as shown

in Table IV. According to (56) for this setup we have C(Φ) = CX (Φ) = 1−Hb( 53
70 ) ≈ 0.2002405887.

6Unital channels are channels that map the identity to the identity, i.e., Φ(id) = id.

November 22, 2015 DRAFT



28

TABLE IV

HOLEVO CAPACITY OF A QUBIT PAULI CHANNEL WITH pX = 1
7

, pY = 1
10

AND pZ = 1
4

.

Iterations 10 102 103

ν 0.1265 0.0138 0.0014

CX ,UB 0.2026 0.2002 0.2002

CX ,LB 0.1399 0.1894 0.1983

A posteriori error 6.267·10−2 1.087·10−2 1.940·10−3

Time [s] 409 3919 40154

Example 5.18 (Random qubit channel). We consider a random qubit-input qubit-output channel Φ : T(HA) →

T(HB) with N = dim(HA) = dB = dim(HB) = 2. More precisely, we consider the Choi state of Φ, which is

given by

τAB =
1

N
(ρ
− 1

2

A ⊗ idB) ρAB (ρ
− 1

2

A ⊗ idB),

where ρAB is a random density matrix.7 To demonstrate the performance of our method, let

τAB =


0.2041 −0.1145− 0.0926i 0.0590− 0.0187i 0.0721 + 0.0487i

−0.1145 + 0.0926i 0.2959 −0.0861− 0.0928i −0.0590 + 0.00187i

0.0590 + 0.0187i −0.0861 + 0.0928i 0.2350 −0.1296 + 0.0128i

0.0721− 0.0487i −0.0590− 0.0187i −0.1296− 0.0128i 0.2650

 . (57)

Table V shows the performance of the presented algorithm to approximate the Holevo capacity of this random qubit

channel.

TABLE V

HOLEVO CAPACITY OF A RANDOM QQ-CHANNEL DESCRIBED BY ITS CHOI STATE GIVEN IN (57).

Iterations 10 102 103

ν 0.2575 0.0280 0.0028

CX ,UB 0.3928 0.2648 0.2573

CX ,LB 0.0900 0.2032 0.2522

A posteriori error 3.028·10−1 6.156·10−2 5.061·10−3

Time [s] 421 4025 41630

6. DISCUSSION

Due to its operational significance, knowing the capacity of a channel is of fundamental importance. As in

general no closed form expression to the capacity is known, this motivates the study of approximation methods. In

particular as the channel dimension increases the computational complexity of the approximation scheme becomes

7There are different methods to generate random density matrices which is however not relevant for this work. The interested reader might

consider [46] for further information.
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important. Numerical results (see Section 3-A and Section 5-C) show that the theoretical work presented in this

article performs well in practice. The optimization problem characterizing the Holevo capacity of a qq channel has

been shown to be NP-hard [12] and also difficult to approximate [13]. However, this does not preclude the existence

of certain classes of channels for which the Holevo capacity can be approximated efficiently. Our approach via its

smoothed dual version allows us to reduce the original Holevo capacity problem to a multi-dimensional integration

— a problem that has been well-studied in the literature and oftentimes can be solved efficiently [42].

Recall that the classical capacity of a quantum channel Φ : B(HA)→ B(HB) is given by its regularized Holevo

capacity, i.e.,

C(Φ) = lim
k→∞

1

k
CX (Φ⊗k). (58)

The regularization required in (58) makes the classical capacity of a quantum channel difficult to compute. If for

some channel Φ the Holevo capacity is additive, i.e., CX (Φ⊗Θ) = CX (Φ) + CX (Θ) for an arbitrary channel Θ,

this implies that C(Φ) = CX (Φ) making the classical capacity a lot simpler to compute and proves that entangled

states at the encoder do not help to improve the rate. For a while there existed a conjecture that the Holevo capacity

is additive for all quantum channels. In 2009 using techniques from measure concentration, Hastings disproved

the conjecture by constructing high-dimensional random quantum channels whose Holevo capacity is provably not

additive [11]. However, it remains unsolved whether there exist explicit low-dimensional quantum channels whose

Holevo capacity is not additive. Our approximation scheme can be used to check the additivity of the Holevo

capacity for channels with low dimensions.

