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Abstract

The goal of regression and classification methods in supervised learning is to minimize the empirical
risk, that is, the expectation of some loss function quantifying the prediction error under the empirical
distribution. When facing scarce training data, overfitting is typically mitigated by adding regularization
terms to the objective that penalize hypothesis complexity. In this paper we introduce new regularization
techniques using ideas from distributionally robust optimization, and we give new probabilistic interpre-
tations to existing techniques. Specifically, we propose to minimize the worst-case expected loss, where
the worst case is taken over the ball of all (continuous or discrete) distributions that have a bounded
transportation distance from the (discrete) empirical distribution. By choosing the radius of this ball
judiciously, we can guarantee that the worst-case expected loss provides an upper confidence bound on
the loss on test data, thus offering new generalization bounds. We prove that the resulting regularized
learning problems are tractable and can be tractably kernelized for many popular loss functions. The
proposed approach to regluarization is also extended to neural networks. We validate our theoretical
out-of-sample guarantees through simulated and empirical experiments.

Keywords: Distributionally robust optimization, optimal transport, Wasserstein distance, robust op-
timization, regularization

1 Introduction

The fields of machine learning and optimization are closely intertwined. On the one hand, optimization
algorithms are routinely used for the solution of classical machine learning problems. Conversely, recent
advances in optimization under uncertainty have inspired many new machine learning models.

From a conceptual point of view, many statistical learning tasks give naturally rise to stochastic opti-
mization problems. Indeed, they aim to find an estimator from within a prescribed hypothesis space that
minimizes the expected value of some loss function. The loss function quantifies the estimator’s ability
to correctly predict random outputs (i.e., dependent variables or labels) from random inputs (i.e., in-
dependent variables or features). Unfortunately, such stochastic optimization problems cannot be solved
exactly because the input-output distribution, which is needed to evaluate the expected loss in the objective
function, is not accessible and only indirectly observable through finitely many training samples. Approxi-
mating the expected loss with the empirical loss, that is, the average loss across all training samples, yields
fragile estimators that are sensitive to perturbations in the data and suffer from overfitting.

Regularization is the standard remedy to combat overfitting. Regularized learning models minimize the
sum of the empirical loss and a penalty for hypothesis complexity, which is typically chosen as a norm of the
hypothesis. There is ample empirical evidence that regularization reduces a model’s generalization error.
Statistical learning theory reasons that regularization implicitly restricts the hypothesis space, thereby
controlling the gap between the training error and the testing error, see, e.g., Bartlett and Mendelson [5].
However, alternative explanations for the practical success of regularization are possible. In particular, ideas
from modern robust optimization (Ben-Tal et al. [6]) recently led to a fresh perspective on regularization.
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Robust regression and classification models seek estimators that are immunized against adversarial
perturbations in the training data. They have received considerable attention since the seminal treatise on
robust least-squares regression by El Ghaoui and Lebret [28], who seem to be the first authors to discover an
intimate connection between robustification and regularization. Specifically, they show that minimizing the
worst-case residual error with respect to all perturbations in a Frobenius norm-uncertainty set is equivalent
to a Tikhonov regularization procedure. Xu et al. [77] disclose a similar equivalence between robust least-
squares regression with a feature-wise independent uncertainty set and the celebrated Lasso (least absolute
shrinkage and selection operator) algorithm. Leveraging this new robustness interpretation, they extend
Lasso to a wider class of regularization schemes tailored to regression problems with disturbances that
are coupled across features. In the context of classification, Xu et al. [76] provide a linkage between
robustification over non-box-typed uncertainty sets and the standard regularization scheme of support
vector machines. A comprehensive characterization of the conditions under which robustification and
regularization are equivalent has recently been compiled by Bertsimas and Copenhaver [10].

New learning models have also been inspired by recent advances in the emerging field of distributionally
robust optimization, which bridges the gap between the conservatism of robust optimization and the
specificity of stochastic programming. Distributionally robust optimization seeks to minimize a worst-
case expected loss, where the worst case is taken with respect to all distributions in an ambiguity set,
that is, a family of distributions consistent with the given prior information on the uncertainty, see, e.g.,
Calafiore and El Ghaoui [18], Delage and Ye [25], Goh and Sim [35], Wiesemann et al. [75] and the
references therein. Ambiguity sets are often characterized through generalized moment conditions. For
instance, Lanckriet et al. [43] propose a distributionally robust minimax probability machine for binary
classification, where both classes are encoded by the first and second moments of their features, and the goal
is to find a linear classifier that minimizes the worst-case misclassification error in view of all possible input
distributions consistent with the given moment information. By construction, this approach forces the
worst-case accuracies of both classes to be equal. Huang et al. [40] propose a generalization of the minimax
probability machine that allows for uneven worst-case classification accuracies. Lanckriet et al. [44] extend
the minimax probability machine to account for estimation errors in the mean vectors and covariance
matrices. Strohmann and Grudic [68] and Bhattacharyya [11] develop minimax probability machines for
regression and feature selection, respectively. Shivaswamy et al. [66] study linear classification problems
trained with incomplete and noisy features, where each training sample is modeled by an ambiguous
distribution with known first and second-order moments. The authors propose to address such classification
problems with a distributionally robust soft margin support vector machine and then prove that it is
equivalent to a classical robust support vector machine with a feature-wise uncertainty set. Farnia and
Tse [31] investigate distributionally robust learning models with moment ambiguity sets that restrict the
marginal of the features to the empirical marginal. The authors highlight similarities and differences to
classical regression models.

Ambiguity sets containing all distributions that share certain low-order moments are computationally
attractive but fail to converge to a singleton when the number N of training samples tends to infinity. Thus,
they preclude any asymptotic consistency results. A possible remedy is to design spherical ambiguity sets
with respect to some probability distance functions and to drive their radii to zero as N grows. Examples
include the φ-divergence ambiguity sets proposed by Ben-Tal et al. [7] or the Wasserstein ambiguity sets
studied by Mohajerin Esfahani and Kuhn [52] and Zhao and Guan [80]. Blanchet and Murthy [12] and
Gao and Kleywegt [34] consider generalized Wasserstein ambiguity sets defined over Polish spaces.

In this paper we investigate distributionally robust learning models with Wasserstein ambiguity sets.
The Wasserstein distance between two distributions is defined as the minimum cost of transporting one
distribution to the other, where the cost of moving a unit point mass is determined by the ground metric on
the space of uncertainty realizations. In computer science the Wasserstein distance is therefore sometimes
aptly termed the ‘earth mover’s distance’ (Rubner et al. [57]). Following Mohajerin Esfahani and Kuhn [52],
we define Wasserstein ambiguity sets as balls with respect to the Wasserstein distance that are centered at
the empirical distribution on the training samples. These ambiguity sets contain all (continuous or discrete)
distributions that can be converted to the (discrete) empirical distribution at bounded transportation cost.

Wasserstein distances are widely used in machine learning to compare histograms. For example, Rubner
et al. [57] use the Wasserstein distance as a metric for image retrieval with a focus on applications to color
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and texture. Cuturi [21] and Benamou et al. [8] propose fast iterative algorithms to compute a regularized
Wasserstein distance between two high-dimensional discrete distributions for image classification tasks.
Moreover, Cuturi and Doucet [23] develop first-order algorithms to compute the Wasserstein barycenter
between several empirical probability distributions, which has applications in clustering. Arjovsky et al. [3]
utilize the Wasserstein distance to measure the distance between the data distribution and the model dis-
tribution in generative adversarial networks. Furthermore, Frogner et al. [33] propose a learning algorithm
based on the Wasserstein distance to predict multi-label outputs.

Distributionally robust optimization models with Wasserstein ambiguity sets were introduced to the
realm of supervised learning by Shafieezadeh-Abadeh et al. [61], who show that distributionally robust
logistic regression problems admit a tractable reformulation and encapsulate the classical as well as the
popular regularized logistic regression problems as special cases. When the Wasserstein ball is restricted
to distributions on a compact set, the problem becomes intractable but can still be addressed with an
efficient decomposition algorithm due to Luo and Mehrotra [50]. Support vector machine models with
distributionally robust chance constraints over Wasserstein ambiguity sets are studied by Lee and Mehrotra
[47]. These models are equivalent to hard semi-infinite programs and can be solved approximately with a
cutting plane algorithm.

Wasserstein ambiguity sets are popular for their attractive statistical properties. For example, Fournier
and Guillin [32] prove that the empirical distribution on N training samples converges in Wasserstein dis-
tance to the true distribution at rate O(N−1/(n+1)), where n denotes the feature dimension. This implies
that properly scaled Wasserstein balls constitute natural confidence regions for the data-generating distri-
bution. The worst-case expected prediction loss over all distributions in a Wasserstein ball thus provides an
upper confidence bound on the expected loss under the unknown true distribution; see Mohajerin Esfahani
and Kuhn [52]. Blanchet et al. [13] show, however, that radii of the order O(N−1/2) are asymptotically
optimal even though the corresponding Wasserstein balls are too small to contain the true distribution
with constant confidence. For Wasserstein distances of type two (where the transportation cost equals
the squared ground metric) Blanchet et al. [14] develop a systematic methodology for selecting the ground
metric. Generalization bounds for the worst-case prediction loss with respect to a Wasserstein ball centered
at the true distribution are derived by Lee and Raginsky [48] in order to address emerging challenges in
domain adaptation problems, where the distributions of the training and test samples can differ.

This paper extends the results by Shafieezadeh-Abadeh et al. [61] on distributionally robust logistic
regression along several dimensions. Our main contributions can be summarized as follows:

• Tractability: We propose data-driven distributionally robust regression and classification models
that hedge against all input-output distributions in a Wasserstein ball. We demonstrate that the
emerging semi-infinite optimization problems admit equivalent reformulations as tractable convex
programs for many commonly used loss functions and for spaces of linear hypotheses. We also show
that lifted variants of these new learning models are kernelizable and thus offer an efficient procedure
for optimizing over all nonlinear hypotheses in a reproducible kernel Hilbert space. Finally, we study
distributionally robust learning models over families of feed-forward neural networks. We show that
these models can be approximated by regularized empirical loss minimization problems with a convex
regularization term and can be addressed with a stochastic proximal gradient descent algorithm.

• Probabilistic Interpretation of Existing Regularization Techniques: We show that the clas-
sical regularized learning models emerge as special cases of our framework when the cost of moving
probability mass along the output space tends to infinity. In this case, the regularization function and
its regularization weight are determined by the transportation cost on the input space and the radius
of the Wasserstein ball underlying the distributionally robust optimization model, respectively.

• Generalization Bounds: We demonstrate that the proposed distributionally robust learning mod-
els enjoy new generalization bounds that can be obtained under minimal assumptions. In particular,
they do not rely on any notions of hypothesis complexity and may therefore even extend to hypothesis
spaces with infinite VC-dimensions. A näıve generalization bound is obtained by leveraging modern
measure concentration results, which imply that Wasserstein balls constitute confidence sets for the
unknown data-generating distribution. Unfortunately, this generalization bound suffers from a curse
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of dimensionality and converges slowly for high input dimensions. By imposing bounds on the hy-
pothesis space, however, we can derive an improved generalization bound, which essentially follows
a dimension-independent square root law reminiscent of the central limit theorem.

• Relation to Robust Optimization: In classical robust regression and classification the training
samples are viewed as uncertain variables that range over a joint uncertainty set, and the best
hypothesis is found by minimizing the worst-case loss over this set. We prove that the classical
robust and new distributionally robust learning models are equivalent if the data satisfies a dispersion
condition (for regression) or a separability condition (for classification). While there is no efficient
algorithm for solving the robust learning models in the absence of this condition, the distributionally
robust models are efficiently solvable irrespective of the underlying training datasets.

• Confidence Intervals for Error and Risk: Using distributionally robust optimization techniques
based on the Wasserstein ball, we develop two tractable linear programs whose optimal values provide
a confidence interval for the absolute prediction error of any fixed regressor or the misclassification
risk of any fixed classifier.

• Worst-Case Distributions: We formulate tractable convex programs that enable us to efficiently
compute a worst-case distribution in the Wasserstein ball for any fixed hypothesis. This worst-case
distribution can be useful for stress tests or contamination experiments.

The rest of the paper develops as follows. Section 2 introduces our new distributionally robust learning
models. Section 3 provides finite convex reformulations for learning problems over linear and nonlinear
hypothesis spaces and describes efficient procedures for constructing worst-case distributions. Moreover,
it compares the new distributionally robust method against existing robust optimization and regulariza-
tion approaches. Section 4 develops new generalization bounds, while Section 5 addresses error and risk
estimation. Numerical experiments are reported in Section 6. All proofs are relegated to the appendix.

1.1 Notation

Throughout this paper, we adopt the conventions of extended arithmetics, whereby∞·0 = 0 ·∞ = 0/0 = 0
and∞−∞ = −∞+∞ = 1/0 =∞. The inner product of two vectors x,x′ ∈ Rn is denoted by 〈x,x′〉, and
for any norm ‖ ·‖ on Rn, we use ‖ ·‖∗ to denote its dual norm defined through ‖x‖∗ = sup {〈x,x′〉 : ‖x′‖ ≤
1}. The conjugate of an extended real-valued function f(x) on Rn is defined as f∗(x) = supx′〈x,x′〉−f(x′).
The indicator function of a set X ⊆ Rn is defined as δX(x) = 0 if x ∈ X; = ∞ otherwise. Its conjugate
SX(x) = sup{〈x′,x〉 : x′ ∈ X} is termed the support function of X. The characteristic function of X is
defined through 1X(x) = 1 if x ∈ X; = 0 otherwise. For a proper cone C ⊆ Rn the relation x �C x′
indicates that x− x′ ∈ C. The cone dual to C is defined as C∗ = {x′ : 〈x′,x〉 ≥ 0 ∀x ∈ C}. The Lipschitz
modulus of a function L : X→ R is denoted by lip(L) = supx,x′∈X{|L(x)−L(x′)|/‖x−x′‖ : x 6= x′}. If P

is a distribution on a set Ξ, then PN denotes the N -fold product of P on the Cartesian product ΞN . For
N ∈ N we define [N ] = {1, . . . , N}. A list of commonly used symbols is provided in the following table.

X input space Y output space

` loss function L univariate loss function

H hypothesis space K kernel matrix

f∗ conjugate of f lip(f) Lipschitz modulus of f

C∗ dual cone of C ‖ · ‖∗ dual norm of ‖ · ‖
SX support function of X δX indicator function of X
1X characteristic function of X [N ] {1, . . . , N}

2 Problem Statement

We first introduce the basic terminology and then describe our new perspective on regularization.
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2.1 Classical Statistical Learning

The goal of supervised learning is to infer an unknown target function f : X→ Y from limited data. The
target function maps any input x ∈ X (e.g., information on the frequency of certain keywords in an email)
to some output y ∈ Y (e.g., a label +1 (−1) if the email is likely (unlikely) to be a spam message). If the
true target function was accessible, it could be used as a means to reliably predict outputs from inputs
(e.g., it could be used to recognize spam messages in an automated fashion). In a supervised learning
framework, however, one has only access to finitely many input-output examples (x̂i, ŷi) for i = 1, . . . , N
(e.g., a database of emails which have been classified by a human as legitimate or as spam messages). We
will henceforth refer to these examples as the training data or the in-sample data. It is assumed that the
training samples are mutually independent and follow an unknown distribution P on X× Y.

The supervised learning problems are commonly subdivided into regression problems, where the output
y is continuous and Y = R, and classification problems, where y is categorical and Y = {+1,−1}. As the
space of all functions from X to Y is typically vast, it may be very difficult to learn the target function from
finitely many training samples. Thus, it is convenient to restrict the search space to a structured family
of candidate functions H ⊆ RX such as the space of all linear functions, some reproducible kernel Hilbert
space or the family of all feed-forward neural networks with a fixed number of layers. We henceforth refer
to each candidate function h ∈ H as a hypothesis and to H as the hypothesis space.

A learning algorithm is a method for finding a hypothesis h ∈ H that faithfully replicates the unknown
target function f . Specifically, in regression we seek to approximate f with a hypothesis h, and in classifi-
cation we seek to approximate f with a thresholded hypothesis sign(h). Many learning algorithms achieve
this goal by minimizing the in-sample error, that is, the empirical average of a loss function ` : R×Y→ R+

that estimates the mismatch between the output predicted by h(x) and the actual output y for a particular
input-output pair (x, y). Any such algorithm solves a minimization problem of the form

inf
h∈H

{
1

N

N∑
i=1

`(h(x̂i), ŷi) = EP̂N [`(h(x), y)]

}
, (1)

where P̂N = 1
N

∑N
i=1 δ(x̂i,ŷi) denotes the empirical distribution, that is, the uniform distribution on the

training data. For different choices of the the loss function `, the generic supervised learning problem (1)
reduces to different popular regression and classification problems from the literature.

Examples of Regression Models

For ease of exposition, we focus here on learning models with X ⊆ Rn and Y ⊆ R, where H is set to the
space of all linear hypotheses h(x) = 〈w,x〉 with w ∈ Rn. Thus, there is a one-to-one correspondence
between hypotheses and weight vectors w. Moreover, we focus on loss functions of the form `(h(x), y) =
L(h(x)− y) = L(〈w,x〉)− y) that are generated by a univariate loss function L.

1. A rich class of robust regression problems is obtained from (1) if ` is generated by the Huber loss
function with robustness parameter δ > 0, which is defined as L(z) = 1

2z
2 if |z| ≤ δ; = δ(|z| − 1

2δ)
otherwise. Note that the Huber loss function is both convex and smooth and reduces to the squared
loss L(z) = 1

2z
2 for δ ↑ ∞, which is routinely used in ordinary least squares regression. Problem (1)

with squared loss seeks a hypothesis w under which 〈w,x〉 approximates the mean of y conditional
on x. The Huber loss function for finite δ favors similar hypotheses but is less sensitive to outliers.

2. The support vector regression problem [67] emerges as a special case of (1) if ` is generated by the
ε-insensitive loss function L(z) = max{0, |z|−ε} with ε ≥ 0. In this setting, a training sample (x̂i, ŷi)
is penalized in (1) only if the output 〈w, x̂i〉 predicted by hypothesis w differs from the true output ŷi
by more than ε. Support vector regression thus seeks hypotheses w under which all training samples
reside within a slab of width 2ε centered around the hyperplane {(x, y) : 〈w,x〉 = y}.

3. The quantile regression problem [41] is obtained from (1) if ` is generated by the pinball loss func-
tion L(z) = max{−τz, (1 − τ)z} defined for τ ∈ [0, 1]. Quantile regression seeks hypotheses that
approximate the τ × 100%-quantile of the output conditional on the input. More precisely, it seeks
hypotheses w for which τ × 100% of all training samples lie in the halfspace {(x, y) : 〈w,x〉 ≥ y}.
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Examples of Classification Models

We focus here on linear learning models with X ⊆ Rn and Y = {+1,−1}, where H is again identified with
the space of all linear hypotheses h(x) = 〈w,x〉 with w ∈ Rn. Moreover, we focus on loss functions of the
form `(x, y) = L(yh(x)) = L(y〈w,x〉) generated by a univariate loss function L.

1. The support vector machine problem [20] is obtained from (1) if ` is generated by the hinge loss
function L(z) = max{0, 1 − z}, which is large if z is small. Thus, a training sample (x̂i, ŷi) is
penalized in (1) if the output sign(〈w, x̂i〉) predicted by hypothesis w and the true output ŷi have
opposite signs. More precisely, support vector machines seek hypotheses w under which the inputs
of all training samples with output +1 reside in the halfspace {x : 〈w,x〉 ≥ 1}, while the inputs of
training samples with output −1 are confined to {x : 〈w,x〉 ≤ −1}.

2. An alternative support vector machine problem is obtained from (1) if ` is generated by the smooth
hinge loss function, which is defined as L(z) = 1

2 −z if z ≤ 0; = 1
2(1−z)2 if 0 < z < 1; = 0 otherwise.

The smooth hinge loss inherits many properties of the ordinary hinge loss but has a continuous
derivative. Thus, it may be amenable to faster optimization algorithms.

3. The logistic regression problem [39] emerges as a special case of (1) if ` is generated by the logloss
function L(z) = log(1 + e−z), which is large if z is small—similar to the hinge loss function. In this
case the objective function of (1) can be viewed as the log-likelihood function corresponding to the
logistic model P(y = 1|x) = [1 + exp(−〈w,x〉)]−1 for the conditional probability of y = 1 given x.
Thus, logistic regression allows us to learn the conditional distribution of y given x.

Remark 2.1 (Convex approximation). Note that the hinge loss and the logloss functions represent convex
approximations for the (discontinuous) one-zero loss defined through L(z) = 1 if z ≤ 0; = 0 otherwise.

In practice there may be many hypotheses that are compatible with the given training data and thus
achieve a small empirical loss in (1). Any such hypothesis would accurately predict outputs from inputs
within the training dataset [24]. However, due to overfitting, these hypotheses might constitute poor
predictors beyond the training dataset, that is, on inputs that have not yet been recorded in the database.

Mathematically, even if the in-sample error EP̂N [`(〈w,x〉, y)] of a given hypothesis w is small, the out-of-
sample error EP[`(〈w,x〉, y)] with respect to the unknown true input-output distribution P may be large.

