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Abstract. We consider stochastic programs where the distribution of the uncertain parameters is only ob-

servable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of

(multivariate and non-discrete) probability distributions centered at the uniform distribution on the train-

ing samples, and we seek decisions that perform best in view of the worst-case distribution within this

Wasserstein ball. The state-of-the-art methods for solving the resulting distributionally robust optimization

problems rely on global optimization techniques, which quickly become computationally excruciating. In this

paper we demonstrate that, under mild assumptions, the distributionally robust optimization problems over

Wasserstein balls can in fact be reformulated as finite convex programs—in many interesting cases even as

tractable linear programs. Leveraging recent measure concentration results, we also show that their solutions

enjoy powerful finite-sample performance guarantees. Our theoretical results are exemplified in mean-risk

portfolio optimization as well as uncertainty quantification.

1. Introduction

Stochastic programming is a powerful modeling paradigm for optimization under uncertainty. The goal

of a generic single-stage stochastic program is to find a decision x ∈ Rn that minimizes an expected

cost EP[h(x, ξ)], where the expectation is taken with respect to the distribution P of the continuous ran-

dom vector ξ ∈ Rm. However, classical stochastic programming is challenged by the large-scale decision

problems encountered in today’s increasingly interconnected world. First, the distribution P is never ob-

servable but must be inferred from data. However, if we calibrate a stochastic program to a given dataset

and evaluate its optimal decision on a different dataset, then the resulting out-of-sample performance is often

disappointing—even if the two datasets are generated from the same distribution. This phenomenon is termed

the optimizer’s curse and is reminiscent of overfitting effects in statistics [48]. Second, in order to evaluate

the objective function of a stochastic program for a fixed decision x, we need to compute a multivariate inte-

gral, which is #P-hard even if h(x, ξ) constitutes the positive part of an affine function, while ξ is uniformly

distributed on the unit hypercube [24, Corollary 1].

Distributionally robust optimization is an alternative modeling paradigm, where the objective is to find

a decision x that minimizes the worst-case expected cost supQ∈P E
Q[h(x, ξ)]. Here, the worst-case is taken

over an ambiguity set P, that is, a family of distributions characterized through certain known properties

of the unknown data-generating distribution P. Distributionally robust optimization problems have been

studied since Scarf’s seminal treatise on the ambiguity-averse newsvendor problem in 1958 [43], but the field

has gained thrust only with the advent of modern robust optimization techniques in the last decade [3, 9].
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Distributionally robust optimization has the following striking benefits. First, adopting a worst-case approach

regularizes the optimization problem and thereby mitigates the optimizer’s curse characteristic for stochastic

programming. Second, distributionally robust models are often tractable even though the corresponding

stochastic model with the true data-generating distribution (which is generically continuous) are #P -hard.

So even if the data-generating distribution was known, the corresponding stochastic program could not be

solved efficiently.

The ambiguity set P is a key ingredient of any distributionally robust optimization model. A good am-

biguity set should be rich enough to contain the true data-generating distribution with high confidence.

On the other hand, the ambiguity set should be small enough to exclude pathological distributions, which

would incentivize overly conservative decisions. The ambiguity set should also be easy to parameterize from

data, and—ideally—it should facilitate a tractable reformulation of the distributionally robust optimization

problem as a structured mathematical program that can be solved with off-the-shelf optimization software.

Distributionally robust optimization models where ξ has finitely many realizations are reviewed in [2, 7, 39].

This paper focuses on situations where ξ can have a continuum of realizations. In this setting, the existing

literature has studied three types of ambiguity sets. Moment ambiguity sets contain all distributions that

satisfy certain moment constraints, see for example [18, 22, 51] or the references therein. An attractive

alternative is to define the ambiguity set as a ball in the space of probability distributions by using a probability

distance function such as the Prohorov metric [20], the Kullback-Leibler divergence [27, 25], or the Wasserstein

metric [38, 52] etc. Such metric-based ambiguity sets contain all distributions that are close to a nominal

or most likely distribution with respect to the prescribed probability metric. By adjusting the radius of

the ambiguity set, the modeler can thus control the degree of conservatism of the underlying optimization

problem. If the radius drops to zero, then the ambiguity set shrinks to a singleton that contains only the

nominal distribution, in which case the distributionally robust problem reduces to an ambiguity-free stochastic

program. In addition, ambiguity sets can also be defined as confidence regions of goodness-of-fit tests [7].

In this paper we study distributionally robust optimization problems with a Wasserstein ambiguity set

centered at the uniform distribution P̂N on N independent and identically distributed training samples. The

Wasserstein distance of two distributions Q1 and Q2 can be viewed as the minimum transportation cost for

moving the probability mass from Q1 to Q2, and the Wasserstein ambiguity set contains all (continuous or

discrete) distributions that are sufficiently close to the (discrete) empirical distribution P̂N with respect to

the Wasserstein metric. Modern measure concentration results from statistics guarantee that the unknown

data-generating distribution P belongs to the Wasserstein ambiguity set around P̂N with confidence 1− β if

its radius is a sublinearly growing function of log(1/β)/N [11, 21]. The optimal value of the distributionally

robust problem thus provides an upper confidence bound on the achievable out-of-sample cost.

While Wasserstein ambiguity sets offer powerful out-of-sample performance guarantees and enable the

decision maker to control the model’s conservativeness, moment-based ambiguity sets appear to display

better tractability properties. Specifically, there is growing evidence that distributionally robust models with

moment ambiguity sets are more tractable than the corresponding stochastic models because the intractable

high-dimensional integrals in the objective function are replaced with tractable (generalized) moment problems

[18, 22, 51]. In contrast, distributionally robust models with Wasserstein ambiguity sets are believed to be

harder than their stochastic counterparts [36]. Indeed, the state-of-the-art method for computing the worst-

case expectation over a Wasserstein ambiguity set P relies on global optimization techniques. Exploiting

the fact that the extreme points of P are discrete distributions with a fixed number of atoms [52], one may

reformulate the original worst-case expectation problem as a finite-dimensional non-convex program, which

can be solved via “difference of convex programming” methods, see [52] or [36, Section 7.1]. However, the
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computational effort is reported to be considerable, and there is no guarantee to find the global optimum.

Nevertheless, tractability results are available for special cases. Specifically, the worst case of a convex law-

invariant risk measure with respect to a Wasserstein ambiguity set P reduces to the sum of the nominal risk

and a regularization term whenever h(x, ξ) is affine in ξ and P does not include any support constraints [53].

Moreover, while this paper was under review we became aware of the PhD thesis [54], which reformulates a

distributionally robust two-stage unit commitment problem over a Wasserstein ambiguity set as a semi-infinite

linear program, which is subsequently solved using a Benders decomposition algorithm.

The main contribution of this paper is to demonstrate that the worst-case expectation over a Wasser-

stein ambiguity set can in fact be computed efficiently via convex optimization techniques for numerous loss

functions of practical interest. Furthermore, we propose an efficient procedure for constructing an extremal

distribution that attains the worst-case expectation—provided that such a distribution exists. Otherwise, we

construct a sequence of distributions that attain the worst-case expectation asymptotically. As a by-product,

our analysis shows that many interesting distributionally robust optimization problems with Wasserstein

ambiguity sets can be solved in polynomial time. We also investigate the out-of-sample performance of

the resulting optimal decisions—both theoretically and experimentally—and analyze its dependence on the

number of training samples. We highlight the following main contributions of this paper.

• We prove that the worst-case expectation of an uncertain loss `(ξ) over a Wasserstein ambiguity

set coincides with the optimal value of a finite-dimensional convex program if `(ξ) constitutes a

pointwise maximum of finitely many concave functions. Generalizations to convex functions or to

sums of maxima of concave functions are also discussed. We conclude that worst-case expectations

can be computed efficiently to high precision via modern convex optimization algorithms.

• We describe a supplementary finite-dimensional convex program whose optimal (near-optimal) solu-

tions can be used to construct exact (approximate) extremal distributions for the infinite-dimensional

worst-case expectation problem.

• We show that the worst-case expectation reduces to the optimal value of an explicit linear program

if the 1-norm or the ∞-norm is used in the definition of the Wasserstein metric and if `(ξ) belongs

to any of the following function classes: (1) a pointwise maximum or minimum of affine functions;

(2) the indicator function of a closed polytope or the indicator function of the complement of an

open polytope; (3) the optimal value of a parametric linear program whose cost or right-hand side

coefficients depend linearly on ξ.

• Using recent measure concentration results from statistics, we demonstrate that the optimal value of

a distributionally robust optimization problem over a Wasserstein ambiguity set provides an upper

confidence bound on the out-of-sample cost of the worst-case optimal decision. We validate this

theoretical performance guarantee in numerical tests.

If the uncertain parameter vector ξ is confined to a fixed finite subset of Rm, then the worst-case ex-

pectation problems over Wasserstein ambiguity sets simplify substantially and can often be reformulated as

tractable conic programs by leveraging ideas from robust optimization. An elegant second-order conic refor-

mulation has been discovered, for instance, in the context of distributionally robust regression analysis [32],

and a comprehensive list of tractable reformulations of distributionally robust risk constraints for various risk

measures is provided in [39]. Our paper extends these tractability results to the practically relevant case

where ξ has uncountably many possible realizations—without resorting to space tessellation or discretization

techniques that are prone to the curse of dimensionality.

When `(ξ) is linear and the distribution of ξ ranges over a Wasserstein ambiguity set without support

constraints, one can derive a concise closed-form expression for the worst-case risk of `(ξ) for various convex
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risk measures [53]. However, these analytical solutions come at the expense of a loss of generality. We believe

that the results of this paper may pave the way towards an efficient computational procedure for evaluating

the worst-case risk of `(ξ) in more general settings where the loss function may be non-linear and ξ may be

subject to support constraints.

Among all metric-based ambiguity sets studied to date, the Kullback-Leibler ambiguity set has attracted

most attention from the robust optimization community. It has first been used in financial portfolio op-

timization to capture the distributional uncertainty of asset returns with a Gaussian nominal distribution

[19]. Subsequent work has focused on Kullback-Leibler ambiguity sets for discrete distributions with a fixed

support, which offer additional modeling flexibility without sacrificing computational tractability [14, 2]. It

is also known that distributionally robust chance constraints involving a generic Kullback-Leibler ambiguity

set are equivalent to the respective classical chance constraints under the nominal distribution but with a

rescaled violation probability [27, 26]. Moreover, closed-form counterparts of distributionally robust expecta-

tion constraints with Kullback-Leibler ambiguity sets have been derived in [25].

However, Kullback-Leibler ambiguity sets typically fail to represent confidence sets for the unknown dis-

tribution P. To see this, assume that P is absolutely continuous with respect to the Lebesgue measure and

that the ambiguity set is centered at the discrete empirical distribution P̂N . Then, any distribution in a

Kullback-Leibler ambiguity set around P̂N must assign positive probability mass to each training sample. As

P has a density function, it must therefore reside outside of the Kullback-Leibler ambiguity set irrespective

of the training samples. Thus, Kullback-Leibler ambiguity sets around P̂N contain P with probability 0. In

contrast, Wasserstein ambiguity sets centered at P̂N contain discrete as well as continuous distributions and,

if properly calibrated, represent meaningful confidence sets for P. We will exploit this property in Section 3

to derive finite-sample guarantees. A comparison and critical assessment of various metric-based ambiguity

sets is provided in [45]. Specifically, it is shown that worst-case expectations over Kullback-Leibler and other

divergence-based ambiguity sets are law invariant. In contrast, worst-case expectations over Wasserstein am-

biguity sets are not. The law invariance can be exploited to evaluate worst-case expectations via the sample

average approximation.