The number of iterations the presented approximation scheme requires for an additive ε-solution highly depends

on the Lipschitz constant estimate of the objective’s gradient. Recently there has been some work motivating an

adaptive estimate of the local Lipschitz constant that has been shown to be very efficient in practice (up to three

orders of magnitude reduction of computation time), while preserving the worst-case complexity [47]. This may

help to achieve a faster convergence for our algorithm, i.e., a smaller number of iterations would be required to

achieve a certain approximation error. Another idea to reduce the computation time of the approximation scheme is

to make use of possible symmetry properties the channel might have. More precisely, certain symmetry properties

could enable us to restrict the set R over which one has to integrate in order to evaluate the gradient ∇Gν . This

would speed up the computational cost per iteration considerably.

We believe that the presented framework can be employed to approximate other important quantities in quantum

information theory that are described via optimization problems with a similar structure. Possible candidates are

the entanglement of formation which is an important measure of entanglement [48], the quantum rate distortion

function describing the maximal compression rate up to a certain distortion [49], the channel coherent information

which is the best generic lower bound to the quantum capacity characterizing the highest possible rate at which

quantum information can be transmitted reliably over a quantum channel [3], and the channel private information

giving a lower bound on how much information can be securely and reliably transmitted over a channel which is

of importance for example in quantum key distribution (QKD) [50], [51]. The proposed framework in this article

has proven useful to approximate the capacity of classical channels whose value is unknown, e.g., the capacity of
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a discrete-time Poisson channel [20].

APPENDIX A

PROOF OF LEMMA 3.2

This proof follows a very similar structure as the proof of Lemma 2.1 in [20]. Adding the constraint σ :=∑N
i=1 piρi gives I(p, ρ) = H(σ)−

∑N
i=1 piH(ρi). Since p ∈ ∆N and ρi ∈ D(H) for all 1 ≤ i ≤ N it follows that

σ ∈ D(H).

By definition of Smax it is clear that the constraint
〈
p, s
〉
≤ S is inactive if S ≥ Smax proving (10). It remains

to show that for S < Smax the optimization problems (8) and (11) are equivalent. To keep notation simple, let

Ccq(S) := Ccq,S(ρ) for some fixed cq channel ρ. We next prove that Ccq(S) is concave in S for S ∈ [0, Smax]. Let

S(1), S(2) ∈ [0, Smax], λ ∈ [0, 1] and let p(i) be capacity achieving input distribution for Ccq(S
(i)) with i ∈ {1, 2}.

Let p(λ) := λp(1) + (1− λ)p(2), which gives〈
s, p(λ)

〉
= λ

〈
s, p(1)

〉
+ (1− λ)

〈
s, p(2)

〉
≤ λS(1) + (1− λ)S(2)

=: S(λ) ∈ [0, Smax].

Using the fact that p 7→ I(p, ρ) is concave8 we obtain

λCcq(S
(1)) + (1− λ)Ccq(S

(2)) = λI
(
p(1), ρ

)
+ (1− λ)I

(
p(2), ρ

)
≤ I
(
p(λ), ρ

)
≤ Ccq(S

(λ)),

where the final inequality follows from (8).

Ccq(S) is clearly non-degreasing in S as enlarging S relaxes the input cost constraint. We next show that Ccq(S)

is even strictly increasing in S ∈ [0, Smax]. We first prove that for all ε > 0,

Ccq(Smax − ε) < Ccq(Smax). (59)

Suppose Ccq(Smax− ε) = Ccq(Smax) and denote C?cq = maxp∈∆N
I(p, ρ). This implies that there exists a p̄ ∈ ∆N

such that I(p̄, ρ) = C?cq and
〈
p̄, s
〉

= Smax − ε, which contradicts the definition of Smax. Thus by concavity of

Ccq(S) together with the the non-decreasing property and (59) imply that Ccq(S) is strictly increasing in S.

Finally, assume that Ccq(S) is achieved for p? ∈ ∆N such that
〈
p?, s

〉
= S̄ < S. For

Ccq(S̄) :=


max
p

I(p, ρ)

s.t.
〈
p, s
〉
≤ S̄

p ∈ ∆N ,

we then have Ccq(S̄) = I(p?, ρ) = Ccq(S), which is a contradiction as Ccq(S) is strictly increasing in S ∈

[0, Smax].

