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Abstract. In this article we approach a class of stochastic reachability problems with state

constraints from an optimal control perspective. Preceding approaches to solving these reach-

ability problems are either confined to the deterministic setting or address almost-sure sto-

chastic requirements. In contrast, we propose a methodology to tackle problems with less

stringent requirements than almost sure. To this end, we first establish a connection between

two distinct stochastic reach-avoid problems and three classes of stochastic optimal control

problems involving discontinuous payoff functions. Subsequently, we focus on solutions of one

of the classes of stochastic optimal control problems—the exit-time problem, which solves

both the two reach-avoid problems mentioned above. We then derive a weak version of a

dynamic programming principle (DPP) for the corresponding value function; in this direc-

tion our contribution compared to the existing literature is to develop techniques that admit

discontinuous payoff functions. Moreover, based on our DPP, we provide an alternative char-

acterization of the value function as a solution of a partial differential equation in the sense

of discontinuous viscosity solutions, along with boundary conditions both in Dirichlet and

viscosity senses. Theoretical justifications are also discussed to pave the way for deployment

of off-the-shelf PDE solvers for numerical computations. Finally, we validate the performance

of the proposed framework on the stochastic Zermelo navigation problem.

1. Introduction

Reachability is a fundamental concept in the study of dynamical systems, and in view of

applications of this concept ranging from engineering, manufacturing, biology, and economics,

to name but a few, has been studied extensively in the control theory literature. One particular

problem that has turned out to be of fundamental importance in engineering is the so-called

“reach-avoid” problem.

In the deterministic setting this problem deals with the determination of the set of initial

states for which one can find at least one control strategy to steer the system to a target set

while avoiding certain obstacles. This problem finds applications in, for example, air traffic

management [LTS00] and security of power networks [MVM+11].

The set representing the solution of this problem is known as a capture basin [Aub91]. A

direct approach to compute the capture basin is formulated in the language of viability theory

in [Car96, CQSP02]. An alternative and indirect approach to reachability problems proceeds via

level set methods defined by value functions that are solutions of appropriate optimal control

problems. Employing dynamic programming techniques for reachability and viability problems,
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one can in turn characterize these value functions by solutions of the standard Hamilton-Jacobi-

Bellman (HJB) equations corresponding to these optimal control problems [Lyg04]. The focus

of this article is on the stochastic counterpart of this problem.

1.A. The literature in the stochastic setting. In the literature, probabilistic analogs of

reachability problems have mainly been studied from an almost-sure perspective. For example,

stochastic viability and controlled invariance are treated in [AD90, APF00, BJ02]. Methods

involving stochastic contingent sets [AP98, APF00], viscosity solutions of second-order partial

differential equations [BPQR98, BG99, BJ02], derivatives of the distance function [DF01], and

equivalence relation to certain deterministic control systems [DF04] were all developed in this

context.

Geared towards similar almost-sure reachability objective, the article [ST02a] introduced a

new class of the so-called stochastic target problems, and characterized the solution via a dynamic

programming approach. The differential properties of the almost-sure reachable set were also

studied based on the geometrical partial differential equation which is the analogue of the HJB

equation [ST02b] in that setting.

Although almost sure versions of reachability specifications are interesting in their own right,

they may be a too strict concept in some applications, particularly when a common specifica-

tion is only to control the probability that undesirable events take place. In this regard, the

authors of [BET10] recently extended the stochastic target framework of [ST02a] to allow for

unbounded control set, which together with the martingale representation theory, addresses the

aforementioned almost-sure limitation in an augmented state space; see also the recent book

[Tou13]. This article approaches the same question, but indirectly and from an optimal control

perspective.

1.B. Our methodology and contributions. The stochastic “reach-avoid” problems studied

in this article are as follows:

RA: Given an initial state x ∈ Rn, a horizon T > 0, a number p ∈ [0, 1], and two

disjoint sets A,B ⊂ Rn, determine whether there exists a control policy such

that the process reaches A prior to entering B within the interval [0, T ] with

probability at least p.

Observe that this is a significantly different problem compared to its almost-sure counterpart

referred to above. It is of course immediate that the solution of the above problem is trivial if

the initial state is either in B (in which case it is almost surely impossible) or in A (in which

case there is nothing to do). However, for generic initial conditions in Rn \ (A ∪B), due to the

inherent probabilistic nature of the dynamics, the problem of selecting a policy and determining

the probability with which the controlled process reaches the set A prior to hitting B is non-

trivial. In addition, we address the following slightly different reach-avoid problem compared to

RA above, that requires the process to be in the set A at time T :

R̃A: Given an initial state x ∈ Rn, a horizon T > 0, a number p ∈ [0, 1], and

two disjoint sets A,B ⊂ Rn, determine whether there exists a policy such that

with probability at least p the controlled process resides in A at time T while

avoiding B on the interval [0, T ].

Our methodology and contributions toward the above problems are summarized below:
2
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(i) We establish a link from the problems RA and R̃A to three different classes of stochastic

optimal control problems involving discontinuous payoff functions in §3;

(ii) focusing on the class of exit-time problems that addressed both the reach-avoid problems

alluded above, we propose a weak dynamic programming principle (DPP) leading to a

(discontinuous) PDE characterization along with appropriate boundary conditions;

(iii) finally, in §5 we provide theoretical justification that pave the analytical ground to deploy

existing (continuous) off-the-shelf PDE solvers for our numerical purposes.

More specifically, we first show that the desired set of initial conditions for the reach-avoid

problems RA and R̃A can be translated as super level sets of particular functions described in

the context of stochastic optimal control problems (Propositions 3.3 and 3.4). Different classes

of optimal control problems are suggested for each of the two reach-avoid problems, and it turns

out that the class of exit-time problems with discontinuous payoff functions can adequately

address both the reach-avoid problems. This connection is relatively straightforward and does

not require any assumption on the underlying dynamics. We, however, are not aware of any

results in the literature reflecting this connection.

The exit-time problem with a continuous payoff function is a classical stochastic optimal

control problem whose alternative PDE characterizations have been established in the literature;

see for instance [FS06, Section IV.7]. However, these results are not directly applicable to our

reach-avoid problems due to the discontinuity of the payoff function. We address this technical

issue by developing a DPP in a weak sense in the spirit of [BT11] (Theorem 4.4). We emphasize

that the results of [BT11] were developed in the framework of fixed time horizon and the optimal

stopping time. Neither of these settings is applicable to the exit-time problem. To that end, it

turns out that we require some technical continuity properties which are essential for the proposed

weak DPP (Proposition 4.2) as well as the respective boundary conditions (Proposition 4.8). To

the best of our knowledge, these continuity results are also new in the literature. It is also worth

noting that this weak formulation avoids delicate issues related to a measurable selection in the

context of optimal control problems.

Based on the proposed DPP, we characterize the value function as the (discontinuous) viscosity

solution of a PDE (Theorem 4.7) along with boundary conditions in both viscosity and Dirichlet

(pointwise) senses (Theorem 4.9). We remark that due to the discontinuity of the payoff function,

the viscosity boundary conditions involves a non-trivial regularity condition which is a stronger

version of the requirement for the proposed DPP (see Proposition 4.8). These technical details

are required to rigorously settle the PDE characterization for a stochastic exit-problem problem

and we cannot find them elsewhere in the existing literature.

Finally, we provide theoretical justifications (Theorem 5.1) so that the Reach-Avoid problem

is amenable to numerical solutions by means of off-the-shelf PDE solvers, which have been mainly

developed for continuous solutions. Preliminary results of this study were reported in [MCL11]

without covering the technical details and mathematical proofs.

Organization of the article: In §2 we formally introduce the stochastic reach-avoid problems

RA and R̃A above. In §3 we characterize the set of initial conditions that solve the reach-avoid

problems in terms of super level sets of three different value functions. Focusing on the class of

exit-time problems, in §4 we establish a DPP and characterize it as the solution of a PDE along

with some boundary conditions. Finally, §5 presents results connecting those in §3 and §4 and

justifies the deployment of the existing PDE solvers for numerical purposes. To illustrate the
3
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performance of our technique, the theoretical results developed in preceding sections are applied

to solve the stochastic Zermelo navigation problem in §6. We conclude with some remarks and

directions for future work in §7. For better readability, some of the technical proofs are given in

appendices.

Notation. Given a, b ∈ R, we define a ∧ b := min{a, b} and a ∨ b := max{a, b}. We denote by

Ac (resp. A◦) the complement (resp. interior) of the set A. We also denote by A (resp. ∂A) the

closure (resp. boundary) of A. We let Br(x) be an open Euclidean ball centered at x with radius

r. The Borel σ-algebra on a topological space A is denoted by B(A), and measurability on Rd will

always refer to Borel-measurability. The indicator function 1A is defined through 1A(x) = 1 if

x ∈ A; = 0 otherwise. Given function f : A→ R, the lower and upper semicontinuous envelopes

of f are defined, respectively, by f∗(x) := lim infx′→x f(x′) and f∗(x) := lim supx′→x f(x′).

The set USC(A) (resp. LSC(A)) denotes the collection of all upper semicontinuous (resp. lower

semicontinuous) functions from A to R. Throughout this article all (in)equalities between random

variables are understood in almost sure sense. For the ease of the reader, we also provide here

a partial notation list which will be also explained in more details later throughout the article:

• S := [0, T ]× Rn;

• Uτ : set of Fτ -progressively measurable maps into U;

• T[τ1,τ2] : the collection of all Fτ1 -stopping times τ satisfying τ1 ≤ τ ≤ τ2 P-a.s.