The models proposed in this paper fall within the scope of data-driven distributionally robust optimization

[20, 16, 7, 23]. Closest in spirit to our work is the robust sample average approximation [7], which seeks

decisions that are robust with respect to the ambiguity set of all distributions that pass a prescribed statistical

hypothesis test. Indeed, the distributions within the Wasserstein ambiguity set could be viewed as those that

pass a multivariate goodness-of-fit test in light of the available training samples. This amounts to interpreting

the Wasserstein distance between the empirical distribution P̂N and a given hypothesis Q as a test statistic

and the radius of the Wasserstein ambiguity set as a threshold that needs to be chosen in view of the test’s

desired significance level β. The Wasserstein distance has already been used in tests for normality [17] and

to devise nonparametric homogeneity tests [40].

The rest of the paper proceeds as follows. Section 2 sketches a generic framework for data-driven dis-

tributionally robust optimization, while Section 3 introduces our specific approach based on Wasserstein

ambiguity sets and establishes its out-of-sample performance guarantees. In Section 4 we demonstrate that

many worst-case expectation problems over Wasserstein ambiguity sets can be reduced to finite-dimensional

convex programs, and we develop a systematic procedure for constructing worst-case distributions. Explicit

linear programming reformulations of distributionally robust single and two-stage stochastic programs as well

as uncertainty quantification problems are derived in Section 5. Section 6 extends the scope of the basic

approach to broader classes of objective functions, and Section 7 reports on numerical results.
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Notation. We denote by R+ the non-negative and by R := R ∪ {−∞,∞} the extended reals. Throughout

this paper, we adopt the conventions of extended arithmetics, whereby∞· 0 = 0 ·∞ = 0/0 = 0 and∞−∞ =

−∞ +∞ = 1/0 = ∞. The inner product of two vectors a, b ∈ Rm is denoted by
〈
a, b
〉

:= aᵀb. Given a

norm ‖ · ‖ on Rm, the dual norm is defined through ‖z‖∗ := sup‖ξ‖≤1

〈
z, ξ
〉
. A function f : Rm → R is

proper if f(ξ) < +∞ for at least one ξ and f(ξ) > −∞ for every ξ in Rm. The conjugate of f is defined as

f∗(z) := supξ∈Rm
〈
z, ξ
〉
− f(ξ). Note that conjugacy preserves properness. For a set Ξ ⊆ Rm, the indicator

function 1Ξ is defined through 1Ξ(ξ) = 1 if ξ ∈ Ξ; = 0 otherwise. Similarly, the characteristic function χΞ is

defined via χΞ(ξ) = 0 if ξ ∈ Ξ; =∞ otherwise. The support function of Ξ is defined as σΞ(z) := supξ∈Ξ

〈
z, ξ
〉
.

It coincides with the conjugate of χΞ. We denote by δξ the Dirac distribution concentrating unit mass at

ξ ∈ Rm. The product of two probability distributions P1 and P2 on Ξ1 and Ξ2, respectively, is the distribution

P1 ⊗ P2 on Ξ1 × Ξ2. The N -fold product of a distribution P on Ξ is denoted by PN , which represents a

distribution on the Cartesian product space ΞN . Finally, we set the expectation of ` : Ξ → R under P

to EP[`(ξ)] = EP
[

max{`(ξ), 0}
]

+ EP
[

min{`(ξ), 0}
]
, which is well-defined by the conventions of extended

arithmetics.

2. Data-Driven Stochastic Programming

Consider the stochastic program

J? := inf
x∈X

{
EP
[
h(x, ξ)

]
=

∫
Ξ

h(x, ξ)P(dξ)

}
(1)

with feasible set X ⊆ Rn, uncertainty set Ξ ⊆ Rm and loss function h : Rn × Rm → R. The loss function

depends both on the decision vector x ∈ Rn and the random vector ξ ∈ Rm, whose distribution P is supported

on Ξ. Problem (1) can be viewed as the first-stage problem of a two-stage stochastic program, where h(x, ξ)

represents the optimal value of a subordinate second-stage problem [46]. Alternatively, problem (1) may also

be interpreted as a generic learning problem in the spirit of [49].

Unfortunately, in most situations of practical interest, the distribution P is not precisely known, and

therefore we miss essential information to solve problem (1) exactly. However, P is often partially observable

through a finite set of N independent samples, e.g., past realizations of the random vector ξ. We denote the

training dataset comprising these samples by Ξ̂N := {ξ̂i}i≤N ⊆ Ξ. We emphasize that—before its revelation—

the dataset Ξ̂N can be viewed as a random object governed by the distribution PN supported on ΞN .

A data-driven solution for problem (1) is a feasible decision x̂N ∈ X that is constructed from the training

dataset Ξ̂N . Throughout this paper, we notationally suppress the dependence of x̂N on the training samples

in order to avoid clutter. Instead, we reserve the superscript ‘̂’ for objects that depend on the training data

and thus constitute random objects governed by the product distribution PN . The out-of-sample performance

of x̂N is defined as EP
[
h(x̂N , ξ)

]
and can thus be viewed as the expected cost of x̂N under a new sample ξ

that is independent of the training dataset. As P is unknown, however, the exact out-of-sample performance

cannot be evaluated in practice, and the best we can hope for is to establish performance guarantees in the

form of tight bounds. The feasibility of x̂N in (1) implies J? ≤ EP
[
h(x̂N , ξ)

]
, but this lower bound is again

of limited use as J? is unknown and as our primary concern is to bound the costs from above. Thus, we seek

data-driven solutions x̂N with performance guarantees of the type

PN
{

Ξ̂N : EP
[
h(x̂N , ξ)

]
≤ ĴN

}
≥ 1− β, (2)

where ĴN constitutes an upper bound that may depend on the training dataset, and β ∈ (0, 1) is a significance

parameter with respect to the distribution PN , which governs both x̂N and ĴN . Hereafter we refer to ĴN as

a certificate for the out-of-sample performance of x̂N and to the probability on the left-hand side of (2) as its
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reliability. Our ideal goal is to find a data-driven solution with the lowest possible out-of-sample performance.

This is impossible, however, as P is unknown, and the out-of-sample performance cannot be computed. We

thus pursue the more modest but achievable goal to find a data-driven solution with a low certificate and a

high reliability.

A natural approach to generate data-driven solutions x̂N is to approximate P with the discrete empirical

probability distribution

P̂N :=
1

N

N∑
i=1

δξ̂i , (3)

that is, the uniform distribution on Ξ̂N . This amounts to approximating the original stochastic program (1)

with the sample-average approximation (SAA) problem

ĴSAA := inf
x∈X

{
EP̂N

[
h(x, ξ)

]
=

1

N

N∑
i=1

h(x, ξ̂i)

}
. (4)

If the feasible set X is compact and the loss function is uniformly continuous in x across all ξ ∈ Ξ, then

the optimal value and optimal solutions of the SAA problem (4) converge almost surely to their counterparts

of the true problem (1) as N tends to infinity [46, Theorem 5.3]. Even though finite sample performance

guarantees of the type (2) can be obtained under additional assumptions such as Lipschitz continuity of the

loss function (see e.g., [47, Theorem 1]), the SAA problem has been conceived primarily for situations where

the distribution P is known and additional samples can be acquired cheaply via random number generation.

However, the optimal solutions of the SAA problem tend to display a poor out-of-sample performance in

situations where N is small and where the acquisition of additional samples would be costly.

In this paper we address problem (1) with an alternative approach that explicitly accounts for our ignorance

of the true data-generating distribution P, and that offers attractive performance guarantees even when

the acquisition of additional samples from P is impossible or expensive. Specifically, we use Ξ̂N to design

an ambiguity set P̂N containing all distributions that could have generated the training samples with high

confidence. This ambiguity set enables us to define the certificate ĴN as the optimal value of a distributionally

robust optimization problem that minimize the worst-case expected cost.

ĴN := inf
x∈X

sup
Q∈P̂N

EQ
[
h(x, ξ)

]
(5)

Following [38], we construct P̂N as a ball around the empirical distribution (3) with respect to the Wasserstein

metric. In the remainder of the paper we will demonstrate that the optimal value ĴN as well as any optimal

solution x̂N (if it exists) of the distributionally robust problem (5) satisfy the following conditions.

(i) Finite sample guarantee: For a carefully chosen size of the ambiguity set, the certificate ĴN

provides a 1− β confidence bound of the type (2) on the out-of-sample performance of x̂N .

(ii) Asymptotic consistency: As N tends to infinity, the certificate ĴN and the data-driven solution

x̂N converge—in a sense to be made precise below—to the optimal value J? and an optimizer x? of

the stochastic program (1), respectively.

(iii) Tractability: For many loss functions h(x, ξ) and sets X, the distributionally robust problem (5)

is computationally tractable and admits a reformulation reminiscent of the SAA problem (4).

Conditions (i)–(iii) have been identified in [7] as desirable properties of data-driven solutions for stochastic

programs. Precise statements of these conditions will be provided in the remainder. In Section 3 we will

use the Wasserstein metric to construct ambiguity sets of the type P̂N satisfying the conditions (i) and
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(ii). In Section 4, we will demonstrate that these ambiguity sets also fulfill the tractability condition (iii).

We see this last result as the main contribution of this paper because the state-of-the-art method for solving

distributionally robust problems over Wasserstein ambiguity sets relies on global optimization algorithms [36].

3. Wasserstein Metric and Measure Concentration

Probability metrics represent distance functions on the space of probability distributions. One of the

most widely used examples is the Wasserstein metric, which is defined on the space M(Ξ) of all probability

distributions Q supported on Ξ with EQ
[
‖ξ‖
]

=
∫

Ξ
‖ξ‖Q(dξ) <∞.

Definition 3.1 (Wasserstein metric [29]). The Wasserstein metric dW :M(Ξ)×M(Ξ)→ R is defined via

dW

(
Q1,Q2

)
:= inf

{∫
Ξ2

‖ξ1 − ξ2‖Π(dξ1,dξ2) :
Π is a joint distribution of ξ1 and ξ2

with marginals Q1 and Q2, respectively

}
for all distributions Q1,Q2 ∈M(Ξ), where ‖ · ‖ represents an arbitrary norm on Rm.

The decision variable Π can be viewed as a transportation plan for moving a mass distribution described by

Q1 to another one described by Q2. Thus, the Wasserstein distance between Q1 and Q2 represents the cost of

an optimal mass transportation plan, where the norm ‖ · ‖ encodes the transportation costs. We remark that

a generalized p-Wasserstein metric for p ≥ 1 is obtained by setting the transportation cost between ξ1 and

ξ2 to ‖ξ1 − ξ2‖p. In this paper, however, we focus exclusively on the 1-Wasserstein metric of Definition 3.1,

which is sometimes also referred to as the Kantorovich metric.

We will sometimes also need the following dual representation of the Wasserstein metric.

Theorem 3.2 (Kantorovich-Rubinstein [29]). For any distributions Q1,Q2 ∈M(Ξ) we have

dW

(
Q1,Q2

)
= sup
f∈L

{∫
Ξ

f(ξ)Q1(dξ)−
∫

Ξ

f(ξ)Q2(dξ)
}
,

where L denotes the space of all Lipschitz functions with |f(ξ)− f(ξ′)| ≤ ‖ξ − ξ′‖ for all ξ, ξ′ ∈ Ξ.

Kantorovich and Rubinstein [29] originally established this result for distributions with bounded support.

A modern proof for unbounded distributions is due to Villani [50, Remark 6.5, p. 107]. The optimization

problems in Definition 3.1 and Theorem 3.2, which provide two equivalent characterizations of the Wasserstein

metric, constitute a primal-dual pair of infinite-dimensional linear programs. The dual representation implies

that two distributions Q1 and Q2 are close to each other with respect to the Wasserstein metric if and only

if all functions with uniformly bounded slopes have similar integrals under Q1 and Q2. Theorem 3.2 also

demonstrates that the Wasserstein metric is a special instance of an integral probability metric (see e.g. [33])

and that its generating function class coincides with a family of Lipschitz continuous functions.