8This follows directly from the well known fact that p 7→ H(p) is concave.
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APPENDIX B

PROOF OF LEMMA 3.6

The proof is extending the ideas used to prove [20, Lem. 2.4]. Consider the following two optimization problems

Pβ :



max
p,σ,ε

H(σ)−
∑N
i=1 piH(ρi)− βε

s.t.
∥∥∥∑N

i=1 piρi − σ
∥∥∥

op
≤ ε〈

p, s
〉

= S

p ∈ ∆N , σ ∈ D(H), ε ∈ R≥0

and Dβ :


min
λ

F (λ) +G(λ)

s.t. ‖λ‖tr ≤ β

λ ∈ HM .

Claim B.1. Strong duality holds between Pβ and Dβ .

Proof: According to the identity
∥∥∥∑N

i=1 piρi − σ
∥∥∥

op
= max‖λ‖tr≤1

〈
λ,
∑N
i=1 piρi − σ

〉
F

[3, p. 7] the opti-

mization problem Pβ can be rewritten as

Pβ :


max
p,σ

H(σ)−
∑N
i=1 piH(ρi) + min

‖λ‖tr≤β

〈
λ,
∑N
i=1 piρi − σ

〉
F

s.t.
〈
p, s
〉

= S

p ∈ ∆N , σ ∈ D(H),

whose dual program, where strong duality holds according to [22, Prop. 5.3.1, p. 169] is given by
min
‖λ‖tr≤β

max
p,σ

H(σ)−
∑N
i=1 piH(ρi) +

〈
λ,
∑N
i=1 piρi − σ

〉
F

s.t.
〈
p, s
〉

= S

p ∈ ∆N , σ ∈ D(H),

which clearly is equivalent to Dβ with F (·) and G(·) as given in (13).

We denote by ε?(β) the optimizer of Pβ with the respective optimal value J?β . Note that for

J(ε) :=



max
p,σ

H(σ)−
∑N
i=1 piH(ρi)

s.t.
∥∥∥∑N

i=1 piρi − σ
∥∥∥

op
≤ ε〈

p, s
〉

= S

p ∈ ∆N , σ ∈ D(H)

, (60)

the mapping ε 7→ J(ε), the so-called perturbation function, is concave [52, p. 268]. In a next step we write the

optimization problem (60) in another equivalent form

J(ε) =



max
p,v

−
∑N
i=1 piH(ρi) +H

(∑N
i=1 piρi + εv

)
s.t. ‖v‖op ≤ 1〈

p, s
〉

= S

p ∈ ∆N , v ∈ HM .

(61)

The main idea of the proof is to show that for a sufficiently large β, which we will quantify in the following, the

optimizer ε?(β) of Pβ is equal to zero. That is, in light of the duality relations, the constraint ‖λ‖tr ≤
β
2 in Dβ
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is inactive and as such Dβ is equivalent to (12). By using Taylor’s theorem, there exists a yε ∈ [0, ε] such that the

entropy term in the objective function of (61) can be bounded as

H

(
N∑
i=1

piρi + εv

)
= H

(
N∑
i=1

piρi

)
−

〈
log

(
N∑
i=1

piρi

)
+ 1

ln 21, v

〉
F

ε

−

〈(
N∑
i=1

piρi + yεv

)−1

, v2

〉
F

ε2 1
ln 2

≤ H

(
N∑
i=1

piρi

)
−

〈
log

(
N∑
i=1

piρi

)
+ 1

ln 21, v

〉
F

ε+
M

γ ln 2
ε2. (62)

Thus, the optimal value of problem Pβ can be expressed as

J?β = max
ε
{J(ε)− βε}

≤ max
ε

{
max
p,v

[
−

N∑
i=1

piH(ρi) +H

(
N∑
i=1

piρi

)

−

〈
log

(
N∑
i=1

piρi

)
+ 1

ln 21, v

〉
F

ε :
〈
p, s
〉

= S

]
+

M

γ ln 2
ε2 − βε

}
(63)

≤ max
ε

{
max
p,v

[
−

N∑
i=1

piH(ρi) +H

(
N∑
i=1

piρi

)
:
〈
p, s
〉

= S

]

+ (ρ− β)ε+
M

γ ln 2
ε2

}
(64)