Regularization is the standard remedy to combat overfitting. Instead of näıvely minimizing the in-
sample error as is done in (1), it may thus be advisable to solve the regularized learning problem

inf
w
EP̂N [`(〈w,x〉, y)] + cΩ(w), (2)

which minimizes the sum of the emiprial average loss and a penalty for hpothesis complexity, which consists
of a regularization function Ω(w) and its associated regularization weight c. Tikhonov regularization [71],
for example, corresponds to the choice Ω(w) = ‖Γw‖22 for some Tikhonov matrix Γ ∈ Rn×n. Setting Γ
to the identity matrix gives rise to standard L2-regularization. Similarly, Lasso (least absolute shrinkage
and selection operator) regularization or L1-regularization [70] is obtained by setting Ω(w) = ‖w‖1. Lasso
regularization has gained popularity because it favors parsimonious interpretable hypotheses.

Most popular regualization methods admit probabilistic interpretations. However, these interpreta-
tions typically rely on prior distributional assumptions that remain to some extent arbitrary (e.g., L2- and
L1-regularization can be justified if w is governed by a Gaussian or Laplacian prior distribution, respec-
tively [70]). Thus, in spite of their many desirable theoretical properties, there is a consensus that “most
of the (regularization) methods used successfully in practice are heuristic methods” [1].

2.2 A New Perspective on Regularization

When linear hypotheses are used, problem (1) minimizes the in-sample error EP̂N [`(〈w,x〉, y)]. However, a
hypothesis w enjoying a low in-sample error may still suffer from a high out-of-sample error EP[`(〈w,x〉, y)]
due to overfitting. This is unfortunate as we seek hypotheses that offer high prediction accuracy on future
data, meaning that the out-of-sample error is the actual quantity of interest. An ideal learning model
would therefore minimize the out-of-sample error. This is impossible, however, for the following reasons:
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• The true input-output distribution P is unknown and only indirectly observable through the N
training samples. Thus, we lack essential information to compute the out-of-sample error.

• Even if the distribution P was known, computing the out-of-sample error would typically be hard
due to the intractability of high-dimensional integration; see, e.g., [38, Corollary 1].

The regularized loss EP̂N [`(〈w,x〉, y)] + cΩ(w) used in (2), which consists of the in-sample error and an
overfitting penalty, can be viewed as an in-sample estimate of the out-of-sample error. Yet, problem (2)
remains difficult to justify rigorously. Therefore, we advocate here a more principled approach to regu-
larization. Specifically, we propose to take into account the expected loss of hypothesis w under every
distribution Q that is close to the empirical distribution P̂N , that is, every Q that could have generated
the training data with high confidence. To this end, we first introduce a distance measure for distributions.
For ease of notation, we henceforth denote the input-output pair (x, y) by ξ, and we set Ξ = X× Y.

Definition 2.2 (Wasserstein metric). The Wasserstein distance between two distributions Q and Q′ sup-
ported on Ξ is defined as

W (Q,Q′) := inf
Π

{∫
Ξ2

d(ξ, ξ′) Π(dξ,dξ′) :
Π is a joint distribution of ξ and ξ′

with marginals Q and Q′, respectively

}
,

where d is a metric on Ξ.

By definition, W (Q,Q′) represents the solution of an infinite-dimensional transportation problem, that
is, it corresponds to the minimal cost for moving the distribution Q to Q′, where the cost for moving a unit
probability mass from ξ to ξ′ is given by the transportation distance d(ξ, ξ′). Due to this interpretation,
the metric d is often referred to as the transportation cost [72] or ground metric [22], while the Wasserstein
metric is sometimes termed the mass transportation distance or earth mover’s distance [57].

Consider now the Wasserstein ball of radius ρ ≥ 0 around the empirical distribution P̂N ,

Bρ(P̂N ) =
{
Q : Q(Ξ) = 1, W (Q, P̂N ) ≤ ρ

}
, (3)

which contains all input-output distributions Q supported on Ξ whose Wasserstein distance from P̂N does
not exceed ρ. This means that Q can be transported to P̂N (or vice versa) at a cost of at most ρ. The hope
is that a large enough Wasserstein ball will contain distributions that are representative of the unknown
true input-output distribution P, such that the worst-case expectation sup

Q∈Bρ(P̂N )
EQ[`(〈w,x〉, y)] can

serve as an upper confidence bound on the out-of-sample error EP[`(〈w,x〉, y)]. This motivates us to
introduce a new regularized learning model, which minimizes precisely this worst-case expectation.

inf
w

sup
Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] (4)

Problem (4) represents a distributionally robust convex program of the type considered in [52]. Note that if
`(〈w,x〉, y) is convex in w for every fixed (x, y), i.e., if ` is convex in its first argument, then the objective
function of (4) is convex because convexity is preserved under integration and maximization. Note also
that if ρ is set to zero, then (4) collapses to the unregularized in-sample error minimization problem (1).

Remark 2.3 (Support information). The uncertainty set Ξ captures prior information on the range of the
inputs and outputs. In image processing, for example, pixel intensities range over a known interval. Simi-
larly, in diagnostic medicine, physiological parameters such as blood glucose or cholesterol concentrations
are restricted to be non-negative. Sometimes it is also useful to construct Ξ as a confidence set that covers
the support of P with a prescribed probability. Such confidence sets are often constructed as ellipsoids, as
intersections of different norm balls [6, 25] or as sublevel sets of kernel expansions [60].

In the remainder we establish that the distributionally robust learning problem (4) has several desir-
able properties. (i) Problem (4) is computationally tractable under standard assumptions about the loss
function `, the input-output space Ξ and the transportation metric d. For specific choices of d it even
reduces to a regularized learning problem of the form (2). (ii) For all univariate loss functions reviewed in
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Section 2.1, a tight conservative approximation of (4) is kernelizable, that is, it can be solved implicitly
over high-dimensional spaces of nonlinear hypotheses at the same computational cost required for linear
hypothesis spaces. (iii) Leveraging modern measure concentration results, the optimal value of (4) can be
shown to provide an upper confidence bound on the out-of-sample error. This obviates the need to mobilize
the full machinery of VC theory and, in particular, to estimate the VC dimension of the hypothesis space
in order to establish generalization bounds. (iv) If the number of training samples tends to infinity while
the Wasserstein ball shrinks at an appropriate rate, then problem (4) asymptotically recovers the ex post
optimal hypothesis that attains the minimal out-of-sample error.

3 Tractable Reformulations

In this section we demonstrate that the distributionally robust learning problem (4) over linear hypotheses
is amenable to efficient computational solution procedures. We also discuss generalizations to nonlinear
hypothesis classes such as reproducing kernel Hilbert spaces and families of feed-forward neural networks.

3.1 Distributionally Robust Linear Regression

Throughout this section we focus on linear regression problems, where `(〈w,x〉, y) = L(〈w,x〉 − y) for
some convex univariate loss function L. We also assume that X and Y are both convex and closed and that
the transportation metric d is induced by a norm ‖ · ‖ on the input-output space Rn+1. In this setting,
the distributionally robust regression problem (4) admits an equivalent reformulation as a finite convex
optimization problem if either (i) the univariate loss function L is piecewise affine or (ii) Ξ = Rn+1 and L
is Lipschitz continuous (but not necessarily piecewise affine).

Theorem 3.1 (Distributionally robust linear regression). The following statements hold.

(i) If L(z) = maxj≤J{ajz + bj}, then (4) is equivalent to
inf
w,λ,si
pij ,uij

λρ+
1

N

N∑
i=1

si

s.t. SΞ(ajw − pij ,−aj − uij) + bj + 〈pij , x̂i〉+ uij ŷi ≤ si i ∈ [N ], j ∈ [J ]
‖(pij , uij)‖∗ ≤ λ i ∈ [N ], j ∈ [J ],

(5)

where SΞ denotes the support function of Ξ.

(ii) If Ξ = Rn+1 and L(z) is Lipschitz continuous, then (4) is equivalent to

inf
w

1

N

N∑
i=1

L(〈w, x̂i〉 − ŷi) + ρ lip(L) ‖(w,−1)‖∗. (6)

In the following, we exemplify Theorem 3.1 for the Huber, ε-insensitive and pinball loss functions under
the assumption that the uncertainty set Ξ admits the conic representation

Ξ = {(x, y) ∈ Rn+1 : C1x+ c2y �C d} (7)

for some matrix C1, vectors c2 and d and proper convex cone C of appropriate dimensions. We also assume
that Ξ admits a Slater point (xS, yS) ∈ Rn+1 with C1xS + c2yS ≺C d.

Corollary 3.2 (Robust regression). If L represents the Huber loss function with threshold δ ≥ 0 and
Ξ = Rn+1, then (4) is equivalent to

inf
w,zi

1

N

N∑
i=1

1

2
z2
i + δ|〈w, x̂i〉 − ŷi − zi|+ ρ δ ‖(w,−1)‖∗. (8)
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Corollary 3.3 (Support vector regression). If L represents the ε-insensitive loss function for some ε ≥ 0
and Ξ is of the form (7), then (4) is equivalent to

inf
w,λ,si
p+
i ,p
−
i

λρ+
1

N

N∑
i=1

si

s.t. ŷi − 〈w, x̂i〉 − ε+ 〈p+
i ,d−C1x̂i − c2ŷi〉 ≤ si i ∈ [N ]

〈w, x̂i〉 − ŷi − ε+ 〈p−i ,d−C1x̂i − c2ŷi〉 ≤ si i ∈ [N ]∥∥(C>1 p+
i +w, c>2 p

+
i − 1

)∥∥
∗ ≤ λ i ∈ [N ]∥∥(C>1 p−i −w, c>2 p−i + 1

)∥∥
∗ ≤ λ i ∈ [N ]

p+
i ,p

−
i ∈ C∗ i ∈ [N ]

si ≥ 0 i ∈ [N ].

(9)

Corollary 3.4 (Quantile regression). If L represents the pinball loss function for some τ ∈ [0, 1] and Ξ is
of the form (7), then (4) is equivalent to

inf
w,λ,si
p+
i ,p
−
i

λρ+
1

N

N∑
i=1

si

s.t. τ (ŷi − 〈w, x̂i〉) + 〈p+
i ,d−C1x̂i − c2ŷi〉 ≤ si i ∈ [N ]

(1− τ) (〈w, x̂i〉 − ŷi) + 〈p−i ,d−C1x̂i − c2ŷi〉 ≤ si i ∈ [N ]∥∥(C>1 p+
i + τw, c>2 p

+
i − τ

)∥∥
∗ ≤ λ i ∈ [N ]∥∥(C>1 p−i − (1− τ)w, c>2 p

−
i + 1− τ

)∥∥
∗ ≤ λ i ∈ [N ]

p+
i ,p

−
i ∈ C∗ i ∈ [N ]

si ≥ 0 i ∈ [N ].

(10)

Remark 3.5 (Relation to classical regularization). Assume now that the mass transportation costs are
additively separable with respect to inputs and outputs, that is,

d((x1, y1), (x2, y2)) = ‖x1 − x2‖+ κ|y1 − y2| (11)

for some κ > 0.1 Note that κ captures the costs of moving probability mass along the output space. For
κ = ∞ all distributions in the Wasserstein ball Bρ(P̂N ) are thus obtained by reshaping P̂N only along
the input space. It is easy to verify that for κ = ∞ and Ξ = Rn+1 the learning models portrayed in
Corollaries 3.2-3.4 all simplify to

inf
w

1

N

N∑
i=1

L(〈w, x̂i〉 − ŷi) + c‖w‖∗, (12)

where c = ρδ for robust regression with Huber loss, c = ρ for support vector regression with ε-insensitive
loss and c = max{τ, 1− τ} ρ for quantile regression with pinball loss. Thus, (12) is easily identified as an
instance of the classical regularized learning problem (2), where the dual norm term ‖w‖∗ plays the role
of the regularization function, while c represents the usual regularization weight. By definition of the dual
norm, the penalty ‖w‖∗ assigned to a hypothesis w is maximal (minimal) if the cost of moving probability
mass along w is minimal (maximal). We emphasize that if κ = ∞, then the marginal distribution of y
corresponding to every Q ∈ Bρ(P̂N ) coincides with the empirical distribution 1

N

∑N
i=1 δŷi . Thus, classical

regularization methods, which correspond to κ = ∞, are explained by a counterintuitive probabilistic
model, which pretends that any training sample must have an output that has already been recordeded in
the training dataset. In other words, classical regularization implicitly assumes that there is no uncertainty
in the outputs. More intuitively appealing regularization schemes are obtained for finite values of κ.

1By slight abuse of notation, the symbol ‖ · ‖ now denotes a norm on Rn.
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To establish a connection between distributionally robust and classical robust regression as discussed
in [28, 77], we further investigate the worst-case expected loss of a fixed linear hypothesis w.

sup
Q∈Bρ(P̂N )

EQ[L(〈w,x〉 − y)] (13)

Theorem 3.6 (Extremal distributions in linear regression). The following statements hold.

(i) If L(z) = maxj≤J{ajz + bj}, then the worst-case expectation (13) coincides with

sup
αij ,qij ,vij

1

N

N∑
i=1

J∑
j=1

αij
(
aj(〈w, x̂i〉 − ŷi) + bj

)
+ aj(〈w, qij〉 − vij)

s.t.
1

N

N∑
i=1

J∑
j=1

‖(qij , vij)‖ ≤ ρ

J∑
j=1

αij = 1 i ∈ [N ]

(x̂i + qij/αij , ŷi + vij/αij) ∈ Ξ i ∈ [N ], j ∈ [J ]
αij ≥ 0 i ∈ [N ], j ∈ [J ]

(14)

for any fixed hypothesis w. Moreover, if (α?ij , q
?
ij , v

?
ij) maximizes (14), then the discrete distribution

Q∗ =
1

N

N∑
i=1

J∑
j=1

α?ij δ(x̂i+q?ij/α
?
ij , ŷi+v

?
ij/α

?
ij)
,

represents a maximizer for (13).

(ii) If Ξ = Rn+1 and L(z) is Lipschitz continuous, then the discrete distributions

Qγ =
1

N

N∑
i=2

δ(x̂i, ŷi) +
1− γ
N

δ(x̂1, ŷ1) +
γ

N
δ

(x̂1+ ρN
γ
x?,ŷ1+ ρN

γ
y?)

for γ ∈ (0, 1],

where (x?, y?) solves max‖(x,y)‖≤1〈w,x〉−y, are feasible and asymptotically optimal in (13) for γ ↓ 0.

Recall that 0/0 = 0 and 1/0 =∞ by our conventions of extended arithmetic. Thus, any solution feasible
in (14) with αij = 0 must satisfy qij = 0 and vij = 0 because otherwise (x̂i + qij/αij , ŷi + vij/αij) /∈ Ξ.

Theorem 3.6 shows how one can use convex optimization to construct a sequence of distributions that
are asymptotically optimal in (13). Next, we argue that the worst-case expected cost (13) is equivalent to
a (robust) worst-case cost over a suitably defined uncertainty set if the following assumption holds.

Assumption 3.7 (Minimal dispersion). For every w ∈ Rn there is a training sample (x̂k, ŷk) for some
k ≤ N such that the derivative L′ exists at 〈w, x̂k〉 − ŷk and satisfies |L′(〈w, x̂k〉 − ŷk)| = lip(L).

Remark 3.8 (Minimal dispersion). Assumption 3.7 is reminiscent of the non-separability condition in [76,
Theorem 3], which is necessary to prove the equivalence of robust and regularized support vector machines.
In the regression context studied here, Assumption 3.7 ensures that, for every w, there exists a training
sample that activates the largest absolute slope of L.

For instance, in support vector regression, it means that for every w there exists a data point outside of
the slab of width 2ε/‖(w,−1)‖2 centered around the hyperplane Hw = {(x, y) ∈ Rn ×R : 〈w,x〉 − y = 0}
(i.e., the empirical ε-insensitive loss is not zero). Similarly, in robust regression with the Huber loss
function, Assumption 3.7 stipulates that for every w there exists a data point outside of the slab of
width 2δ/‖(w,−1)‖2 centered around Hw. However, quantile regression with τ 6= 0.5 fails to satisfy
Assumption 3.7. Indeed, for any training dataset there always exists some w such that all data points
reside on the side of Hw where the pinball loss function is less steep.
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Theorem 3.9 (Robust regression). If Ξ = Rn+1 and the loss function L(z) is Lipschitz continuous, then
the worst-case expected loss (13) provides an upper bound on the (robust) worst-case loss

sup
∆xi,∆yi

1

N

N∑
i=1

[L(〈w, x̂i + ∆xi〉 − ŷi −∆yi)]

s.t.
1

N

N∑
i=1

‖(∆xi,∆yi)‖ ≤ ρ.
(15)

Moreover, if Assumption 3.7 holds, then (13) and (15) are equal.

Remark 3.10 (Tractability of robust regression). Assume that Ξ = Rn+1, while L and ‖ · ‖ both admit a
tractable conic representation. By Theorem 3.1, the worst-case expected loss (13) can then be computed
in polynomial time by solving a tractable convex program. Theorem 3.9 thus implies that the worst-case
loss (28) can also be computed in polynomial time if Assumption 3.7 holds. To our best knowledge, there
exists no generic efficient method for computing (28) if Assumption 3.7 fails to hold and L is not piecewise
affine. This reinforces our belief that a distributionally robust approach to regression is more natural.

3.2 Distributionally Robust Linear Classification

Throughout this section we focus on linear classification problems, where `(〈w,x〉, y) = L(y〈w,x〉) for
some convex univariate loss function L. We also assume that X is both convex and closed and that
Y = {+1,−1}. Moreover, we assume that the transportation metric d is defined via

d((x, y), (x′, y′)) = ‖x− x′‖+ κ1{y 6=y′}, (16)

where ‖ · ‖ represents a norm on the input space Rn, and κ > 0 quantifies the cost of switching a label.
In this setting, the distributionally robust classification problem (4) admits an equivalent reformulation as
a finite convex optimization problem if either (i) the univariate loss function L is piecewise affine or (ii)
X = Rn and L is Lipschitz continuous (but not necessarily piecewise affine).

Theorem 3.11 (Distributionally robust linear classification). The following statements hold.

(i) If L(z) = maxj∈J{ajz + bj}, then (4) is equivalent to

inf
w,λ,si
p+
ij ,p
−
ij

λρ+
1

N

N∑
i=1

si

s.t. SX(aj ŷiw − p+
ij) + bj + 〈p+

ij , x̂i〉 ≤ si i ∈ [N ], j ∈ [J ]

SX(−aj ŷiw − p−ij) + bj + 〈p−ij , x̂i〉 − κλ ≤ si i ∈ [N ], j ∈ [J ]

‖p+
ij‖∗ ≤ λ, ‖p

−
ij‖∗ ≤ λ i ∈ [N ], j ∈ [J ],

(17)

where SX denotes the support function of X.

(ii) If X = Rn and L is Lipschitz continuous, then (4) is equivalent to
inf
w,λ,si

λρ+
1

N

N∑
i=1

si

s.t. L(ŷi〈w, x̂i〉) ≤ si i ∈ [N ]
L(−ŷi〈w, x̂i〉)− κλ ≤ si i ∈ [N ]
lip(L)‖w‖∗ ≤ λ.

(18)

In the following, we exemplify Theorem 3.11 for the hinge loss, logloss and smoothed hinge loss functions
under the assumption that the input space X admits the conic representation

X = {x ∈ Rn : Cx �C d} (19)

for some matrix C, vector d and proper convex cone C of appropriate dimensions. We also assume that X
admits a Slater point xS ∈ Rn with CxS ≺C d.
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Corollary 3.12 (Support vector machine). If L represents the hinge loss function and X is of the form (19),
then (4) is equivalent to

inf
w,λ

si,p
+
i ,p
−
i

λρ+
1

N

N∑
i=1

si

s.t. 1− ŷi (〈w, x̂i〉) + 〈p+
i ,d−Cx̂i〉 ≤ si i ∈ [N ]

1 + ŷi (〈w, x̂i〉) + 〈p−i ,d−Cx̂i〉 − κλ ≤ si i ∈ [N ]

‖C>p+
i + ŷiw‖∗ ≤ λ, ‖C>p−i − ŷiw‖∗ ≤ λ i ∈ [N ]

si ≥ 0, p+
i ,p

−
i ∈ C∗ i ∈ [N ].

(20)

Corollary 3.13 (Support vector machine with smooth hinge loss). If L represents the smooth hinge loss
function and X = Rn, then (4) is equivalent to

min
w,λ,si

z+
i ,z
−
i ,t

+
i ,t
−
i

λρ+
1

N

N∑
i=1

si

s.t. 1
2(z+

i − ŷi〈w, x̂i〉)2 + t+i ≤ si i ∈ [N ]
1
2(z−i + ŷi〈w, x̂i〉)2 + t−i − κλ ≤ si i ∈ [N ]
1− z+

i ≤ t
+
i , 1− z−i ≤ t

−
i i ∈ [N ]

t+i , t
−
i ≥ 0 i ∈ [N ]

‖w‖∗ ≤ λ.

(21)

Corollary 3.14 (Logistic regression). If L represents the logloss function and X = Rn, then (4) is equiv-
alent to 

min
w,λ,si

λρ+
1

N

N∑
i=1

si

s.t. log
(

1 + exp
(
− ŷi〈w, x̂i〉

))
≤ si i ∈ [N ]

log
(

1 + exp
(
ŷi〈w, x̂i〉

))
− κλ ≤ si i ∈ [N ]

‖w‖∗ ≤ λ.