In the remainder we will examine the ambiguity set

Bε(P̂N ) :=
{
Q ∈M(Ξ) : dW

(
P̂N ,Q

)
≤ ε
}
, (6)

which can be viewed as the Wasserstein ball of radius ε centered at the empirical distribution P̂N . Under

a common light tail assumption on the unknown data-generating distribution P, this ambiguity set offers

attractive performance guarantees in the spirit of Section 2.

Assumption 3.3 (Light-tailed distribution). There exists an exponent a > 1 such that

A := EP
[

exp(‖ξ‖a)
]

=

∫
Ξ

exp(‖ξ‖a)P(dξ) <∞.
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Assumption 3.3 essentially requires the tail of the distribution P to decay at an exponential rate. Note that

this assumption trivially holds if Ξ is compact. Heavy-tailed distributions that fail to meet Assumption 3.3

are difficult to handle even in the context of the classical sample average approximation. Indeed, under a

heavy-tailed distribution the sample average of the loss corresponding to any fixed decision x ∈ X may not

even converge to the expected loss; see e.g. [13, 15]. The following modern measure concentration result

provides the basis for establishing powerful finite sample guarantees.

Theorem 3.4 (Measure concentration [21, Theorem 2]). If Assumption 3.3 holds, we have

PN
{
dW

(
P, P̂N

)
≥ ε
}
≤

{
c1 exp

(
−c2Nεmax{m,2}) if ε ≤ 1,

c1 exp
(
−c2Nεa

)
if ε > 1,

(7)

for all N ≥ 1, m 6= 2, and ε > 0, where c1, c2 are positive constants that only depend on a, A, and m.1

Theorem 3.4 provides an a priori estimate of the probability that the unknown data-generating distribu-

tion P resides outside of the Wasserstein ball Bε(P̂N ). Thus, we can use Theorem 3.4 to estimate the radius

of the smallest Wasserstein ball that contains P with confidence 1−β for some prescribed β ∈ (0, 1). Indeed,

equating the right-hand side of (7) to β and solving for ε yields

εN (β) :=


(

log(c1β
−1)

c2N

)1/max{m,2}
if N ≥ log(c1β

−1)
c2

,(
log(c1β

−1)
c2N

)1/a

if N < log(c1β
−1)

c2
.

(8)

Note that the Wasserstein ball with radius εN (β) can thus be viewed as a confidence set for the unknown

true distribution as in statistical testing; see also [7].

Theorem 3.5 (Finite sample guarantee). Suppose that Assumption 3.3 holds and that β ∈ (0, 1). Assume

also that ĴN and x̂N represent the optimal value and an optimizer of the distributionally robust program (5)

with ambiguity set P̂N = BεN (β)(P̂N ). Then, the finite sample guarantee (2) holds.

Proof. The claim follows immediately from Theorem 3.4, which ensures via the definition of εN (β) in (8) that

PN{P ∈ BεN (β)(P̂N )} ≥ 1−β. Thus, EP[h(x̂N , ξ)] ≤ sup
Q∈P̂N E

Q[h(x̂N , ξ)] = ĴN with probability 1−β. �

It is clear from (8) that for any fixed β > 0, the radius εN (β) tends to 0 as N increases. Moreover, one can

show that if βN converges to zero at a carefully chosen rate, then the solution of the distributionally robust

optimization problem (5) with ambiguity set P̂N = BεN (βN )(P̂N ) converges to the solution of the original

stochastic program (1) as N tends to infinity. The following theorem formalizes this statement.

Theorem 3.6 (Asymptotic consistency). Suppose that Assumption 3.3 holds and that βN ∈ (0, 1), N ∈ N,

satisfies
∑∞
N=1 βN <∞ and limN→∞ εN (βN ) = 0.2 Assume also that ĴN and x̂N represent the optimal value

and an optimizer of the distributionally robust program (5) with ambiguity set P̂N = BεN (βN )(P̂N ), N ∈ N.

(i) If h(x, ξ) is upper semicontinuous in ξ and there exists L ≥ 0 with |h(x, ξ)| ≤ L(1+‖ξ‖) for all x ∈ X
and ξ ∈ Ξ, then P∞-almost surely we have ĴN ↓ J? as N →∞ where J? is the optimal value of (1).

(ii) If the assumptions of assertion (i) hold, X is closed, and h(x, ξ) is lower semicontinuous in x for every

ξ ∈ Ξ, then any accumulation point of {x̂N}N∈N is P∞-almost surely an optimal solution for (1).

The proof of Theorem 3.6 will rely on the following technical lemma.

1A similar but slightly more complicated inequality also holds for the special case m = 2; see [21, Theorem 2] for details.
2A possible choice is βN = exp(−

√
N).
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Lemma 3.7 (Convergence of distributions). If Assumption 3.3 holds and βN ∈ (0, 1), N ∈ N, satisfies∑∞
N=1 βN < ∞ and limN→∞ εN (βN ) = 0, then, any sequence Q̂N ∈ BεN (βN )(P̂N ), N ∈ N, where Q̂N may

depend on the training data, converges under the Wasserstein metric (and thus weakly) to P almost surely

with respect to P∞, that is,

P∞
{

lim
N→∞

dW

(
P, Q̂N

)
= 0
}

= 1.

Proof. As Q̂N ∈ BδN (P̂N ), the triangle inequality for the Wasserstein metric ensures that

dW

(
P, Q̂N

)
≤ dW

(
P, P̂N

)
+ dW

(
P̂N , Q̂N

)
≤ dW

(
P, P̂N

)
+ εN (βN ).

Moreover, Theorem 3.4 implies that PN{dW

(
P, P̂N

)
≤ εN (βN )} ≥ 1−βN , and thus we have PN{dW

(
P, Q̂N

)
≤

2εN (βN )} ≥ 1− βN . As
∑∞
N=1 βN <∞, the Borel-Cantelli Lemma [28, Theorem 2.18] further implies that

P∞
{
dW

(
P, Q̂N

)
≤ εN (βN ) for all sufficiently large N

}
= 1.

Finally, as limN↑∞ εN (βN ) = 0, we conclude that limN↑∞ dW

(
P, Q̂N

)
= 0 almost surely. Note that conver-

gence with respect to the Wasserstein metric implies weak convergence [10]. �

Proof of Theorem 3.6. As x̂N ∈ X, we have J? ≤ EP[h(x̂N , ξ)]. Moreover, Theorem 3.5 implies that

PN
{
J? ≤ EP[h(x̂N , ξ)] ≤ ĴN

}
≥ PN

{
P ∈ BεN (βN )(P̂N )

}
≥ 1− βN ,

for all N ∈ N. As
∑∞
N=1 βN <∞, the Borel-Cantelli Lemma further implies that

P∞
{
J? ≤ EP[h(x̂N , ξ)] ≤ ĴN for all sufficiently large N

}
= 1.

To prove assertion (i), it thus remains to be shown that lim supN→∞ ĴN ≤ J? with probability 1. As h(x, ξ)

is upper semicontinuous and grows at most linearly in ξ, there exists a non-increasing sequence of functions

hk(x, ξ), k ∈ N, such that h(x, ξ) = limk→∞ hk(x, ξ), and hk(x, ξ) is Lipschitz continuous in ξ for any fixed

x ∈ X and k ∈ N with Lipschitz constant Lk ≥ 0; see Lemma A.1 in the appendix. Next, choose any δ > 0,

fix a δ-optimal decision xδ ∈ X for (1) with EP[h(xδ, ξ)] ≤ J? + δ, and for every N ∈ N let Q̂N ∈ P̂N be a

δ-optimal distribution corresponding to xδ with

sup
Q∈P̂N

EQ[h(xδ, ξ)] ≤ EQN [h(xδ, ξ)] + δ.

Then, we have

lim sup
N→∞

ĴN ≤ lim sup
N→∞

sup
Q∈P̂N

EQ[h(xδ, ξ)] ≤ lim sup
N→∞

EQ̂N [h(xδ, ξ)] + δ

≤ lim
k→∞

lim sup
N→∞

EQ̂N [hk(xδ, ξ)] + δ

≤ lim
k→∞

lim sup
N→∞

(
EP[hk(xδ, ξ)] + Lk dW

(
P, Q̂N

))
+ δ

= lim
k→∞

EP[hk(xδ, ξ)] + δ, P∞-almost surely

= EP[h(xδ, ξ)] + δ ≤ J? + 2δ,

where the second inequality holds because hk(x, ξ) converges from above to h(x, ξ), and the third inequality

follows from Theorem 3.2. Moreover, the almost sure equality holds due to Lemma 3.7, and the last equality

follows from the Monotone Convergence Theorem [30, Theorem 5.5], which applies because |EP[hk(xδ, ξ)]| <
∞. Indeed, recall that P has an exponentially decaying tail due to Assumption 3.3 and that hk(xδ, ξ) is

Lipschitz continuous in ξ. As δ > 0 was chosen arbitrarily, we thus conclude that lim supN→∞ ĴN ≤ J?.
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To prove assertion (ii), fix an arbitrary realization of the stochastic process {ξ̂N}N∈N such that J? =

limN→∞ ĴN and J? ≤ EP[h(x̂N , ξ)] ≤ ĴN for all sufficiently large N . From the proof of assertion (i) we know

that these two conditions are satisfied P∞-almost surely. Using these assumptions, one easily verifies that

lim inf
N→∞

EP[h(x̂N , ξ)] ≤ lim
N→∞

ĴN = J?. (9)

Next, let x? be an accumulation point of the sequence {x̂N}N∈N, and note that x? ∈ X as X is closed. By

passing to a subsequence, if necessary, we may assume without loss of generality that x? = limN→∞ x̂N .

Thus,

J? ≤ EP[h(x?, ξ)] ≤ EP[lim inf
N→∞

h(x̂N , ξ)] ≤ lim inf
N→∞

EP[h(x̂N , ξ)] ≤ J?,

where the first inequality exploits that x? ∈ X, the second inequality follows from the lower semicontinuity

of h(x, ξ) in x, the third inequality holds due to Fatou’s lemma (which applies because h(x, ξ) grows at most

linearly in ξ), and the last inequality follows from (9). Therefore, we have EP[h(x?, ξ)] = J?. �

In the following we show that all assumptions of Theorem 3.6 are necessary for asymptotic convergence,

that is, relaxing any of these conditions can invalidate the convergence result.

Example 1 (Necessity of regularity conditions).

(1) Upper semicontinuity of ξ 7→ h(x, ξ) in Theorem 3.6 (i):

Set Ξ = [0, 1], P = δ0 and h(x, ξ) = 1(0,1](ξ), whereby J? = 0. As P concentrates unit mass at 0, we

have P̂N = δ0 = P irrespective of N ∈ N. For any ε > 0, the Dirac distribution δε thus resides within

the Wasserstein ball Bε(P̂N ). Hence, ĴN fails to converge to J? for ε→ 0 because

ĴN ≥ Eδε [h(x, ξ)] = h(x, ε) = 1, ∀ε > 0.

(2) Linear growth of ξ 7→ h(x, ξ) in Theorem 3.6 (i):

Set Ξ = R, P = δ0 and h(x, ξ) = ξ2, which implies that J? = 0. Note that for any ρ > ε, the

two-point distribution Qρ = (1 − ε
ρ )δ0 + ε

ρδρ is contained in the Wasserstein ball Bε(P̂N ) of radius

ε > 0. Hence, ĴN fails to converge to J? for ε→ 0 because

ĴN ≥ sup
ρ>ε

EQρ [h(x, ξ)] = sup
ρ>ε

ερ =∞, ∀ε > 0.

(3) Lower semicontinuity of x 7→ h(x, ξ) in Theorem 3.6 (ii):

Set X = [0, 1] and h(x, ξ) = 1[0.5,1](x), whereby J? = 0 irrespective of P. As the objective is

independent of ξ, the distributionally robust optimization problem (5) is equivalent to (1). Then,

x̂N = N−1
2N is a sequence of minimizers for (5) whose accumulation point x? = 1

2 fails to be optimal

in (1).