= J(0) + max
ε

{
(ρ− β)ε +

M

γ ln 2
ε2

}
, (65)

where ρ = M
(
log(γ−1) ∨ 1

ln 2

)
. Note that (63) follows from (61) and (62). The equation (64) uses the fact

that −
〈

log
(∑N

i=1 piρi

)
+ 1

ln 21, v
〉
F
≤ M

(
log(γ−1) ∨ 1

ln 2

)
. Thus, for β > ρ and ε1 = Nγ

M (ρ − β), we get

max
ε≤ε1

{
(ρ− β)ε+ M

γ ln 2ε
2
}

= 0. Therefore, (65) together with the concavity of ε implies that J(0) is the global

optimum of J(ε) and as such ε?(β) = 0 for β > ρ, indicating that Pβ is equivalent to (11) in the sense that

J?β = J?0 . By strong duality this implies that the constraint ‖λ‖tr ≤ β in Dβ is inactive. Finally, ‖λ‖F ≤ ‖λ‖tr
concludes the proof.

APPENDIX C

PROOF OF PROPOSITION 3.10

The proof follows directly from the proof of Theorem 1 and Lemma 3 in [17] together with the following analysis.

Consider the operator W : H∗ → RN by Wλ :=
(〈
ρ1, λ

〉
F
, . . . ,

〈
ρN , λ

〉
F

)>
. Its operator norm can be bounded

as

‖W‖op = max
λ∈HM , p∈∆N

{〈
p,Wλ

〉
: ‖λ‖F = 1, ‖p‖1 = 1

}
≤ max
λ∈HM , p∈∆N

{∣∣∣∣∣
N∑
i=1

〈
ρi, λ

〉
F
pi

∣∣∣∣∣ : ‖λ‖F = 1, ‖p‖1 = 1

}

≤ max
λ∈HM , p∈∆N

{
N∑
i=1

∣∣〈ρi, λ〉F ∣∣ pi : ‖λ‖F = 1, ‖p‖1 = 1

}
(66)
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≤ max
p∈∆N

{
N∑
i=1

‖ρi‖F pi : ‖λ‖F = 1, ‖p‖1 = 1

}
(67)

≤ 1,

where (66) follows from the triangle inequality, (67) from Cauchy Schwarz and the last step is due to the fact that

‖ρi‖F ≤ ‖
√
ρi‖F ‖

√
ρi‖F (68)

=

√
tr
[√

ρi
√
ρi
†
]√

tr
[√

ρi
√
ρi
†
]

=

√
tr

[
√
ρi

√
ρ†i

]√
tr

[
√
ρi

√
ρ†i

]
(69)

=
√

tr [ρi]
√

tr [ρi] (70)

= 1, (71)

where (68) is due to the submultiplicative property of the Frobenius norm and (69) follows from the fact that ρi is

positive semi-definite. Finally, (70) and (71) follow since ρi is a density operator.

APPENDIX D

PROOF OF PROPOSITION 4.15

It is known, according to Theorem 5.1 in [39], that Gν(λ) is well defined and continuously differentiable at any

λ ∈ Q and that this function is convex and its gradient ∇Gν(λ) = W?pλν is Lipschitz continuous with constant

Lν = 1
ν ‖W‖

2, where we have also used Lemma 4.14. The operator norm can be simplified to

‖W‖op : = sup
λ∈HM, p∈L1(R)

{〈
p,Wλ

〉
: ‖λ‖F = 1, ‖p‖1 = 1

}
≤ sup
λ∈HM, p∈L1(R)

{∣∣∣∣∫
R

tr [ρxλ] p(x) dx

∣∣∣∣ : ‖λ‖F = 1, ‖p‖1 = 1

}
≤ sup
λ∈HM, p∈L1(R)

{∫
R

|tr [ρxλ]| p(x) dx : ‖λ‖F = 1, ‖p‖1 = 1

}
(72)

≤ sup
λ∈HM, p∈L1(R)

{∫
R

‖ρx‖F p(x) dx : ‖p‖1 = 1

}
(73)

≤ sup
p∈L1(R)

{∫
R

p(x) dx : ‖p‖1 = 1

}
(74)

≤ 1,

where (72) follows from the triangle inequality, (73) from Cauchy-Schwarz and (74) is due to (71).