(22)

Remark 3.15 (Relation to classical regularization). If X = Rn and the weight parameter κ in the trans-
portation metric (16) is set to infinity, then the learning problems portrayed in Corollaries 3.12–3.14 all
simplify to

inf
w

1

N

N∑
i=1

L(ŷi〈w, x̂i〉) + ρ‖w‖∗. (23)

Thus, in analogy to the case of regression, (23) reduces to an instance of the classical regularized learn-
ing problem (2), where the dual norm term ‖w‖∗ plays the role of the regularization function, while the
Wasserstein radius ρ represents the usual regularization weight. Note that if κ = ∞, then mass trans-
portation along the output space is infinitely expensive, that is, any distribution Q ∈ Bρ(P̂N ) can smear
out the training samples along X, but it cannot flip outputs from +1 to −1 or vice versa. Thus, classical
regularization schemes, which are recovered for κ = ∞, implicitly assume that output measurements are
exact. As this belief is not tenable in most applications, an approach with κ <∞ may be more satisfying.
We remark that alternative approaches for learning with noisy labels have previously been studied by
Lawrence and Schölkopf [45], Natarajan et al. [53], and Yang et al. [78].

Remark 3.16 (Relation to Tikhonov regularization). The learning problem

inf
w

1

N

N∑
i=1

L(ŷi〈w, x̂i〉) + c‖w‖22 (24)
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with Tikhonov regularizer enjoys wide popularity. If L represents the hinge loss, for example, then (24)
reduces to the celebrated soft margin support vector machine problem. However, the Tikhonov regularizer
appearing in (24) is not explained by a distributionally robust learning problem of the form (4). It is
known, however, that (23) with ‖ · ‖∗ = ‖ · ‖2 and (24) are equivalent in the sense that for every ρ ≥ 0
there exists c ≥ 0 such that the solution of (23) also solves (24) and vice versa [76, Corollary 6].

To establish a connection between distributionally robust and classical robust classification as discussed
in [76], we further investigate the worst-case expected loss of a fixed linear hypothesis w.

sup
Q∈Bρ(P̂N )

EQ[L(y〈w,x〉)] (25)

Theorem 3.17 (Extremal distributions in linear classification). The following statements hold.

(i) If L(z) = maxj∈J{ajz + bj}, then the worst-case expectation (25) coincides with

sup
α+
ij ,α
−
ij

q+
ij ,q
−
ij

1

N

N∑
i=1

J∑
j=1

(α+
ij − α

−
ij)aj ŷi〈w, x̂i〉+ aj ŷi〈w, q+

ij − q
−
ij〉+

J∑
j=1

bj

s.t.
N∑
i=1

J∑
j=1

‖q+
ij‖+ ‖q−ij‖+ κα−ij ≤ Nρ

J∑
j=1

α+
ij + α−ij = 1 i ∈ [N ]

x̂i + q+
ij/α

+
ij ∈ X, x̂i + q−ij/α

−
ij ∈ X i ∈ [N ], j ∈ [J ]

α+
ij , α

−
ij ≥ 0 i ∈ [N ], j ∈ [J ]

(26)

for any fixed w. Also, if (α+
ij
?
, α−ij

?
, q+
ij
?
, q−ij

?
) maximizes (26), then the discrete distribution

Q =
1

N

N∑
i=1

J∑
j=1

α+
ij
?
δ(x̂i−q+

ij

?
/α+
ij

?
, ŷi)

+ α−ij
?
δ(x̂i−q−ij

?
/α−ij

?
, −ŷi)

represents a maximizer for (25).

(ii) If X = Rn, then the worst-case expectation (25) coincides with the optimal value of

sup
αi,θ

lip(L)‖(w)‖∗θ +
1

N

N∑
i=1

(1− αi)L(ŷi〈w, x̂i〉) + αiL(−ŷi〈w, x̂i〉)

s.t. θ +
κ

N

N∑
i=1

αi = ρ− γ

0 ≤ αi ≤ 1 i ∈ [N ]
θ ≥ 0

(27)

for γ = 0. Moreover, if (α?i (γ), θ?(γ)) maximizes (27) for γ > 0, η(γ) = γ/(θ?(γ) +κ− ρ+ γ+ 1) and
x? solves maxx{〈w,x〉 : ‖x‖ ≤ 1}, then the discrete distributions

Qγ =
1

N

N∑
i=2

(1− α?i (γ)) δ(x̂i, ŷi) + α?i (γ) δ(x̂i, −ŷi) +
1− η(γ)

N

[
(1− α?1(γ)) δ(x̂1, ŷ1) + α?1(γ) δ(x̂1, −ŷ1)

]
+
η(γ)

N
δ

(x̂1+
θ?(γ)N
η(γ)

x?, ŷ1)

for γ ∈ [0,min{ρ, 1}] are feasible and asymptotically optimal in (25) for γ ↓ 0.
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Theorem 3.17 shows how one can use convex optimization to construct a sequence of distributions that
are asymptotically optimal in (25). Next, we show that the worst-case expected cost (25) is equivalent to
a (robust) worst-case cost over a suitably defined uncertainty set if the following assumption holds.

Assumption 3.18 (Non-separability). For every w ∈ Rn there is a training sample (x̂k, ŷk) for some
k ≤ N such that the derivative L′ exists at ŷk〈w, x̂k〉 and satisfies |L′(ŷk〈w, x̂k〉)| = lip(L).

Remark 3.19 (Non-separability). Assumption 3.18 generalizes the non-separability condition in [76, The-
orem 3] for the classical and smooth hinge loss functions to more general Lipschitz continuous losses. Note
that, in the case of the hinge loss, Assumption 3.18 effectively stipulates that for any w there exists a
training sample (x̂k, ŷk) with ŷk〈w, x̂k〉 < 1, implying that the dataset cannot be perfectly separated by
any linear hypothesis w. An equivalent requirement is that the empirical hinge loss is nonzero for every w.
Similarly, in the case of the smooth hinge loss, Assumption 3.18 ensures that for any w there is a training
sample with ŷk〈w, x̂k〉 < 0, which implies again that the dataset admits no perfect linear separation. Note,
however, that the logloss fails to satisfy Assumption 3.18 as its steepest slope is attained at infinity.

Theorem 3.20 (Robust classification). Suppose that X = Rn, the loss function L is Lipschitz continuous
and the cost of flipping a label in the transportation metric (16) is set to κ = ∞. Then, the worst-case
expected loss (25) provides an upper bound on the (robust) worst-case loss

sup
∆xi

1

N

N∑
i=1

L (ŷi〈w, x̂i + ∆xi〉)

s.t.
1

N

N∑
i=1

‖∆xi‖ ≤ ρ.
(28)

Moreover, if Assumption 3.18 holds, then (25) and (28) are equal.

Remark 3.21 (Tractability of robust classification). Assume that X = Rn, while L and ‖ · ‖ both admit a
tractable conic representation. By Theorem 3.11, the worst-case expected loss (25) can then be computed
in polynomial time by solving a tractable convex program. Theorem 3.20 thus implies that the worst-case
loss (28) can also be computed in polynomial time if Assumption 3.18 holds. This confirms Proposition 4
in [76]. No efficient method for computing (28) is know if Assumption 3.18 fails to hold.

3.3 Nonlinear Hypotheses: Reproducing Kernel Hilbert Spaces

We now generalize the learning models from Sections 3.1 and 3.2 to nonlinear hypotheses that range over
a reproducing kernel Hilbert space (RKHS) H ⊆ RX with inner product 〈·, ·〉H. By definition, H thus
constitutes a complete metric space with respect to the norm ‖ · ‖H induced by the inner product, and
the point evaluation h 7→ h(x) of the functions h ∈ H represents a continuous linear functional on H
for any fixed x ∈ X. The Riesz representation theorem then implies that for every x ∈ X there exists a
unique function Φ(x) ∈ H such that h(x) = 〈h,Φ(x)〉H for all h ∈ H. We henceforth refer to Φ : X → H
as the feature map and to k : X × X → R+ with k(x,x′) = 〈Φ(x),Φ(x′)〉H as the kernel function. By
construction, the kernel function is symmetric and positive definite, that is, the kernel matrix K ∈ RN×N
defined through Kij = k(xi,xj) is positive definite for all N ∈ N and {xi}i≤N ⊆ X.

By the Moore-Aronszajn theorem, any symmetric and positive definite kernel function k on X induces
a unique RKHS H ⊆ RX, which can be represented as

H =

h ∈ RX : ∃βi ∈ R, xi ∈ X ∀i ∈ N with h(x) =
∞∑
i=1

βik(xi,x) and
∞∑
i=1

∞∑
j=1

βik(xi,xj)βj <∞

 ,

and where the inner product of two arbitrary functions h1, h2 ∈ H with h1(x) =
∑∞

i=1 βik(xi,x) and
h2(x) =

∑∞
j=1 β

′
jk(x′j ,x) is defined as 〈h1, h2〉H =

∑∞
i=1

∑∞
j=1 βik(xi,x

′
j)β
′
j . One may now use the kernel

function to define the feature map Φ through [Φ(x′)](x) = k(x′,x) for all x,x′ ∈ X. This choice is
admissible because it respects the consistency condition 〈Φ(x),Φ(x′)〉H = k(x,x′) for all x,x′ ∈ H, and
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because it implies the desired reproducing property 〈f,Φ(x′)〉H =
∑∞

i=1 βik(xi,x
′) = f(x′) for all f ∈ H

and x′ ∈ X.
In summary, given a symmetric and positive definite kernel function k, there exists an associated RKHS

H and a feature map Φ with the reproducing property. As we will see below, however, to optimize over
nonlinear hypotheses in H, knowledge of k is sufficient, and there is no need to construct H and Φ explicitly.

Assume now that we are given any symmetric and positive definite kernel function k, and construct a
distributionally robust learning problem over all nonlinear hypotheses in the corresponding RKHS H via

Ĵ(ρ) = inf
h∈H

sup
Q∈Bρ(P̂N )

EQ [`(h(x), y)] , (29)

where the transportation metric is given by the Euclidean norm on X×Y (for regression problems) or the
separable metric (16) with the Euclidean norm on X (for classification problems). While problem (29) is
hard to solve in general due to the nonlinearity of the hypotheses h ∈ H, it is easy to solve a lifted learning
problem where the inputs x ∈ X are replaced with features xH ∈ H, while each nonlinear hypothesis h ∈ H
over the input space X is identified with a linear hypothesis hH ∈ H over the feature space H through the
identity hH(xH) = 〈h,xH〉H. Thus, the lifted learning problem can be represented as

ĴH(ρ) = inf
h∈H

sup
Q∈Bρ(P̂H

N )

EQ [`(〈h,xH〉H, y)] , (30)

where P̂H
N = 1/N

∑N
i=1 δ(Φ(x̂i),ŷi) on H×Y denotes the pushforward measure of the emprical distribution P̂N

under the feature map Φ induced by k, while Bρ(P̂
H
N ) constitutes the Wasserstein ball of radius ρ around

P̂H
N corresponding to the transportation metric

dH
(
(xH, y), (x′H, y

′)
)

=

{ √
‖xH − x′H‖2H + (y − y′)2 for regression problems,

‖xH − x′H‖H + κ1{y 6=y′} for classification problems.

Even though P̂H
N constitutes the pushforward measure of P̂N under Φ, not every distribution QH ∈ Bρ(P̂H

N )

can be obtained as the pushforward measure of some Q ∈ Bρ(P̂N ). Thus, we should not expect (29) to be
equivalent to (30). Instead, one can show that under a judicious transformation of the Wasserstein radius,
(30) provides an upper bound on (29) whenever the kernel function satisfies a calmness condition.

Assumption 3.22 (Calmness of the kernel). The kernel function k is calm from above, that is, there exist
a concave smooth growth function g : R+ → R+ with g(0) = 0 and g′(z) ≥ 1 for all z ∈ R+ such that√

k(x1,x1)− 2k(x1,x2) + k(x2,x2) ≤ g(‖x1 − x2‖2) ∀x1,x2 ∈ X.

The calmness condition is non-restrictive. In fact, it is satisfied by most commonly used kernels.

Example 3.23 (Growth Functions for Popular Kernels). For most commonly used kernels k on X ⊆ Rn, we
can construct an explicit growth function g that certifies the calmness of k in the sense of Assumption 3.22.
This construction typically relies on elementary estimates. Derivations are omitted for brevity.

1. Linear kernel: For k(x1,x2) = 〈x1,x2〉, we may set g(z) = z.

2. Gaussian kernel: For k(x1,x2) = e−γ‖x1−x2‖22 with γ > 0, we may set g(z) = max{
√

2γ, 1}z.

3. Laplacian kernel: For k(x1,x2) = e−γ‖x1−x2‖1 with γ > 0, we may set g(z) =
√

2γz
√
n if 0 ≤ z ≤

γ
√
n/2 and g(z) = z + γ

√
n/2 otherwise.

4. Polynomial kernel: The kernel k(x1,x2) = (γ〈x1,x2〉+1)d with γ > 0 and d ∈ N fails to satisfy the
calmness condition if X is unbounded and d > 1, in which case

√
k(x1,x1)− 2k(x1,x2) + k(x2,x2)

grows superlinearly. If X ⊆ {x ∈ Rn : ‖x‖2 ≤ R} for some R > 0, however, the polynomial kernel is
calm with respect to the growth function

g(z) =

{
max{ 1

2R

√
2(γR2 + 1)d, 1}z if d is even,

max{ 1
2R

√
2(γR2 + 1)d − 2(1− γR2)d, 1}z if d is odd.
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Theorem 3.24 (Lifted learning problems). If Assumption 3.22 holds for some growth function g, then
the following statements hold for all Wasserstein radii ρ ≥ 0.

(i) For regression problems we have Ĵ(ρ) ≤ ĴH(
√

2g(ρ)).

(ii) For classification problems we have Ĵ(ρ) ≤ ĴH(g(ρ)).

We now argue that the lifted learning problem (30) can be solved efficiently by leveraging the following
representer theorem, which generalizes [59, Theorem 4.2] to non-separable loss functions.

Theorem 3.25 (Representer theorem). Assume that we are given a symmetric positive definite kernel k
on X with corresponding RKHS H, a set of training samples (x̂i, ŷi) ∈ X×Y, i ≤ N , and an arbitrary loss
function f : (X×Y×R)N ×R+ → R that is non-decreasing in its last argument. Then, there exist βi ∈ R,
i ≤ N , such that the learning problem

min
h∈H

f((x̂1, ŷ1, h(x̂1)), . . . , (x̂N , ŷN , h(x̂N )), ‖h‖H) (31)

is solved by a hypothesis h? ∈ H representable as h?(x) =
∑N

i=1 βik(x, x̂i).

The subsequent results involve the Kernel matrix K = [Kij ] defined through Kij = k(x̂i, x̂j), i, j ≤ N .
The following theorems demonstrate that the lifted learning problem (30) admits a kernel representation.

Theorem 3.26 (Kernelized distributionally robust regression). Suppose that X = Rn, Y = R and k is
a symmetric positive definite kernel on X with associated RKHS H. If ` is generated by a convex and
Lipschitz continuous loss function L, that is, `(h(x), y) = L(h(x)− y), then (30) is equivalent to

min
β∈RN

1

N

N∑
i=1

L
( N∑
j=1

Kijβj − ŷi
)

+ ρ lip(L)‖(K
1
2β, 1)‖2,

and for any of its minimizers β? the hypothesis h?(x) =
∑N

i=1 β
?
i k(x, x̂i) is optimal in (30).

Theorem 3.27 (Kernelized distributionally robust classification). Suppose that X = Rn, Y = {+1,−1}
and k is a symmetric positive definite kernel on X = Rn with associated RKHS H. If ` is generated by a
convex and Lipschitz continuous loss function L, that is, `(h(x), y) = L(yh(x)), then (30) is equivalent to

min
βi,λ,si

λρ+
1

N

N∑
i=1

si

s.t. L
( N∑
j=1

ŷiKijβj

)
≤ si i ∈ [N ]

L
(
−

N∑
j=1

ŷiKijβj

)
− κλ ≤ si i ∈ [N ]

lip(L)‖K
1
2β‖2 ≤ λ,

(32)

and for any of its minimizers β? the hypothesis h?(x) =
∑N

i=1 β
?
i k(x, x̂i) is optimal in (30).

Theorems 3.26 and 3.27 show that the lifted learning problem (30) can be solved with similar compu-
tational effort as problem (4), that is, optimizing over a possibly infinite-dimensional RKHS of nonlinear
hypotheses is not substantially harder than optimizing over the space of linear hypotheses.

Remark 3.28 (Kernelization in robust regression and classification). Recall from Theorem 3.9 that dis-
tributionally robust and classical robust linear regression are equivalent if Ξ = Rn+1 and the training
samples are sufficiently dispersed in the sense of Assumption 3.7. Similarly, Theorem 3.20 implies that
distributionally robust and classical robust linear classification are equivalent if κ = ∞ and the training
samples are non-separable in the sense of Assumption 3.18. One can show that Theorems 3.9 and 3.20
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naturally extend to nonlinear regression and classification models over an RKHS induced by some sym-
metric and positive definite kernel. Specifically, one can show that some lifted robust learning problem is
equivalent to the lifted distributionally robust learning problem (30) whenever the lifted training samples
(Φ(x̂1), ŷ1), · · · , (Φ(x̂N ), ŷN ) satisfy Assumption 3.7 (for regression) or 3.18 (for classification). Theo-
rems 3.26 and 3.27 thus imply that the lifted robust regression and classification problems can be solved
efficiently under mild regularity conditions whenever Assumptions 3.7 and 3.18 hold, respectively. Unfortu-
nately, these conditions are often violated for popular kernels. For example, the lifted samples are always
linearly separable under the Gaussian kernel [76, p. 1496]. In this case, the lifted robust classification
problem can never be reduced to an efficiently solvable lifted distributionally robust classification problem
of the form (30). In fact, no efficient method for solving the lifted robust classification problem seems to
be known. In contrast, the lifted distributionally robust learning problems are always efficiently solvable
under standard regularity conditions.

3.4 Nonlinear Hypotheses: Neural Networks2

Families of neural networks represent particularly expressive classes of nonlinear hypotheses. In the fol-
lowing, we characterize a family H of neural networks with M ∈ N layers through M continuous activation
functions σm : Rnm+1 → Rnm+1 and M weight matrices Wm ∈ Rnm+1×nm , m ∈ [M ]. The weight matrices
can encode fully connected or convolutional layers, for example. If n1 = n and nM+1 = 1, then we may set

H =
{
h ∈ RX : ∃Wm ∈ Rnm+1×nm , m ∈ [M ], h(x) = σM

(
WM · · ·σ2

(
W2σ1(W1x)

)
· · ·
)}

.

Each hypothesis h ∈ H constitutes a neural network and is uniquely determined by the collection of
all weight matrices W[M ] := (W1, . . . ,WM ). In order to emphasize the dependence on W[M ], we will
sometimes use h(x;W[M ]) to denote the hypotheses in H. Setting x1 = x, the features of the neural
network are defined recursively through xm+1 = σm(zm), where zm = Wmxm, m ∈ [M ]. The features xm,
m = 2, . . . ,M , correspond to the hidden layers of the neural network, while xM+1 determines its output.

Example 3.29 (Activation functions). The following activation functions are most widely used.

1. Hyperbolic tangent: [σm(zm)]i = (exp([zm]i)− exp(−[zm]i))/(exp([zm]i) + exp(−[zm]i))

2. Sigmoid: [σm(zm)]i = 1/(1 + exp(−[zm]i))

3. Softmax: [σm(zm)]i = exp([zm]i)/
∑nm+1

j=1 exp([zm]j)

4. Rectified linear unit (ReLU): [σm(zm)]i = max{0, [zm]i}

5. Exponential linear unit (ELU): [σm(zm)]i = max{0, [zm]i}+ min{0, α(exp([zm]i)− 1)}

The distributionally robust learning model over the hypothesis class H can now be represented as

inf
h∈H

sup
Q∈Bρ(P̂N )

EQ
[
`
(
h(x), y

)]
= inf
W[M ]

sup
Q∈Bρ(P̂N )

EQ
[
`
(
h(x;W[M ]), y

)]
, (33)

where we use the transportation metrics (11) and (16) for regression and classification problems, respec-
tively. Moreover, we adopt the standard convention that `(h(x), y) = L(h(x)− y) for regression problems
and `(h(x, y)) = L(yh(x)) for classification problems, where L is a convex and Lipschitz continuous uni-
variate loss function. In the following we equip each feature space Rnm with a norm ‖ · ‖, m ∈ [M + 1]. By
slight abuse of notation, we use the same symbol for all norms even though the norms on different feature
spaces may differ. Using the norm on Rnm+1 , we define the Lipschitz modulus of σm as

lip(σm) := sup
z,z′∈Rnm+1

{
‖σ(z)− σ(z′)‖
‖z − z′‖

: z 6= z′
}
.

We are now ready to state the main result of this section, which provides a conservative upper bound on
the distributionally robust learning model (33).

2We are grateful to an anonymous referee for encouraging us to write this section.
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Theorem 3.30 (Distributionally robust learning with neural networks). The distributionally robust learn-
ing model (33) is bounded above by the regularized empirical loss minimization problem

inf
W[M ]

1

N

N∑
i=1

`(h(x̂i;W[M ]), ŷi) + ρ lip(L) max

{
M∏
m=1

lip(σm)‖Wm‖,
c

κ

}
, (34)

where c = 1 for regression problems and c = max{1, 2 suph∈H,x∈X |h(x)|} for classification problems.
Moreover, ‖Wm‖ = sup‖xm‖=1 ‖Wmxm‖ is the operator norm induced by the norms on Rnm and Rnm+1 .