A convergence result akin to Theorem 3.6 for goodness-of-fit-based ambiguity sets is discussed in [7,

Section 4]. This result is complementary to Theorem 3.6. Indeed, Theorem 3.6(i) requires h(x, ξ) to be

upper semicontinuous in ξ, which is a necessary condition in our setting (see Example 1) that is absent

in [7]. Moreover, Theorem 3.6(ii) only requires h(x, ξ) to be lower semicontinuous in x, while [7] asks for

equicontinuity of this mapping. This stronger requirement provides a stronger result, that is, the almost sure

convergence of sup
Q∈P̂N E

Q[h(x, ξ)] to EP[h(x, ξ)] uniformly in x on any compact subset of X.

Theorems 3.5 and 3.6 indicate that a careful a priori design of the Wasserstein ball results in attractive

finite sample and asymptotic guarantees for the distributionally robust solutions. In practice, however, setting

the Wasserstein radius to εN (β) yields over-conservative solutions for the following reasons:
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• Even though the constants c1 and c2 in (8) can be computed based on the proof of [21, Theorem 2],

the resulting Wasserstein ball is larger than necessary, i.e., P /∈ BεN (β)(P̂N ) with probability � β.

• Even if P /∈ BεN (β)(P̂N ), the optimal value ĴN of (5) may still provide an upper bound on J?.

• The formula for εN (β) in (8) is independent of the training data. Allowing for random Wasserstein

radii, however, results in a more efficient use of the available training data.

While Theorems 3.5 and 3.6 provide strong theoretical justification for using Wasserstein ambiguity sets,

in practice, it is prudent to calibrate the Wasserstein radius via bootstrapping or cross-validation instead of

using the conservative a priori bound εN (β); see Section 7.2 for further details. A similar approach has been

advocated in [7] to determine the sizes of ambiguity sets that are constructed via goodness-of-fit tests.

So far we have seen that the Wasserstein metric allows us to construct ambiguity sets with favorable

asymptotic and finite sample guarantees. In the remainder of the paper we will further demonstrate that

the distributionally robust optimization problem (5) with a Wasserstein ambiguity set (6) is not significantly

harder to solve than the corresponding SAA problem (4).

4. Solving Worst-Case Expectation Problems

We now demonstrate that the inner worst-case expectation problem in (5) over the Wasserstein ambiguity

set (6) can be reformulated as a finite convex program for many loss functions h(x, ξ) of practical interest.

For ease of notation, throughout this section we suppress the dependence on the decision variable x. Thus,

we examine a generic worst-case expectation problem

sup
Q∈Bε(P̂N )

EQ
[
`(ξ)

]
(10)

involving a decision-independent loss function `(ξ) := maxk≤K `k(ξ), which is defined as the pointwise maxi-

mum of more elementary measurable functions `k : Rm → R, k ≤ K. The focus on loss functions representable

as pointwise maxima is non-restrictive unless we impose some structure on the functions `k. Many tractability

results in the remainder of this paper are predicated on the following convexity assumption.

Assumption 4.1 (Convexity). The uncertainty set Ξ ⊆ Rm is convex and closed, and the negative constituent

functions −`k are proper, convex, and lower semicontinuous for all k ≤ K. Moreover, we assume that `k is

not identically −∞ on Ξ for all ≤ K.

Assumption 4.1 essentially stipulates that `(ξ) can be written as a maximum of concave functions. As

we will showcase in Section 5, this mild restriction does not sacrifice much modeling power. Moreover,

generalizations of this setting will be discussed in Section 6. We proceed as follows. Subsection 4.1 addresses

the reduction of (10) to a finite convex program, while Subsection 4.2 describes a technique for constructing

worst-case distributions.

4.1. Reduction to a Finite Convex Program

The worst-case expectation problem (10) constitutes an infinite-dimensional optimization problem over

probability distributions and thus appears to be intractable. However, we will now demonstrate that (10)

can be re-expressed as a finite-dimensional convex program by leveraging tools from robust optimization.
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Theorem 4.2 (Convex reduction). If the convexity Assumption 4.1 holds, then for any ε ≥ 0 the worst-case

expectation (10) equals the optimal value of the finite convex program
inf

λ,si,zik,νik
λε+ 1

N

N∑
i=1

si

s.t. [−`k]∗(zik − νik) + σΞ(νik)−
〈
zik, ξ̂i

〉
≤ si ∀i ≤ N, ∀k ≤ K

‖zik‖∗ ≤ λ ∀i ≤ N, ∀k ≤ K.

(11)

Recall that [−`k]∗(zik − νik) denotes the conjugate of −`k evaluated at zik − νik and ‖zik‖∗ the dual norm

of zik. Moreover, χΞ represents the characteristic function of Ξ and σΞ its conjugate, that is, the support

function of Ξ.

Proof of Theorem 4.2. By using Definition 3.1 we can re-express the worst-case expectation (10) as

sup
Q∈Bε(P̂N )

EQ
[
`(ξ)

]
=



sup
Π,Q

∫
Ξ
`(ξ)Q(dξ)

s.t.
∫

Ξ2 ‖ξ − ξ′‖Π(dξ,dξ′) ≤ ε{
Π is a joint distribution of ξ and ξ′

with marginals Q and P̂N , respectively

=


sup

Qi∈M(Ξ)

1
N

N∑
i=1

∫
Ξ
`(ξ)Qi(dξ)

s.t. 1
N

N∑
i=1

∫
Ξ
‖ξ − ξ̂i‖Qi(dξ) ≤ ε.

The second equality follows from the law of total probability, which asserts that any joint probability distribu-

tion Π of ξ and ξ′ can be constructed from the marginal distribution P̂N of ξ′ and the conditional distributions

Qi of ξ given ξ′ = ξ̂i, i ≤ N , that is, we may write Π = 1
N

∑N
i=1 δξ̂i ⊗Qi. The resulting optimization problem

represents a generalized moment problem in the distributions Qi, i ≤ N . Using a standard duality argument,

we obtain

sup
Q∈Bε(P̂N )

EQ
[
`(ξ)

]
= sup
Qi∈M(Ξ)

inf
λ≥0

1

N

N∑
i=1

∫
Ξ

`(ξ)Qi(dξ) + λ
(
ε− 1

N

N∑
i=1

∫
Ξ

‖ξ − ξ̂i‖Qi(dξ)
)

≤ inf
λ≥0

sup
Qi∈M(Ξ)

λε+
1

N

N∑
i=1

∫
Ξ

(
`(ξ)− λ‖ξ − ξ̂i‖

)
Qi(dξ) (12a)

= inf
λ≥0

λε+
1

N

N∑
i=1

sup
ξ∈Ξ

(
`(ξ)− λ‖ξ − ξ̂i‖

)
, (12b)

where (12a) follows from the max-min inequality, and (12b) follows from the fact that M(Ξ) contains all

the Dirac distributions supported on Ξ. Introducing epigraphical auxiliary variables si, i ≤ N , allows us to

reformulate (12b) as 
inf
λ,si

λε+ 1
N

N∑
i=1

si

s.t. sup
ξ∈Ξ

(
`(ξ)− λ‖ξ − ξ̂i‖

)
≤ si ∀i ≤ N

λ ≥ 0

(12c)

=


inf
λ,si

λε+ 1
N

N∑
i=1

si

s.t. sup
ξ∈Ξ

(
`k(ξ)− max

‖zik‖∗≤λ

〈
zik, ξ − ξ̂i

〉)
≤ si ∀i ≤ N, ∀k ≤ K

λ ≥ 0

(12d)
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≤


inf
λ,si

λε+ 1
N

N∑
i=1

si

s.t. min
‖zik‖∗≤λ

sup
ξ∈Ξ

(
`k(ξ)−

〈
zik, ξ − ξ̂i

〉)
≤ si ∀i ≤ N, ∀k ≤ K

λ ≥ 0.

(12e)

Equality (12d) exploits the definition of the dual norm and the decomposability of `(ξ) into its constituents

`k(ξ), k ≤ K. Interchanging the maximization over zik with the minus sign (thereby converting the maxi-

mization to a minimization) and then with the maximization over ξ leads to a restriction of the feasible set

of (12d). The resulting upper bound (12e) can be re-expressed as
inf

λ,si,zik
λε+ 1

N

N∑
i=1

si

s.t. sup
ξ∈Ξ

(
`k(ξ)−

〈
zik, ξ

〉)
+
〈
zik, ξ̂i

〉
≤ si ∀i ≤ N, ∀k ≤ K

‖zik‖∗ ≤ λ ∀i ≤ N, ∀k ≤ K

=


inf

λ,si,zik
λε+ 1

N

N∑
i=1

si

s.t. [−`k + χΞ]∗(zik)−
〈
zik, ξ̂i

〉
≤ si ∀i ≤ N, ∀k ≤ K

‖zik‖∗ ≤ λ ∀i ≤ N, ∀k ≤ K,

(12f)

where (12f) follows from the definition of conjugacy, our conventions of extended arithmetic, and the substi-

tution of zik with −zik. Note that (12f) is already a finite convex program.

Next, we show that Assumption 4.1 reduces the inequalities (12a) and (12e) to equalities. Under As-

sumption 4.1, the inequality (12a) is in fact an equality for any ε > 0 by virtue of an extended version of

a well-known strong duality result for moment problems [44, Proposition 3.4]. One can show that (12a)

continues to hold as an equality even for ε = 0, in which case the Wasserstein ambiguity set (6) reduces to

the singleton {P̂N}, while (10) reduces to the sample average 1
N

∑N
i=1 `(ξ̂i). Indeed, for ε = 0 the variable

λ in (12b) can be increased indefinitely at no penalty. As `(ξ) constitutes a pointwise maximum of upper

semicontinuous concave functions, an elementary but tedious argument shows that (12b) converges to the

sample average 1
N

∑N
i=1 `(ξ̂i) as λ tends to infinity.

The inequality (12e) also reduces to an equality under Assumption 4.1 thanks to the classical minimax

theorem [4, Proposition 5.5.4], which applies because the set {zik ∈ Rm : ‖zik‖∗ ≤ λ} is compact for any

finite λ ≥ 0. Thus, the optimal values of (10) and (12f) coincide.

Assumption 4.1 further implies that the function −`k + χΞ is proper, convex and lower semicontinuous.

Properness holds because `k is not identically −∞ on Ξ. By [42, Theorem 11.23(a), p. 493], its conjugate

essentially coincides with the epi-addition (also known as inf-convolution) of the conjugates of the functions

−`k and σΞ. Thus,

[−`k + χΞ]∗(zik) = inf
νik

(
[−`k]∗(zik − νik) + [χΞ]∗(νik)

)
= cl

[
inf
νik

(
[−`k]∗(zik − νik) + σΞ(νik)

)]
,

where cl[ · ] denotes the closure operator that maps any function to its largest lower semicontinuous minorant.

As cl[f(ξ)] ≤ 0 if and only if f(ξ) ≤ 0 for any function f , we may conclude that (12f) is indeed equivalent to

(11) under Assumption 4.1. �

Note that the semi-infinite inequality in (12c) generalizes the nonlinear uncertain constraints studied in

[1] because it involves an additional norm term and as the loss function `(ξ) is not necessarily concave under
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Assumption 4.1. As in [1], however, the semi-infinite constraint admits a robust counterpart that involves

the conjugate of the loss function and the support function of the uncertainty set.

From the proof of Theorem 4.2 it is immediately clear that the worst-case expectation (10) is conservatively

approximated by the optimal value of the finite convex program (12f) even if Assumption 4.1 fails to hold.

In this case the sum −`k + χΞ in (12f) must be evaluated under our conventions of extended arithmetics,

whereby ∞−∞ =∞. These observations are formalized in the following corollary.

Corollary 4.3 (Approximate convex reduction). For any ε ≥ 0, the worst-case expectation (10) is smaller

or equal to the optimal value of the finite convex program (12f).