• (Xt,x;u
s )s≥0: stochastic process under the control policy u and assumption Xt,x;u

s := x for all

s ≤ t;
• τA: first entry time to A, see Definition 3.1;

• Lu: Dynkin operator, see Definition 4.6.

2. The Setting and Statement of Problem

Consider a filtered probability space (Ω,F ,F,P) whose filtration F = (Fs)s≥0 is generated

by an n-dimensional Brownian motion (Ws)s≥0 adapted to F. Let the natural filtration of the

Brownian motion (Ws)s≥0 be enlarged by its right-continuous completion; — the usual conditions

of completeness and right continuity, where (Ws)s≥0 is a Brownian motion with respect to F

[KS91, p. 48]. For every t ≥ 0, we introduce an auxiliary subfiltration Ft := (Ft,s)s≥0, where

Ft,s is the P-completion of σ
(
Wr∨t − Wt, r ∈ [0, s]

)
. Note that for s ≤ t, Ft,s is the trivial

σ−algebra, and any Ft,s-random variable is independent of Ft. By definitions, it is obvious that

Ft,s ⊆ Fs with equality in case of t = 0.

Let U ⊂ Rm be a control set, and Ut denote the set of Ft-progressively measurable maps

into U.1 We employ the shorthand U instead of U0 for the set of all F-progressively measurable

policies. We also denote by T the collection of all F-stopping times. For τ1, τ2 ∈ T with τ1 ≤ τ2
P-a.s., the subset T[τ1,τ2] is the collection of all Fτ1 -stopping times τ such that τ1 ≤ τ ≤ τ2 with

probability 1. Note that all Fτ -stopping times and Fτ -progressively measurable processes are

independent of Fτ .

The basic object of our study concerns the Rn-valued stochastic differential equation (SDE)

(1) dXs = f(Xs, us) ds+ σ(Xs, us) dWs, X0 = x, s ≥ 0,

1Recall [KS91, p. 4] that a U-valued process (ys)s≥0 is Ft-progressively measurable if for each T > 0 the

function Ω× [0, T ] 3 (ω, s) 7→ y(ω, s) ∈ U is measurable, where Ω× [0, T ] is equipped with Ft,T ⊗B([0, T ]), U is

equipped with B(U), and B(S) denotes the Borel σ-algebra on a topological space S.
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where f : Rn ×U→ Rn and σ : Rn ×U→ Rn×d are continuous and Lipschitz in first argument

uniformly with respect to the second argument, (Ws)s≥0 is the above standard d-dimensional

Brownian motion, and the control set U ⊂ Rm is compact.2 It is known that under this setting

the SDE (1) admits a unique strong solution [Bor05]. We let (Xt,x;u
s )s≥t denote the unique strong

solution of (1) starting from time t at the state x under the control u. For future notational

simplicity, we slightly generalize the definition of Xt,x;u
s , and extend it to the whole interval

[0, T ] where Xt,x;u
s := x for all s in [0, t].

Given an initial time t and the disjoint sets A,B ⊂ Rn, we are interested in the set of initial

conditions x ∈ Rn where there exists an admissible control u ∈ U such that with probability

more than p the state trajectory Xt,x;u
s hits the set A before set B within the time horizon T .

Our main objective in this article is to propose a framework in order to characterize this set of

initial condition, which is formally introduced as follows.

Definition 2.1 (Reach-Avoid within [0, T ]).

RA(t, p;A,B) :=
{
x ∈ Rn

∣∣ ∃u ∈ U :

P
(
∃s ∈ [t, T ], Xt,x;u

s ∈ A and ∀r ∈ [t, s] Xt,x;u
r /∈ B

)
> p
}
.

We also study another reach-avoid problem denoted by R̃A as mentioned in §1. As opposed

to Definition 2.1 that only requires to reach the target sometime within the interval [t, T ], the

problem R̃A poses constraint for being in the target set at time T while avoiding barriers over

the period [t, T ]. Namely, we define the set R̃A(t, p;A,B) as the set of all initial conditions for

which there exists an admissible control strategy u ∈ U such that with probability more than p,

Xt,x;u
T belongs to A and the process avoids the set B over the interval [t, T ].

Definition 2.2 (Reach-Avoid at the terminal time T ).

R̃A(t, p;A,B) :=
{
x ∈ Rn

∣∣ ∃u ∈ U :

P
(
Xt,x;u
T ∈ A and ∀r ∈ [t, T ] Xt,x;u

r /∈ B
)
> p
}
.

3. A Connection to Stochastic Optimal Control Problem

In this section we establish a connection between the stochastic reach-avoid problems RA and

R̃A to three different classes of stochastic optimal control problems. The results presented in

this section rely on pathwise analysis, and are not necessarily confined to the SDE setting. The

following definition is one of the key elements in our framework.

Definition 3.1 (First entry time). Given a control u, the process (Xt,x;u
s )s≥t, and a set A ⊂ Rn,

we introduce3 the first entry time to A by

τA(t, x) = inf
{
s ≥ t | Xt,x;u

s ∈ A
}
.(2)

Let us note that the first entry time in Definition 3.1 is indeed an Ft-stopping time [EK86,

Theorem 1.6, Chapter 2].

2We slightly abuse notation and earlier used σ as a sigma algebra as well. However, it will be always clear

from the context to which σ we refer.
3By convention, inf ∅ =∞.
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Remark 3.2 (Entry time properties). In light of almost sure continuity of the solution process,

for any initial condition (t, x) and control u ∈ U we have

τA∪B = τA ∧ τB ,(3a)

Xt,x;u
s ∈ A =⇒ τA ≤ s,(3b)

A is closed =⇒ Xt,x;u
τA ∈ A.(3c)

One can think of several different ways of characterizing probabilistic reach-avoid sets,

see for instance [CCL11] and the references therein dealing with discrete-time problems. Mo-

tivated by these works, we consider value functions involving expectation of indicator functions

of certain sets. Three alternative characterizations are considered and we show all three are

equivalent. We define the functions Vi : [0, T ]× Rn → [0, 1], i ∈ {1, 2, 3}, as

V1(t, x) := sup
u∈U

E
[
1A(Xt,x;u

τ̂ )
]

where τ̂ := τA∪B ∧ T,(4a)

V2(t, x) := sup
u∈U

E

[
sup
s∈[t,T ]

{
1A(Xt,x;u

s ) ∧ inf
r∈[t,s]

1Bc(X
t,x;u
r )

}]
,(4b)

V3(t, x) := sup
u∈U

sup
τ∈T[t,T ]

inf
σ∈T[t,τ]

E
[
1A(Xt,x;u

τ ) ∧ 1Bc(Xt,x;u
σ )

]
.(4c)

Here τA∪B is the entry time introduced in Definition 3.1, and depends on the initial condition

(t, x). For notational simplicity, we drop the initial condition in this section.

In (4a), the process Xt,x;u
· is controlled until a particular stopping time τ̂ , by which instant

the process either exits from the set A ∪ B or the terminal time T is reached. In this light,

the stochastic optimal control (4a) is also known as exit-time problem. A sample ω ∈ Ω is a

“successful” path if the stopped process Xt,x;u
τ̂(ω) (ω) resides in A. This requirement is captured

via the payoff function 1A( · ).
In the definition of V2 in (4b), there is no stopping time, and one may observe that the entire

process Xt,x;u
· is considered. Here the requirement of reaching the target set A before the avoid

set B is taken into account by the supremum and infimum operations and payoff functions 1A
and 1Bc .

In a fashion similar to (4a), the function V3 in (4c) involves some stopping time strategies.

The stopping strategies, however, are not fixed and the stochastic optimal control problem can

be viewed as a game between two players with different authorities. Namely, the first player

has both control u ∈ U and stopping τ ∈ T[t,T ] strategies whereas the second player has only a

stopping strategy σ ∈ T[t,τ ], which is dominated by the first player’s stopping time τ ; each player

contributes through different maps to the payoff function.

Proposition 3.3 (Connection from RA to (4)). Let sets A,B be disjoint closed subsets of Rn.

Then, the equality V1 = V2 = V3 holds on S := [0, T ]× Rn, and we have

RA(t, p;A,B) =
{
x ∈ Rn | Vi(t, x) > p

}
, i ∈ {1, 2, 3},

where the set RA is the set defined in Definition 2.1.

Proof. See A. �

One can establish a connection between the reach-avoid problem R̃A in Definition 2.2 and

different classes of stochastic optimal control problems along lines similar to Propositions 3.3.
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To this end, let us define the value functions Ṽi : [0, T ]× Rn → [0, 1], i ∈ {1, 2, 3}, as

Ṽ1(t, x) := sup
u∈U

E
[
1A(Xt,x;u

τ̃ )
]

where τ̃ := τB ∧ T,(5a)

Ṽ2(t, x) := sup
u∈U

E

[
1A(Xt,x;u

T ) ∧ inf
r∈[t,T ]

1Bc(X
t,x;u
r )

]
,(5b)

Ṽ3(t, x) := sup
u∈U

inf
σ∈T[t,T ]

E
[
1A(Xt,x;u

T ) ∧ 1Bc(Xt,x;u
σ )

]
.(5c)

We state the following proposition concerning assertions identical to those of Proposition 3.3

for the reach-avoid problem of Definition 2.2.