Remark 3.31 (Uniform upper bound on all neural networks). For classification problems the constant c
in (34) represents a uniform upper bound on all neural networks and may be difficult to evaluate in general.
It is easy to estimate c, however, if the last activation function is itself bounded such as the softmax function,
which yields a probability distribution over the output space. In this case one may simply set c = 2.

The product term
∏M
m=1 lip(σm)‖Wm‖ in (34) represents an upper bound on the Lipschitz modulus of

h(x;W[M ]). We emphasize that computing the exact Lipschitz modulus of a neural network is NP-hard
even if there are only two layers and all activation functions are of the ReLU type [58, Theorem 2]. In
contrast, the upper bound at hand is easy to compute as all activation functions listed in Example 3.29
have Lipschitz modulus 1 with respect to the Euclidean norms on the domain and range spaces [36, 74].
For more details on how to estimate the Lipschitz moduli of neural networks we refer to [36, 51, 54, 69].

Note that even though (34) represents a finite-dimensional optimization problem over the weight ma-
trices of the neural network, both the empirical prediction loss as well as the regularization term are
non-convex in W[M ], which complicates numerical solution. If κ =∞, however, one can derive an alterna-
tive upper bound on the distributionally robust learning model (33) with a convex regularization term.

Corollary 3.32 (Convex regularization term). If κ =∞, then there is ρ ≥ 0 such that the distributionally
robust learning model (33) is bounded above by the regularized empirical loss minimization problem

inf
W[M ]

1

N

N∑
i=1

`(h(x̂i;W[M ]), ŷi) + ρ

M∑
m=1

‖Wm‖. (35)

As the empirical prediction loss remains non-convex, it is expedient to address problem (35) with
local optimization methods such as stochastic gradient descent algorithms. For a comprehensive review
of first- and the second-order stochastic gradient algorithms we refer to [2] and the references therein. In
the numerical experiments we will use a stochastic proximal gradient descent algorithm that exploits the
convexity of the regularization term and generates iterates W k

[M ] for k ∈ N according to the update rule

W k+1
m = proxηkρ‖Wm‖

(
W k

m − ηk∇Wm`(h(x̂ik ;W k
[M ]), ŷik)

)
∀m ∈ [M ],

where ηk > 0 is a given step size and ik is drawn randomly from the index set [N ], see, e.g., [55]. Here,
the proximal operator associated with a convex function ϕ : Rnm+1×nm → R is defined through

proxϕ(Wm) := arg min
W ′m

ϕ(W ′
m) +

1

2
‖W ′

m −Wm‖2F ,

where ‖ · ‖F stands for the Frobenius norm. The algorithm is stopped as soon as the improvement of
the objective value falls below a prescribed threshold. As the empirical prediction loss is non-convex and
potentially non-smooth, the algorithm fails to offer any strong performance guarantees. For the scalability
of the algorithm, however, it is essential that the proximal operator can be evaluated efficiently.

Example 3.33 (Proximal operator). Suppose that all feature spaces Rnm are equipped with the p-norm for
some p ∈ {1, 2,∞}, which implies that all parameter spaces Rnm+1×nm are equipped with the corresponding
matrix p-norm. In this case the proximal operator of ϕ(Wm) = η‖Wm‖p for some fixed η > 0 can be
evaluated highly efficiently.
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1. MACS (p = 1): The matrix 1-norm returns the maximum absolute column sum (MACS). Evaluating
the proximal operator of ϕ(Wm) = η‖Wm‖1 amounts to solving the minimization problem

proxϕ(Wm) =

 min
W ′m,u

ηu+

nm∑
i=1

‖[W ′
m]:,i − [Wm]:,i‖22

s.t. ‖[W ′
m]:,i‖1 ≤ u i ∈ [nm],

where [Wm]:,i and [W ′
m]:,i represent the i-th columns of Wm and W ′

m, respectively. For any fixed u,
the above problem decomposes into nm projections of the vectors [Wm]:,i, i ∈ [nm], to the `1-ball of
radius u centered at the origin. Each of these projections can be computed via an efficient sorting
algorithm proposed in [27]. Next, we can use any line search method such as the golden-section
search algorithm to optimize over u, thereby solving the full proximal problem.

2. Spectral (p = 2): The matrix 2-norm coincides with the spectral norm, which returns the maximum
singular value. In this case, the proximal problem for ϕ(Wm) = η‖Wm‖2 can be solved analytically
via singular value thresholding [17, Theorem 2.1], that is, given the singular value decomposition
Wm = USV > with U ∈ Rnm+1×nm+1 orthogonal, S ∈ Rnm+1×nm

+ diagonal and V ∈ Rnm×nm
orthogonal, the proximal operator satisfies

proxϕ(Wm) = proxϕ(USV >) = US̃V >, where S̃ij = max{Sij − η, 0} .

The singular value decomposition can be accelerated using a randomized algorithm proposed in [37].

3. MARS (p = ∞): The matrix ∞-norm returns the maximum absolute row sum (MARS) and thus
satisfies ‖Wm‖∞ = ‖W>

m‖1. Therefore, one can use the iterative scheme developed for MACS to
compute the proximal operator of ϕ(Wm) = η‖Wm‖∞ by simply transposing the weight matrix Wm.

The convergence behavior of the stochastic proximal gradient descent algorithm can be further improved
by including a momentum term inside the proximal operator, see, e.g., [49].

4 Generalization Bounds

Generalization bounds constitute upper confidence bounds on the out-of-sample error. Traditionally, gen-
eralization bounds are derived by controlling the complexity of the hypothesis space, which is typically
quantified in terms of its VC-dimension or via covering numbers or Rademacher averages [62]. Strength-
ened generalization bounds for large margin classifiers can be obtained by improving the estimates of the
VC-dimension and the Rademacher average [64, 65]. We will now demonstrate that distributionally robust
learning models of the type (4) or (30) enjoy simple new generalization bounds that can be obtained under
minimal assumptions. In particular, they do not rely on any notions of hypothesis complexity and may
therefore even extend to hypothesis spaces with infinite VC-dimensions. Our approach is reminiscent of the
generalization theory for robust support vector machines portrayed in [76], which also replaces measures
of hypothesis complexity with robustness properties. However, we derive explicit finite sample guarantees,
while [76] establishes asymptotic consistency results. Moreover, we relax some technical conditions used
in [76] such as the compactness of the input space X.

The key enabling mechanism of our analysis is a measure concentration property of the Wasserstein
metric, which holds whenever the unknown data-generating distribution has exponentially decaying tails.

Assumption 4.1 (Light-tailed distribution). There exist constants a > 1 and A > 0 and a reference point
ξ′ ∈ Rn+1 such that EP[exp (d(ξ, ξ′))a)] ≤ A, where d denotes the usual mass transportation cost.

Theorem 4.2 (Measure concentration [32, Theorem 2]). If Assumption 4.1 holds, then we have

PN
{
W (P, P̂N ) ≥ ρ

}
≤
{
c1 exp

(
−c2Nρ

max{n+1,2}) if ρ ≤ 1,
c1 exp

(
−c2Nρ

a
)

if ρ > 1,
(36)

for all N ≥ 1, n 6= 1, and ρ > 0, where the constants c1, c2 > 0 depend only on a, A, d and n.3

3A similar but slightly more complicated inequality also holds for the special case n = 1; see [32, Theorem 2] for details.
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Theorem 36 asserts that the empirical distribution P̂N converges exponentially fast to the unknown
data-generating distribution P, in probability with respect to the Wasserstein metric, as the sample size
N tends to infinity. We can now derive simple generalization bounds by increasing the Wasserstein radius
ρ until the violation probability on the of the right hand side of (36) drops below a prescribed significance
level η ∈ (0, 1]. Specifically, Theorem 36 implies that PN{P ∈ Bρ(P̂N )} ≥ 1− η for any ρ ≥ ρN (η), where

ρN (η) =


(

log(c1/η)

c2N

) 1
max{n+1,2}

if N ≥ log(c1/η)
c2

,(
log(c1/η)

c2N

) 1
a

if N < log(c1/η)
c2

.

(37)

Theorem 4.3 (Basic generalization bound [52, Theorem 3.5]). If Assumption 4.1 holds, then

PN
{
EP [`(〈w,x〉, y)] ≤ sup

Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] ∀w ∈ Rn
}
≥ 1− η (38)

for any N ≥ 1, n 6= 1, η ∈ (0, 1] and ρ ≥ ρN (η).

Remark 4.4 (Discussion of basic generalization bound). The following comments are in order.

I. Performance guarantees for optimal hypotheses: If Ĵ(ρ) denotes the minimum and ŵ a
minimizer of the distributionally robust learning problem (4), then Theorem 4.3 implies that

PN
{
EP [`(〈ŵ,x〉, y)] ≤ Ĵ(ρ)

}
≥ 1− η

for any N ≥ 1, n > 1, η ∈ (0, 1] and ρ ≥ ρN (η).

II. Light-tail assumption: Assumption 4.1 is restrictive but unavoidable for any measure concentra-
tion result of the type described in Theorem 4.2. It is automatically satisfied if the input-output pair
has bounded support or is known to follow a Gaussian or exponential distribution, for instance.

III. Asymptotic consistency: It is clear from (37) that for any fixed η ∈ (0, 1], the radius ρN (η) tends to
0 as N increases. Moreover, Theorem 3.6 in [52] implies that if ηN converges to 0 at a carefully chosen
rate (e.g., ηN = exp(−

√
N)), then the solution of the distributionally robust learning problem (4)

with Wasserstein radius ρ = ρN (ηN ) converges almost surely to the solution of the ideal learning
problem that minimizes the out-of-sample error under the unknown true distribution P.

IV. Curse of dimensionality: The Wasserstein radius (37) has two decay regimes. For small N , ρN (η)

decays as N−
1
a , and for large N it is proportional to N−

1
n+1 . We thus face a curse of dimensionality

for large sample sizes. In order to half the Wasserstein radius, one has to increase N by a factor of 2n.
This curse of dimensionality is fundamental, i.e., the dependence of the measure concentration result
in Theorem 4.2 on the input dimension n cannot be improved for generic distributions P; see [73] or
[32, Section 1.3]. Improvements are only possible in special cases, e.g., if P is finitely supported.

V. Extension to nonlinear hypotheses: Theorem 4.3 directly extends to any distributionally robust
learning problem over an RKHS H induced by some symmetric and positive definite kernel function k.
Specifically, if k is calm in the sense of Assumption 3.22 with growth function g, then we have

PN
EP[`(h(x), y)] ≤ sup

Q∈Bρ(P̂H
N )

EQ [`(〈h,xH〉H, y)] ∀h ∈ H

 ≥ 1− η (39)

for any N ≥ 1, n 6= 1, η ∈ (0, 1] and ρ ≥ cg(ρN (η)), where c =
√

2 for regression problems and c = 1
for classification problems. To see this, note that the inclusion P ∈ Bρ(P̂N ) implies

EP[`(h(x), y)] ≤ sup
Q∈Bρ(P̂N )

EQ [`(h(x), y)] ≤ sup
Q∈Bρ(P̂H

N )

EQ [`(〈h,xH〉H, y)] ∀h ∈ H, (40)
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where the second inequality follows from the proof of Theorem 3.24. The generalization bound (39)
thus holds because PN{P ∈ Bρ(P̂N )} ≥ 1−η for any ρ ≥ ρN (η). Note that the rightmost term in (40)

can be computed for any finitely generated hypothesis h ∈ H representable as h(x) =
∑N

i=1 βik(x, x̂i),
which follows from Theorems 3.26 and 3.27, while the middle term is hard to compute. We emphasize
that the generalization bound (39) does not rely on any notion of hypothesis complexity and remains
valid even if H has infinite VC-dimension (e.g., if H is generated by the Gaussian kernel).

Theorem 4.2 provides a confidence set for the unknown probability distribution P, and Theorem 4.3
uses this confidence set to construct a uniform generalization bound on the prediction error under P. The
radius of the confidence set for P decreases slowly due to a curse of dimensionality, but the decay rate is
essentially optimal. This does not imply that the decay rate of the generalization bound (38) is optimal,
too. In fact, the worst-case expected error over a Wasserstein ball of radius ρ can be a (1− η)-confidence
bound on the expected error under P even if the Wasserstein ball fails to contain P with confidence 1− η.
Thus, the measure concentration result of Theorem 4.2 is too powerful for our purposes and leads to
an over-conservative generalization bound. Below we will show that the curse of dimensionality in the
generalization bound (38) can be broken if we impose the following restriction on the hypothesis space.

Assumption 4.5 (Hypothesis space). The space of admissible hypotheses in (4) is restricted to W ⊆ Rn.
There exists Ω > 0 with infw∈W ‖(w,−1)‖∗ ≥ Ω if (4) is a regression problem and infw∈W ‖w‖∗ ≥ Ω if (4)
is a classification problem. Similarly, there exists Ω ≥ 0 with supw,w′∈W ‖w −w′‖∞ ≤ Ω.

Theorem 4.6 (Improved generalization bound). Suppose that Assumptions 4.1 and 4.5 hold, and the
function L is Lipschitz continuous. Moreover, assume that Ξ = Rn+1 and Mn = maxi≤n ‖en+1

i ‖∗ if (4) is
a regression problem, while Ξ = Rn × {−1, 1} and Mn = maxi≤n ‖eni ‖∗ if (4) is a classification problem,
where eni is the i-th standard basis vector in Rn. Then, there exist constants c3 ≥ 1, c4 > 0 depending
only on the light tail constants a and A such that the generalization bound (38) holds for any N ≥
max

{
(16n/c4)2, 16 log(c3/η)/c4

}
, η ∈ (0, 1] and ρ ≥ ρ′N (η), where

ρ′N (η) =
2Ω√
NΩ

[
MnnA+

√
n log(

√
N) + log(c3/η)

c4

]
.

The improved generalization bound from Theorem 4.5 does not suffer from a curse of dimensionality.
In fact, in order to half the Wasserstein radius ρ′N (η), it suffices to increase the sample size N by a factor
of 4, irrespective of the input dimension n.

Remark 4.7 (Discussion of improved generalization bound). The following comments are in order.

I. Bounds on hypothesis space: Assumption 4.5 imposes upper and lower bounds on W. The upper
bound enables us to control the difference between the empirical and the true expected loss uniformly
across all admissible hypotheses. This bound is less restrictive than the uniform bound on the loss
function used to derive Rademacher generalization bounds (see, e.g., [62, Theorem 26.4]), which
essentially imposes upper bounds both on the hypotheses and the input-output pairs. The lower
bound in Assumption 4.5 is restrictive for classification problems but trivially holds for regression
problems because ‖(w,−1)‖∗ is uniformly bounded away from zero for any (dual) norm on Rn+1.

II. Breaking the curse of dimensionality: By leveraging Assumption 4.5, Theorem 4.6 reduces the
critical Wasserstein radius in the generalization bound (38) from ρN (η) ∝ O([log(η−1)/N ]1/(n+1)),
which suffers from a curse of dimensionality, to ρ′N (η) ∝ O([log(η−1) + n log(N))/N ]1/2), which
essentially follows a square root law reminiscent of the central limit theorem.

5 Error and Risk Estimation

Once a hypothesis h(x) has been chosen, it is instructive to derive pessimistic and optimistic estimates
of its out-of-sample prediction error (in the case of regression) or its out-of-sample risk (in the case of
classification). We will argue below that the distributionally robust optimization techniques developed in
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this paper also offer new perspectives on error and risk estimation. For ease of exposition, we ignore any
support constraints, that is, we set X = Rn and Y = R (for regression) or X = Rn and Y = {+1,−1} (for
classification). Moreover, we focus on linear hypotheses of the form h(x) = 〈w,x〉. Note, however, that
all results extend directly to conic representable support sets and to nonlinear hypotheses.

In the context of regression, we aim to estimate the prediction error E(w) = EP [|y − 〈w,x〉|] or, more
precisely, the mean absolute prediction error under the unknown data-generating distribution P. As usual,
we assume that the transportation metric d is induced by a norm ‖ · ‖ on the input-output space Rn+1.

Theorem 5.1 (Error bounds in linear regression). The prediction error admits the following estimates.

(i) The worst-case error Emax(w) = sup
Q∈Bρ(P̂N )

EQ [|y − 〈w,x〉|] is given by

Emax(w) =
1

N

N∑
i=1

|ŷi − 〈w, x̂i〉|+ ρ‖(w,−1)‖∗. (41a)

(ii) The best-case error Emin(w) = inf
Q∈Bρ(P̂N )

EQ [|y − 〈w,x〉|] is given by

Emin(w) = max

{
1

N

N∑
i=1

|ŷi − 〈w, x̂i〉| − ρ‖(w,−1)‖∗, 0

}
(41b)

In the context of classification, we aim to quantify the risk R(w) = P [y 6= sign(〈w,x〉)], that is, the
misclassification probability under the unknown true distribution P. Note that the risk can equivalently
be defined as the expectation of a characteristic function, that is, R(w) = EP[1{y 6=〈w,x〉}]. As usual, we
assume that the transportation metric d is of the form (16), where κ ≥ 0 is the cost of flipping a label.

Theorem 5.2 (Risk bounds in linear classification). The risk admits the following estimates.

(i) The worst-case risk Rmax(w) = sup
Q∈Bρ(P̂N )

EQ[1{y 6=〈w,x〉}] is given by

Rmax(w) =



min
λ,si
ri,ti

λρ+
1

N

N∑
i=1

si

s.t. 1− riŷi〈w, x̂i〉 ≤ si i ∈ [N ]

1 + tiŷi〈w, x̂i〉 − λκ ≤ si i ∈ [N ]

ri‖w‖∗ ≤ λ, ti‖w‖∗ ≤ λ i ∈ [N ]

ri, ti, si ≥ 0 i ∈ [N ].

(42a)

(ii) The best-case risk Rmin(w) = inf
Q∈Bρ(P̂N )

EQ[1{y 6=〈w,x〉}] is given by

Rmin(w) = 1−



min
λ,si
ri,ti

λρ+
1

N

N∑
i=1

si

s.t. 1 + riŷi〈w, x̂i〉 ≤ si i ∈ [N ]

1− tiŷi〈w, x̂i〉 − λκ ≤ si i ∈ [N ]

ri‖w‖∗ ≤ λ, ti‖w‖∗ ≤ λ i ∈ [N ]

ri, ti, si ≥ 0 i ∈ [N ].

(42b)

We emphasize that, as the hypothesis w is fixed, the error and risk estimation problems (41) and (42)
constitute tractable linear programs that can be solved highly efficiently.

Remark 5.3 (Confidence intervals for error and risk). If the Wasserstein radius is set to ρN (η/2) de-
fined in (37), where η ∈ (0, 1] is a prescribed significance level, then Theorem 4.3 implies that E(ŵ) ∈
[Emin(ŵ), Emax(ŵ)] and R(ŵ) ∈ [Rmin(ŵ),Rmax(ŵ)] with confidence 1− η for any ŵ ∈ Rn that may even
depend on the training data. Theorem 5.1 implies that the confidence interval for the true error E(ŵ) can
be calculated analytically from (41), while Theorem 5.2 implies that the confidence interval for the true
risk R(ŵ) can be computed efficiently by solving the tractable linear programs (42).
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Remark 5.4 (Extension to nonlinear hypotheses). By using the tools of Section 3.3, Theorems 5.1 and 5.2
generalize immediately to nonlinear hypotheses that range over a RKHS. Specifically, we can formulate
lifted error and risk estimation problems where the inputs x ∈ X are replaced with features xH ∈ H, while
each nonlinear hypothesis h ∈ H over the input space X is identified with a linear hypothesis hH ∈ H over the
feature space H through the identity hH(xH) = 〈h,xH〉H. Tractability is again facilitated by Theorem 3.25,
which allows us to focus on finitely parameterized hypotheses of the form h(x) =

∑N
i=1 βik(x, x̂i).

6 Numerical Results

We showcase the power of regularization via mass transportation in various applications based on standard
datasets from the literature. All optimization problems are implemented in Python and solved with
Gurobi 7.5.1 All experiments are run on an Intel XEON CPU (3.40GHz), and the corresponding codes are
made publicly available at https://github.com/sorooshafiee/Regularization-via-Transportation.

6.1 Regularization with Pre-selected Parameters

We first assess how the out-of-sample performance of a distributionally robust support vector machine
(DRSVM) is impacted by the choice of the Wasserstein radius ρ, the cost κ of flipping a label, and the
kernel function k. To this end, we solve three binary classification problems from the MNIST database [46]
targeted at distinguishing pairs of similar handwritten digits (1-vs-7, 3-vs-8, 4-vs-9). In the first experiment
we optimize over linear hypotheses and use the separable transporation metric (16) involving the ∞-norm
on the input space. All results are averaged over 100 independent trials. In each trial, we randomly select
500 images to train the DRSVM model (20) and use the remaining 12,000 images for testing. The correct
classification rate (CCR) on the test data, averaged across all 100 trials, is visualized in Figure 1 as a
function of the Wasserstein radius ρ for each κ ∈ {0.1, 0.25, 0.5, 0.75,∞}. The best out-of-sample CCR
is obtained for κ = 0.25 uniformly across all Wasserstein radii, and performance deteriorates significantly
when κ is reduced or increased. Recall from Remark 3.15 that, as κ tends to infinity, the DRSVM reduces
to the classical regularized support vector machine (RSVM) with 1-norm regularizer. Thus, the results of
Figure 1 indicate that regularization via mass transportation may be preferable to classical regularization
in terms of the maximum achievable out-of-sample CCR. More specifically, we observe that the out-of-
sample CCR of the best DRSVM (κ = 0.25) displays a slightly higher and significantly wider plateau
around the optimal regularization parameter ρ than the classical RSVM (κ =∞). This suggests that the
regularization parameter in DRSVMs may be easier to calibrate from data than in RSVMs, a conjecture
that will be put to scrutiny in Section 6.2. Finally, Figure 1 reveals that the standard (unregularized)
support vector machine (SVM), which can be viewed as a special case of the DRSVM with ρ = 0, is
dominated by the RSVMs and DRSVMs across a wide range of regularization parameters.4 Note that the
SVM problem (20) with ρ = 0 reduces to a linear program and may thus suffer from multiple optimal
solutions. This explains why the limiting out-of-sample CCR for ρ ↓ 0 changes with κ.