4.2. Extremal Distributions

Stress test experiments are instrumental to assess the quality of candidate decisions in stochastic opti-

mization. Meaningful stress tests require a good understanding of the extremal distributions from within the

Wasserstein ball that achieve the worst-case expectation (10) for various loss functions. We now show that

such extremal distributions can be constructed systematically from the solution of a convex program akin

to (11).

Theorem 4.4 (Worst-case distributions). If Assumption 4.1 holds, then the worst-case expectation (10)

coincides with the optimal value of the finite convex program

sup
αik,qik

1
N

N∑
i=1

K∑
k=1

αik`k
(
ξ̂i − qik

αik

)
s.t. 1

N

N∑
i=1

K∑
k=1

‖qik‖ ≤ ε
K∑
k=1

αik = 1 ∀i ≤ N

αik ≥ 0 ∀i ≤ N, ∀k ≤ K
ξ̂i − qik

αik
∈ Ξ ∀i ≤ N, ∀k ≤ K

(13)

irrespective of ε ≥ 0. Let
{
αik(r), qik(r)

}
r∈N be a sequence of feasible decisions whose objective values converge

to the supremum of (13). Then, the discrete probability distributions

Qr :=
1

N

N∑
i=1

K∑
k=1

αik(r)δξik(r) with ξik(r) := ξ̂i −
qik(r)

αik(r)

belong to the Wasserstein ball Bε(P̂N ) and attain the supremum of (10) asymptotically, i.e.,

sup
Q∈Bε(P̂N )

EQ
[
`(ξ)

]
= lim
r→∞

EQr
[
`(ξ)

]
= lim
k→∞

1

N

N∑
i=1

K∑
k=1

αik(r)`
(
ξik(r)

)
.

We highlight that all fractions in (13) must again be evaluated under our conventions of extended arith-

metics. Specifically, if αik = 0 and qik 6= 0, then qik/αik has at least one component equal to +∞ or −∞,

which implies that ξ̂i− qik/αik /∈ Ξ. In contrast, if αik = 0 and qik = 0, then ξ̂i− qik/αik = ξ̂i ∈ Ξ. Moreover,

the ik-th component in the objective function of (13) evaluates to 0 whenever αik = 0 regardless of qik.

The proof of Theorem 4.4 is based on the following technical lemma.

Lemma 4.5. Define F : Rm × R+ → R through F (q, α) = infz∈Rm
〈
z, q − αξ̂

〉
+ αf∗(z) for some proper,

convex, and lower semicontinuous function f : Rm → R and reference point ξ̂ ∈ Rm. Then, F coincides with
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the (extended) perspective function of the mapping q 7→ −f(ξ̂ − q), that is,

F (q, α) =

{
−αf

(
ξ̂ − q/α

)
if α > 0,

−χ{0}(q) if α = 0.

Proof. By construction, we have F (q, 0) = infz∈Rm
〈
z, q
〉

= −χ{0}(q). For α > 0, on the other hand, the

definition of conjugacy implies that

F (q, α) = −[αf∗]∗(αξ̂ − q) = −α[f∗]∗
(
ξ̂ − q/α

)
.

The claim then follows because [f∗]∗ = f for any proper, convex, and lower semicontinuous function f [4,

Proposition 1.6.1(c)]. Additional information on perspective functions can be found in [12, Section 2.2.3,

p. 39]. �

Proof of Theorem 4.4. By Theorem 4.2, which applies under Assumption 4.1, the worst-case expectation (10)

coincides with the optimal value of the convex program (11). From the proof of Theorem 4.2 we know that

(11) is equivalent to (12f). The Lagrangian dual of (12f) is given by
sup

βik,αik

inf
λ,si,zik

λε+
N∑
i=1

[
si
N+

K∑
k=1

[
βik
(
‖zik‖∗ − λ

)
+ αik

(
[−`k + χΞ]∗(zik)−

〈
zik, ξ̂i

〉
− si

)]]
s.t. αik ≥ 0 ∀i ≤ N, ∀k ≤ K

βik ≥ 0 ∀i ≤ N, ∀k ≤ K,

where the products of dual variables and constraint functions in the objective are evaluated under the standard

convention 0 ·∞ = 0. Strong duality holds since the function [−`k + χΞ]∗ is proper, convex, and lower

semicontinuous under Assumption 4.1 and because this function appears in a constraint of (12f) whose right-

hand side is a free decision variable. By explicitly carrying out the minimization over λ and si, one can show

that the above dual problem is equivalent to

sup
βik,αik

inf
zik

N∑
i=1

K∑
k=1

βik‖zik‖∗+αik[−`k + χΞ]∗(zik)− αik
〈
zik, ξ̂i

〉
s.t.

N∑
i=1

K∑
k=1

βik = ε

K∑
k=1

αik = 1
N ∀i ≤ N

αik ≥ 0 ∀i ≤ N, ∀k ≤ K
βik ≥ 0 ∀i ≤ N, ∀k ≤ K.

(14a)

By using the definition of the dual norm, (14a) can be re-expressed as

sup
βik,αik

inf
zik

N∑
i=1

K∑
k=1

max
‖qik‖≤βik

〈
zik, qik

〉
+αik[−`k + χΞ]∗(zik)− αik

〈
zik, ξ̂i

〉]
s.t.

N∑
i=1

K∑
k=1

βik = ε

K∑
k=1

αik = 1
N ∀i ≤ N

αik ≥ 0 ∀i ≤ N, ∀k ≤ K
βik ≥ 0 ∀i ≤ N, ∀k ≤ K

(14b)
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=



sup
βik,αik

max
‖qik‖≤βik

inf
zik

N∑
i=1

K∑
k=1

〈
zik, qik

〉
+αik[−`k + χΞ]∗(zik)− αik

〈
zik, ξ̂i

〉
s.t.

N∑
i=1

K∑
k=1

βik = ε

K∑
k=1

αik = 1
N ∀i ≤ N

αik ≥ 0 ∀i ≤ N, ∀k ≤ K
βik ≥ 0 ∀i ≤ N, ∀k ≤ K,

(14c)

where (14c) follows from the classical minimax theorem and the fact that the qik variables range over a

non-empty and compact feasible set for any finite ε; see [4, Proposition 5.5.4]. Eliminating the βik variables

and using Lemma 4.5 allows us to reformulate (14c) as

sup
αik,qik

inf
zik

N∑
i=1

K∑
k=1

〈
zik, qik − αik ξ̂i

〉
+αik[−`k + χΞ]∗(zik)

s.t.
N∑
i=1

K∑
k=1

‖qik‖ ≤ ε
K∑
k=1

αik = 1
N ∀i ≤ N

αik ≥ 0 ∀i ≤ N, ∀k ≤ K

(14d)

=



sup
αik,qik

N∑
i=1

K∑
k=1

−αik
(
− `k

(
ξ̂i − qik

αik

)
+χΞ

(
ξ̂i − qik

αik

))
1{αik>0} − χ{0}(qik)1{αik=0}

s.t.
N∑
i=1

K∑
k=1

‖qik‖ ≤ ε
K∑
k=1

αik = 1
N ∀i ≤ N

αik ≥ 0 ∀i ≤ N, ∀k ≤ K.

(14e)

Our conventions of extended arithmetics imply that the ik-th term in the objective function of problem (14e)

simplifies to

αik`k
(
ξ̂i −

qik
αik

)
− χΞ

(
ξ̂i −

qik
αik

)
. (14f)

Indeed, for αik > 0, this identity trivially holds. For αik = 0, on the other hand, the ik-th objective term in

(14e) reduces to −χ{0}(qik). Moreover, the first term in (14f) vanishes whenever αik = 0 regardless of qik,

and the second term in (14f) evaluates to 0 if qik = 0 (as 0/0 = 0 and ξ̂i ∈ Ξ) and to −∞ if qik 6= 0 (as qik/0

has at least one infinite component, implying that ξ̂i+qik/0 /∈ Ξ). Therefore, (14f) also reduces to −χ{0}(qik)

when αik = 0. This proves that the ik-th objective term in (14e) coincides with (14f). Substituting (14f) into

(14e) and re-expressing −χΞ

(
ξ̂i − qik

αik

)
in terms of an explicit hard constraint yields

sup
αik,qik

N∑
i=1

K∑
k=1

αik`k
(
ξ̂i − qik

αik

)
s.t.

N∑
i=1

K∑
k=1

‖qik‖ ≤ ε
K∑
k=1

αik = 1
N ∀i ≤ N

αik ≥ 0 ∀i ≤ N, ∀k ≤ K
ξ̂i − qik

αik
∈ Ξ ∀i ≤ N, ∀k ≤ K.

(14g)

Finally, replacing
{
αik, qik

}
with 1

N

{
αik, qik

}
shows that (14g) is equivalent to (13). This completes the first

part of the proof.
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Figure 1. Example of a worst-case expectation problem without a worst-case distribution

As for the second claim, let {αik(r), qik(r)}r∈N be a sequence of feasible solutions that attains the supremum

in (13), and set ξik(r) := ξ̂i − qik(r)
αik(r) ∈ Ξ. Then, the discrete distribution

Πr :=
1

N

N∑
i=1

K∑
k=1

αik(r)δ(
ξik(r),ξ̂i

)
has the distribution Qr defined in the theorem statement and the empirical distribution P̂N as marginals.

By the definition of the Wasserstein metric, Πr represents a feasible mass transportation plan that provides

an upper bound on the distance between P̂N and Qr; see Definition 3.1. Thus, we have

dW

(
Qr, P̂N

)
≤
∫

Ξ2

‖ξ − ξ′‖Πr(dξ,dξ
′) =

1

N

N∑
i=1

K∑
k=1

αik(r)
∥∥ξik(r)− ξ̂i

∥∥=
1

N

N∑
i=1

K∑
k=1

∥∥qik(r)
∥∥ ≤ ε,

where the last inequality follows readily from the feasibility of qik(r) in (13). We conclude that

sup
Q∈Bε(P̂N )

EQ
[
`(ξ)

]
≥ lim sup

k→∞
EQr

[
`(ξ)

]
= lim sup

k→∞

1

N

N∑
i=1

K∑
k=1

αik(r)`
(
ξik(r)

)
≥ lim sup

k→∞

1

N

N∑
i=1

K∑
k=1

αik(r)`k
(
ξik(r)

)
= sup
Q∈Bε(P̂N )

EQ
[
`(ξ)

]
,

where the first inequality holds as Qr ∈ Bε(P̂N ) for all k ∈ N, and the second inequality uses the trivial

estimate ` ≥ `k for all k ≤ K. The last equality follows from the construction of αik(r) and ξik(r) and the

fact that (13) coincides with the worst-case expectation (10). �

In the rest of this section we discuss some notable properties of the convex program (13).

In the ambiguity-free limit, that is, when the radius of the Wasserstein ball is set to zero, then the optimal

value of the convex program (13) reduces to the expected loss under the empirical distribution. Indeed, for

ε = 0 all qik variables are forced to zero, and αik enters the objective only through
∑K
k=1 αik = 1

N . Thus, the

objective function of (13) simplifies to EP̂N [`(ξ)].

We further emphasize that it is not possible to guarantee the existence of a worst-case distribution that

attains the supremum in (10). In general, as shown in Theorem 4.4, we can only construct a sequence of

distributions that attains the supremum asymptotically. The following example discusses an instance of (10)

that admits no worst-case distribution.
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Example 2 (Non-existence of a worst-case distribution). Assume that Ξ = R, N = 1, ξ̂1 = 0, K = 2, `1(ξ) = 0

and `2(ξ) = ξ − 1. In this case we have P̂N = δ{0}, and problem (13) reduces to

sup
Q∈Bε(δ0)

EQ
[
`(ξ)

]
=


sup
α1j ,q1j

−q12 − α12

s.t. |q11|+ |q12| ≤ ε
α11 + α12 = 1

α11 ≥ 0, α12 ≥ 0.