Proposition 3.4 (Connection from R̃A to (5)). Let A,B ⊂ Rn be disjoint, and suppose B is

closed. Then, the equality Ṽ1 = Ṽ2 = Ṽ3 holds on S := [0, T ]× Rn, and we have

R̃A(t, p;A,B) =
{
x ∈ Rn | Ṽi(t, x) > p

}
, i ∈ {1, 2, 3},

where the set R̃A is the set defined in Definition 2.2.

Proof. The proof follows effectively the same arguments as in the proofs of Proposition 3.3 in

A. �

The stochastic control problems introduced in (4a) and (5a) are well-known as the exit-

time problem [FS06, p. 6]. Note that in light of Propositions 3.3 and 3.4, both problems in

Definitions 2.1 and 2.2 can alternatively be characterized in the framework of exit-time problems,

see (4a) and (5a), respectively. Motivated by this, in the next section we shall focus on this class

of problems.

4. Alternative Characterization of the Exit-Time Problem

This section presents an alternative characterization of the exit-time problem based on solu-

tions of certain PDEs. Let us highlight that the exit-time formulations (4a) and (5a) involve

discontinuous payoff functions, to which the classical approaches, for example [FS06, Kry09],

are not directly applicable. Consider the function

V (t, x) := sup
u∈Ut

E
[
`
(
Xt,x;u
τ̂(t,x)

)]
, τ̂(t, x) := τO(t, x) ∧ T,(6)

where the payoff function ` : Rn → R is bounded (not necessarily continuous), and O is a given

subset of Rn. Recall that τO is the stopping time defined in Definition 3.1 that in case of value

function (4a) can be considered as O = A ∪ B. It is immediate to observe that the functions

(4a) and (5a) are particular cases of (6) where the payoff function is `( · ) := 1A( · ).
Hereafter we shall restrict our control processes to Ut, the collection of all Ft-progressively

measurable processes u ∈ U . In view of independence of the increments of Brownian motion,

the restriction of control processes to Ut is not restrictive, and one can show that the function

(6) remains the same if Ut is replaced by U ; see, for instance, [Kry09, Theorem 3.1.7, p. 132]

and [BT11, Remark 5.2].

Our objective is to characterize the function V in (6) as a (discontinuous) viscosity solution

of a suitable Hamilton-Jacobi-Bellman equation.
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O

(a) Interior cone condition holds at every

point of the boundary.

O

p

(b) Interior cone condition fails at

the point p—the only possible in-

terior cone at p is a line.

Figure 1. Interior cone condition of the boundary.

4.A. Assumptions and preliminaries. For the main results of this section we need the fol-

lowing technical assumptions:

Assumption 4.1. We stipulate that

a. (Non-degeneracy) The controlled processes are uniformly non-degenerate, i.e., there exists

δ > 0 such that for all x ∈ Rn and u ∈ U, σ(x, u)σ
ᵀ
(x, u) > δI where σ(x, u) is the diffusion

term in SDE (1).

b. (Interior cone condition) There are positive constants h, r, and an Rn-value bounded map

η : O → Rn satisfying

Brt
(
x+ η(x)t

)
⊂ O for all x ∈ O and t ∈ (0, h]

where Br(x) denotes an open ball centered at x and radius r, and O stands for the closure

of the set O (see Figure 1).

c. (Lower semicontinuity) The payoff function ` in (6) is lower semicontinuous.

If the set A is open, then the function `( · ) = 1A( · ) as in (4a) and (5a) satisfies Assumption

4.1.c. The interior cone condition in Assumption 4.1.b. concerns shapes of the set O. Figure 1

illustrates two typical scenarios. Let us define the function J : S× U → R:

(7) J
(
t, x,u

)
:= E

[
`
(
Xt,x;u
τ̂(t,x)

)]
, τ̂(t, x) := τO(t, x) ∧ T.

Note that the information of the set O is encoded in the definition of the stopping time τ̂ . Under

Assumptions 4.1, we establish continuity of τ̂(t, x) and consequently the lower semicontinuity of

J(t, x,u) with respect to (t, x), which will be the main ingredient of our results in this section.

Proposition 4.2 (Lower semicontinuity). Consider the system (1) and suppose that Assumption

4.1 holds. Then, for any control u ∈ U and initial condition (t0, x0) ∈ S, the function (t, x) 7→
τ̂(t, x) is continuous at (t0, x0) with probability 1.4 Moreover, the function (t, x) 7→ J

(
t, x,u

)
defined in (7) is uniformly bounded and lower semicontinuous, i.e.,

J
(
t, x,u

)
≤ lim inf

(t′,x′)→(t,x)
J
(
t′, x′,u

)
.

4Recall that the stopping time τ̂ depends on the set O which is assumed to meet the interior cone condition

in Assumption 4.1.b.
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Sketch of the proof. The proof essentially relies on two facts: (i) Without loss of generality, we

can work with the version of the solution process which is almost sure continuous in the initial

condition thanks to Kolmogorov’s continuity criterion [Pro05, Cor. 1 Chap. IV, p. 220] and

classical inequalities concerning diffusion processes governed by SDEs [Kry09, Chap. 2]; (ii) The

set of sample paths of a non-degenerate process which hits the boundary of a set satisfying

Assumption 4.1.b. and do not enter the set is negligible [RB98, Corollary 3.2, p. 65]. See B for

the detailed analysis. �

The main objective of this section is to provide a dynamic programming characterization

of the function V in (6). To this end, given a stopping time θ ∈ T[t,T ], we need to split an

admissible control onto two random intervals [t, θ] and ]θ, T ]. The following definition formalize

this separation task. Note that the control process u := (us)s≥0 ∈ Ut at time s ≥ 0 can be

viewed as a measurable mapping (Wr∨t−Wt)[0,s] 7→ us ∈ U, where (Ws)s≥0 is the d-dimensional

Brownian motion in (1); see [KS91, Def. 1.11, p. 4] for the details. Then, for θ ∈ T[t,T ] and

u ∈ Ut, pathwise for any realization ω ∈ Ω we define the random policy uθ ∈ Uθ(ω) as(
W ·∨θ(ω) −Wθ(ω)

)
7→ u

(
W ·∧θ(ω) +W ·∨θ(ω) −Wθ(ω)

)
=: uθ.(8)

Notice that W. ≡ W.∧θ(ω) + W.∨θ(ω) −Wθ(ω), and as such the randomness of uθ is referred to

the term W.∧θ(ω). In view of definition (8), any admissible control u can be described by

u = 1[t,θ]u + 1]θ,T ]uθ.(9)

Let us recall that by 1[t,θ]u, we mean that for any realization ω ∈ Ω and any time s, we have

1[t,θ(ω)]us(ω) = us(ω) if s ∈ [t, θ(ω)]; and = 0 otherwise. The notation for 1]θ,T ]uθ is understood

in similar fashion. It is worth noting that the relation (9) effectively implies that the random

control uθ indeed takes the same values as the control u over the random time interval ]θ, T ].

Lemma 4.3 (Strong Markov property). Consider the system (1) whose solution process starting

from (t, x) controlled with u ∈ Ut is denoted by Xt,x;u
· . For any stopping time θ ∈ T[t,T ], with

probability one we have

E
[
`
(
Xt,x;u
τ̂(t,x)

) ∣∣∣ Fθ] = 1{τ̂(t,x)<θ}`
(
Xt,x;u
τ̂(t,x)

)
+ 1{τ̂(t,x)≥θ}J

(
θ,Xt,x;u

θ ,uθ
)

where uθ is the random policy in the sense of (8), and the function J and stopping time τ̂(t, x)

are as defined in (7).

Proof. By Definition 3.1, we have with probability 1 that

1{τ̂(t,x)≥θ}τ̂(t, x) = 1{τ̂(t,x)≥θ}
(
τ̂(θ,Xt,x;u

θ ) + θ − t
)
.

One can now follow effectively the same computations as in the proof of [BT11, Proposition 5.1]

to conclude the assertion. �

4.B. Dynamic Programming Principle. The following Theorem provides a dynamic pro-

gramming principle (DPP) for the exit time problem introduced in (6).

Theorem 4.4 (Dynamic Programming Principle). Consider the system (1) and suppose that

Assumption 4.1 holds. For any (t, x) ∈ S and family of stopping times {θu,u ∈ Ut} ⊂ T[t,T ], we

have

V (t, x) ≤ supu∈Ut E
[
1{τ̂(t,x)≤θu}`

(
Xt,x;u
τ̂(t,x)

)
+ 1{τ̂(t,x)>θu}V

∗(θu, Xt,x;u
θu

)]
,(10a)

9
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and

V (t, x) ≥ supu∈Ut E
[
1{τ̂(t,x)≤θu}`

(
Xt,x;u
τ̂(t,x)

)
+ 1{τ̂(t,x)>θu}V∗

(
θu, Xt,x;u

θu

)]
,(10b)

where V is the function defined in (6).

Proof. The proof is inspired by the techniques developed in [BT11], however, in the context of

exit-time problems where the continuity of the exit-time (Proposition 4.2) plays a crucial role.

We first assemble an appropriate covering for the set S, and use this covering to construct

an admissible control which satisfies the required conditions within ε precision, ε > 0 being

pre-assigned and arbitrary. For notational simplicity, in the following we set θ := θu.