6.2 Regularization with Learned Parameters

It is easy to read off the best regularization parameters ρ and κ from the charts in Figure 1. As these
charts are constructed from more than 12,000 test samples, however, they are not accessible in the training
phase. In practice, ρ and κ must be calibrated from the training data alone. This motivates us to revisit
the three classification problems from Section 6.1 using a fully data-driven procedure, where all free model
parameters are calibrated via 5-fold cross validation; see, e.g., [1, § 4.3.3]. Moreover, to evaluate the benefits
of kernelization, we now solve a generalized DRSVM model of the form (32), which implicitly optimizes
over all nonlinear hypotheses in some RKHS. As explained in Section 3.3, kernelization necessitates the
use of the separable transportation metric (16) with the Euclidean norm on the input space.

All free parameters of the resulting DRSVM model are restricted to finite search grids in order to
ease the computational burden of cross validation. Specifically, we select the Wasserstein radius ρ from

4By slight abuse of notation, we use the acronym ‘SVM’ to refer to the unregularized empirical hinge loss minimization
problem even though the traditional formulations of the support vector machine involve a Tikhonov regularization term.
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Figure 1: Average out-of-sample CCR scores of the DRSVM with pre-selected parameters.

Table 1: Average out-of-sample CCR scores of the DRSVM with learned parameters.

Polynomial Laplacian Gaussian

RSVM DRSVM RSVM DRSVM RSVM DRSVM

1-vs-7 98.9± 0.2 99.1± 0.2 98.3± 0.5 98.5± 0.4 99.1± 0.2 99.2± 0.2

3-vs-8 95.2± 0.4 97.0± 0.4 96.5± 0.4 96.8± 0.4 97.0± 0.3 97.2± 0.3

4-vs-9 95.0± 0.4 96.5± 0.4 95.8± 0.6 96.0± 0.6 96.8± 0.4 96.9± 0.4

within {b · 10e : b ∈ {1, 5}, e ∈ {1, 2, 3, 4}} and the label flipping cost κ from within {0.1, 0.25, 0.5, 0.75,∞}.
Moreover, we select the degree d of the polynomial kernel from within {1, 2, 3, 4, 5} and the peakedness
parameter γ of the Laplacian and Gaussian kernels from within { 1

100 ,
1
81 ,

1
64 ,

1
49 ,

1
36 ,

1
25}. Otherwise, we use

the same experimental setup as in Section 6.1. Table 1 reports the averages and standard deviations of
the CCR scores on the test data based on 100 independent trials. We observe that the DRSVM (ρ, κ, d,
and γ learned by cross validation) outperforms the RSVM (ρ, d and γ learned by cross validation, κ =∞)
consistently across all tested kernel functions (Polynomial, Laplacian, Gaussian). Note that the DRSVM
with polynomial kernel subsumes the non-kernelized DRSVM (20) as a special case because the polynomial
kernel with d = 1 coincides with the linear kernel.

In the third experiment, we assess the out-of-sample performance of the DRSVM (20) for different
transportation metrics on 10 standard datasets from the UCI repository [4], each containing up to 1,000
samples. Specifically, we use different variants of the separable transportation metric (16), where distances
in the input space are measured via a p-norm with p ∈ {1, 2,∞}. We focus exclusively on linear hypotheses
because the kernelization techniques described in Section 3.3 are only available for p = 2. The DRSVM is
compared against the standard (unregularized) SVM and the RSVM with q-norm regularizer (1

p + 1
q = 1).

All results are averaged across 100 independent trials. In each trial, we randomly select 75% of the data
for training and the remaining 25% for testing. The inputs are first standardized to zero mean and unit
variance along each coordinate axis. The Wasserstein radius ρ and the label flipping cost κ in the DRSVM
as well as the regularization weight ρ in the RSVM are estimated via stratified 5-fold cross validation.

Classifier performance is now quantified in terms of the receiver operating characteristic (ROC) curve,
which plots the true positive rate (percentage of correctly classified test samples with true label y = 1)
against the false positive rate (percentage of incorrectly classified test samples with true label y = −1)
by sweeping the discrimination threshold. Specifically, we use the area under the ROC curve (AUC) as a
measure of classifier performance. AUC does not bias on the size of the test data and is a more appropriate
performance measure than CCR in the presence of an unbalanced label distribution in the training data.
We emphasize that most of the considered datasets are indeed imbalanced, and thus a high CCR score
would not necessarily provide evidence of superior classifier performance. The averages and standard
deviations of the AUC scores based on 100 trials are reported in Table 2. The results suggest that the
DRSVM outperforms the RSVM in terms of AUC for all norms by about the same amount by which the
RSVM outperforms the classical hinge loss minimization, consistently across all datasets.
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Table 2: Average out-of-sample AUC scores of the SVM, RSVM and DRSVM.

p =∞ / q = 1 p = 2 / q = 2 p = 1 / q =∞
SVM RSVM DRSVM RSVM DRSVM RSVM DRSVM

Australian 91.6± 3.0 91.5± 3.2 92.0± 2.5 92.0± 2.2 92.3± 2.0 91.9± 2.8 92.2± 2.4

Blood transfusion 73.7± 3.8 73.8± 3.8 75.5± 3.8 74.9± 3.5 75.5± 3.7 75.4± 3.4 75.4± 3.7

Climate model 93.8± 3.9 94.4± 4.0 94.3± 4.0 94.3± 3.8 94.0± 4.0 93.6± 3.9 93.9± 4.0

Cylinder 72.0± 3.7 71.2± 4.0 72.1± 4.1 71.3± 4.0 71.8± 3.8 71.5± 3.8 72.2± 3.7

Heart 90.4± 2.7 90.1± 2.7 90.3± 2.7 90.6± 2.6 90.9± 2.5 90.5± 2.6 90.7± 2.6

Ionosphere 85.0± 4.9 89.7± 4.5 89.2± 4.3 90.4± 3.7 89.9± 3.9 86.0± 4.9 87.2± 4.8

Liver disorders 60.5± 0.0 61.1± 0.7 61.7± 0.7 61.2± 0.3 61.7± 0.5 61.1± 0.4 61.8± 0.5

QSAR 90.5± 1.5 90.5± 1.6 91.0± 1.6 90.5± 1.5 91.2± 1.5 90.6± 1.5 91.1± 1.6

Splice 92.1± 0.0 93.0± 0.4 93.1± 0.1 92.5± 0.1 92.6± 0.1 92.0± 0.1 92.5± 0.1

Thoracic surgery 61.7± 7.1 61.5± 6.5 64.6± 6.6 64.4± 6.4 64.3± 7.0 64.0± 6.3 64.6± 6.3

6.3 Multi-Label Classification

The aim of object recognition is to discover instances of particular object classes in digital images. We
now describe an object recognition experiment based on the PASCAL VOC 2007 dataset [30] consisting of
9,963 images, which are pre-partitioned into 25% for training, 25% for validation and 50% for testing. Each
image is annotated with 20 binary labels corresponding to 20 given object categories (the n-th label is set
to +1 if the image contains the n-th object and to −1 otherwise). A multi-label classifier is a function that
predicts all labels of an unlabelled input image. The ability of a classifier to detect objects belonging to
any fixed category is measured by the average precision (AP), which is defined in [30] as (a proxy for) the
area under the classifier’s precision-recall curve. The overall performance of a classifier is quantified by the
mean average precision (mAP), that is, the arithmetic mean of the AP scores across all object categories.

In the first scenario, we train a separate binary RSVM and DRSVM classifier for each of the 20 object
categories. This classifier predicts whether an object of the respective category appears in the input image.
At the beginning we preprocess the entire dataset by resizing each image to 256×256 pixels and extracting
the central patch of 244×244 pixels. As shown in [19, 26, 79], the features generated by the penultimate layer
of a deep convolutional neural network trained on a large image dataset provide a powerful image descriptor.
Using the ALEXNET neural network trained on the ImageNet dataset [42], we can thus compress each
(preprocessed) image of the PASCAL VOC 2007 dataset into 1,000 meaningful features. We normalize
these feature vectors to lie on the unit sphere. When training the RSVM and DRSVM classifiers, we can
thus work with these feature vectors instead of the corresponding images. Moreover, we restrict attention
to linear hypotheses and assume that transportation distances in the input-output space are measured by
the separable metric (16) with the Euclidean norm on the input space. We tune the Wasserstein radius
ρ ∈ {b · 10e : b ∈ {1, . . . , 9}, e ∈ {−2,−3,−4}} and the label flipping cost κ ∈ {0.1, 0.2, . . . , 1,∞} via the
holdout method using the validation data. As usual, we fix κ = ∞ for RSVM. Table 3 reports the AP
scores of the RSVM and DRSVM models for each object category. The ensemble of all 20 binary RSVM
or DRSVM classifiers, respectively, can be viewed as a näıve multi-label classifier that predicts all labels
of an image. As DRSVM outperforms RSVM on an object-by-object basis, it also wins in terms of mAP.

In the second scenario, we construct a proper multi-label classifier by fine-tuning the last layer of the
pre-trained ALEXNET network. To this end, we replace the original M -th layer of the network with a new
fully connected layer characterized by a parameter matrix WM ∈ R20×1000, and we set σM to the Sigmoid
activation function. The resulting classifer outputs for each of the 20 object categories a probability that
an object from the respective category appears in the input image. The quality of a classifier (which is
encoded by WM ) is measured by the cross-entropy loss function, which naturally generalizes the logloss to
multiple labels. The resulting empirical loss minimization problem is enhanced with a regularization term
proportional to ‖WM‖1,1 (Lasso), ‖WM‖2F (Tikhonov), ‖WM‖1 (MACS), ‖WM‖2 (Spectral) or ‖WM‖∞
(MARS). By using similar arguments as in Section 3.4, one can show that the empirical cross-entropy with
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Table 3: AP scores of different multi-label classifiers.

Scenario 1 Scenario 2

RSVM DRSVM Lasso Tikhonov MACS Spectral MARS

84.80 84.85 85.50 84.26 84.35 83.89 85.53

78.54 78.49 76.18 76.55 76.37 75.67 76.22

82.19 82.19 83.37 83.11 83.52 84.19 83.08

79.55 79.56 77.65 78.04 77.70 78.92 77.53

37.52 37.98 38.10 39.73 39.53 38.75 38.10

72.05 72.03 70.05 69.43 69.17 70.28 69.77

83.08 83.12 83.10 83.67 83.50 82.92 83.17

80.60 80.56 79.87 79.86 80.07 79.85 79.82

54.64 54.64 54.40 54.76 53.94 54.72 54.55

47.82 53.13 52.06 52.10 51.62 55.54 51.19

54.26 58.88 63.41 65.23 65.15 66.79 62.95

75.81 75.81 76.92 77.39 77.26 76.54 76.97

82.74 82.72 82.17 81.89 81.6 80.81 81.9

72.69 72.88 74.70 75.41 74.76 76.48 74.31

90.36 90.36 90.07 90.30 90.22 90.35 90.09

50.22 51.90 50.20 50.18 50.27 51.39 50.20

60.75 63.57 71.78 71.3 70.39 71.64 71.40

56.85 56.98 52.15 54.36 54.65 55.12 51.94

85.09 85.03 84.89 84.55 84.41 85.43 84.96

69.02 69.08 64.73 65.85 65.63 64.26 64.48

mAP 69.92 70.69 70.56 70.90 70.71 71.20 70.40

MACS, Spectral or MARS regularization term overestimates the worst-case expected cross-entropy over
all distributions of (xM ,xM+1) in a Wasserstein ball provided that the transportation cost is given by

d((xM ,xM+1), (x′M ,x
′
M+1)) = ‖xM − x′M‖p + κ1{xM+1 6=x′M+1}

for κ = ∞, whenever p = 1, p = 2 or p = ∞, respectively. Thus, the MACS, Spectral and MARS
regularization terms admit a distributionally robust interpretation.

We use the stochastic proximal gradient descent algorithm of Section 3.4 to tune WM , including an
additional momentum term with weight 0.9. As in [42], we split the training phase into 100 epochs, each
corresponding to a complete pass through the training dataset in a random order. As the ALEXNET
requires input images of size 244 × 244, in each iteration we extract a random patch of 244 × 244 pixels
from the current image and flip it horizontally at random. This procedure effectively augments the training
dataset. The initial step size is set to 10−3 and then reduced by a factor of 10 after every 7 epochs. The
algorithm terminates after 100 epochs. We preprocess the images in the validation and test datasets as in
Scenario 1 and tune the regularization weights via the holdout method using the validation data. Table 3
reports the AP and mAP scores of the different classifiers that were tested. These results suggest that fine-
tuning the last layer of a pre-trained neural network may improve classifier performance. We observe that
the spectral norm regularizer, which has a distributionally robust interpretation, consistently outperforms
almost all other methods. For further details on the experimental setup (such as the exact search grids for
all hyperparameters) we refer to the code publicized on Github.

6.4 Generalization Bounds

The next experiment estimates the scaling behavior of the smallest Wasserstein radius that verifies the
generalization bound (38) for the synthetic threenorm classification problem [16]. The experiment in-
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Figure 2: Results of the threenorm classification problem.

volves 1,000 simulation trials. In each trial we generate N training samples for some N ∈ {10, . . . , 90} ∪
{100, . . . , 1,000} as well as 105 test samples. Each sample (x, y) ∈ R20 × {−1, 1} is constructed as follows.
The label y is drawn uniformly from {−1, 1}. If y = −1, then x is drawn from a standard multivariate
normal distribution shifted by (c, . . . , c) or (−c, . . . ,−c) with equal probabilities, where c = 2/

√
20. If

ŷ = 1, on the other hand, then x is drawn from a standard multivariate normal distribution shifted by
(c,−c,+c, . . . ,−c).

We now describe three different approaches to choose the Wasserstein radius ρ in the DRSVM (20) with
transportation cost (16), where κ = ∞ and ‖ · ‖ represents the ∞-norm on the input space. Throughout
the experiment we use P = {b ·10−e : b ∈ {1, . . . , 10}, e ∈ {1, . . . , 5}} as the search space for ρ. Approach 1
(‘cross validation’) calibrates the Wasserstein radius as before via 5-fold cross validation based solely on
the N training samples. This approach reflects what would typically be done in practice. Approaches 2
and 3 both solve (20) based on the empirical distribution induced by the N training samples and select the
Wasserstein radius using the 105 test samples. Specifically, approach 2 (‘optimal’) chooses the Wasserstain
radius that leads to the lowest test error, while approach 3 (‘generalization bound’) selects the smallest
Wasserstein radius for which the optimal value of (20) exceeds the expected loss on the test samples
in at least 95% of all trials, that is, it approximates the smallest Wasserstein radius that verifies the
generalization bound (38) for η = 5%. As the test samples are not available in the training phase, the last
two approaches are not implementable in practice, and we merely study them to gain insights. Figure 2(a)
visualizes all resulting Wasserstein radii as a function of N . Note that the radii obtained with the first
two approaches are uncertain as they depend on a particular choice of the training samples. Figure 2(a)
thus only shows their averages across all simulation trials. In contrast, the radii obtained with the third
approach depend on the training sample sets of all 1,000 trials and are thus essentially deterministic.

We observe that the Wasserstein radii of all three approaches decay approximately as 1/
√
N , which is

in line with the theoretical generalization bound of Theorem 4.6. We expect this decay rate to be optimal
because any faster decay would be in conflict with the central limit theorem. Note also that our results
empirically confirm Theorem 4.6 even though we did not impose any restrictions on W as dictated by
Assumption 4.5. This suggests that Theorem 4.6 might remain valid under weaker conditions.

In the experiment underlying Figure 2(b), we first fix ŵ to an optimal solution of (20) for ρ = 0.1 and
N = 100. Figure 2(b) shows the true risk R(ŵ) and its confidence bounds given by Theorem 5.2. As
expected, for ρ = 0 the upper and lower bounds coincide with the empirical risk on the training data, which
is a lower bound for the true risk on the test data due to over-fitting effects. As ρ increases, the confidence
interval between the bounds widens and eventually covers the true risk. For instance, at ρ ≈ 0.009 the
confidence interval is given by [0.008, 0.162] and contains the true risk with probability 1− η = 95%.

6.5 Worst-Case Distributions

Consider again the 3-vs-8 classification problems from the MNIST database [46] and fix w? to an optimal
solution of the empirical hinge loss minimization problem. The goal of the last experiment is to evaluate
the worst-case hinge loss of w? for different Wasserstein radii ρ ∈ {0, 0.01, 0.05, 0.1, 0.5, 1} and label flip-
ping costs κ ∈ {0,∞} and to investigate the corresponding worst-case distributions, which are efficiently
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(a) κ =∞ (b) κ = 0

Figure 3: Discretization points (input images) of the worst-case distribution for different ρ and κ. Red
frames indicate that the corresponding labels are flipped under the worst-case distribution.

computable by virtue of Theorem 3.17(i). As each input constitutes a vector of pixels intensities between
zero and one, we impose support constraints of the form Cx ≤ d with C = [I,−I]> and d = [1>,0>]>.

For illustrative purposes we only use the N = 10 first datapoints in the MNIST dataset as training
samples. Each training sample x̂i corresponds to four discretization points (x̂i+q

+?
ij/α

+
ij
?

and x̂i+q
−?
ij/α

−
ij
?

for j = 1, 2) in the worst-case distribution obtained from (26). We observe that for every i exactly one out
of these four points has probability 1

N , while all others have probability 0. Figure 3 depicts only those 10
discretization points that have nonzero probability for a fixed ρ and κ. As expected, the perturbations of
the training samples are more severe for larger Wasserstein radii. For κ =∞ these scenarios must have the
same labels as the corresponding training samples. For κ = 0, on the other hand, the labels can be flipped
at no cost (flipped labels are indicated by red frames). Each scenario group shown in Figure 3 can thus be
viewed as a worst-case training dataset for the corresponding Wasserstein radius and label flipping cost.
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A Appendix: Proofs

A.1 Proofs of Section 3

The proof of Theorem 3.1 requires three preparatory Lemmas. The first lemma is adapted from [52] and
asserts that the worst-case expectation over a Wasserstein ball can be re-expressed as a classical robust
optimization problem.

Lemma A.1 (Robust reformulation). Set ξ̂i = (x̂i, ŷi) for all i ≤ N . For any measurable integrand I(ξ)
that is bounded above by a Lipschitz continuous function we have

sup
Q∈Bρ(P̂N )

EQ [I(ξ)] = inf
λ≥0

λρ+
1

N

N∑
i=1

sup
ξ∈Ξ

I(ξ)− λd(ξ, ξ̂i). (43)

Proof. By the definition of the Wasserstein ball we have

sup
Q∈Bρ(P̂N )

EQ [I(ξ)] =



sup
Π

∫
Ξ2

I(ξ) Π(dξ,dξ′)

s.t. Π is a joint distribution of ξ

and ξ′ with marginals Q and P̂N∫
Ξ2

d
(
ξ, ξ′

)
Π(dξ, dξ′) ≤ ρ
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=



sup
Qi

1

N

N∑
i=1

∫
Ξ
I(ξ)Qi(dξ)

s.t.

∫
Ξ
Qi(dξ) = 1 i ∈ [N ]

1

N

N∑
i=1

∫
Ξ
d(ξ, ξ̂i)Q

i(dξ) ≤ ρ.

Note that the integral of I(ξ) exists under every Q ∈ Bρ(P̂N ) because I(ξ) admits a Lipschitz continuous
majorant. The last equality in the above expression holds because the marginal distribution of ξ′ is
the uniform distribution on the training samples, which implies that Π is completely determined by the
conditional distributions Qi of ξ given ξ′ = ξ̂i, that is, Π(dξ, dξ′) = 1

N

∑N
i=1 δξ̂i(dξ

′)Qi(dξ). The resulting

generalized moment problem over the normalized measures Qi admits the semi-infinite dual

sup
Q∈Bρ(P̂N )

EQ [I(ξ)] =


inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
ξ∈Ξ

I(ξ)− λd(ξ, ξ̂i) ≤ si i ∈ [N ]

λ ≥ 0,

Strong duality holds for any ρ > 0 due to [63, Proposition 3.4]. The claim then follows by eliminating si.

Lemma A.2. For any a ∈ R, β, ζ̂ ∈ Rd, γ ∈ R+ and ζ ∈ Z, where Z ⊆ Rd is a closed convex set, we have

sup
ζ∈Z

a〈β, ζ〉 − γ‖ζ − ζ̂‖ =

{
inf
p

SZ(aβ − p) + 〈p, ζ̂〉

s.t. ‖p‖∗ ≤ γ.