The supremum on the right-hand side amounts to ε and is attained, for instance, by the sequence α11(r) =

1− 1
k , α12(r) = 1

k , q11(r) = 0, q12(r) = −ε for k ∈ N. Define

Qr = α11(r) δξ11(r) + α12(r) δξ12(r),

with ξ11(r) = ξ̂1 − q11(r)
α11(r) = 0, and ξ12(r) = ξ̂1 − q12(r)

α12(r) = εk. By Theorem 4.4, the two-point distributions

Qr reside within the Wasserstein ball of radius ε around δ0 and asymptotically attain the supremum in the

worst-case expectation problem. However, this sequence has no weak limit as ξ12(r) = εk tends to infinity,

see Figure 1. In fact, no single distribution can attain the worst-case expectation. Assume for the sake of

contradiction that there exists Q? ∈ Bε(δ0) with EQ
?

[`(ξ)] = ε. Then, we find ε = EQ
?

[`(ξ)] < EQ
?

[|ξ|] ≤ ε,

where the strict inequality follows from the relation `(ξ) < |ξ| for all ξ 6= 0 and the observation that Q? 6= δ0,

while the second inequality follows from Theorem 3.2. Thus, Q? does not exist.

The existence of a worst-case distribution can, however, be guaranteed in some special cases.

Corollary 4.6 (Existence of a worst-case distribution). Suppose that Assumption 4.1 holds. If the uncertainty

set Ξ is compact or the loss function is concave (i.e., K = 1), then the sequence {αik(r), ξik(r)}r∈N constructed

in Theorem 4.4 has an accumulation point {α?ik, ξ?ik}, and

Q? :=
1

N

N∑
i=1

K∑
k=1

α?ikδξ?ik

is a worst-case distribution achieving the supremum in (10).

Proof. If Ξ is compact, then the sequence {αik(r), ξik(r)}r∈N has a converging subsequence with limit {α?ik, ξ?ik}.
Similarly, if K = 1, then αi1 = 1 for all i ≤ N , in which case (13) reduces to a convex optimization problem

with an upper semicontinuous objective function over a compact feasible set. Hence, its supremum is attained

at a point {α?ik, ξ?ik}. In both cases, Theorem 4.4 guarantees that the distribution Q? implied by {α?ik, ξ?ik}
achieves the supremum in (10). �

The worst-case distribution of Corollary 4.6 is discrete, and its atoms ξ?ik reside in the neighborhood of

the given data points ξ̂i. By the constraints of problem (13), the probability-weighted cumulative distance

between the atoms and the respective data points amounts to

N∑
i=1

K∑
k=1

αik‖ξ?ik − ξ̂i‖ =

N∑
i=1

K∑
k=1

‖qik‖ ≤ ε,

which is bounded above by the radius of the Wasserstein ball. The fact that the worst-case distribution Q? (if

it exists) is supported outside of Ξ̂N is a key feature distinguishing the Wasserstein ball from the ambiguity sets

induced by other probability metrics such as the total variation distance or the Kullback-Leibler divergence;

see Figure 2. Thus, the worst-case expectation criterion based on Wasserstein balls advocated in this paper

should appeal to decision makers who wish to immunize their optimization problems against perturbations

of the data points.
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(a) Empirical distribution on a training

dataset with N = 2 samples

(b) A representative discrete distribution

in the total variation or the Kullback-

Leiber ball

(c) A representative discrete distribution

in the Wasserstein ball

Figure 2. Representative distributions in balls centered at P̂N induced by different metrics

Remark 4.7 (Weak coupling). We highlight that the convex program (13) is amenable to decomposition and

parallelization techniques as the decision variables associated with different sample points are only coupled

through the norm constraint. We expect the resulting scenario decomposition to offer a substantial speedup of

the solution times for problems involving large datasets. Efficient decomposition algorithms that could be used

for solving the convex program (13) are described, for example, in [35] and [5, Chapter 4].

5. Special Loss Functions

We now demonstrate that the convex optimization problems (11) and (13) reduce to computationally

tractable conic programs for several loss functions of practical interest.

5.1. Piecewise Affine Loss Functions

We first investigate the worst-case expectations of convex and concave piecewise affine loss functions,

which arise, for example, in option pricing [8], risk management [34] and in generic two-stage stochastic

programming [6]. Moreover, piecewise affine functions frequently serve as approximations of smooth convex

or concave loss functions.

Corollary 5.1 (Piecewise affine loss functions). Suppose that the uncertainty set is a polytope, that is,

Ξ = {ξ ∈ Rm : Cξ ≤ d} where C is a matrix and d a vector of appropriate dimensions. Moreover, consider

the affine functions ak(ξ) :=
〈
ak, ξ

〉
+ bk for all k ≤ K.

(i) If `(ξ) = maxk≤K ak(ξ), then the worst-case expectation (10) evaluates to


inf

λ,si,γik
λε+ 1

N

N∑
i=1

si

s.t. bk +
〈
ak, ξ̂i

〉
+
〈
γik, d− Cξ̂i

〉
≤ si ∀i ≤ N, ∀k ≤ K

‖Cᵀγik − ak‖∗ ≤ λ ∀i ≤ N, ∀k ≤ K
γik ≥ 0 ∀i ≤ N, ∀k ≤ K.

(15a)
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(ii) If `(ξ) = mink≤K ak(ξ), then the worst-case expectation (10) evaluates to

inf
λ,si,γi,θi

λε+ 1
N

N∑
i=1

si

s.t.
〈
θi, b+Aξ̂i

〉
+
〈
γi, d− Cξ̂i

〉
≤ si ∀i ≤ N

‖Cᵀγi −Aᵀθi‖∗ ≤ λ ∀i ≤ N〈
θi, e

〉
= 1 ∀i ≤ N

γi ≥ 0 ∀i ≤ N
θi ≥ 0 ∀i ≤ N,

(15b)

where A is the matrix with rows aᵀk, k ≤ K, b is the column vector with entries bk, k ≤ K, and e is

the vector of all ones.

Proof. Assertion (i) is an immediate consequence of Theorem 4.2, which applies because `(x) is the pointwise

maximum of the affine functions `k(ξ) = ak(ξ), k ≤ K, and thus Assumption 4.1 holds for J = K. By

definition of the conjugacy operator, we have

[−`k]∗(z) = [−ak]∗(z) = sup
ξ

〈
z, ξ
〉

+
〈
ak, ξ

〉
+ bk =

{
bk if z = −ak,
∞ else,

and

σΞ(ν) =

 sup
ξ

〈
ν, ξ
〉

s.t. Cξ ≤ d
=

{
inf
γ≥0

〈
γ, d
〉

s.t. Cᵀγ = ν,

where the last equality follows from strong duality, which holds as the uncertainty set is non-empty. Asser-

tion (i) then follows by substituting the above expressions into (11).

Assertion (ii) also follows directly from Theorem 4.2 because `(ξ) = `1(ξ) = mink≤K aj(ξ) is concave and

thus satisfies Assumption 4.1 for J = 1. In this setting, we find

[−`]∗(z) = sup
ξ

〈
z, ξ
〉

+ min
k≤K

{〈
ak, ξ

〉
+ bk

}
=

 sup
ξ,τ

〈
z, ξ
〉

+ τ

s.t. Aξ + b ≥ τe
=


inf
θ≥0

〈
θ, b
〉

s.t. Aᵀθ = −z〈
θ, e
〉

= 1

where the last equality follows again from strong linear programming duality, which holds since the primal

maximization problem is feasible. Assertion (ii) then follows by substituting [−`]∗ as well as the formula for

σΞ from the proof of assertion (i) into (11). �

As a consistency check, we ascertain that in the ambiguity-free limit, the optimal value of (15a) reduces

to the expectation of maxk≤K ak(ξ) under the empirical distribution. Indeed, for ε = 0, the variable λ can

be set to any positive value at no penalty. For this reason and because all training samples must belong to

the uncertainty set (i.e., d − Cξ̂i ≥ 0 for all i ≤ N), it is optimal to set γik = 0. This in turn implies that

si = maxk≤K ak(ξ̂i) at optimality, in which case 1
N

∑N
i=1 si represents the sample average of the convex loss

function at hand.

An analogous argument shows that, for ε = 0, the optimal value of (15b) reduces to the expectation

of mink≤K ak(ξ) under the empirical distribution. As before, λ can be increased at no penalty. Thus, we

conclude that γi = 0 and

si = min
θi≥0

{〈
θi, b+Aξ̂i

〉
:
〈
θi, e

〉
= 1
}

= min
k≤K

ak(ξ̂i)

at optimality, in which case 1
N

∑N
i=1 si is the sample average of the given concave loss function.
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5.2. Uncertainty Quantification

A problem of great practical interest is to ascertain whether a physical, economic or engineering system

with an uncertain state ξ satisfies a number of safety constraints with high probability. In the following we

denote by A the set of states in which the system is safe. Our goal is to quantify the probability of the

event ξ ∈ A (ξ /∈ A) under an ambiguous state distribution that is only indirectly observable through a finite

training dataset. More precisely, we aim to calculate the worst-case probability of the system being unsafe,

i.e.,

sup
Q∈Bε(P̂N )

Q [ξ /∈ A] , (16a)

as well as the best-case probability of the system being safe, that is,

sup
Q∈Bε(P̂N )

Q [ξ ∈ A] . (16b)

Remark 5.2 (Data-dependent sets). The set A may even depend on the samples ξ̂1, . . . , ξ̂N , in which case A
is renamed as Â. If the Wasserstein radius ε is set to εN (β), then we have P ∈ Bε(P̂N ) with probability 1−β,

implying that (16a) and (16b) still provide 1− β confidence bounds on P[ξ /∈ Â] and P[ξ ∈ Â], respectively.

Corollary 5.3 (Uncertainty quantification). Suppose that the uncertainty set is a polytope of the form Ξ =

{ξ ∈ Rm : Cξ ≤ d} as in Corollary 5.1.

(i) If A = {ξ ∈ Rm : Aξ < b} is an open polytope and the halfspace
{
ξ :
〈
ak, ξ

〉
≥ bk

}
has a nonempty

intersection with Ξ for any k ≤ K, where ak is the k-th row of the matrix A and bk is the k-th entry

of the vector b, then the worst-case probability (16a) is given by

inf
λ,si,γik,θik

λε+ 1
N

N∑
i=1

si

s.t. 1− θik
(
bk −

〈
ak, ξ̂i

〉)
+
〈
γik, d− Cξ̂i

〉
≤ si ∀i ≤ N, ∀k ≤ K

‖akθik − Cᵀγik‖∗ ≤ λ ∀i ≤ N, ∀k ≤ K
γik ≥ 0 ∀i ≤ N, ∀k ≤ K
θik ≥ 0 ∀i ≤ N, ∀k ≤ K
si ≥ 0 ∀i ≤ N.

(17a)

(ii) If A = {ξ ∈ Rm : Aξ ≤ b} is a closed polytope that has a nonempty intersection with Ξ, then the

best-case probability (16b) is given by

inf
λ,si,γi,θi

λε+ 1
N

N∑
i=1

si

s.t. 1 +
〈
θi, b−Aξ̂i

〉
+
〈
γi, d− Cξ̂i

〉
≤ si ∀i ≤ N

‖Aᵀθi + Cᵀγi‖∗ ≤ λ ∀i ≤ N
γi ≥ 0 ∀i ≤ N
θi ≥ 0 ∀i ≤ N
si ≥ 0 ∀i ≤ N.

(17b)

Proof. The uncertainty quantification problems (16a) and (16b) can be interpreted as instances of (10) with

loss functions ` = 1 − 1A and ` = 1A, respectively. In order to be able to apply Theorem 4.2, we should

represent these loss functions as finite maxima of concave functions as shown in Figure 3.
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(a) Indicator function of the unsafe set (b) Indicator function of the safe set

Figure 3. Representing the indicator function of a convex set and its complement as a

pointwise maximum of concave functions

Formally, assertion (i) follows from Theorem 4.2 for a loss function with K+1 pieces if we use the following

definitions. For every k ≤ K we define

`k(ξ) =

{
1 if

〈
ak, ξ

〉
≥ bk,

−∞ otherwise.