Proof of (10a). In view of Lemma 4.3 and the tower property of conditional expectation [Kal97,

Theorem 5.1], for any (t, x) ∈ S we have

E
[
`
(
Xt,x;u
τ̂(t,x)

)]
= E

[
E
[
`
(
Xt,x;u
τ̂(t,x)

)∣∣ Fθ] ]
= E

[
1{τ̂(t,x)≤θ}`

(
Xt,x;u
τ̂(t,x)

)
+ 1{τ̂(t,x)>θ}J

(
θ,Xt,x;u

θ ,uθ
)]

≤ E
[
1{τ̂(t,x)≤θ}`

(
Xt,x;u
τ̂(t,x)

)
+ 1{τ̂(t,x)>θ}V

∗(θ,Xt,x;u
θ

)]
,

where uθ is the random control as introduced in (8). Note that the last inequality follows from

the fact that uθ ∈ Uθ(ω) for each ω ∈ Ω. Now taking supremum over all admissible controls

u ∈ Ut leads to the desired dynamic programming inequality (10a).

Proof of (10b). Suppose φ : S→ R is uniformly bounded such that

(11) φ ∈ USC(S) and φ ≤ V∗ on S.

According to (11) and Proposition 4.2, given ε > 0, for all (t0, x0) ∈ S and u ∈ Ut0 there exists

rε > 0 such that

(12)
φ(t, x)− ε ≤ φ(t0, x0) ≤ V∗(t0, x0), ∀(t, x) ∈ Crε(t0, x0) ∩ S,

J
(
t0, x0,u

)
≤ J

(
t, x,u

)
+ ε, ∀(t, x) ∈ Crε(t0, x0) ∩ S,

where Cr(t, x) is a cylinder defined as:

(13) Cr(t, x) := {(s, y) ∈ R× Rn | s ∈]t− r, t] , ‖x− y‖ < r}.

Moreover, by definition of (7) and (6), given ε > 0 and (t0, x0) ∈ S there exists ut0,x0
ε ∈ Ut0 such

that

V∗(t0, x0) ≤ V (t0, x0) ≤ J
(
t0, x0,u

t0,x0
ε

)
+ ε.

By the above inequality and (12), one can conclude that given ε > 0, for all (t0, x0) ∈ S there

exist ut0,x0
ε ∈ Ut0 and rε(t0, x0) > 0 such that

(14) φ(t, x)− 3ε ≤ J
(
t, x,ut0,x0

ε

)
∀(t, x) ∈ Crε(t0,x0)(t0, x0) ∩ S.

Therefore, given ε > 0, the family of cylinders
{

Crε(t,x)(t, x) : (t, x) ∈ S, rε(t, x) > 0
}

forms

an open covering of [0, T [×Rn. By the Lindelöf covering Theorem [Dug66, Theorem 6.3 Chapter

VIII], there exists a countable sequence (ti, xi, ri)i∈N of elements of S× R+ such that

[0, T [×Rn ⊂
⋃
i∈N

Cri(ti, xi).

10
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Note that the implication of (10a) simply holds for (t, x) ∈ {T}×Rn. Let us construct a sequence

(Ci)i∈N0
as

C0 := {T} × Rn, Ci := Cri(ti, xi) \
⋃

j≤i−1

Cj .

By definition Ci are pairwise disjoint and S ⊂
⋃
i∈N0

Ci. Furthermore, (θ,Xt,x;u
θ ) ∈

⋃
i∈N0

Ci,

and for all i ∈ N0 there exists uti,xiε ∈ Uti such that

(15) φ(t, x)− 3ε ≤ J
(
t, x,uti,xiε

)
, ∀(t, x) ∈ Ci ∩ S.

To prove (10b), let us fix u ∈ Ut and θ ∈ T[t,T ]. Given ε > 0 we define

(16) vε := 1[t,θ]u + 1]θ,T ]

∑
i∈N0

1Ci(θ,X
t,x;u
θ )uti,xiε .

Notice that the set of admissible controls Ut (i.e., the set of Ft-progressively measurable func-

tions) is closed under countable concatenation operations, and consequently vε ∈ Ut. In light

of the alternative description (9) for the control (16), one can apply Lemma 4.3 in conjunction

with (15) and infer that with probability 1 we have

E
[
`
(
Xt,x;vε
τ̂(t,x)

) ∣∣ Fθ] = 1{τ̂(t,x)≤θ}`
(
Xt,x;u
τ̂(t,x)

)
+ 1{τ̂(t,x)>θ}J

(
θ,Xt,x;u

θ ,
∑
i∈N0

1Ci(θ,X
t,x;u
θ )uti,xiε

)
= 1{τ̂(t,x)≤θ}`

(
Xt,x;u
τ̂(t,x)

)
+ 1{τ̂(t,x)>θ}

∑
i∈N0

J
(
θ,Xt,x;u

θ ,uti,xiε

)
1Ci
(
θ,Xt,x;u

θ

)
≥ 1{τ̂(t,x)≤θ}`

(
Xt,x;u
τ̂(t,x)

)
+ 1{τ̂(t,x)>θ}

∑
i∈N0

(
φ
(
θ,Xt,x;u

θ

)
− 3ε

)
1Ci
(
θ,Xt,x;u

θ

)
= 1{τ̂(t,x)≤θ}`

(
Xt,x;u
τ̂(t,x)

)
+ 1{τ̂(t,x)>θ}

(
φ
(
θ,Xt,x;u

θ

)
− 3ε

)
.

By the definition of V and the tower property of conditional expectations,

V (t, x) ≥ J(t, x,vε) = E
[
E
[
`
(
Xt,x;vε
τ̂(t,x)

) ∣∣ Fθ]]
≥ E

[
1{τ̂(t,x)≤θ}`

(
Xt,x;u
τ̂(t,x)

)
+ 1{τ̂(t,x)>θ}φ

(
θ,Xt,x;u

θ

)]
− 3ε E

[
1{τ̂(t,x)>θ}

]
.

The arbitrariness of u ∈ Ut and ε > 0 implies that

V (t, x) ≥ sup
u∈Ut

E
[
1{τ̂(t,x)≤θ}`

(
Xt,x;u
τ̂(t,x)

)
+ φ

(
θ,Xt,x;u

θ

)]
.

It suffices to find a sequence of continuous functions (φi)i∈N such that Φi ≤ V∗ on S and converges

pointwise to V∗. The existence of such a sequence is guaranteed by [Ren99, Lemma 3.5 ]. Thus,

by Fatou’s lemma,

V (t, x) ≥ lim inf
i→∞

sup
u∈Ut

E
[
1{τ̂(t,x)<θ}`

(
Xt,x;u
τ̂(t,x)

)
+ 1{τ̂(t,x)≥θ}φi

(
θ,Xt,x;u

θ

)]
≥ sup
u∈Ut

E
[
1{τ̂(t,x)<θ}`

(
Xt,x;u
τ̂(t,x)

)
+ 1{τ̂(t,x)≥θ} lim inf

i→∞
φi
(
θ,Xt,x;u

θ

)]
= sup
u∈Ut

E
[
1{τ̂(t,x)<θ}`

(
Xt,x;u
τ̂(t,x)

)
+ 1{τ̂(t,x)≥θ}V∗

(
θ,Xt,x;u

θ

)]
.

�

Remark 4.5 (Measurability). The DPP in (10) is introduced in a weaker sense than the stan-

dard DPP for stochastic optimal control problems [FS06]. Namely, one does not have to verify

the measurability of the function V in (6) to apply (10).

11
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4.C. Dynamic Programming Equation. Our objective in this subsection is to demonstrate

how the DPP derived in §4.B characterizes the function V as a (discontinuous) viscosity solution

to an appropriate HJB equation; for the general theory of viscosity solutions we refer to [CIL92]

and [FS06]. To complete the PDE characterization and provide numerical solutions for this

PDE, one also needs appropriate boundary conditions which will be the objective of the next

subsection.

Definition 4.6 (Dynkin operator). Given u ∈ U, we denote by Lu the Dynkin operator (also

known as the infinitesimal generator) associated to the controlled diffusion (1) as

LuΦ(t, x) := ∂tΦ(t, x) + f(x, u).∂xΦ(t, x) +
1

2
Tr[σσ>(x, u)∂2xΦ(t, x)],

where Φ is a real-valued function smooth on the interior of S, with ∂tΦ and ∂xΦ denoting the

partial derivatives with respect to t and x respectively, and ∂2xΦ denoting the Hessian matrix with

respect to x.

Theorem 4.7 (Dynamic Programming Equation). Consider the system (1) and suppose that

Assumption 4.1 holds. Then,

◦ the lower semicontinuous envelope of V introduced in (6) is a viscosity supersolution of

− sup
u∈U
LuV∗(t, x) ≥ 0 on [0, T [×Oc,

◦ the upper semicontinuous envelope of V is a viscosity subsolution of

− sup
u∈U
LuV ∗(t, x) ≤ 0 on [0, T [×Oc,

Proof. We first prove the supersolution part:

Supersolution: For the sake of contradiction, assume that there exists (t0, x0) ∈ [0, T [×Oc

and a smooth function φ : S→ R satisfying

min
(t,x)∈S

(
V∗ − φ

)
(t, x) =

(
V∗ − φ

)
(t0, x0) = 0

such that for some δ > 0

− sup
u∈U
Luφ(t0, x0) < −2δ

Notice that, without loss of generality, one can assume that (t0, x0) is the strict minimizer of

V∗−φ [FS06, Lemma II 6.1, p. 87]. Since φ is smooth, the map (t, x) 7→ Luφ(t, x) is continuous.

Therefore, there exist u ∈ U and r > 0 such that Br(t0, x0) ⊂ [0, T )×Oc and

(17) −Luφ(t, x) < −δ ∀(t, x) ∈ Br(t0, x0).