Proof. We have

sup
ζ∈Z

a〈β, ζ〉 − γ‖ζ − ζ̂‖ = sup
ζ∈Z

inf
‖p‖∗≤γ

a〈β, ζ〉 − 〈p, ζ − ζ̂〉

= inf
‖p‖∗≤γ

sup
ζ∈Z

a〈β, ζ〉 − 〈p, ζ − ζ̂〉

= inf
‖p‖∗≤γ

sup
ζ∈Rd

〈aβ − p, ζ〉 − δZ(ζ) + 〈p, ζ̂〉

= inf
‖p‖∗≤γ

SZ(aβ − p) + 〈p, ζ̂〉,

where the first equality follows from the definition of the dual norm, the second equality holds due to the
minimax theorem [9, Proposition 5.5.4], and the last equality holds because the support function SZ is the
conjugate of the indicator function δZ . Thus, the claim follows.

Lemma A.3. If L(z) is a convex and Lipschitz continuous loss function, β, ζ̂ ∈ Rd and γ > 0, then

sup
ζ∈Rd

L(〈β, ζ〉)− γ‖ζ − ζ̂‖ =

{
L(〈β, ζ̂〉) if lip(L)‖β‖∗ ≤ γ

+∞ otherwise.

Proof. Note that L(〈β, ζ〉)−γ‖ζ− ζ̂‖ constitutes a difference of convex functions and may thus be neither
convex nor concave in ζ. In order to maximize this function, we re-write I(ζ) = L(〈β, ζ〉) as an upper
envelope of infinitely many affine functions. To this end, we express the conjugate of I(ζ) as

I∗(z) = sup
ζ
〈z, ζ〉 − L(〈β, ζ〉) = sup

t, ζ
{〈z, ζ〉 − L(t) : t = 〈β, ζ〉} = inf

θ
{L∗(θ) : θβ = z} ,

where the last equality follows from strong Lagrangian duality, which holds because Slater’s constraint
qualification is trivially satisfied in the absence of inequality constraints [9, Proposition 5.3.1]. Defining
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Θ = {θ ∈ R : L∗(θ) < ∞} as the effective domain of L∗(θ), we may then replace θ ∈ R with θ ∈ Θ in the
last expression. As I(ζ) is convex and continuous, it coincides with its bi-conjugate, that is,

I(ζ) = I∗∗(ζ) = sup
z
〈z, ζ〉 − I∗(z) = sup

θ∈Θ
〈θβ, ζ〉 − L∗(θ).

In other words, we have represented I(ζ) as the upper envelope of infinitely many linear functions. Using
this representation, we obtain

sup
ζ

I(ζ)− γ‖ζ − ζ̂‖ = sup
ζ

I∗∗(ζ)− γ‖ζ − ζ̂‖

= sup
ζ

sup
θ∈Θ

〈θβ, ζ〉 − L∗(θ)− γ‖ζ − ζ̂‖

= sup
θ∈Θ

sup
ζ

inf
‖p‖∗≤γ

θ〈β, ζ〉 − L∗(θ)− 〈p, ζ − ζ̂〉

= sup
θ∈Θ

inf
‖p‖∗≤γ

sup
ζ
〈θβ − p, ζ〉 − L∗(θ) + 〈p, ζ̂〉,

where the last equality holds due to [9, Proposition 5.5.4]. Evaluating the maximization over ζ yields

sup
ζ

I(ζ)− γ‖ζ − ζ̂‖ = sup
θ∈Θ

inf
‖p‖∗≤γ

{
〈p, ζ̂〉 − L∗(θ) if p = θβ

+∞ otherwise

= sup
θ∈Θ

{
〈θβ, ζ̂〉 − L∗(θ) if ‖θβ‖∗ ≤ γ

+∞ otherwise

=

{
sup
θ∈Θ

θ〈β, ζ̂〉 − L∗(θ) if sup
θ∈Θ

‖θβ‖∗ ≤ γ

+∞ otherwise

=

{
L(〈β, ζ̂〉) if sup

θ∈Θ
|θ| · ‖β‖∗ ≤ γ

+∞ otherwise.

Thus, the claim follows by noting that supθ{|θ| : L∗(θ) <∞} represents the Lipschitz modulus of L.

Proof of Theorem 3.1. To prove assertion (i), we apply Lemma A.1 to the integrand f(x, y) = L(〈w,x〉−y)
with L(z) = maxj≤J{ajz + bj} to obtain

sup
Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] = inf
λ≥0

λρ+
1

N

N∑
i=1

sup
(x,y)∈Ξ

L(〈w,x〉 − y)− λ‖(x, y)− (x̂i, ŷi)‖

= inf
λ≥0

λρ+
1

N

N∑
i=1

max
j≤J

sup
(x,y)∈Ξ

aj(〈w,x〉 − y) + bj − λ‖(x, y)− (x̂i, ŷi)‖

=

 inf
λ,pij ,uij

λρ+

N∑
i=1

max
j≤J

SΞ(ajw − pij ,−aj − uij) + 〈pij , x̂i〉+ uij ŷi + bj

s.t. ‖(pij , uij)‖∗ ≤ λ i ∈ [N ], j ∈ [J ],

where the last equality follows from Lemma A.2. The claim now follows by introducing auxiliary epigraph-
ical variables si for the max-terms in the objective function and by including w as a decision variable.

To prove assertion (ii), we apply Lemma A.1 to the integrand f(x, y) = L(〈w,x〉 − y), where L is a
Lipschitz continuous convex loss function. Thus we find

sup
Q∈Bρ(P̂N )

EQ [`w(x, y)] = inf
λ≥0

λρ+
N∑
i=1

sup
x,y

L(〈w,x〉 − y)− λ‖(x, y)− (x̂i, ŷi)‖

=

 inf
λ

λρ+
1

N

N∑
i=1

L(〈w, x̂i〉 − ŷi)

s.t. lip(L)|θ| · ‖(w,−1)‖∗ ≤ λ,
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where the last equality uses Lemma A.3. Next, we eliminate λ and include w as a decision variable.

Proof of Corollary 3.2. Note that the Huber loss function L(z) coincides with the inf-convolution of 1
2z

2

and δ|z| and can thus be expressed as L(z) = minz1
1
2z

2
1 + δ|z − z1|. Moreover, the Lipschitz modulus of

the Huber loss function is δ. The rest of the proof follows from Theorem 3.1(ii).

Proof of Corollary 3.3. Notice that the ε-insensitive loss function is a piecewise linear function with J = 3
pieces, see Section 2.1. By strong conic duality, the support function of Ξ = {(x, y) ∈ Rn+1 : C1x+c2y �C
d} can be re-expressed as

SΞ(z1, z2) = sup
x,y
{〈z1,x〉+ z2y : C1x+ c2y �C d} = inf

q∈C∗

{
〈q,d〉 : C>1 q = z1, c

>
2 q = z2

}
.

Strong duality holds because Ξ admits a Slater point. The rest of proof follows from Theorem 3.1(i).

Proof of Corollary 3.4. The pinball loss function is a piecewise linear function with J = 2 pieces, see
Section 2.1. The rest of proof follows from the dual representation of the support function SΞ(z1, z2),
which is known from the proof of Corollary 3.3, and from Theorem 3.1(i).

The proof of Theorem 3.6 is based on the following preparatory lemma.

Lemma A.4. If Z ⊆ Rd is a non-empty convex closed set, ζ̂ ∈ Z, β ∈ Rd and α, γ ≥ 0, then we have

inf
p

αSZ(β − p) + α〈p, ζ̂〉+ γ‖p‖∗ =

 sup
‖q‖≤γ

α〈β, ζ̂〉+ 〈β, q〉

s.t. ζ̂ + q/α ∈ Z.

Proof. If α = 0, then the optimal values of both opimization problems vanish due to our conventions of
extended arithmetic, and thus the claim trivially holds. If α > 0, however, we have

inf
p

αSZ(β − p) + α〈p, ζ̂〉+ γ‖p‖∗ = inf
p

sup
‖q‖≤γ

αSZ(β − p) + α〈p, ζ̂〉+ 〈p, q〉

= sup
‖q‖≤γ

inf
p

αSZ(β − p) + 〈p, αζ̂ + q〉

= sup
‖q‖≤γ

inf
z

αSZ(z) + 〈β − z, αζ̂ + q〉

= sup
‖q‖≤γ

α〈β, ζ̂〉+ 〈β, q〉 − α
(

sup
z
〈z, ζ̂ + q/α〉 − SZ(z)

)
= sup
‖q‖≤γ

α〈β, ζ̂〉+ 〈β, q〉 − αδZ(ζ̂ + q/α),

where the first equality follows from the definition of the dual norm, the second equality exploits [9,
Proposition 5.5.4], and the last equality holds because, for any convex closed set, the indicator function is
the conjugate of the support function.

Proof of Theorem 3.6. We first prove assertion (i). By Theorem 3.1(i), the worst-case expectation prob-
lem (13) constitutes a restriction of (5) where w is fixed, and thus it coincides with the minimax problem

inf
λ,si
pij ,uij

sup
αij≥0,γij≥0

λρ+
1

N

N∑
i=1

si +

N∑
i=1

J∑
j=1

αij
(
SΞ(−ajw − pij , aj − uij) + bj + 〈pij , x̂i〉+ uij ŷi − si

)
+

N∑
i=1

J∑
j=1

γij
(
‖(pij , uij)‖∗ − λ

)
.

The minimization and the maximization may be interchanged by strong duality, which holds because
the convex program (5) satisfies Slater’s constraint qualification for every fixed w [9, Proposition 5.3.1].
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Indeed, note that SΞ is proper, convex and lower semi-continuous and appears in constraints that are always
satisfiable because they involve a free decision variable. Thus, the above minimax problem is equivalent to

sup
αij ,γij

inf
pij ,uij

N∑
i=1

J∑
j=1

αij
(
SΞ(ajw − pij , aj − uij) + bj + 〈pij , x̂i〉+ uij ŷi

)
+

N∑
i=1

J∑
j=1

γij‖pij‖∗

s.t.
N∑
i=1

J∑
j=1

γij = ρ

J∑
j=1

αij =
1

N
i ∈ [N ]

αij , γij ≥ 0 i ∈ [N ], j ∈ [J ].

By Lemma A.4, which applies because (x̂i, ŷi) ∈ Ξ for all i ≤ N , the above dual problem simplifies to

sup
αij ,γij
qij ,vij

N∑
i=1

J∑
j=1

αij
(
aj(〈w, x̂i〉 − ŷi) + bj

)
+ aj(〈w, qij〉 − vij)

s.t.
N∑
i=1

J∑
j=1

γij = ρ

J∑
j=1

αij =
1

N
i ∈ [N ]

‖(qij , vij)‖ ≤ γij i ∈ [N ], j ∈ [J ]
(x̂i − qij/αij , ŷi − vij/αij) ∈ Ξ i ∈ [N ], j ∈ [J ]
αij , γij ≥ 0 i ∈ [N ], j ∈ [J ].

Problem (14) is now obtained by eliminating the variables γij and by substituting αij , qij , and vij with
αij/N , qij/N , and vij/N , respectively.

As for assertion (ii), we first show that the discrete distribution Qγ belongs to the Wasserstein ball

Bρ(P̂N ) for all γ ∈ (0, 1]. Indeed, the Wasserstein distance between Qγ and P̂N amounts to

d(Qγ , P̂N ) ≤ γ

N

∥∥∥∥(x̂1 +
ρN

γ
x?, ŷ1 +

ρN

γ
y?
)
− (x̂1, ŷ1)

∥∥∥∥ = ρ‖(x?, y?)‖ ≤ ρ,

where the first inequality holds because the Wasserstein distance coincides with the optimal mass trans-
portation cost, and the last inequality holds because the norm of (x?, y?) is at most 1 by construction.
Thus, Qγ ∈ Bρ(P̂N ) for all γ ∈ (0, 1]. Denoting the optimal value of (13) by J?(w) and using `w(x, y) as
a shorthand for L(〈w,x〉 − y), we find

J?(w) ≥ EQγ [`w(x, y)]

= 1
N

N∑
i=1

`w(x̂i, ŷi)− γ
N `w(x̂1, ŷ1) + γ

N `w(x̂1 + ρN
γ x

?, ŷ1 + ρN
γ y

?)

≥ 1
N

N∑
i=1

`w(x̂i, ŷi)− γ
N `w(x̂1, ŷ1) + γ

N

(
〈(x, y), (x̂1 + ρN

γ x
?, ŷ1 + ρN

γ y
?)〉

−`∗w(x, y)
)
∀(x, y) ∈ Rn+1,

where the last estimate follows from Fenchel’s inequality. Setting (x, y) = lip(L)(w,−1) we thus have

J?(w) ≥ lim
γ→0+

1
N

N∑
i=1

`w(x̂i, ŷi)− γ
N `w(x̂1, ŷ1) + γ

N lip(L)(〈w, x̂1〉 − ŷ1) + ρ lip(L)‖(w,−1)‖∗

− γ
N `
∗
w(lip(L)(w,−1))

= 1
N

N∑
i=1

`w(x̂i, ŷi) + ρ lip(L)‖(w,−1)‖∗ = J?(w),

where the equality follows from Theorem 3.1(ii). The above reasoning implies that limγ→0+ EQγ [`w(x, y)] =
J?(w), and thus the claim follows.
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Proof of Theorem 3.9. Assume first that the loss function L is convex piecewise linear, that is, L(z) =
maxj∈J{ajz + bj}. As Ξ ∈ Rn+1, Theorem 3.6(i) implies that the worst-case expectation (13) is given by

sup
αij ,qij ,vij

1

N

N∑
i=1

J∑
j=1

αij

[
aj(〈w, x̂i〉 − ŷi) + bj

]
+ aj(〈w, qij〉 − vij)

s.t.
1

N

N∑
i=1

J∑
j=1

‖(qij , vij)‖ ≤ ρ

J∑
j=1

αij = 1 i ∈ [N ]

αij ≥ 0 i ∈ [N ], j ∈ [J ]

≥



sup
αij ,∆xij ,∆yij

1

N

N∑
i=1

J∑
j=1

αij [aj(〈w, x̂i + ∆xij〉 − ŷi −∆yij) + bj ]

s.t.
1

N

N∑
i=1

J∑
j=1

αij‖(∆xij ,∆yij)‖ ≤ ρ

J∑
j=1

αij = 1 i ∈ [N ]

αij ≥ 0 i ∈ [N ], j ∈ [J ]

≥



sup
αij ,∆xi,∆yi

1

N

N∑
i=1

J∑
j=1

αij [aj(〈w, x̂i + ∆xi〉 − ŷi −∆yi) + bj ]

s.t.
1

N

N∑
i=1

J∑
j=1

αij‖(∆xi,∆yi)‖ ≤ ρ

J∑
j=1

αij = 1 i ∈ [N ]

αij ≥ 0 i ∈ [N ], j ∈ [J ].

The first inequality holds because for any feasible solution {αij ,∆xij ,∆yij} to the second optimization
problem, the solution {αij , qij , vij} with qij = αij∆xij and vij = αij∆yij is feasible in the first problem
and attains the same objective value (conversely, note that the first problem admits feasible solutions with
αij = 0 and qij 6= 0 that have no counterpart in the second problem). The second inequality follows from
the restriction that ∆xij and ∆yij must be independent of j. It is easy to verify that the last optimization
problem in the above expression is equivalent to (15) because (αi1, . . . , αiJ) ranges over a simplex for every
i ≤ N , and thus (15) provides a lower bound on (13).

Suppose now that Assumption 3.7 holds, and note that the worst-case loss (15) can be expressed as
sup

∆xi,∆yi

1

N

N∑
i=1

max
j≤J

[aj(〈w, x̂i + ∆xi〉 − ŷi −∆yi) + bj ]

s.t.
1

N

N∑
i=1

‖(∆xi,∆yi)‖ ≤ ρ

≥


sup

∆x,∆y

1

N

∑
i 6=k

max
j≤J

[aj(〈w, x̂i〉 − ŷi) + bj ] +
1

N
max
j≤J

[aj(〈w, x̂k + ∆x〉 − ŷk −∆y) + bj ]

s.t.
1

N
‖(∆x,∆y)‖ ≤ ρ.

The above inequality follows from setting ∆xi = 0 and ∆yi = 0 for all i 6= k, where (x̂k, ŷk) is a training
sample satisfying |L′(〈w, x̂k〉 − ŷk)| = lip(L), which exists due to Assumption 3.7. The last expression
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equals

=
1

N

∑
i 6=k

max
j≤J

[aj(〈w, x̂i〉 − ŷi) + bj ] + max
j≤J


sup

∆x,∆y

1

N
[aj(〈w, x̂k〉 − ŷk) + bj ] +

1

N
[aj(〈w,∆x〉 −∆y)]

s.t.
1

N
‖(∆x,∆y)‖ ≤ ρ

=
1

N

∑
i 6=k

max
j≤J

[aj(〈w, x̂i〉 − ŷi) + bj ] +
1

N
max
j≤J

[
aj(〈w, x̂k〉 − ŷk) + bj + ρN‖(w,−1)‖∗|aj |

]
=

1

N

∑
i 6=k

max
j≤J

[aj(〈w, x̂i〉 − ŷi) + bj ] +
1

N
max
j≤J

[aj(〈w, x̂k〉 − ŷk) + bj ] + max
j≤J

ρ‖(w,−1)‖∗|aj |

=
1

N

N∑
i=1

L(〈w, x̂i〉 − ŷi) + max
j≤J

ρ‖(w,−1)‖∗|aj |,

where the penultimate equality holds because 〈w, x̂k〉 − ŷk resides on the steepest linear piece of the loss
function L by virtue of Assumption 3.7. The claim then follows from Theorem 3.1(ii) because lip(L) =
maxj≤J |aj |. Note that generic convex Lipschitz continuous loss functions can be uniformly approximated
as closely as desired with convex piecewise linear functions. Thus, the above argument extends directly to
generic convex Lipschitz continuous loss functions. Details are omitted for brevity.

Proof of Theorem 3.11. To prove assertion (i), we apply Lemma A.1 to problem (4) with the transportation
distance (16), where ξ = (x, y) and Ξ = X× {−1,+1}. Thus, we obtain

sup
Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] =


inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
(x,y)∈Ξ

L(y〈w,x〉)− λ
(
‖x− x̂i‖+ κ

2 |y − ŷi|
)
≤ si i ∈ [N ]

λ ≥ 0.

=



inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
x∈X

L(ŷi〈w,x〉)− λ‖x− x̂i‖ ≤ si i ∈ [N ]

sup
x∈X

L(−ŷi〈w,x〉)− λ‖x− x̂i‖ − κλ ≤ si i ∈ [N ]

λ ≥ 0

=



inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
x∈X

aj ŷi〈w,x〉+ bj − λ‖x− x̂i‖ ≤ si i ∈ [N ], j ∈ [J ]

sup
x∈X

− aj ŷi〈w,x〉+ bj − λ‖x− x̂i‖ − κλ ≤ si i ∈ [N ], j ∈ [J ]

λ ≥ 0,

where the second equality holds because, for every i, y can be either equal to ŷi or to −ŷi. Reformulating
the constraints using Lemma A.2 and including w as a decision variable then yields (17).

When X = Rn and L is Lipschitz continuous, we can use similar arguments as above to prove that

sup
Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] =



inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
x∈Rn

L(ŷi〈w,x〉)− λ‖x− x̂i‖ ≤ si i ∈ [N ]

sup
x∈Rn

L(−ŷi〈w,x〉)− λ‖x− x̂i‖ − κλ ≤ si i ∈ [N ]

λ ≥ 0.
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Applying Lemma A.3 to the subordinate maximization problems in the constraints yields

sup
Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] =


inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. L(ŷi〈w, x̂i〉) ≤ si i ∈ [N ], j ∈ [J ]
L(−ŷi〈w, x̂i〉)− κλ ≤ si i ∈ [N ], j ∈ [J ]
sup
θ∈Θ

|θ| · ‖w‖∗ ≤ λ.

Thus, assertion (ii) follows by recalling that lip(L) = supθ{|θ| : L∗(θ) <∞} = supθ∈Θ |θ| and by including
w as a decision variable.

Proof of Corollary 3.12. Notice that the hinge loss function is piecewise linear with J = 2 pieces, see
Section 2.1. Moreover, by strong conic duality the support function of X can be re-expressed as

SX(z) = sup
x
{〈z,x〉 : Cx �C d} = inf

q∈C∗

{
〈q,d〉 : C>q = z

}
.

Strong duality holds because X admits a Slater point. The proof thus follows from Theorem 3.11(i).

Proof of Corollary 3.13. The smooth hinge loss L(z) coincides with the inf-convolution of 1
2z

2 and max{0, 1−
z} and can thus be expressed as L(z) = minz1

1
2z

2
1 + max{0, 1− z − z1}. Moreover, the Lipschitz modulus

of the smooth hinge loss function is 1. The proof thus follows from Theorem 3.11(ii).

Proof of Corollary 3.14. Notice that the logloss function is convex and has Lipschitz modulus 1, see Sec-
tion 2.1. The rest of proof follows from Theorem 3.11(ii). For more details see [61].