Moreover, we define `K+1(ξ) = 0. As illustrated in Figure 3(a), we thus have `(ξ) = maxk≤K+1 `k(ξ) =

1− 1A(ξ) and

sup
Q∈Bε(P̂N )

Q [ξ /∈ A] = sup
Q∈Bε(P̂N )

EQ [`(ξ)] .

Assumption 4.1 holds due to the postulated properties of A and Ξ. In order to apply Theorem 4.2, we must

determine the support function σΞ, which is already known from Corollary 5.1, as well as the conjugate

functions of −`k, k ≤ K + 1. A standard duality argument yields

[−`k]∗(z) =

 sup
ξ

〈
z, ξ
〉

+ 1

s.t.
〈
ak, ξ

〉
≥ bk

=

{
inf
θ≥0

1− bkθ

s.t. akθ = −z,

for all k ≤ K. Moreover, we have [−`K+1]∗ = 0 if ξ = 0; = ∞ otherwise. Assertion (ii) then follows by

substituting the formulas for [−`k]∗, k ≤ K + 1, and σΞ into (11).

Assertion (ii) follows from Theorem 4.2 by setting K = 2, `1(ξ) = 1− χA(ξ) and `2(ξ) = 0. As illustrated

in Figure 3(b), this implies that `(ξ) = max{`1(ξ), `2(ξ)} = 1A(ξ) and

sup
Q∈Bε(P̂N )

Q [ξ ∈ A] = sup
Q∈Bε(P̂N )

EQ [`(ξ)] .

Assumption 4.1 holds by our assumptions on A and Ξ. In order to apply Theorem 4.2, we thus have to

determine the support function σΞ, which was already calculated in Corollary 5.1, and the conjugate functions

of −`1 and −`2. By the definition of the conjugacy operator, we find

[−`1]∗(z) = sup
ξ∈A

〈
z, ξ
〉

+ 1 =

 sup
ξ

〈
z, ξ
〉

+ 1

s.t. Aξ ≤ b
=

{
inf
θk≥0

〈
θ, b
〉

+ 1

s.t. Aᵀθ = z

where the last equality follows from strong linear programming duality, which holds as the safe set is non-

empty. Similarly, we find [−`2]∗ = 0 if ξ = 0; =∞ otherwise. Assertion (ii) then follows by substituting the

above expressions into (11). �

In the ambiguity-free limit (i.e., for ε = 0) the optimal value of (17a) reduces to the fraction of training

samples residing outside of the open polytope A = {ξ : Aξ < b}. Indeed, in this case the variable λ can

be set to any positive value at no penalty. For this reason and because all training samples belong to the
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uncertainty set (i.e., d − Cξ̂i ≥ 0 for all i ≤ N), it is optimal to set γik = 0. If the i-th training sample

belongs to A (i.e., bk −
〈
ak, ξ̂i

〉
> 0 for all k ≤ K), then θik ≥ 1/(bk −

〈
ak, ξ̂i

〉
) for all k ≤ K and si = 0 at

optimality. Conversely, if the i-th training sample belongs to the complement of A, (i.e., bk −
〈
ak, ξ̂i

〉
≤ 0

for some k ≤ K), then θik = 0 for some k ≤ K and si = 1 at optimality. Thus,
∑N
i=1 si coincides with

the number of training samples outside of A at optimality. An analogous argument shows that, for ε = 0,

the optimal value of (17b) reduces to the fraction of training samples residing inside of the closed polytope

A = {ξ : Aξ ≤ b}.

5.3. Two-Stage Stochastic Programming

A major challenge in linear two-stage stochastic programming is to evaluate the expected recourse costs,

which are only implicitly defined as the optimal value of a linear program whose coefficients depend linearly

on the uncertain problem parameters [46, Section 2.1]. The following corollary shows how we can evaluate

the worst-case expectation of the recourse costs with respect to an ambiguous parameter distribution that

is only observable through a finite training dataset. For ease of notation and without loss of generality, we

suppress here any dependence on the first-stage decisions.

Corollary 5.4 (Two-stage stochastic programming). Suppose that the uncertainty set is a polytope of the

form Ξ = {ξ ∈ Rm : Cξ ≤ d} as in Corollaries 5.1 and 5.3.

(i) If `(ξ) = infy
{〈
y,Qξ

〉
: Wy ≥ h

}
is the optimal value of a parametric linear program with objective

uncertainty, and if the feasible set {y : Wy ≥ h} is non-empty and compact, then the worst-case

expectation (10) is given by

inf
λ,si,γi,yi

λε+ 1
N

N∑
i=1

si

s.t.
〈
yi, Qξ̂i

〉
+
〈
γi, d− Cξ̂i

〉
≤ si ∀i ≤ N

Wyi ≥ h ∀i ≤ N
‖Qᵀyi − Cᵀγi‖∗ ≤ λ ∀i ≤ N
γi ≥ 0 ∀i ≤ N.

(18a)

(ii) If `(ξ) = infy
{〈
q, y
〉

: Wy ≥ Hξ + h
}

is the optimal value of a parametric linear program with right-

hand side uncertainty, and if the dual feasible set {θ ≥ 0 : W ᵀθ = q} is non-empty and compact with

vertices vk, k ≤ K, then the worst-case expectation (10) is given by
inf

λ,si,γik
λε+ 1

N

N∑
i=1

si

s.t.
〈
vk, h

〉
+
〈
Hᵀvk, ξ̂i

〉
+
〈
γik, d− Cξ̂i

〉
≤ si ∀i ≤ N, ∀k ≤ K

‖Cᵀγik −Hᵀvk‖∗ ≤ λ ∀i ≤ N, ∀k ≤ K
γik ≥ 0 ∀i ≤ N, ∀k ≤ K.

(18b)

Proof. Assertion (i) follows directly from Theorem 4.2 because `(ξ) is concave as an infimum of linear functions

in ξ. Indeed, the compactness of the feasible set {y : Wy ≥ h} ensures that Assumption 4.1 holds for K = 1.

In this setting, we find

[−`]∗(z) = sup
ξ

{〈
z, ξ
〉

+ inf
y

{〈
y,Qξ

〉
: Wy ≥ h

}}

= inf
y

{
sup
ξ

{〈
z +Qᵀy, ξ

〉}
: Wy ≥ h

}
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=

{
0 if there exists y with Qᵀy = −z and Wy ≥ h,
∞ otherwise,

where the second equality follows from the classical minimax theorem [4, Proposition 5.5.4], which applies

because {y : Wy ≥ h} is compact. Assertion (i) then follows by substituting [−`]∗ as well as the formula for

σΞ from Corollary 5.1 into (11).

Assertion (ii) relies on the following reformulation of the loss function,

`(ξ) =

{
inf
y

〈
q, y
〉

s.t. Wy ≥ Hξ + h
=

 sup
θ≥0

〈
θ,Hξ + h

〉
s.t. W ᵀθ = q

= max
k≤K

〈
vk, Hξ + h

〉
= max

k≤K

〈
Hᵀvk, ξ

〉
+
〈
vk, h

〉
,

where the first equality holds due to strong linear programming duality, which applies as the dual feasible

set is non-empty. The second equality exploits the elementary observation that the optimal value of a linear

program with non-empty, compact feasible set is always adopted at a vertex. As we managed to express `(ξ)

as a pointwise maximum of linear functions, assertion (ii) follows immediately from Corllary 5.1 (i). �

As expected, in the ambiguity-free limit, problem (18a) reduces to a standard SAA problem. Indeed, for

ε = 0, the variable λ can be made large at no penalty, and thus γi = 0 and si =
〈
yi, Qξ̂i

〉
at optimality. In

this case, problem (18a) is equivalent to

inf
yi

{
1

N

N∑
i=1

〈
yi, Qξ̂i

〉
: Wyi ≥ h ∀i ≤ N

}
.

Similarly, one can verify that for ε = 0, (18b) reduces to the SAA problem

inf
yi

{
1

N

N∑
i=1

〈
yi, q

〉
: Wyi ≥ Hξ̂i ∀i ≤ N

}
.

We close this section with a remark on the computational complexity of all the convex optimization

problems derived in this section.

Remark 5.5 (Computational tractability).

• If the Wasserstein metric is defined in terms of the 1-norm (i.e., ‖ξ‖ =
∑m
k=1 |ξk|) or the ∞-norm

(i.e., ‖ξ‖ = maxk≤m |ξk|), then the optimization problems (15a), (15b), (17a), (17b), (18a) and (18b)

all reduce to linear programs whose sizes scale with the number N of data points and the number J

of affine pieces of the underlying loss functions.

• Except for the two-stage stochastic program with right-hand side uncertainty in (18b), the result-

ing linear programs scale polynomially in the problem description and are therefore computationally

tractable. As the number of vertices vk, k ≤ K, of the polytope {θ ≥ 0 : W ᵀθ = q} may be exponential

in the number of its facets, however, the linear program (18b) has generically exponential size.

• Inspecting (15a), one easily verifies that the distributionally robust optimization problem (5) re-

duces to a finite convex program if X is convex and h(x, ξ) = maxk≤K
〈
ak(x), ξ

〉
+ bk(x), while

the gradients ak(x) and the intercepts bk(x) depend linearly on x. Similarly, (5) can be refor-

mulated as a finite convex program if X is convex and h(x, ξ) = infy
{〈
y,Qξ

〉
: Wy ≥ h(x)

}
or

h(x, ξ) = infy
{〈
q, y
〉

: Wy ≥ H(x)ξ + h(x)
}

, while the right hand side coefficients h(x) and H(x)

depend linearly on x; see (18a) and (18b), respectively. In contrast, problems (15b), (17a) and (17b)

result in non-convex optimization problems when their data depends on x.
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• We emphasize that the computational complexity of all convex programs examined in this section is

independent of the radius ε of the Wasserstein ball.

6. Tractable Extensions

We now demonstrate that through minor modifications of the proofs, Theorems 4.2 and 4.4 extend to

worst-case expectation problems involving even richer classes of loss functions. First, we investigate problems

where the uncertainty can be viewed as a stochastic process and where the loss function is additively separable.

Next, we study problems whose loss functions are convex in the uncertain variables and are therefore not

necessarily representable as finite maxima of concave functions as postulated by Assumption 4.1.

6.1. Stochastic Processes with a Separable Cost

Consider a variant of the worst-case expectation problem (10), where the uncertain parameters can be

interpreted as a stochastic process ξ =
(
ξ1, . . . , ξT

)
, and assume that ξt ∈ Ξt, where Ξt ⊆ Rm is non-empty

and closed for any t ≤ T . Moreover, assume that the loss function is additively separable with respect to the

temporal structure of ξ, that is,

`(ξ) :=

T∑
t=1

max
k≤K

`tk
(
ξt
)
, (19)

where `tk : Rm → R is a measurable function for any k ≤ K and t ≤ T . Such loss functions appear, for

instance, in open-loop stochastic optimal control or in multi-item newsvendor problems. Consider a process

norm ‖ξ‖T =
∑T
t=1 ‖ξt‖ associated with the base norm ‖ · ‖ on Rm, and assume that its induced metric is

the one used in the definition of the Wasserstein distance. Note that if ‖ · ‖ is the 1-norm on Rm, then ‖ · ‖T
reduces to the 1-norm on RmT .

By interchanging summation and maximization, the loss function (19) can be re-expressed as

`(ξ) = max
kt≤K

T∑
t=1

`tkt
(
ξt
)
,

where the maximum runs over allKT combinations of k1, . . . , kT ≤ K. Under this representation, Theorem 4.2

remains applicable. However, the resulting convex optimization problem would involve O(KT ) decision

variables and constraints, indicating that an efficient solution may not be available. Fortunately, this deficiency

can be overcome by modifying Theorem 4.2.