APPENDIX E

JUSTIFICATION OF REMARK 4.19

Lemma E.1. For α ∈ R≥0, consider the function R>0 3 ν 7→ ι(ν) := ν
(
log ν−1 + α

)
∈ R. For all ε ∈(

0, 2α
(

1 + log e
e

))
if ν ≤ ε(

1+
log e

e

)(
α+log

((
1+

log e
e

)
ε−1

)) , then ι(ν) ≤ ε.
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Proof: Note that for all ε̄ ∈ (0, 1)

ι

(
2αε̄

log ε̄−1

)
= 2αε̄

(
1 +

log log ε̄−1

log ε̄−1

)
≤ 2αε̄

(
1 +

log e

e

)
,

where the last step is due to the fact that log x
x ≤ log e

e for all x ∈ R>0 is used. It then suffices to consider

ε := 2α
(

1 + log e
e

)
ε̄.

APPENDIX F

PROOF OF LEMMA 5.6

Claim F.1. The function R 3 r 7→ |r〉 ∈ CN as given in Remark 5.1 satisfies ‖|r1〉 − |r2〉‖1 ≤ N ‖r1 − r2‖1.

Proof: Using the simple fact that if f, g : R→ [0, 1] are two Lipschitz continuous function with constant Lg

and Lf then f(·) + g(·) is Lipschitz continuous with constant Lf + Lg we get

‖|r1〉 − |r2〉‖1 =

N∑
i=1

||r1〉i − |r2〉i| ≤ N ‖r1 − r2‖1 . (75)

Claim F.2. The function ∆n 3 x 7→ f(x) = xx> ∈ Rn×n≥0 satisfies ‖f(x)− f(y)‖tr ≤ 2
√
n ‖x− y‖1.

Proof: Let x, y ∈ ∆n, then by Cauchy-Schwarz we find

‖f(x)− f(y)‖2F = ‖xx> − y y>‖2F

= ‖x‖42 + ‖y‖42 − 2
〈
x, y
〉2

≤ ‖x‖42 + ‖y‖42 − 2
〈
x, y
〉2

+ 2 ‖x‖22 ‖y‖
2
2 − 2

〈
x, y
〉2

=
(
‖x‖22 + ‖y‖22

)2

−
(
2
〈
x, y
〉)2

=
(
‖x‖22 + ‖y‖22 + 2

〈
x, y
〉)(
‖x‖22 + ‖y‖22 − 2

〈
x, y
〉)

=
(
‖x‖22 + ‖y‖22 + 2

〈
x, y
〉)
‖x− y‖22 (76)

≤ 4 ‖x− y‖22 , (77)

where (76) uses the parallelogram identity and (77) follows since by assumption we have ‖x‖2 ≤ ‖x‖1 = 1

and ‖y‖2 ≤ ‖y‖1 = 1. For a matrix A ∈ Rn×n the equivalence of the Frobenius and the trace norm [23], i.e.,

‖A‖F ≤ ‖A‖tr ≤
√
n ‖A‖F and the equivalence for vector norms, i.e., ‖x‖2 ≤ ‖x‖1 ≤

√
n ‖x‖2 for x ∈ Rn

finally proves the assertion.

Claim F.3. Let ρ1, ρ2 ∈ D(H) with m = dimH and c := mini∈{1,2}min spec ρi > 0. Then |H(ρ1)−H(ρ2)| ≤

Lm ‖ρ1 − ρ2‖tr with Lm :=
√
m(log( 1

ce ∨ e)).

Proof: Consider the function (0, 1] 3 x 7→ f(x) = −x log x ∈ R≥0. Note that ∂f
∂x = log( 1

xe ). As f(·) is

a concave function we have for all 1 ≥ x1 ≥ x2 > 0, f(x1) − f(x2) ≤ ∂f
∂x (x1)(x2 − x1). Thus it follows that
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|f(x1)−f(x2)| ≤ maxi∈{1,2} |∂f∂x (xi)||x1−x2| for all x1, x2 ∈ (0, 1], which then implies that for all x1, x2 ∈ (0, 1]

and c ∈ (0, 1)

|f(x1)− f(x2)| ≤
(
log( 1

ce ) ∨ log(e)
)
|x1 − x2|. (78)

For ρ1, ρ2 ∈ D(H), let spec(ρ1) = {λ(1)
1 , λ

(2)
1 , . . . , λ

(m)
1 } and spec(ρ2) = {λ(1)

2 , λ
(2)
2 , . . . , λ

(m)
2 }. Using the triangle

inequality then gives

|H(ρ1)−H(ρ2)| =

∣∣∣∣∣
m∑
i=1

−λ(i)
1 log(λ

(i)
1 ) + λ

(i)
2 log(λ

(i)
2 )