Let us define the stopping time θ(t, x) ∈ T[t,T ]

(18) θ(t, x) = inf{s ≥ t : (s,Xt,x;u
s ) /∈ Br(t0, x0)},

where (t, x) ∈ Br(t0, x0). Note that by continuity of solutions to (1), t < θ(t, x) < T P- a.s. for

all (t, x) ∈ Br(t0, x0). Moreover, selecting r > 0 sufficiently small so that θ(t, x) < τO, we have

(19) θ(t, x) < τO ∧ T = τ̂(t, x) P-a.s. ∀(t, x) ∈ Br(t0, x0)

Applying Itô’s formula and using (17), we see that for all (t, x) ∈ Br(t0, x0),

φ(t, x) = E

[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)
+

∫ θ(t,x)

t

−Luφ
(
s,Xt,x;u

s

)
ds

]
12
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≤ E
[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)]
− δ(E[θ(t, x)]− t)

< E
[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)]
.

Now it suffices to take a sequence (tn, xn, V (tn, xn))n∈N converging to (t0, x0, V∗(t0, x0)) to see

that

φ(tn, xn)→ φ(t0, x0) = V∗(t0, x0).

Therefore, for sufficiently large n we have

V (tn, xn) < E
[
φ
(
θ(tn, xn), Xtn,xn;u

θ(tn,xn)

)]
< E

[
V∗
(
θ(tn, xn), Xtn,xn;u

θ(tn,xn)

)]
,

which, in accordance with (19), can be expressed as

V (tn, xn) < E
[
1{τ̂(tn,xn)<θ(tn,xn)}`

(
Xtn,xn;u
τ̂(tn,xn)

)
+ 1{τ̂(tn,xn)≥θ(tn,xn)}V∗

(
θ,Xtn,xn;u

θ(tn,xn)

)]
.

This contradicts the DPP in (10b).

Subsolution: The subsolution property is proved in a fashion similar to the supersolution

part but with slightly more care. For the sake of contradiction, assume that there exists (t0, x0) ∈
[0, T [×Oc and a smooth function φ : S→ R satisfying

max
(t,x)∈S

(
V ∗ − φ

)
(t, x) =

(
V ∗ − φ

)
(t0, x0) = 0

such that for some δ > 0

− sup
u∈U
Luφ(t0, x0) > 2δ.

By continuity of the mapping (t, x, u) 7→ Luφ(t, x) and compactness of the control set U, there

exists r > 0 such that for all u ∈ U

(20) −Luφ(t, x) > δ, ∀(t, x) ∈ Br(t0, x0),

where Br(t0, x0) ⊂ [0, T )× Oc. Note as in the preceding part, (t0, x0) can be considered as the

strict maximizer of V ∗ − φ that consequently implies that there exists γ > 0 such that

(21)
(
V ∗ − φ

)
(t, x) < −γ, ∀(t, x) ∈ ∂Br(t0, x0).

where ∂Br(t0, x0) stands for the boundary of the ball Br(t0, x0). Let θ(t, x) ∈ T[t,T ] be the

stopping time defined in (18); notice that θ may, of course, depend on the policy u. Applying

Itô’s formula and using (20), one can observe that given u ∈ Ut,

φ(t, x) = E

[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)
+

∫ θ(t,x)

t

−Lusφ
(
s,Xt,x;u

s

)
ds

]
≥ E

[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)]
+ δ(E[θ(t, x)]− t)

> E
[
φ
(
θ(t, x), Xt,x;u

θ(t,x)

)]
.

Now it suffices to take a sequence (tn, xn, V (tn, xn))n∈N converging to (t0, x0, V
∗(t0, x0)) to see

that

φ(tn, xn)→ φ(t0, x0) = V ∗(t0, x0).

As argued in the supersolution part above, for sufficiently large n, for given u ∈ Ut,

V (tn, xn) > E
[
φ
(
θ(tn, xn), Xtn,xn;u

θ(tn,xn)

)]
> E

[
V ∗
(
θ(tn, xn), Xtn,xn;u

θ(tn,xn)

)]
+ γ,

13
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where the last inequality is deduced from the fact that
(
θ(tn, xn), Xtn,xn;u

θ(tn,xn)

)
∈ ∂Br(t0, x0) to-

gether with (21). Thus, in view of (19), we arrive at

V (tn, xn) > E
[
1{τ̂(t,x)<θ(tn,xn)}`

(
Xtn,xn;u
τ̂

)
+ 1{τ̂(t,x)≥θ(tn,xn)}V

∗(θ,Xtn,xn;u
θ(tn,xn)

)]
+ γ.

This contradicts the DPP in (10a) as γ is chosen uniformly with respect to u ∈ Ut. �

4.D. Boundary conditions. Before proceeding with the main result of this subsection on

boundary conditions, we need a preparatory result that indeed has a stronger assertion than

Proposition 4.2.

Proposition 4.8 (Uniform continuity). Under the same hypothesis of Proposition 4.2, for any

sequence of control policies (un)n∈N ⊂ Ut and initial conditions (tn, xn)→ (t, x), we have

lim
n→∞

∥∥∥Xt,x;un
τ̂(t,x) −X

tn,xn;un
τ̂(tn,xn)

∥∥∥ = 0, P-a.s.,

where the stopping time τ̂ is introduced in (6).

Proof. The proof follows the same lines as in the proof of Proposition 4.2, but in a uniform

fashion with respect to admissible control inputs; see B for the details. �

The following theorem provides boundary conditions for the function V both in viscosity and

Dirichlet (pointwise) senses:

Theorem 4.9 (Boundary conditions). Suppose that the condition of Theorem 4.7 holds. Then

the function V in (6) satisfies the following boundary value conditions:

Dirichlet:

{
V (t, x) = `(x)

∀(t, x) ∈ [0, T ]×O
⋃
{T} × Rn

(22a)

Viscosity:



lim sup
(O)c3x′→x

t′↑t

V (t′, x′) ≤ `∗(x)

lim inf
(O)c3x′→x

t′↑t

V (t′, x′) ≥ `(x)

∀(t, x) ∈ [0, T ]× ∂O
⋃
{T} × Rn

(22b)

Proof. In light of [RB98, Corollary 3.2, p. 65], Assumptions 4.1.a. and 4.1.b. ensure that

τ̂(t, x) = t, ∀(t, x) ∈ [0, T ]×O ∪ {T} × Rn P-a.s.

which readily implies the pointwise boundary condition (22a). To prove the discontinuous vis-

cosity boundary condition (22b), we only show the first assertion; the second one follows from

similar arguments. Let (t, x) ∈ [0, T ]× ∂O
⋃
{T} × Rn and (tn, xn)→ (t, x), where tn < T and

x ∈ (O)c. In the definition of V in (6), one can choose a sequence of policies that is increasing and

attains the supremum value. This sequence, of course, depends on the initial condition. Thus,

let us denote it via two indices (un,j)j∈N as a sequence of policies corresponding to the initial

condition (tn, xn) corresponding to the value V (tn, xn). In this light, there exists a subsequence

of (unj )j∈N such that

V ∗(t, x) = lim
n→∞

V (tn, xn) = lim
n→∞

lim
j→∞

E
[
`
(
X
tn,xn;un,j
τ̂(tn,xn)

)]
≤ lim
j→∞

E
[
`
(
X
tj ,xj ;unj
τ̂(tj ,xj)

)]
≤ E

[
lim
j→∞

`
(
X
tj ,xj ;unj
τ̂(tj ,xj)

)]
(23a)

14
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Rn

Aε

B

A

ε

Figure 2. Construction of the sets Aε from A as described in §5.

≤ `∗(x)(23b)

where the second inequality in (23a) follow from Fatou’s lemma, and (23b) if the consequence

of the almost sure uniform continuity assertion in Proposition 4.8. Let us recall that τ̂(t, x) = t

and consequently X
t,x;unj
τ̂(t,x) = x. �

Theorem 4.9 provides boundary condition for V in both Dirichlet (pointwise) and viscosity

senses. The Dirichlet boundary condition (22a) is the one usually employed to numerically

compute the solution via PDE solvers, whereas the viscosity boundary condition (22b) is required

for theoretical support of the numerical schemes and comparison results.

5. Connection Between the Reach-Avoid Problem and PDE Characterization

In this section we draw a connection between the reach-avoid problem of §2 and the stochastic

optimal control problems stated in §3. This connection for the problem of reach-avoid at the

terminal time T (Definition 2.2) is straightforward, as it only suffices to ensure that the target

set A is open and the avoid set B is closed. Namely, set B being closed fulfills the requirement

of Proposition 3.4 that bridges the problem R̃A to optimal control Ṽ1 in (5a). On the other

hand, set A being open guarantees that the payoff function 1A meets the lower semicontinuity

of Assumption 4.1c., which allows to deploy the PDE characterization developed in §4 (i.e.,

Theorem 4.7 together with boundary conditions in Theorem 4.9) to approach Ṽ1 in (5a) for

numerical purposes.

However, the above discussion does not immediately apply to the reach-avoid problem within

[t, T ] (Definition 2.1). That is, Proposition 3.3 imposes a constraint on both sets A and B to be

closed, which is clearly in contradiction with the lower semicontinuity of the payoff function ` in

(6).