Proof of Theorem 3.17. We first prove assertion (i). By Theorem 3.11(i), the worst-case expectation prob-
lem (25) constitutes a restriction of (17) where w is fixed, and thus it is equivalent to the minimax problem

inf
λ,si
p+
ij ,p
−
ij

sup
α+
ij≥0,γ+

ij≥0

α−ij≥0,γ−ij≥0

λρ+
1

N

N∑
i=1

si +
N∑
i=1

J∑
j=1

α+
ij

(
SX(aj ŷiw − p+

ij) + bj + 〈p+
ij , x̂i〉 − si

)

+
N∑
i=1

J∑
j=1

α−ij
(
SX(−aj ŷiw − p−ij) + bj + 〈p−ij , x̂i〉 − κλ− si

)
+

N∑
i=1

J∑
j=1

γ+
ij

(
‖p+

ij‖∗ − λ
)

+
N∑
i=1

J∑
j=1

γ−ij
(
‖p−ij‖∗ − λ

)
.

The minimization and the maximization may be interchanged by strong Lagrangian duality, which holds
because the convex program (17) satisfies Slater’s constraint qualification for any fixed w [9, Proposi-
tion 5.3.1]. Indeed, note that SX is proper, convex and lower semi-continuous and appears in constraints
that are always satisfiable because they involve a free decision variable. Thus, problem (25) is equivalent to

sup
α+
ij ,γ

+
ij

α−ij ,γ
−
ij

inf
p+
ij ,p
−
ij

N∑
i=1

J∑
j=1

α+
ij

(
SX(aj ŷiw − p+

ij) + bj + 〈p+
ij , x̂i〉

)
+ γ+

ij‖p
+
ij‖∗

+

N∑
i=1

J∑
j=1

α−ij
(
SX(−aj ŷiw − p−ij) + bj + 〈p−ij , x̂i〉

)
+ γ−ij‖p

−
ij‖∗

s.t.
N∑
i=1

J∑
j=1

γ+
ij + γ−ij + κα−ij = ρ

J∑
j=1

α+
ij + α−ij =

1

N
i ∈ [N ]

α+
ij , α

−
ij , γ

+
ij , γ

−
ij ≥ 0 i ∈ [N ], j ∈ [J ].
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By Lemma A.4, the above dual problem simplifies to

sup
α+
ij ,γ

+
ij ,q

+
ij

α−ij ,γ
−
ij ,q
−
ij

N∑
i=1

J∑
j=1

(α+
ij − α

−
ij)aj ŷi〈w, x̂i〉+ aj ŷi〈w, q+

ij − q
−
ij〉+

J∑
j=1

bj

s.t.

N∑
i=1

J∑
j=1

γ+
ij + γ−ij + κα−ij = ρ

J∑
j=1

α+
ij + α−ij =

1

N
i ∈ [N ]

‖q+
ij‖ ≤ γ

+
ij , ‖q−ij‖ ≤ γ

−
ij i ∈ [N ], j ∈ [J ]

x̂i + q+
ij/α

+
ij ∈ X, x̂i + q−ij/α

−
ij ∈ X i ∈ [N ], j ∈ [J ]

α+
ij , α

−
ij , γ

+
ij , γ

−
ij ≥ 0 i ∈ [N ], j ∈ [J ].

Problem (26) is now obtained by eliminating γ+
ij and γ−ij and by substituting α+

ij , α
−
ij , q

+
ij , and q−ij with

α+
ij/N , α−ij/N , q+

ij/N , and q−ij/N , respectively.

As for assertion (ii), we use L+
i and L−i to abbreviate L(ŷi〈w, x̂i〉) and L(−ŷi〈w, x̂i〉), respectively. By

Theorem 3.11(ii), we have

sup
Q∈Bρ(P̂N )

EQ[L(y〈w,x〉)] =


inf
w,λ,si

λρ+
1

N

N∑
i=1

si

s.t. L+
i ≤ si i ∈ [N ]

L−i − κλ ≤ si i ∈ [N ]
lip(L)‖(w)‖∗ ≤ λ

=



sup
α+
i ,α
−
i ,θ

lip(L)‖(w)‖∗θ +

N∑
i=1

α+
i L

+
i + α−i L

−
i

s.t. α+
i + α−i = 1

N i ∈ [N ]

θ + κ
N∑
i=1

α−i = ρ

α+
i ≥ 0, α−i ≥ 0 i ∈ [N ]
θ ≥ 0,

where the second equality follows from strong linear programming duality, which holds because the primal
problem is manifestly feasible. Eliminating the first constraint and replacing α−i with αi/N and α+

i with
(1− αi)/N allows us to reformulate the dual linear program as

sup
αi,θ

lip(L)(w)‖∗θ +
1

N

N∑
i=1

(1− αi)L+
i + αiL

−
i

s.t. θ +
κ

N

N∑
i=1

αi = ρ

0 ≤ αi ≤ 1 i ∈ [N ]
θ ≥ 0.

Thus, the worst-case expectation (25) coincides with the optimal value of (27) for γ = 0. Next let
(α?i (γ), θ?(γ)) be an optimal solution of (27) for γ ≥ 0, and define Qγ as in the theorem statement. Note
that (27) is infeasible for γ > ρ. Moreover, note that the atoms of Qγ have non-negative probabilities if
η(γ) ∈ [0, 1], which holds whenever γ ∈ [0, 1]. We thus focus on parameter values γ ∈ [0,min{ρ, 1}]. By
construction, the Wasserstein distance between Qγ and the empirical distribution satisfies

d(Qγ , P̂N ) ≤ κ
N

N∑
i=1

α?i (γ)− η(γ)κ
N α?1(γ) + η(γ)

N d
(
(x̂1 + θ?(γ)N

η(γ) x
?, ŷ1)− (x̂1, ŷ1)

)
≤ ρ− γ − θ?(γ) + θ?(γ)‖x?‖ ≤ ρ,
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where the first inequality holds because the Wasserstein distance is defined as the minimum cost of
moving Qγ to P̂N , the second inequality follows from the feasibility of (α?i (γ), θ?(γ)) in (27) and the
non-negativity of η(γ), and the last inequality holds because ‖x?‖ ≤ 1, θ?(γ) ≥ 0 and γ ≥ 0. Thus,
Qγ ∈ Bρ(P̂N ) for all γ ∈ [0,min{ρ, 1}]. Denoting the optimal value of (25) by J?(w), we find

J?(w) ≥ EQγ [L(y〈w,x〉)]

= 1
N

( N∑
i=1

(1− α?i (γ))L+
i + α?i (γ)L−i

)
− η(γ)

N

(
(1− α?1(γ))L+

1 + α?1(γ)L−1
)

+η(γ)
N L

(
ŷ1〈w, x̂1 + θ?(γ)N

η(γ) x
?〉
)

≥ 1
N

( N∑
i=1

(1− α?i (γ))L+
i + α?i (γ)L−i

)
− η(γ)

N

(
(1− α?1(γ))L+

1 + α?1(γ)L−1
)

+η(γ)
N

(
〈x, x̂1 + θ∗(γ)N

η(γ) x
?〉 − L∗(ŷ1〈w,x〉)

)
∀x ∈ Rn,

where the last estimate follows from Fenchel’s inequality. Setting x = lip(L)w and driving γ to zero yields

J?(w) ≥ lim
γ→0+

1
N

( N∑
i=1

(1− α?i (γ))L+
i + α?i (γ)L−i

)
− η(γ)

N

(
(1− α?1(γ))L+

1 + α?1(γ)L−1
)

+η(γ)
N

(
lip(L)〈w, x̂1〉 − L∗(ŷ1 lip(L)〈w,w〉)

)
+ lip(L)‖w‖∗ · θ?(γ)

= lim
γ→0+

1
N

( N∑
i=1

(1− α?i (γ))L+
i + α?i (γ)L−i

)
+ lip(L)‖w‖∗ · θ?(γ) = J?(w),

where the first equality follows from the observation that η(γ) ∈ [0, γ], which implies that η(γ) converges
to zero as γ tends to zero. The second equality holds because the optimal value of (27) is concave and
non-increasing and—a fortiori—continuous in γ ∈ [0,min{ρ, 1}] and because J?(w) coincides with the
optimal value of (27) when γ = 0. The above reasoning implies that limγ→0+ EQγ [L(y〈w,x〉)] = J?(w),
and thus the claim follows.

Proof of Theorem 3.20. Assume first that the loss function L is convex piecewise linear, that is, L(z) =
maxj∈J{ajz + bj}. As X = Rn and κ =∞, Theorem 3.17(i) implies that (25) can be expressed as

sup
α+
ij ,q

+
ij

1

N

N∑
i=1

J∑
j=1

α+
ijaj ŷi〈w, x̂i〉+ aj ŷi〈w, q+

ij〉+
J∑
j=1

bj

s.t.

N∑
i=1

J∑
j=1

‖q+
ij‖ ≤ Nρ

J∑
j=1

α+
ij = 1 i ∈ [N ]

α+
ij ≥ 0 i ∈ [N ], j ∈ [J ]

≥



sup
αij ,∆xij

1

N

N∑
i=1

J∑
j=1

αijaj ŷi〈w, x̂i + ∆xij〉+

J∑
j=1

bj

s.t.
N∑
i=1

J∑
j=1

αij‖∆xij‖ ≤ Nρ

J∑
j=1

αij = 1 i ∈ [N ]

αij ≥ 0 i ∈ [N ], j ∈ [J ]
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≥



sup
αij ,∆xi

1

N

N∑
i=1

J∑
j=1

αijaj ŷi〈w, x̂i + ∆xi〉+

J∑
j=1

bj

s.t.
N∑
i=1

J∑
j=1

αij‖∆xi‖ ≤ Nρ

J∑
j=1

αij = 1 i ∈ [N ]

αij ≥ 0 i ∈ [N ], j ∈ [J ].

The first optimization problem constitutes a special case of (26). Indeed, as κ = ∞, the first constraint
in (26) implies that α−ij = 0, which in turn implies via the fourth constraint and our conventions of extended

arithmetics that q−ij = 0. The first inequality in the above expression holds because for any feasible solution

{αij ,∆xij} to the second problem, the solution {α+
ij , q

+
ij} with q+

ij = α+
ij∆xij and αij = α+

ij for all i ≤ N
and j ≤ J is feasible in the first problem and attains the same objective value. The second inequality in
the above expression follows from the restriction that ∆xij must be independent of j. It is easy to verify
that the last optimization problem is equivalent to (28) because (αi1, . . . , αiJ) ranges over a simplex for
every i ≤ N , and thus (28) provides a lower bound on (25).

Suppose now that Assumption 3.18 holds, and note that (28) can be expressed as
sup

∆xi,∆yi

1

N

N∑
i=1

max
j≤J

[aj ŷi〈w, x̂i + ∆xi〉+ bj ]

s.t.
1

N

N∑
i=1

‖∆xi‖ ≤ ρ

≥


sup

∆x,∆y

1

N

∑
i 6=k

max
j≤J

[aj ŷi〈w, x̂i〉+ bj ] +
1

N
max
j≤J

[aj ŷk〈w, x̂k + ∆x〉+ bj ]

s.t.
1

N
‖∆x‖ ≤ ρ.

The above inequality follows from setting ∆xi = 0 and ∆yi = 0 for all i 6= k, where (x̂k, ŷk) is a training
sample satisfying |L′(ŷk〈w, x̂k〉)| = lip(L), which exists due to Assumption 3.18. The last expression equals

1

N

∑
i 6=k

max
j≤J

[aj ŷi〈w, x̂i〉+ bj ] + max
j≤J


sup

∆x,∆y

1

N
[aj ŷk〈w, x̂k〉+ bj ] +

1

N
[aj ŷk〈w,∆x〉]

s.t.
1

N
‖(∆x,∆y)‖ ≤ ρ

=
1

N

∑
i 6=k

max
j≤J

[aj ŷi〈w, x̂i〉+ bj ] +
1

N
max
j≤J

[
aj ŷi〈w, x̂k〉+ bj + ρN‖w‖∗|aj |

]
=

1

N

∑
i 6=k

max
j≤J

[aj ŷi〈w, x̂i〉+ bj ] +
1

N
max
j≤J

[aj ŷk〈w, x̂k〉+ bj ] + max
j≤J

ρ‖w‖∗|aj |

=
1

N

N∑
i=1

L(ŷi〈w, x̂i〉) + max
j≤J

ρ‖w‖∗|aj |,

where the penultimate equality holds because ŷk〈w, x̂k〉 resides on the steepest linear piece of the loss
function L by virtue of Assumption 3.18. The claim then follows from Theorem 3.11(ii) because lip(L) =
maxj≤J |aj |. Note that generic convex Lipschitz continuous loss functions can be uniformly approximated
as closely as desired with convex piecewise linear functions. Thus, the above arguments extend directly to
generic convex Lipschitz continuous loss functions. Details are omitted for brevity.

Proof of Theorem 3.24. By the definition of the feature map Φ corresponding to the kernel k, we have

‖Φ(x1)− Φ(x2)‖H =
√
〈Φ(x1),Φ(x1)〉H − 2〈Φ(x1),Φ(x2)〉H + 〈Φ(x2),Φ(x2)〉H

=
√
k(x1,x1)− 2k(x1,x2) + k(x2,x2) ≤ g(‖x1 − x2‖2)

(45)
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for all x1,x2 ∈ X, where the inequality follows from Assumption 3.22. As for assertion (i), we may use
similar argument as in the proof of Lemma A.1 to reformulate the worst-case expectation in (29) as

sup
Q∈Bρ(P̂N )

EQ [`(h(x), y)] =


sup
Qi

1

N

N∑
i=1

∫
X×Y

`(h(x), y)Qi(dx, dy)

s.t.
1

N

N∑
i=1

∫
X×Y

d
(
(x, y), (x̂i, ŷi)

)
Qi(dx,dy) ≤ ρ∫

X×YQ
i(dx, dy) = 1 i ∈ [N ]

=


sup
Qi

1

N

N∑
i=1

∫
X×Y

`(h(x), y)Qi(dx, dy)

s.t. g

(
1

N

N∑
i=1

∫
X×Y

√
2d
(
(x, y), (x̂i, ŷi)

)
Qi(dx, dy)

)
≤ g(
√

2ρ)∫
X×YQ

i(dx, dy) = 1 i ∈ [N ]

≤


sup
Qi

1

N

N∑
i=1

∫
X×Y

`(h(x), y)Qi(dx, dy)

s.t.
1

N

N∑
i=1

∫
X×Y

g
(√

2d
(
(x, y), (x̂i, ŷi)

))
Qi(dx,dy) ≤ g(

√
2ρ)∫

X×YQ
i(dx, dy) = 1 i ∈ [N ],

(46)

where the second equality holds because g is strictly monotonically increasing, and the inequality follows
from Jensen inequality, which applies because g is concave. By the definition of the transportation metric
on H× Y for regression problems, we then find

g
(√

2d
(
(x, y), (x̂i, ŷi)

))
= g
(√

2‖x− x̂i‖22 + 2(y − ŷi)2
)

≥ g(‖x− x̂i‖2 + |y − ŷi|)
≥ g(‖x− x̂i‖2) + |y − ŷi|
≥ ‖Φ(x)− Φ(x̂i)‖H + |y − ŷi|

≥
√
‖Φ(x)− Φ(x̂i)‖2H + (y − ŷi)2 = dH

(
(Φ(x), y), (Φ(x̂i), ŷi)

)
,

(47)

where the first inequality holds because 2a2 + 2b2 ≥ (a + b)2 for all a, b ≥ 0 and because g is strictly
monotonically increasing, the second inequality exploits the assumption that g′(z) ≥ 1 for all z ≥ 0, the
third inequality follows form (45), and the last equality holds because a2 + b2 ≤ (a + b)2 for all a, b ≥ 0.
Substituting the above estimate into (46) and using the reproducing property h(x) = 〈h,Φ(x)〉H yields

sup
Q∈Bρ(P̂N )

EQ [`(h(x), y)] ≤


sup
Qi

1

N

N∑
i=1

∫
X×Y

`(〈h,Φ(x)〉H, y)Qi(dx,dy)

s.t.
1

N

N∑
i=1

∫
X×Y

dH

((
Φ(x), y),

(
Φ(x̂i), ŷi)

)
Qi(dx, dy) ≤ g(

√
2ρ)∫

X×YQ
i(dx,dy) = 1 i ∈ [N ]

≤


sup
Qi

1

N

N∑
i=1

∫
H×Y

`(xH, y)Qi(dxH, dy)

s.t.
1

N

N∑
i=1

∫
H×Y

dH

((
xH, y),

(
Φ(x̂i), ŷi)

)
Qi(dxH,dy) ≤ g(

√
2ρ)∫

H×YQ
i(dxH,dy) = 1 i ∈ [N ]

= sup
Q∈Bg(√2ρ)(P̂

H
N )

EQ [`(xH, y)] ,

39



where the second inequality follows from relaxing the implicit condition that the random variable xH must
be supported on {Φ(x) : x ∈ X} ⊆ H. This completes the proof of assertion (i) for regression problems.

The proof of assertion (ii) parallels that of assertion (i) with obvious modifications. Due to the different
transportation metric for classification problems, however, the estimate (47) changes to

g
(
d
(
(x, y), (x̂i, ŷi)

))
= g (‖x− x̂i‖2 + κ|y − ŷi|)
≥ g (‖x− x̂i‖2) + κ|y − ŷi|
≥ ‖Φ(x)− Φ(x̂i)‖H + κ|y − ŷi| = dH

(
(Φ(x), y), (Φ(x̂i), ŷi)

)
,

where the first inequality exploits the assumption that g′(z) ≥ 1 for all z ≥ 0, and the second inequality
follows form (45). Further details are omitted for brevity.

Proof of Theorem 3.25. The proof follows immediately from [59, Theorem 4.2], which applies to loss func-
tions representable as a sum of an empirical loss depending on (x̂i, ŷi, h(x̂i)), i ≤ N , and a regularization
term that is strictly monotonically increasing in ‖h‖H. However, the additive separability is not needed
for the proof. We remark that the optimal solution of (31) is unique if f is striclty increasing in ‖h‖H.
If f is only non-decreasing in ‖h‖H, on the other hand, uniqueness may be lost. Details are omitted for
brevity.

Proof of Theorem 3.26. Using similar arguments as in the proof of Theorem 3.1(ii) and observing that any
Hilbert norm is self-dual, one can show that

inf
h∈H

sup
Q∈Bρ(P̂H

N )

EQ [L(〈h,xH〉H − y)] = min
h∈H

1

N

N∑
i=1

L(h(x̂i)− ŷi) + ρ lip(L)
√
‖h‖2H + 1.

By the representer theorem, which applies because the objective function of the above optimization problem
is non-decreasing in ‖h‖H, we may restrict the feasible set from H to the subset of all linearly parametrized
hypotheses of the form h(x) =

∑N
j=1 βjk(x, x̂j) for some β ∈ RN without sacrificing optimality. The claim

then follows by observing that h(x̂i) =
∑N

j=1 Kijβj and ‖h‖22 = 〈β,Kβ〉.

Proof of Theorem 3.27. Using similar arguments as in the proof of Theorem 3.11(ii) and observing that
any Hilbert norm is self-dual, one can show that

inf
h∈H

sup
Q∈Bρ(P̂H

N )

EQ [L(y〈h,xH〉H)] =


min
h,λ,si

λρ+
1

N

N∑
i=1

si

s.t. L(ŷih(x̂i)) ≤ si i ∈ [N ]
L(−ŷih(x̂i))− κλ ≤ si i ∈ [N ]
lip(L)‖h‖H ≤ λ,

see [34, Theorem 1] for a full proof. By the representer theorem, which applies because the loss function

f((x̂1, ŷ1, h(x̂1)), . . . , (x̂N , ŷN , h(x̂N )), ‖h‖H) =

 min
λ

λρ+ 1
N

N∑
i=1

max{L(ŷih(x̂i)), L(−ŷih(x̂i))− κλ}

s.t. λ ≥ lip(L)‖h‖H

is non-decreasing in ‖h‖H, we may restrict attention to all linearly parametrized hypotheses of the form
h(x) =

∑N
j=1 βjk(x, x̂j) for some β ∈ RN without sacrificing optimality. Thus, the claim follows.