∣∣∣∣∣
≤

m∑
i=1

∣∣∣−λ(i)
1 log(λ

(i)
1 ) + λ

(i)
2 log(λ

(i)
2 )
∣∣∣

=

m∑
i=1

∣∣∣f(λ
(i)
1 )− f(λ

(i)
2 )
∣∣∣

≤
(

log

(
1

ce

)
∨ log (e)

) m∑
i=1

∣∣∣λ(i)
1 − λ

(i)
2

∣∣∣ (79)

≤
(

log

(
1

ce
∨ e
))√

m

(
m∑
i=1

∣∣∣λ(i)
1 − λ

(i)
2

∣∣∣2)1/2

(80)

≤
(

log

(
1

ce
∨ e

))√
m ‖ρ1 − ρ2‖F (81)

≤
(

log

(
1

ce
∨ e

))√
m ‖ρ1 − ρ2‖tr , (82)

where (79) follows by assumption together with (78). Inequality (80) uses the equivalence of the one and two

vector norm and that the logarithm is monotonic. Inequality (81) uses the Hoffman-Wielandt inequality [53, p. 56].

Finally, (82) follows from the equivalence of the Frobenius and the trace norm.

For x1, x2 ∈ R, the triangle inequality gives

|fλ,M (x1)− fλ,M (x2)| = |tr [Φ(E(x1))λ]−H(Φ(E(x1)))− tr [Φ(E(x2))λ] +H(Φ(E(x2)))|

≤
∣∣〈Φ(E(x1)), λ

〉
F
−
〈
Φ(E(x2)), λ

〉
F

∣∣+|H(Φ(E(x1)))−H(Φ(E(x2)))| . (83)

Using Cauchy-Schwarz and the linearity of quantum channels we can bound the first part of (83) as∣∣〈Φ(E(x1)), λ
〉
−
〈
Φ(E(x2)), λ

〉
F

∣∣ =
∣∣〈Φ(E(x1)− E(x2)), λ

〉
F

∣∣
≤ ‖Φ(E(x1)− E(x2))‖F ‖λ‖F

≤ ‖Φ(E(x1)− E(x2))‖tr ‖λ‖F (84)

≤ ‖E(x1)− E(x2)‖tr ‖λ‖F (85)

≤ 2N
√
N ‖x1 − x2‖1 ‖λ‖F , (86)

where (84) uses the equivalence of the Frobenius and the trace norm [23] and inequality (85) is a direct consequence

of the contractivity property under the trace norm of quantum channels [54, Thm. 8.16]. Inequality (86) follows

from Claims F.1 and F.2.

Recall that ‖λ‖F ≤M log
(
γ−1
M ∨ e

)
as by definition λ ∈ Λ.
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With the help of Claim F.3 and Assumption 5.2 we can also bound the second part of (83). Let JM :=
√
M(log( 1

γMe ∨ e)) we then have

|H(Φ(E(x1)))−H(Φ(E(x2)))| ≤ JM ‖Φ(E(x1))− Φ(E(x2))‖tr

= JM ‖Φ(E(x1)− E(x2))‖tr

≤ JM ‖E(x1)− E(x2)‖tr (87)

≤ 2N
√
NJM ‖x1 − x2‖1 , (88)

where (87) again uses the contractivity property under the trace norm of quantum channels [54, Thm. 8.16] and

(88) follows from Claims F.1 and F.2.

APPENDIX G

PROOF OF LEMMA 5.10

Within this proof we use the notation ρx := Φ(E(x)). We define the functions R 3 x 7→ fλ(x) := Wλ(x) −

H(ρx) = tr [ρxλ]−H(ρx) ∈ R and R 3 x 7→ gλ(x) := fλ(x)− f̄λ ∈ R≤0, where f̄λ := maxx∈R fλ(x) = fλ(x?).

Then, by following Remark 3.14, we have

∇Gν(λ) =
1

S̄(λ)

∫
R

2
1
ν gλ(x)(ρ>x − ρ>x?) dx+ ρ>x? ,

where

S̄(λ) =

∫
R

2
1
ν gλ(x) dx

and we have used ∂tr[ρλ]
∂λk,`

= ρ`,k [23, Prop. 10.7.2]. Consider i.i.d. random variables {Xi}ni=1 taking values in R.