To achieve a reconciliation between the two sets of hypotheses in case of Definition 2.1, given

closed sets A and B, we construct a smaller set Aε ⊂ A◦ where Aε := {x ∈ A | dist(x,Ac) ≥ ε}
5 and Aε satisfies Assumption 4.1.b. Note that this is always possible if O := A ∪ B satisfies

Assumption 4.1.b.—indeed, simply take ε < h/2 to see this, where h is as defined in Assump-

tion 4.1.b. Figure 2 depicts this case. To be precise, we define

(24) Vε(t, x) := sup
u∈Ut

E
[
`ε
(
Xt,x;u
τε

)]
, τε := τAε∪B ∧ T,

5dist(x,A) := infy∈A ‖x− y‖, where ‖ · ‖ stands for the Euclidean norm.
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where the function `ε : Rn → R is defined as

`ε(x) :=

(
1− dist(x,Aε)

ε

)
∨ 0.

The following result asserts that the above technique affords a conservative but arbitrarily

precise way of characterizing the solution of the reach-avoid problem defined in Definition 2.1 in

the framework of §4.

Theorem 5.1 (Approximation stability). Consider the system (1), and suppose the sets A,B

are closed and Assumptions 4.1.a. and 4.1.b. hold. For all (t, x) ∈ [t, T [×Rn and ε1 ≥ ε2 > 0,

we have Vε2(t, x) ≥ Vε1(t, x), and V (t, x) = limε↓0 Vε(t, x) where the functions V and Vε are

defined as (4a) and (24), respectively.

Proof. By definition, the family of the sets (Aε)ε>0 is nested and increasing as ε ↓ 0. Therefore,

in view of (3a), τε is nonincreasing as ε ↓ 0 pathwise on Ω. Moreover it is obvious to see that the

family of functions `ε is increasing with respect to ε. Hence, given an initial condition (t, x) ∈ S,

an admissible control u ∈ Ut, and ε1 ≥ ε2 > 0, pathwise on Ω we have

`ε2
(
Xt,x;u
τε2

)
< 1 =⇒ τε2 = τB ∧ T < τAε2 < τAε1

=⇒ τε1 = τB ∧ T = τε2

=⇒ `ε2
(
Xt,x;u
τε2

)
≥ `ε1

(
Xt,x;u
τε1

)
,

which immediately leads to Vε2(t, x) ≥ Vε1(t, x). Now let (εi)i∈N be a decreasing sequence

of positive numbers that converges to zero, and for the simplicity of notation let An := Aεn ,

τn := τεn , and `n := `εn . According to the definitions (4a) and (24), we have

V (t, x)− lim
n→∞

Vεn(t, x) = sup
u∈Ut

E
[
1A
(
Xt,x;u
τ̂

)]
− lim
n→∞

sup
u∈Ut

E
[
`n
(
Xt,x;u
τn

)]
= sup
u∈Ut

E
[
1A
(
Xt,x;u
τ̂

)]
− sup
n∈N

sup
u∈Ut

E
[
`n
(
Xt,x;u
τn

)]
(25a)

≤ sup
u∈Ut

(
E
[
1A
(
Xt,x;u
τ̂

)]
− sup
n∈N

E
[
`n
(
Xt,x;u
τn

)])
≤ sup
u∈Ut

inf
n∈N

E
[
1A
(
Xt,x;u
τ̂

)
− 1An

(
Xt,x;u
τn

)]
= sup
u∈Ut

inf
n∈N

P
(
{τAn > τB ∧ T} ∩ {τA ≤ T} ∩ {τA < τB}

)
(25b)

= sup
u∈Ut

P
( ⋂
n∈N
{τAn > τB ∧ T} ∩ {τA ≤ T} ∩ {τA < τB}

)
(25c)

≤ sup
u∈Ut

P
(
{τA◦ ≥ τB ∧ T} ∩ {τA ≤ T} ∩ {τA < τB}

)
(25d)

≤ sup
u∈Ut

P
(
{τA◦ > τA} ∪ {τA = T}

)
= 0(25e)

Note that the equality in (25a) is due to the fact that the sequence of the functions
(
Vεn
)
n∈N is

increasing pointwise. One can infer the equality (25b) when 1A
(
Xt,x;u
τ̂

)
= 1 and 1An

(
Xt,x;u
τn

)
= 0

as 1A
(
Xt,x;u
τ̂

)
≥ 1An

(
Xt,x;u
τn

)
pathwise on Ω. Moreover, since the sequence of the stopping times

(τn)n∈N is decreasing P-a.s., the family of sets
(
{τAn > τA}

)
n∈N is also decreasing; consequently,

the equality (25c) follows. In order to show (25d), it is not hard to inspect that

ω ∈
⋂
n∈N
{τAn > τB ∧ T} =⇒ ∀n ∈ N, τAn(ω) > τB(ω) ∧ T
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=⇒ ∀n ∈ N, ∀s ≤ τB(ω) ∧ T, Xt,x;u
s (ω) /∈ An

=⇒ ∀s ≤ τB(ω) ∧ T, Xt,x;u
s (ω) /∈

⋃
n∈N

An = A◦

=⇒ ω ∈ {τA◦ ≥ τB ∧ T}.

Based on non-degeneracy and the interior cone condition in Assumptions 4.1.a. and 4.1.b.

respectively, by virtue of [RB98, Corollary 3.2, p. 65], we see that the set {τA◦ > τA} is negligible.

Moreover, the interior cone condition implies that the Lebesgue measure of ∂A, boundary of A, is

zero. In view of non-degeneracy and Girsanov’s Theorem [KS91, Theorem 5.1, p. 191], Xt,x;u
r has

a probability density d(r, y) for r ∈]t, T ]; see [FS06, Section IV.4] and references therein. Hence,

the aforesaid property of ∂A results in P{τA = T} ≤ P
{
Xt,x;u
T ∈ ∂A

}
=
∫
∂A
d(T, y)dy = 0, and

the second equality of (25e) follows. It is straightforward to see V ≥ Vεn pointwise on S for all

n ∈ N. The assertion now follows at once. �

The following corollary asserts the application of the results developed in §4 to the function

Vε in (24). The corollary not only simplifies the PDE characterization developed in §4.C from

discontinuous to continuous regime, but also provides a theoretical justification for deployment

of existing PDE solvers (e.g., [Mit05]) for numerical purposes. This result in fact coincides with

classical stochastic optimal control when the payoff function is continuous [CIL92, Theorem 8.2].

Corollary 5.2 (Continuous regime). Consider the system in (1) and suppose that Assumption

4.1 holds. Then, for any ε > 0 the function Vε : S → [0, 1] in (24) is continuous. Furthermore,

if (Aε ∪B)c is bounded6 then Vε is the unique viscosity solution of− sup
u∈U
LuVε(t, x) = 0 in [0, T [×(Aε ∪B)c

Vε(t, x) = `ε(x) on [0, T ]× (Aε ∪B)
⋃
{T} × Rn

(26)

Proof. The continuity of the function Vε defined as in (24) readily follows from Lipschitz continu-

ity of the payoff function `ε and uniform continuity of the stopped solution process in Proposition

4.8.7 The PDE characterization of Vε in (26) is the straightforward consequence of its continuity

and Theorem 4.7 with boundary condition in Theorem 4.9. The uniqueness follows from the

weak comparison principle, [FS06, Theorem VII.8.1, p. 274], that in fact requires (Aε∪B)c being

bounded. �

Let us remark that under further regularity conditions on the payoff function (i.e., differen-

tiability), the assertion of Corollary 5.2 may be even more strengthened in which the PDE is

understood in the classical sense; see for example [FS06, Theorem VI.5.1, p. 238] for further

details. The following Remark summarizes the preceding results and pave the analytical ground

so that the Reach-Avoid problem is amenable to numerical solutions by means of off-the-shelf

PDE solvers.

Remark 5.3 (Numerical stability). Theorem 5.1 implies that the conservative approximation

Vε can be arbitrarily precise, i.e., V (t, x) = limε↓0 Vε(t, x). Corollary 5.2 implies that Vε is

continuous, i.e., the PDE characterization in Theorem 4.7 can be simplified to the continuous

version. Continuous viscosity solution can be numerically solved by invoking existing toolboxes,

6One may replace this condition by imposing the drift and diffusion terms to be bounded.
7This continuity result can, alternatively, be deduced via the comparison result of the viscosity characterization

of Theorem 4.7 together with boundary conditions (22b) [CIL92].
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y

x

α

VS

f(x, y)

Avoid set Target

waterfall

Figure 3. Zermelo navigation problem : a swimmer in the river

e.g. [Mit05]. The precision of numerical solutions can also be arbitrarily accurate at the cost

of computational time and storage. In other words, let V δε be the numerical solution of Vε
obtained through a numerical routine, and let δ be the descretizaion parameter (grid size) as

required by [Mit05]. Then, since the continuous PDE characterization meets the hypothesis

required for the toolbox [Mit05], we have Vε = limδ↓0 V
δ
ε , and consequently we have V (t, x) =

limε↓0 limδ↓0 V
δ
ε (t, x).

6. Numerical Example: Zermelo Navigation Problem

To illustrate the theoretical results of the preceding sections, we apply the proposed reach-

avoid formulation to the Zermelo navigation problem with constraints and stochastic uncertain-

ties. In control theory, the Zermelo navigation problem consists of a swimmer who aims to reach

an island (Target) in the middle of a river while avoiding the waterfall, with the river current

leading towards the waterfall. The situation is depicted in Figure 3. We say that the swimmer

“succeeds” if he reaches the target before going over the waterfall, the latter forming a part of

his Avoid set.

6.A. Mathematical modeling. The dynamics of the river current are nonlinear; we let f(x, y)

denote the river current at position (x, y) [CQSP97]. We assume that the current flows with

constant direction towards the waterfall, with the magnitude of f decreasing in distance from

the middle of the river:

f(x, y) :=

[
1− ay2

0

]
.