Proof of Theorem 3.30. The worst-case expectation for regression problems satisfies

sup
Q∈Bρ(P̂N )

EQ
[
`(h(x;W[M ]), y)

]
= inf

λ≥0
λρ+

1

N

N∑
i=1

sup
x∈X
y∈Y

L(h(x;W[M ])− y)− λ(‖x− x̂i‖+ κ|y − ŷi|)
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≤ inf
λ≥0

λρ+
1

N

N∑
i=1

sup
x∈X
y∈Y

L(h(x̂i;W[M ])− ŷi) + lip(L)(|h(x;W[M ])− y − h(x̂i;W[M ]) + ŷi|)

− λ(‖x− x̂i‖+ κ|y − ŷi|)

≤ inf
λ≥0

λρ+
1

N

N∑
i=1

sup
x∈X
y∈Y

L(h(x̂i;W[M ])− ŷi) + lip(L) lip(h)‖x− x̂i‖+ lip(L)|y − ŷi|

− λ(‖x− x̂i‖+ κ|y − ŷi|),

where the equality holds by Lemma A.1, and the first and the second inequalities follow from the Lipschitz
continuity of the loss function L and the hypothesis h. Note that composition of functions satisfies the
inequality lip(f ◦ g) ≤ lip(f) lip(g); see for example [56, Exercise 9.8]. Thus, the Lipschitz modulus of the
hypothesis h admits the upper bound

lip(h) ≤
m∏
m=1

lip(σm(Wmzm)) ≤
m∏
m=1

lip(σm) ‖Wm‖. (48)

Replacing lip(h) by its upper bound in (48) and setting

λ = lip(L) max

{
M∏
k=1

lip
(
φ(·;Wm)

)
,

1

κ

}
,

will complete the proof for regression problems. In a similar way, the worst-case expectation for classifica-
tion problems can be handled as follows:

sup
Q∈Bρ(P̂N )

EQ
[
`(h(x;W[M ]), y)

]
= inf

λ≥0
λρ+

1

N

N∑
i=1

sup
x∈X
y∈Y

L(yh(x;W[M ]))− λ(‖x− x̂i‖+ κ1{y 6=ŷi})

≤ inf
λ≥0

λρ+
1

N

N∑
i=1

sup
x∈X
y∈Y

L(ŷih(x̂i;W[M ]))− λ(‖x− x̂i‖+ κ1{y 6=ŷi}) + lip(L)(|yh(x)− ŷih(x̂i)|)

≤ inf
λ≥0

λρ+
1

N

N∑
i=1

sup
x∈X
y∈Y

L(ŷih(x̂i;W[M ]))− λ(‖x− x̂i‖+ κ1{y 6=ŷi}) + lip(L) lip(h) ‖x− x̂i‖1{y=ŷi}

+ lip(L) |h(x) + h(x̂i)|1{y 6=ŷi}

≤ inf
λ≥0

λρ+
1

N

N∑
i=1

sup
x∈X
y∈Y

L(ŷih(x̂i;W[M ]))− λ(‖x− x̂i‖+ κ1{y 6=ŷi})

+ lip(L) max{
2 supx∈X,h∈H |h(x)|

κ
, lip(h)} (‖x− x̂i‖+ κ1{y 6=ŷi}).

Using the upper bound in (48) and setting

λ = lip(L) max

{
M∏
k=1

lip
(
φ(·;Wm)

)
,
max{1, 2 supx∈X,h∈H |h(x)|}

κ

}
will completes the proof for classification problems.

Proof of Corollary 3.32. Let σ̄ = maxm∈[M ] lip(σm). By Theorem 3.30 and setting κ =∞, the worst-case
expectation for both classification and regression problems can be upper bounded by

sup
Q∈Bρ(P̂N )

EQ [`(h(x;W1, ... ,M ), y)] ≤ 1

N

N∑
i=1

sup
x∈X
y∈Y

`(h(x̂i;W1, ... ,M ), ŷi) + ρ σ̄ lip(`)

M∏
k=1

‖Wk‖
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≤ 1

N

N∑
i=1

sup
x∈X
y∈Y

`(h(x̂i;W1, ... ,M ), ŷi) + ρ σ̄ lip(`)

(
M∑
k=1

‖Wk‖
M

)M
,

where the last inequality follows from the arithmetic-geometric means inequality. By [29, Theorem 1], if
W ?

[M ] is a minimizer of the optimization problem

min
W[M ]

1

N

N∑
i=1

sup
x∈X
y∈Y

`(h(x̂i;W1, ... ,M ), ŷi) + ρ σ̄ lip(`)

(
M∑
k=1

‖Wk‖
M

)M
,

then the same W ?
[M ] also minimizes the constrained optimization problem

inf
W[M ]

1

N

N∑
i=1

`(h(x̂i;W[M ]), ŷi)

s.t.

(
M∑
k=1

‖Wk‖
M

)M
≤ θM ,

for θ =
∑M

i=1 ‖W ?
k ‖/M. Notice that the constraint in the above optimization problem can be simplified to∑M

i=1 ‖W ?
k ‖ ≤Mθ. Hence, there exists a Lagrange multiplier ρ for the simplified constraint

∑M
i=1 ‖W ?

k ‖ ≤
Mθ such that W ?

[M ] is an optimizer of the penalized problem

inf
W[M ]

1

N

N∑
i=1

`(h(x̂i;W[M ]), ŷi) + ρ
M∑
k=1

‖Wk‖.

This completes the proof.

A.2 Proofs of Section 4

The proof of Theorem 4.6 relies on the following preparatory lemma, which basically asserts that the
sample average of a linearly growing function of ξ has sub-Gaussian tails.

Lemma A.5 (Sub-Gaussian tails). If Assumption 4.1 holds, then there exist constants c3 ≥ 1 and c4 > 0
that depend only on the light tail constants a and A of P such that

PN
{∣∣EP[f(ξ)]− EP̂N [f(ξ)]

∣∣ ≥ δ} ≤ c3 exp(−c4Nδ
2)

for any N ∈ N, δ ∈ [0, 1] and function f : Ξ → R with |f(ξ) − f(ξ′)| ≤ d(ξ, ξ′) for all ξ ∈ Ξ and some
reference point ξ′ ∈ Ξ.

Proof. Assume that f : Ξ → R is a linear growth function with |f(ξ)− f(ξ′)| ≤ d(ξ, ξ′) for all ξ ∈ Ξ and
some reference point ξ′ ∈ Ξ. Set ξf = f(ξ) and ξ′f = f(ξ′). Thus, the distribution of the scalar random
variable ξf is given by the pushforward measure f∗(P) of P. By construction, we have

Ef∗(P)
[
exp

(
|ξf − ξ′f |a

)]
= EP

[
exp

(
|f(ξ)− f(ξ′)|a

)]
≤ EP

[
exp

(
d(ξ, ξ′)a

)]
≤ A,

where the first inequality follows form the growth condition of f , while the second inequality holds because P
satisfies Assumption 4.1. Hence, the distribution f∗(P) satisfies Assumption 4.1 for n = 0 when distances
on R are measured by the absolute value, and it inherits the light-tail constants a and A from P. By using
Theorem 4.2 for n = 0, we may thus conclude that there exist constants c3, c4 > 0 with

PN
{
W (f∗(P), f∗(P̂N )) ≥ δ

}
≤ c3 exp

(
−c4Nδ

2
)
∀δ ∈ [0, 1],
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where f∗(P̂N ) represents the empirical distribution of ξf , which coincides with the pushforward measure

of P̂N under f . By slight abuse of notation, W stands here for the Wasserstein distance between univariate
distributions, where the absolute value is used as the ground metric. Note that the above univariate measure
concentration result holds for any linear growth function f with asymptotic growth rate ≤ 1. We emphasize
that c3 ≥ 1 because otherwise the above estimate would fail to hold for δ = 0.

By construction of the Wasserstein distance in Definition 2.2, we have W (f∗(P), f∗(P̂N )) < δ if and
only if the scalar random variables ξf and ξ′f admit a joint distribution Π with EΠ[|ξf − ξ′f |] < δ under

which ξf and ξ′f have marginals f∗(P) and f∗(P̂N ), respectively. The inequality W (f∗(P), f∗(P̂N )) < δ
thus implies∣∣∣EP[f(ξ)]− EP̂N [f(ξ′)]

∣∣∣ =
∣∣∣Ef∗(P)[ξf ]− Ef∗(P̂N )[ξ′f ]

∣∣∣ ≤ ∣∣EΠ[ξf − ξ′f ]
∣∣ = EΠ

[∣∣ξf − ξ′f ∣∣] < δ.

By contraposition, we then obtain the implication∣∣∣EP[f(ξ)]− EP̂N [f(ξ′)]
∣∣∣ ≥ δ =⇒ W (f∗(P), f∗(P̂N )) ≥ δ,

which leads to the desired inequality

PN
{∣∣EP[f(ξ)]− EP̂N [f(ξ)]

∣∣ ≥ δ} ≤ PN{W (f∗(P), f∗(P̂N )) ≥ δ
}
≤ c3 exp

(
−c4Nδ

2
)
.

This inequality holds for all δ ∈ [0, 1] and N ∈ N, irrespective of the linear growth function f .

Remark A.6 (Hoeffding’s inequality). If it is known that P{f ≤ f(ξ) ≤ f} = 1, then Lemma A.5 reduces

to Hoeffding’s inequality [15, Theorem 2.8], in which case we may set c3 = 2 and c4 = 2/(f − f)2.

Proof of Theorem 4.6. To avoid cumbersome case distinctions, we prove the theorem only in the case
when (4) is a classification problem. Thus, we assume that Ξ = Rn × {−1, 1} and that the transportation
cost is of the form (16), where ‖·‖ denotes a norm on the input space Rn. The proof for regression problems
is similar and only requires minor modifications. It will be omitted for brevity.

From Theorem 3.11(ii) we know that

sup
Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] = EP̂N [`(〈w,x〉, y)] + ρ lip(L)Ω(w) ∀w ∈W,

where Ω(w) = ‖w‖∗ can be viewed as a regularization function. For every ρ ≥ ρ′N (η) we thus have

PN
{
EP [`(〈w,x〉, y)] ≤ sup

Q∈Bρ(P̂N )

EQ [`(〈w,x〉, y)] ∀w ∈W

}

≥ PN
{

0 ≤ min
w∈W

EP̂N [`(〈w,x〉, y)] + ρ′N (η) lip(L)Ω(w)− EP [`(〈w,x〉, y)]

}
= 1− PN

{
min
w∈W

EP̂N [`(〈w,x〉, y)] + ρ′N (η) lip(L)Ω(w)− EP [`(〈w,x〉, y)] < 0

}
. (49)

Observe that `(〈w,x〉, y) is Lipschitz continuous in w for every fixed x and y because the underlying
univariate loss function L is Lipschitz continuous by assumption. Specifically, we have

|`(〈w,x〉, y)− `(〈w′,x〉, y)| ≤ lip(L)|〈w −w′,x〉| ≤ lip(L)‖w −w′‖∞‖x‖1 ∀w,w′ ∈W.

For any ∆ > 0 there exists a finite set W∆ ⊆ W with ∆ = supw∈W infw′∈W∆
‖w − w′‖∞ and whose

cardinality satisfies |W∆| < (Ω/∆ − 1)n < (Ω/∆)n − 1 where the second inequality holds because ∆ ≤ Ω
by construction. In the following we set ∆ = Ω/

√
N .

As `(〈w,x〉, y) is Lipschitz continuous in w, for every w ∈W there is w′ ∈W∆ with

|`(〈w,x〉, y)| ≥
∣∣`(〈w′,x〉, y)

∣∣− lip(L)∆‖x‖1.
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Applying this estimate twice and recalling the assumption that Ω(w) ≥ Ω for all w ∈ W, we may thus
conclude that the probability in (49) is smaller or equal to

PN
{

min
w∈W

EP̂N [`(〈w,x〉, y)]− EP [`(〈w,x〉, y)] + ρ′N (η) lip(L)Ω < 0

}
≤ PN

{
min
w∈W∆

EP̂N [`(〈w,x〉, y)]− EP [`(〈w,x〉, y)]− lip(L)∆
(
EP̂N [‖x‖1] + EP [‖x‖1]

)
+ ρ′N (η) lip(L)Ω < 0

}
≤ PN

{
min
w∈W∆

EP̂N [`(〈w,x〉, y)]− EP [`(〈w,x〉, y)]− lip(L)∆
(
EP̂N [‖x‖1]− EP [‖x‖1]

)
< 2 lip(L)∆MnnA− ρ′N (η) lip(L)Ω

}
. (50)

The second inequality in the above expression follows from the estimate

Mn = max
i≤n
‖eni ‖∗ = max

i≤n
sup
‖x‖≤1

〈eni ,x〉 = max
i≤n

sup
‖x‖≤1

|xi| = sup
‖x‖≤1

‖x‖∞ ≥ sup
x∈Rn

‖x‖1
n‖x‖

,

which can be paraphrased as ‖x‖1 ≤Mnn‖x‖ for every x ∈ Rn and thus implies

EP[‖x‖1] ≤MnnE
P[‖x‖] ≤MnnE

P[exp(‖x‖a)] ≤MnnE
P[exp

(
d(ξ, ξ′))a

)
] ≤MnnA.

Next, we introduce an auxiliary parameter

δ =
ρ′N (η)Ω−MnA

∆ + Ω
=

2
√
n log(

√
N)/c4 + log(c3/η)/c4

1 +
√
N

,

where the second equality follows from the definition of ρ′N (η) in the theorem statement and the convention
that ∆ = Ω/

√
N . One can prove that δ ∈ [0, 1]. Indeed, the nonnegativity of δ is immediate because c3 ≥ 1

and c4 > 0. Moreover, we find

δ ≤
2
√
n log(

√
N)/c4

1 +
√
N

+
2
√

log(c3/η)/c4

1 +
√
N

≤ 1,

where the first inequality follows from the observation that
√
x1 + x2 ≤

√
x1 +

√
x2 for all x1, x2 ≥ 0, while

the second inequality holds because log(
√
N) ≤

√
N for allN ∈ N andN ≥ max{(16n/c4)2, 16 log(c3/η)/c4},

which implies that both fractions in the middle of the above expression are smaller ore qual to 1
2 .

Multiplying the definition of δ with − lip(L)(∆ + Ω) yields the identity

− lip(L)∆δ − lip(L)Ωδ = 2 lip(L)∆MnnA− lip(L)ρN (η)Ω,

and thus the probability (50) can be bounded above by

PN
{

min
w∈W∆

EP̂N [`(〈w,x〉, y)]− EP [`(〈w,x〉, y)] ≤ − lip(L)Ωδ or

− lip(L)∆
(
EP̂N [‖x‖]− EP [‖x‖]

)
≤ − lip(L)∆δ

}
≤ PN

{
min
w∈W∆

EP̂N
[
`(〈w,x〉, y)

lip(L)Ω

]
− EP

[
`(〈w,x〉, y)

lip(L)Ω

]
≤ −δ

}
(51a)

+ PN
{(

EP̂N [‖x‖]− EP [‖x‖]
)
≥ δ
}
, (51b)

where the inequality follows from the subadditivity of probability measures.
For any fixed w ∈ W one can show that the function f(ξ) = `(〈w,x〉, y)/(lip(L)Ω) with ξ = (x, y)

satisfies the linear growth condition |f(ξ)− f(ξ′)| ≤ d(ξ, ξ′) for all ξ ∈ Ξ if ξ′ = (0, 1). Details are omitted
for brevity. By the subadditivity of probability measures, the probability (51a) is thus smaller or equal to∑

w∈W∆

PN
{∣∣∣EP̂N [`(〈w,x〉, y)

lip(L)Ω

]
− EP

[`(〈w,x〉, y)

lip(L)Ω

]∣∣∣ > δ

}
≤ |W∆|c3 exp(−c4Nδ

2),
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where the inequality follows from Lemma A.5, which applies because δ ∈ [0, 1]. Moreover, the function
f(ξ) = ‖x‖ with ξ = (x, y) trivially satisfies the linear growth condition |f(ξ) − f(ξ′)| ≤ d(ξ, ξ′) for all
ξ ∈ Ξ if ξ′ = (0, 1). By Lemma A.5, the probability (51b) is thus smaller or equal to

PN
{∣∣∣EP [‖x‖]− EP̂N [‖x‖]

∣∣∣ > δ
}
≤ c3 exp(−c4Nδ

2).

By combining the above estimates, we may conclude that the probability in (49) does not exceed

(|W∆|+ 1) c3 exp
(
− c4Nδ

2
)
≤
(
Ω/∆

)n
c3 exp

(
−c4N

(
ρ′N (η)Ω− 2∆MnnA

∆ + Ω

)2
)

= N
n
2 c3 exp

−c4N

(
ρ′N (η)Ω

√
N − 2ΩMnnA

Ω(
√
N + 1)

)2


≤ N
n
2 c3 exp

−c4N

2Ω
√
n log(

√
N)/c4 + log(c3/η)/c4

2Ω
√
N

2


= N
n
2 c3 exp

(
−n log(

√
N)− log(c3/η)

)
= η,

where the first inequality follows from the definition of δ and the assumption that |W∆| < (Ω/∆)n− 1, the
first equality holds because Ω/∆ =

√
N , and the second inequality holds due to the definition of ρ′N (η).

In summary, we have shown that the probability in (49) is at most η, and thus the claim follows.

A.3 Proofs of Section 5

Proof of Theorem 5.1. As for assertion (i), note that the absolute value function coincides with the ε-
insensitive loss for ε = 0. Thus, (41a) follows immediately from Corollary 3.3 by fixing w and by setting
ε = 0 and Ξ = Rn+1. As for assertion (ii), similar arguments as in the proof of Lemma A.1 show that

Emin(w) = sup
λ≥0

− λρ+
1

N

N∑
i=1

inf
x,y
|y − 〈w,x〉|+ λ‖(x, y)− (x̂i, ŷi)‖. (52)

The subordinate minimization problem in the first constraint of (52) is equivalent to

inf
x,y
|y − 〈w,x〉|+ λ‖(x, y)− (x̂i, ŷi)‖ = inf

x,y
sup

‖(qi,vi)‖∗≤λ
|y − 〈w,x〉|+ 〈qi,x− x̂i〉+ vi(yi − ŷi)

= sup
‖(qi,vi)‖∗≤λ

{
inf
x,y,z

z + 〈qi,x− x̂i〉+ vi(yi − ŷi)

s.t. z ≥ y − 〈w,x〉, z ≥ 〈w,x〉 − y

=


sup

qi,vi,ri,ti

−〈qi, x̂i〉 − ŷivi

s.t. ti + ri = 1, ti − ri = vi
(ri − ti)w = qi, ‖(qi, vi)‖∗ ≤ λ
ri, ti ≥ 0

=


sup
vi

vi(〈w, x̂i〉 − ŷi)

s.t. −1 ≤ vi ≤ 1
vi‖(w,−1)‖∗ ≤ λ, − vi‖(w,−1)‖∗ ≤ λ,

where the second equality holds due to Proposition 5.5.4 in [9], and the third equality holds due to strong
linear programming duality. By substituting the last optimization problem into (52) and replacing vi with
−vi, we have

Emin(w) =


sup
vi,λ

−λρ+
1

N

N∑
i=1

vi(ŷi − 〈w, x̂i〉)

s.t. −1 ≤ vi ≤ 1 i ∈ [N ]
vi‖(w,−1)‖∗ ≤ λ i ∈ [N ]
−vi‖(w,−1)‖∗ ≤ λ i ∈ [N ]
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=


sup
vi,λ

−λρ+
1

N

N∑
i=1

vi|ŷi − 〈w, x̂i〉|

s.t. 0 ≤ vi ≤ 1 i ∈ [N ]
vi‖(w,−1)‖∗ ≤ λ i ∈ [N ]

=


sup
v,λ

−λρ+
1

N

N∑
i=1

v|ŷi − 〈w, x̂i〉|

s.t. 0 ≤ v ≤ 1
v‖(w,−1)‖∗ ≤ λ

=

 sup
v

v

(
1

N

N∑
i=1

|ŷi − 〈w, x̂i〉| − ρ‖(w,−1)‖∗

)
s.t. 0 ≤ v ≤ 1

= max

{
1

N

N∑
i=1

|ŷi − 〈w, x̂i〉| − ρ‖(w,−1)‖∗, 0

}

Proof of Theorem 5.2. As for assertion (i), similar arguments as in the proof of Lemma A.1 show that

Rmax(w) =



inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
x
1{ŷi 〈w,x〉≤0} − λ‖x̂i − x‖ ≤ si ∀i ≤ N

sup
x
1{−ŷi 〈w,x〉≤0} − λ‖x̂i − x‖ − κλ ≤ si ∀i ≤ N

λ ≥ 0.

(53a)

Next, observe that the indicator functions in (53a) can be represented as pointwise maxima of extended
real-valued concave functions of the form 1{ŷi 〈w,x〉≤0} = max{I1(x), 0} and 1{ŷi 〈w,x〉≥0} = max{I2(x), 0},
respectively, where

I1(x) =

{
1 ŷi 〈w,x〉 ≤ 0,

−∞ otherwise,
and I2(x) =

{
1 ŷi 〈w,x〉 ≥ 0,

−∞ otherwise.

This allows us to reformulate (53a) as

inf
λ,si

λρ+
1

N

N∑
i=1

si

s.t. sup
x∈Rn

I1(x)− λ‖x̂i − x‖ ≤ si ∀i ≤ N

sup
x

0− λ‖x̂i − x‖ ≤ si ∀i ≤ N

sup
x

I2(x)− λ‖x̂i − x‖ − κλ ≤ si i ∈ [N ]

sup
x

0− λ‖x̂i − x‖ − κλ ≤ si ∀i ≤ N

λ ≥ 0.

Using the definition of the dual norm and applying the duality theorem [9, Proposition 5.5.4], we find

Rmax(w) =



inf
λ,si,pi,qi

λρ+
1

N

N∑
i=1

si

s.t. sup
x

I1(x) + 〈pi,x〉 − 〈pi, x̂i〉 ≤ si ∀i ≤ N

sup
x

I2(x) + 〈qi,x〉 − 〈qi, x̂i〉 − κλ ≤ si ∀i ≤ N

si ≥ 0, ‖pi‖∗ ≤ λ, ‖qi‖∗ ≤ λ i ∈ [N ].

(53b)
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Moreover, by strong linear programming duality we have

sup
x

I1(x) + 〈pi,x〉 = sup
x
{1 + 〈pi,x〉 : ŷi 〈w,x〉 ≤ 0} = inf

ri≥0
{1 : ŷiriw = pi} (53c)

and

sup
x

I2(x) + 〈qi,x〉 = sup
x
{1 + 〈qi,x〉 : ŷi 〈w,x〉 ≥ 0} = inf

ti≥0
{1 : ŷitiw = qi} . (53d)

Substituting (53c) and (53d) into (53b) yields (42a). The expression (42b) for the best-case risk can be
proved in a similar fashion. Details are omitted for brevity.
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