Define the random variable S̄n(λ) := 1
n

∑n
i=1 2

1
ν gλ(Xi). Then, invoking the non-positivity of gλ(·), Mc Diarmid’s

inequality [55, Thm. 2.2.2] leads to the following concentration bound

P
[∣∣S̄(λ)− S̄n(λ)

∣∣ ≥ t] ≤ 2 exp
(
−2t2n

)
. (89)

Next, we approximate T (λ) :=
∫
R

2
1
ν gλ(x)(ρ>x − ρ>x?) dx. Consider i.i.d. random variables {Xi}ni=1 taking values

in R and define a function Rn 3 x 7→ f(x1, . . . , xn) := 1
n

∑n
i=1 2

1
ν gλ(xi)(ρ>xi − ρ

>
x?) ∈ HM .

Claim G.1. The function f satisfies the bounded difference assumption

sup
x1,...,xn,x′i

(f(x1, . . . , xi, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn))

2

4 diag( 3
n , . . . ,

3
n )2 for all i = 1, . . . , n.

Proof:

f(x1, . . . , xi, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)

=
1

n

(
2

1
ν gλ(xi)(ρ>xi − ρ

>
x?)− 2

1
ν gλ(x′i)(ρ>x′i − ρ

>
x?)

)
=

1

n
ρ>x?

(
2

1
ν gλ(x′i) − 2

1
ν gλ(xi)

)
+

1

n

(
2

1
ν gλ(xi)ρ>xi − 2

1
ν gλ(x′i)ρ>x′i

)
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=
1

n

(
ρ>x?(bx′i − bxi) + bxiρ

>
xi − bx′iρ

>
x′i

)
=: (?),

where by := 2
1
ν gλ(y). Now,

λmax

(
(?)2

)
=
∥∥(?)2

∥∥
op

≤

(∣∣∣∣bxin − bx′i
n

∣∣∣∣ ‖ρ>x?‖op +

∥∥∥∥bx′in ρ>x′i −
bxi
n
ρ>xi

∥∥∥∥
op

)2

(90)

≤
(

1

n

∣∣bxi − bx′i∣∣ ‖ρx?‖op +
1

n

∣∣bx′i∣∣ ∥∥ρx′i∥∥op
+

1

n
|bxi | ‖ρxi‖op

)2

(91)

≤ 9

n2
, (92)

where (90) follows from
∥∥(B − C)2

∥∥
op

=
∥∥B2 −BC − CB − C2

∥∥
op
≤
∥∥B2

∥∥
op

+‖BC‖op+‖CB‖op+
∥∥C2

∥∥
op
≤

‖B‖2op + 2 ‖B‖op ‖C‖op + ‖C‖2op = (‖B‖op + ‖C‖op)2 which uses the submultiplicative property of the operator

norm. Equation (91) is due to the triangle inequality and (92) uses the non-positivity of the function gλ and the

property of density operators.

Define the random variable Tn(λ) := 1
n

∑n
i=1 2

1
ν gλ(Xi)(ρ>Xi − ρ

>
x?)

Claim G.2. P
[
‖Tn(λ)− T (λ)‖op ≥ t

]
≤M exp

(
−t2n

72

)
Proof: By the matrix McDiarmid inequality [18, Cor. 7.5], we get the concentration bound

P[λmax(Tn(λ)− T (λ)) ≥ t] ≤M exp

(
−t2n

72

)
.

Furthermore, as pointed out in [18, Rmk. 3.10], λmin(X) = −λmax(−X). As such following similar lines as above

one can derive

P[λmin(Tn(λ)− T (λ)) ≤ −t] ≤M exp

(
−t2n

72

)
.

Claim G.3. Let A,B ∈ R, ξ1, ξ2 ≥ 0, B > ξ2, Â ∈ [A− ξ1, A+ ξ1] and B̂ ∈ [B − ξ2, B + ξ2]. Then for Z := A
B

and Ẑ := Â
B̂

we have ∣∣∣Z − Ẑ∣∣∣ ≤ max

{
A

B
− A− ξ1
B + ξ2

,
A+ ξ1
B − ξ2

− A

B

}
.