To describe the uncertainty of the river current, we consider the diffusion term

σ(x, y) :=

[
σx 0

0 σy

]
.

We assume that the swimmer moves with constant velocity VS , and we assume that he can

change his direction α instantaneously. The complete dynamics of the swimmer in the river is

given by

(27)

[
dxs
dys

]
=

[
1− ay2 + VS cos(α)

VS sin(α)

]
ds+

[
σx 0

0 σy

]
dWs,

18
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where Ws is a two-dimensional Brownian motion, and α ∈ [π, π] is the direction of the swimmer

with respect to the x axis and plays the role of the controller for the swimmer.

6.B. Reach-Avoid formulation. Obviously, the probability of the swimmer’s “success” start-

ing from some initial position in the navigation region depends on starting point (x, y). As

shown in §3, this probability can be characterized as the level set of a function, and by Theorem

4.7 this function is the discontinuous viscosity solution of a certain differential equation on the

navigation region with particular lateral and terminal boundary conditions. The differential

operator L in Theorem 4.7 can be analytically calculated in this case as follows:

sup
u∈U
LuΦ(t, x, y) =

sup
α∈[−π,π]

(
∂tΦ(t, x, y) +

(
1− ay2 + VS cos(α)

)
∂xΦ(t, x, y)

+ VS sin(α)∂yΦ(t, x, y) +
1

2
σ2
x∂

2
xΦ(t, x, y) +

1

2
σ2
y∂

2
yΦ(t, x, y)

)
.

It can be shown that the controller value maximizing the above Dynkin operator is

α∗(t, x, y) := arg max
α∈[−π,π]

(
cos(α)∂xΦ(t, x, y) + sin(α)∂yΦ(t, x, y)

)
= arctan(

∂yΦ

∂xΦ
)(t, x, y).

Therefore, the differential operator can be simplified to

sup
u∈U
LuΦ(t, x, y) = ∂tΦ(t, x, y) + (1− ay2)∂xΦ(t, x, y)

+
1

2
σ2
x∂

2
xΦ(t, x, y) +

1

2
σ2
y∂

2
yΦ(t, x, y) + VS‖∇Φ(t, x, y)‖,

where ∇Φ(t, x, y) :=
[
∂xΦ(t, x, y) ∂yΦ(t, x, y)

]
.

6.C. Simulation results. For the following numerical simulations we fix the diffusion coeffi-

cients σx = 0.5 and σy = 0.2. We investigate three different scenarios: first, we assume that

the river current is uniform, i.e., a = 0m−1s−1 in (27). Moreover, we consider the case that the

swimmer velocity is less than the current flow, e.g., VS = 0.6 ms−1. Based on the above calcu-

lations, Figure 4(a) depicts the value function which is the numerical solution of the differential

operator equation in Theorem 4.7 with the corresponding terminal and lateral conditions. As

expected, since the swimmer’s speed is less than the river current, if he starts from the beyond

the target he has less chance of reach the island. This scenario is also captured by the value

function shown in Figure 4(a).

Second, we assume that the river current is non-uniform and decreases with respect to the

distance from the middle of the river. This means that the swimmer, even in the case that his

speed is less than the current, has a non-zero probability of success if he initially swims to the

sides of the river partially against its direction, followed by swimming in the direction of the

current to reaches the target. This scenario is depicted in Figure 4(b), where a non-uniform

river current a = 0.04m−1s−1 in (27) is considered.

Third, we consider the case that the swimmer can swim faster than river current. In this

case we expect the swimmer to succeed with some probability even if he starts from beyond the

target. This scenario is captured in Figure 4(c), where the reachable set (of course in probabilistic

fashion) covers the entire navigation region of the river except the region near the waterfall.
19



The Stochastic Reach-Avoid Problem and Set Characterization for Diffusions

(a) The first scenario: the swimmer’s speed is slower

than the river current, the current being assumed uni-

form.

(b) The second scenario: the swimmer’s speed is

slower than the maximum river current.

(c) The third scenario: the swimmer can swim faster

than the maximum river current.

Figure 4. The value functions for the different scenarios

In the following we show the level sets of the aforementioned value functions for p = 0.9. As

defined in §3 (and in particular in Proposition 3.3), these level sets, roughly speaking, correspond

to the reachable sets with probability p = 90% in certain time horizons while the swimmer is

avoiding the waterfall. By definition, as shown by the following figures, these sets are nested

with respect to the time horizon.

All simulations were obtained using the Level Set Method Toolbox [Mit05] (version 1.1), with

a grid 101× 101 in the region of simulation.

7. Concluding Remarks and Future Direction

In this article we studied a class of stochastic reach-avoid problems from an optimal control

perspective. The proposed framework provides a set characterization of the stochastic reach-

avoid set based on discontinuous viscosity solutions of a second order PDE. In contrast to earlier

approaches, this methodology is not restricted to almost-sure notions and allows for discontinuous

payoff functions. We also provided theoretical justification to compute the desired reach-avoid

set by means of off-the-shelf PDE solvers.

In future works we aim to extend our framework to stochastic motion-planning that indeed

involves concatenating basic reachability maneuver studied in this work. Another extension
20
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(a) The first scenario: the swimmer’s speed

is slower than the river current, the current

being assumed uniform.
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(b) The second scenario: the swimmer’s

speed is slower than the maximum river cur-

rent.
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(c) The third scenario: the swimmer can

swim faster than the maximum river current.

Figure 5. The level sets of the value functions for the different scenarios

to the current setting could be the existence of a second player who plays against our main

objective, which is known as the stochastic differential game in literature.
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Appendix A. Technical Proofs of §3

Proof of Proposition 3.3. We first establish the equality of V1 = V2. To this end, let us fix u ∈ U
and (t, x) in S. Observe that it suffices to show that pointwise on Ω,

1A(Xt,x;u
τ̂ ) = sup

s∈[t,T ]

{1A(Xt,x;u
s ) ∧ inf

r∈[t,s]
1Bc(X

t,x;u
r )}.
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Since A and B are closed, thanks to Remark 3.2 one can see that

sup
s∈[t,T ]

{1A(Xt,x;u
s ) ∧ inf

r∈[t,s]
1Bc(X

t,x;u
r )} = 1

⇐⇒ ∃s ∈ [t, T ] Xt,x;u
s ∈ A and ∀r ∈ [t, s] Xt,x;u

r ∈ Bc

⇐⇒ ∃s ∈ [t, T ] τA ≤ s ≤ T and τB > s

⇐⇒ Xt,x;u
τA = Xt,x;u

τA∧τB∧T = Xt,x;u
τA∪B∧T ∈ A

⇐⇒ 1A
(
Xt,x;u
τ̂

)
= 1

and since the functions take values in {0, 1}, we have V1(t, x) = V2(t, x).

As a first step towards proving V1 = V3, we start with establishing V3 ≥ V1. It is straightfor-

ward from the definition that

sup
τ∈T[t,T ]

inf
σ∈T[t,τ]

E
[
1A(Xt,x;u

τ ) ∧ 1Bc(Xt,x;u
σ )

]
≥ inf
σ∈T[t,τ̂]

E
[
1A(Xt,x;u

τ̂ ) ∧ 1Bc(Xt,x;u
σ )

]
,(28)

where τ̂ is the stopping time defined in (4a). For all stopping times σ ∈ T[t,τ̂ ], in view of (3b)

we have

1Bc(X
t,x;u
σ ) = 0 =⇒ Xt,x;u

σ ∈ B =⇒ τB ≤ σ ≤ τ̂ = τA ∧ τB ∧ T

=⇒ τB = σ = τ̂ < τA =⇒ Xt,x;u
τ̂ /∈ A

=⇒ 1A(Xt,x;u
τ̂ ) = 0

This implies that for all σ ∈ T[t,τ̂ ],

1A(Xt,x;u
τ̂ ) ∧ 1Bc(Xt,x;u

σ ) = 1A(Xt,x;u
τ̂ ) P-a.s.

which, in connection with (28) leads to

sup
τ∈T[t,T ]

inf
σ∈T[t,τ]

E
[
1A(Xt,x;u

τ ) ∧ 1Bc(Xt,x;u
σ )

]
≥ E

[
1A(Xt,x;u

τ̂ )
]
.

By arbitrariness of the control strategy u ∈ U , we get V3 ≥ V1. It remains to show V2 ≤ V1.

Given u ∈ U and τ ∈ T[t,T ], let us choose σ̂ := τ ∧ τB . Note that since t ≤ σ̂ ≤ τ then σ̂ ∈ T[t,τ ].
Hence,

inf
σ∈T[t,τ]

E
[
1A(Xt,x;u

τ ) ∧ 1Bc(Xt,x;u
σ )

]
≤ E

[
1A(Xt,x;u

τ ) ∧ 1Bc(Xt,x;u
σ̂ )

]
.(29)

Note that by an argument similar to the proof of Proposition 3.3, for all τ ∈ T[t,T ]:

1A(Xt,x;u
τ )∧1Bc(Xt,x;u

σ̂ ) = 1 =⇒ Xt,x;u
τ ∈ A and Xt,x;u

σ̂ /∈ B
=⇒ τA ≤ τ ≤ T and σ̂ 6= τB

=⇒ τA ≤ τ ≤ T and τA ≤ σ̂ = τ < τB

=⇒ τ̂ = τA ∧ τB ∧ T = τA =⇒ 1A(Xt,x;u
τ̂ ) = 1.

It follows that for all τ ∈ T[t,τ ],

1A(Xt,x;u
τ ) ∧ 1Bc(Xt,x;u

σ̂ ) ≤ 1A(Xt,x;u
τ̂ ) P-a.s.

which in connection with (29) leads to

sup
τ∈T[t,T ]

inf
σ∈T[t,τ]

E
[
1A(Xt,x;u

τ ) ∧ 1Bc(Xt,x;u
σ )

]
≤ E

[
1A(Xt,x;u

τ̂ )
]
.

By arbitrariness of the control strategy u ∈ U we arrive at V3 ≤ V1.
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We now show the second assertion. since A is closed, making use of the implication (3b) and

the definition of reach-avoid set in 2.1, we can express the set RA(t, p;A,B) by

RA(t, p;A,B) =
{
x ∈Rn

∣∣ ∃u ∈ U :

P
(
τA < τB and τA ≤ T

)
> p
}
.(30)

Also, in view of the properties (3a) and (3c), for any control u ∈ U we have

Xt,x;u
τ̂ ∈ A =⇒ τA ≤ τ̂ and τ̂ 6= τB =⇒ T ≥ τ̂ = τA < τB ,

indicating that the sample path Xt,x;u
· hits the set A before B at the time τ̂ ≤ T . Moreover,

Xt,x;u
τ̂ /∈ A =⇒ τ̂ 6= τA =⇒ τ̂ = (τB ∧ T ) < τA,

and this means that the sample path does not succeed in reaching A while avoiding set B within

time T . Therefore, the event {τA < τB and τA ≤ T} is equivalent to {Xt,x;u
τ̂ ∈ A}, and

P
(
τA < τB and τA ≤ T

)
= E

[
1A(Xt,x;u

τ̂ )
]
.

This, in view of (30) and arbitrariness of control strategy u ∈ U leads to the desired assertion. �

Appendix B. Technical proofs of §4

Proof of Proposition 4.2. We first prove continuity of τ̂(t, x) with respect to (t, x). Let us take

a sequence (tn, xn) → (t0, x0), and let
(
Xtn,xn;u
r

)
r≥tn

be the solution of (1) for a given policy

u ∈ U . Let us recall that by definition we assume that Xt,x;u
s := x for all s ∈ [0, t]. Here we

assume that tn ≤ t, but one can effectively follow the same technique for tn > t. Notice that it

is straightforward to observe that by the definition of stochastic integral in (1) we have

Xtn,xn;u
r = Xtn,xn;u

t +

∫ r

t

f
(
Xtn,xn;u
s , us

)
ds+

∫ r

t

σ
(
Xtn,xn;u
s , us

)
dWs

Therefore, by virtue of [Kry09, Theorem 2.5.9, p. 83], for all q ≥ 1 we have

E
[

sup
r∈[t,T ]

∥∥Xt,x;u
r −Xtn,xn;u

r

∥∥2q] ≤ C1(q, T,K)E
[∥∥x−Xtn,xn;u

t

∥∥2q]
≤ 22q−1C1(q, T,K)E

[
‖x− xn‖2q +

∥∥xn −Xtn,xn;u
t

∥∥2q],
where in light of [Kry09, Corollary 2.5.12, p. 86], it leads to

E
[

sup
r∈[t,T ]

∥∥Xt,x;u
r −Xtn,xn;u

r

∥∥2q] ≤(31)

C2(q, T,K, ‖x‖)
(
‖x− xn‖2q + |t− tn|q

)
.

In the above relations K is the Lipschitz constant of f and σ; C1 and C2 are constant depend-

ing on the indicated parameters. Hence, in view of Kolmogorov’s continuity criterion [Pro05,

Corollary 1 Chap. IV, p. 220], one may consider a version of the stochastic process Xt,x;u
· which

is continuous in (t, x) in the topology of uniform convergence on compacts. This yields to the

fact that P-a.s, for any ε > 0, for all sufficiently large n,

(32) Xtn,xn;u
r ∈ Bε

(
Xt0,x0;u
r

)
, ∀r ∈ [tn, T ],

where Bε(y) denotes the ball centered at y and radius ε. Based on the Assumptions 4.1.a. and

4.1.b., it is a well-known property of non-degenerate processes that the set of sample paths that
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hit the boundary of O and do not enter the set is negligible [RB98, Corollary 3.2, p. 65]. Hence,

by the definition of τ̂ and (3b), one can conclude that

∀δ > 0, ∃ε > 0,
⋃

s∈[t0,τ̂(t0,x0)−δ]

Bε(X
t0,x0;u
s ) ∩O = ∅ P-a.s.

This together with (32) indicates that P-a.s. for all sufficiently large n,

Xtn,xn;u
r /∈ O, ∀r ∈ [tn, τ̂(t0, x0)[ ,

which in conjunction with P-a.s. continuity of sample paths immediately leads to

(33) lim inf
(tn,xn)→(t,x)

τ̂(tn, xn) ≥ τ̂(t0, x0) P-a.s.

On the other hand by the definition of τ̂ and Assumptions 4.1.a. and 4.1.b., again in view of

[RB98, Corollary 3.2, p. 65],

∀δ > 0, ∃s ∈ [τO(t0, x0), τO(t0, x0) + δ[, Xt0,x0;u
s ∈ O◦ P-a.s.,

where τO is the first entry time to O, and O◦ denotes the interior of the set O. Hence, in light

of (32), P-a.s. there exists ε > 0, possibly depending on δ, such that for all sufficiently large n

we have Xtn,xn;u
s ∈ Bε(X

t0,x0;u
s ) ⊂ O. According to the definition of τO(tn, xn) and (3b), this

implies τO(tn, xn) ≤ s < τO(t0, x0) + δ. From arbitrariness of δ and the definition of τ̂ in (7), it

leads to

lim sup
(tn,xn)→(t,x)

τ̂(tn, xn) ≤ τ̂(t0, x0) P-a.s.,

where in conjunction with (33), P-a.s. continuity of the map (t, x) 7→ τ̂(t, x) at (t0, x0) follows.

It remains to show lower semicontinuity of J . Note that J is bounded since ` is. In accordance

with the P-a.s. continuity of Xt,x;u
r and τ̂(t, x) with respect to (t, x), and Fatou’s lemma, we

have

lim inf
n→∞

J
(
tn, xn,u

)
= lim inf

n→∞
E
[
`
(
Xtn,xn;u
τ̂(tn,xn)

)]
= lim inf

n→∞
E
[
`
(
Xtn,xn;u
τ̂(tn,xn)

−Xt,x;u
τ̂(tn,xn)

+Xt,x;u
τ̂(tn,xn)

−Xt,x;u
τ̂(t,x) +Xt,x;u

τ̂(t,x)

)]
= lim inf

n→∞
E
[
`
(
εn +Xt,x;u

τ̂(t,x)

)]
≥ E

[
lim inf
n→∞

`
(
εn +Xt,x;u

τ̂(t,x)

)]
(34)

≥ E
[
`
(
Xt,x;u
τ̂(t,x)

)]
= J(t, x,u),

where inequality in (34) follows from Fatou’s Lemma, and εn → 0 P-a.s. as n tends to ∞. Note

that by definition Xt,x;u
τ̂(tn,xn)

= x on the set {τ̂(tn, xn) < t}. �

Proof of Proposition 4.8. Let us consider a version of Xt,x;u
· which is almost surely continuous

in (t, x) uniformly respect to the policy u; this is always possible since the constant C2 in (31)

does not depend on u. That is, u may only affect a negligible subset of Ω; we refer to [Pro05,

Theorem 72 Chap. IV, p. 218] for further details on this issue. Hence, all the relations in the

proof of Proposition 4.2, in particular (32), hold if we permit the control policy u to depend on

n in an arbitrary way. Therefore, the assertions of Proposition 4.2 holds uniformly with respect

to (un)n∈N ⊂ U . That is, for all (t, x) ∈ S, (tn, xn)→ (t, x), and (un)n∈N, with probability one

we have 
lim
n→∞

sup
s∈[0,T ]

∥∥Xtn,xn;un
s −Xt,x;un

s

∥∥ = 0,

lim
n→∞

∣∣τ̂(tn, xn)− τ̂(t, x)
∣∣ = 0

(35)
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where τ̂ is as defined in (6) while the solution process is driven by control policies un. Moreover,

according to [Kry09, Corollary 2.5.10, p. 85] for every r, s ∈ [t, T ] and q ≥ 1 we have

E
[∥∥Xt,x;u

r −Xt,x;u
s

∥∥2q] ≤ C3

(
q, T,K, ‖x‖

)∣∣r − s∣∣q,
following the arguments in the proof of Proposition 4.2 in conjunction with above inequality,

one can also deduce that the mapping s 7→ Xt,x;u
s is P-a.s. continuous uniformly with respect

to u. Hence, one can infer that for all (t, x) ∈ S, with probability one we have

lim
n→∞

∥∥Xtn,xn;un
τ̂(tn,xn)

−Xt,x;un
τ̂(t,x)

∥∥ ≤ lim
n→∞

∥∥Xtn,xn;un
τ̂(tn,xn)

−Xt,x;un
τ̂(tn,xn)

∥∥+ lim
n→∞

∥∥Xt,x;un
τ̂(tn,xn)

−Xt,x;un
τ̂(t,x)

∥∥ = 0.

Notice that the first limit term above tends to zero as the version of the solution process Xt,x;un·
on the compact set [0, T ] is continuous in the initial condition (t, x) uniformly with respect to n.

The second term is the consequence of limits in (35) and continuity of the mapping s 7→ Xt,x;un
s

uniformly in n ∈ N. �
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