Proof: Define

Ẑmin :=
A− ξ1
B + ξ2

and Ẑmax :=
A+ ξ1
B − ξ2

such that Ẑmin ≤ Ẑ ≤ Ẑmax. The inequality |Z − Ẑ| ≤ max{Z − Ẑmin, Ẑmax−Z} finally proves the assertion.

According to Claim G.3, Equation (89) together with Claim G.2 give

P

[∥∥∥∇G(λ)−∇G̃(λ)
∥∥∥

op
≥ ϕ(t)

]
≤M exp

(
−t2n

72

)
, (93)

where ϕ(t) := max
{

(‖T (λ)‖op+S̄(λ))t

S̄(λ)(S̄(λ)−t) ,
(‖T (λ)‖op+S̄(λ))t

S̄(λ)(S̄(λ)+t)

}
. We next show that S̄(λ) is uniformly away from zero

and restrict values of t to an interval such that ϕ well defined. Recall that x? ∈ R is such that gλ(x?) = 0. Therefore

S̄(λ) =

∫
R

2
1
ν gλ(x) dx ≥

∫
Bε(x?)∩R

2
1
ν gλ(x) dx ≥

∫
Bε(x?)∩R

2
−
√
NLN,Mε
ν dx ≥ 2

−
√
NLN,Mε
ν εN , (94)
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where we have used the Lipschitz continuity of gλ given by Lemma 5.6 with respect to the `∞-norm and considered

the ball Bε(x?), centered at x? with radius ε with respect to the `∞-norm. By choosing ε = 1, one gets

S̄(λ) ≥ 2
−
√
NLN,M
ν ,

which is strictly away from zero for any finite N . Moreover, the inequality (93) holds for all t ∈ (0, 2
−
√
NLN,M
ν ).

Claim G.4. For t ∈ [0, S̄(λ)
2 ] and min

λ∈Λ

S̄(λ)4

576 ≥
1

5762
−4
√
NLN,M
ν =: KN,M

P

[∥∥∥∇G(λ)−∇G̃(λ)
∥∥∥

op
≥ t
]
≤M exp

(
−KN,M t

2n
)
,

Proof: Define αε :=
‖T (λ)‖op+S̄(λ)

S̄(λ)(S̄(λ)−ε) and βε :=
‖T (λ)‖op+S̄(λ)

S̄(λ)(S̄(λ)+ε)
. It can be seen that αε ≥ βε for any ε ∈ [0, S̄(λ))

and as such

ϕ(t) ≤ αεt =
2(‖T (λ)‖op+S̄(λ))

S̄(λ)2
t =: αt for all t ∈ [0, ε], (95)

where we have chosen ε = S̄(λ)
2 . By (93) this gives

P

[∥∥∥∇G(λ)−∇G̃(λ)
∥∥∥

op
≥ αt

]
≤M exp

(
−t2n

72

)
,

which shows that KN,M ≥ S̄(λ)4

288(‖T (λ)‖op+S̄(λ))2
. Using ‖T (λ)‖op ≤ 1 and S̄(λ) ≤ 1 completes the proof.

APPENDIX H

PROOF OF COROLLARY 5.11

This proof uses the same notation as the proof of Theorem 5.4. For a fixed accuracy ε > 0, Remark 5.9

implies that without loss of generality we can assume that log( 1
γM

) = log(M logM) =: p(M). Recall that

as explained in the proof of Theorem 5.4 the smoothing parameter ν is chosen as ν ≤ ε
3β(α+log(3βε−1)) for

β := 1 + log e
e and α := log(LN,M ) + (2N − 2) log(2π) + 1. It can be verified immediately that ν−1 = Ω(N +

log(N3/2Mp(M))). Let δ = O( 1
Mp(M 2c

√
N
ν LN,M ) for some constant c > 0. According to Lemma 5.10, to ensure

that η−1 = Ω(M2p(M)2(N + log(Mp(M)))) we have to choose the number of samples as

n = O
(
M2p(M)22c

′
√
N
ν LN,M

)
= O

(
M2p(M)22c

′(N3/2+N1/2 log(N3/2Mp(M)))LN,M
)
, (96)

for some constant c′ > 0. Note that the complexity to generate n i.i.d. uniformly distributed samples {Xi}ni=1 is

O(n). The total complexity to ensure an ε-close solution is then kM2n with k being the number of iterations that

is given in (49). Recalling that p(M) := log(M logM) then proves the assertion.
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