Theorem 6.1 (Convex reduction for separable loss functions). Assume that the loss function ` is of the form

(19), and the Wasserstein ball is defined through the process norm ‖ · ‖T. Then, for any ε ≥ 0, the worst-case

expectation (10) is smaller or equal to the optimal value of the finite convex program
inf

λ,sti,ztik,νtik
λε+ 1

N

N∑
i=1

T∑
t=1

sti

s.t. [−`tk]∗
(
ztik − νtik

)
+ σΞt(νtik)−

〈
ztik, ξ̂ti

〉
≤ sti ∀i ≤ N, ∀k ≤ K, ∀t ≤ T,

‖ztik‖∗ ≤ λ ∀i ≤ N, ∀k ≤ K, ∀t ≤ T.

(20)

If Ξt and {`tk}k≤K satisfy the convexity Assumption 4.1 for every t ≤ T , then the worst-case expectation (10)

coincides exactly with the optimal value of problem (20).
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Proof. Up until equation (12d), the proof of Theorem 6.1 parallels that of Theorem 4.2. Starting from (12d),

we then have

sup
Q∈Bε(P̂N )

EQ
[
`(ξ)

]
= inf
λ≥0

λε+
1

N

N∑
i=1

sup
ξ

(
`(ξ)− λ

∥∥∥ξ − ξ̂i∥∥∥
T

)

= inf
λ≥0

λε+
1

N

N∑
i=1

T∑
t=1

sup
ξt∈Ξt

(
max
k≤K

`tk
(
ξt
)
− λ
∥∥ξt − ξ̂ti∥∥) ,

where the interchange of the summation and the maximization is facilitated by the separability of the overall

loss function. Introducing epigraphical auxiliary variables yields
inf
λ,sti

λε+ 1
N

N∑
i=1

T∑
t=1

sti

s.t. sup
ξt∈Ξt

(
`tk
(
ξt
)
− λ
∥∥ξt − ξ̂ti∥∥) ≤ sti ∀i ≤ N, ∀k ≤ K, ∀t ≤ T

λ ≥ 0

≤


inf

λ,sti,ztik
λε+ 1

N

N∑
i=1

T∑
t=1

sti

s.t. sup
ξt∈Ξt

(
`tk
(
ξt
)
−
〈
ztik, ξt

〉)
+
〈
ztik, ξ̂ti

〉
≤ sti ∀i ≤ N, ∀k ≤ K, ∀t ≤ T

‖ztik‖∗ ≤ λ ∀i ≤ N, ∀k ≤ K, ∀t ≤ T

=


inf

λ,sti,ztik
λε+ 1

N

N∑
i=1

T∑
t=1

sti

s.t. [−`tk + χΞt ]
∗(− ztik)+

〈
ztik, ξ̂ti

〉
≤ sti ∀i ≤ N, ∀k ≤ K, ∀t ≤ T

‖ztik‖∗ ≤ λ ∀i ≤ N, ∀k ≤ K, ∀t ≤ T,

where the inequality is justified in a similar manner as the one in (12e), and it holds as an equality provided

that Ξt and {`tk}k≤K satisfy Assumption 4.1 for all t ≤ T . Finally, by [42, Theorem 11.23(a), p. 493], the

conjugate of −`tk + χΞt can be replaced by the inf-convolution of the conjugates of −`tk and χΞt . This

completes the proof. �

Note that the convex program (20) involves only O(NKT ) decision variables and constraints. Moreover,

if `tk is affine for every t ≤ T and k ≤ K, while ‖ · ‖ represents the 1-norm or the ∞-norm on Rm, then

(20) reduces to a tractable linear program (see also Remark 5.5). A natural generalization of Theorem 4.4

further allows us to characterize the extremal distributions of the worst-case expectation problem (10) with

a separable loss function of the form (19).

Theorem 6.2 (Worst-case distributions for separable loss functions). Assume that the loss function ` is of

the form (19), and the Wasserstein ball is defined through the process norm ‖ · ‖T. If Ξt and {`tk}k≤K satisfy

Assumption 4.1 for all t ≤ T , then the worst-case expectation (10) coincides with the optimal value of the

finite convex program

sup
αtik,qtik

1
N

N∑
i=1

K∑
k=1

T∑
t=1

αtik`tk

(
ξ̂ti − qtik

αtik

)
s.t. 1

N

N∑
i=1

K∑
k=1

T∑
t=1
‖qtik‖ ≤ ε

K∑
k=1

αtik = 1 ∀i ≤ N, ∀t ≤ T

αtik ≥ 0 ∀i ≤ N, ∀t ≤ T, ∀k ≤ K
ξ̂ti − qtik

αtik
∈ Ξt ∀i ≤ N, ∀t ≤ T, ∀k ≤ K

(21)
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irrespective of ε ≥ 0. Let
{
αtik(r), qtik(r)

}
r∈N be a sequence of feasible decisions whose objective values

converge to the supremum of (21). Then, the discrete (product) probability distributions

Qr :=
1

N

N∑
i=1

T⊗
t=1

( K∑
k=1

αtik(r)δξtik(r)

)
with ξtik(r) := ξ̂ti −

qtik(r)

αtik(r)

belong to the Wasserstein ball Bε(P̂N ) and attain the supremum of (10) asymptotically, i.e.,

sup
Q∈Bε(P̂N )

EQ
[
`(ξ)

]
= lim
r→∞

EQr
[
`(ξ)

]
= lim
r→∞

1

N

N∑
i=1

K∑
k=1

T∑
t=1

αtik(r)`tk
(
ξtik(r)

)
.

Proof. As in the proof of Theorem 4.4, the claim follows by dualizing the convex program (20). Details are

omitted for brevity of exposition. �

We emphasize that the distributions Qr from Theorem 6.2 can be constructed efficiently by solving a

convex program of polynomial size even though they have NKT discretization points.

6.2. Convex Loss Functions

Consider now another variant of the worst-case expectation problem (10), where the loss function ` is

proper, convex and lower semicontinuous. Unless ` is piecewise affine, we cannot represent such a loss

function as a pointwise maximum of finitely many concave functions, and thus Theorem 4.2 may only provide

a loose upper bound on the worst-case expectation (10). The following theorem provides an alternative upper

bound that admits new insights into distributionally robust optimization with Wasserstein balls and becomes

exact for Ξ = Rm.

Theorem 6.3 (Convex reduction for convex loss functions). Assume that the loss function ` is proper, convex,

and lower semicontinuous, and define κ := sup
{
‖θ‖∗ : `∗(θ) < ∞

}
. Then, for any ε ≥ 0, the worst-case

expectation (10) is smaller or equal to

κε+
1

N

N∑
i=1

`(ξ̂i). (22)

If Ξ = Rm, then the worst-case expectation (10) coincides exactly with (22).

Remark 6.4 (Radius of effective domain). The parameter κ can be viewed as the radius of the smallest ball

containing the effective domain of the conjugate function `∗ in terms of the dual norm. By the standard

conventions of extended arithmetic, the term κε in (22) is interpreted as 0 if κ =∞ and ε = 0.

Proof. Equation (12b) in the proof of Theorem 4.2 implies that

sup
Q∈Bε(P̂N )

EQ
[
`(ξ)

]
= inf
λ≥0

λε+
1

N

N∑
i=1

sup
ξ∈Ξ

(
`(ξ)− λ‖ξ − ξ̂i‖

)
(23)

for every ε > 0. As ` is proper, convex, and lower semicontinuous, it coincides with its bi-conjugate function

`∗∗, see e.g. [4, Proposition 1.6.1(c)]. Thus, we may write

`(ξ) = sup
θ∈Θ

〈
θ, ξ
〉
− `∗(θ),

where Θ := {θ ∈ Rm : `∗(θ) <∞} denotes the effective domain of the conjugate function `∗. Using this dual

representation of ` in conjunction with the definition of the dual norm, we find

sup
ξ∈Ξ

(
`(ξ)− λ‖ξ − ξ̂i‖

)
= sup

ξ∈Ξ
sup
θ∈Θ

(〈
θ, ξ
〉
− `∗(θ)− λ‖ξ − ξ̂i‖

)



DATA-DRIVEN DISTRIBUTIONALLY ROBUST OPTIMIZATION USING THE WASSERSTEIN METRIC 28

= sup
ξ∈Ξ

sup
θ∈Θ

inf
‖z‖∗≤λ

(〈
θ, ξ
〉
− `∗(θ) +

〈
z, ξ
〉
−
〈
z, ξ̂i

〉)
.

The classical minimax theorem [4, Proposition 5.5.4] then allows us to interchange the maximization over ξ

with the maximization over θ and the minimization over z to obtain

sup
ξ∈Ξ

(
`(ξ)− λ‖ξ − ξ̂i‖

)
= sup
θ∈Θ

inf
‖z‖∗≤λ

sup
ξ∈Ξ

(〈
θ + z, ξ

〉
− `∗(θ)−

〈
z, ξ̂i

〉)
= sup
θ∈Θ

inf
‖z‖∗≤λ

σΞ(θ + z)− `∗(θ)−
〈
z, ξ̂i

〉
. (24)

Recall that σΞ denotes the support function of Ξ. It seems that there is no simple exact reformulation of

(24) for arbitrary convex uncertainty sets Ξ. Interchanging the maximization over θ with the minimization

over z in (24) would lead to the conservative upper bound of Corollary 4.3. Here, however, we employ an

alternative approximation. By definition of the support function, we have σΞ ≤ σRm = χ{0}. Replacing σΞ

with χ{0} in (24) thus results in the conservative approximation

sup
ξ∈Rm

(
`(ξ)− λ‖ξ − ξ̂i‖

)
≤

{
`(ξ̂i) if sup

{
‖θ‖∗ : θ ∈ Θ

}
≤ λ,

∞ otherwise.
(25)

The inequality (22) then follows readily by substituting (25) into (23) and using the definition of κ in the

theorem statement. For Ξ = Rm we have σΞ = χ{0}, and thus the upper bound (22) becomes exact. Finally,

if ε = 0, then (10) trivially coincides with (22) under our conventions of extended arithmetic. Thus, the claim

follows. �

Theorem 6.3 asserts that for Ξ = Rm, the worst-case expectation (10) of a convex loss function reduces the

sample average of the loss adjusted by the simple correction term κε. The following proposition highlights

that κ can be interpreted as a measure of maximum steepness of the loss function. This interpretation has

intuitive appeal in view of Definition 3.1.

Proposition 6.5 (Steepness of the loss function). Let κ be defined as in Theorem 6.3.

(i) If ` is L-Lipschitz continuous, i.e., if there exists ξ′ ∈ Rm such that `(ξ) − `(ξ′) ≤ L‖ξ − ξ′‖ for all

ξ ∈ Rm, then κ ≤ L.

(ii) If ` majorizes an affine function, i.e., if there exists θ ∈ Rm with ‖θ‖∗ =: L and ξ′ ∈ Rm such that

`(ξ)− `(ξ′) ≥
〈
θ, ξ − ξ′

〉
for all ξ ∈ Rm, then κ ≥ L.

Proof. The proof follows directly from the definition of conjugacy. As for (i), we have

`∗(θ) = sup
ξ∈Rm

〈
θ, ξ
〉
− `(ξ) ≥ sup

ξ∈Rm

〈
θ, ξ
〉
− L‖ξ − ξ′‖ − `(ξ′)

= sup
ξ∈Rm

inf
‖z‖∗≤L

〈
θ, ξ
〉
−
〈
z, ξ − ξ′

〉
− `(ξ′),

where the last equality follows from the definition of the dual norm. Applying the minimax theorem [4,

Proposition 5.5.4] and explicitly carrying out the maximization over ξ yields

`∗(θ) ≥

{ 〈
θ, ξ′

〉
− `(ξ′) if ‖θ‖∗ ≤ L,
∞ otherwise.

Consequently, `∗(θ) is infinite for all θ with ‖θ‖∗ > L, which readily implies that the ‖ · ‖∗-ball of radius L

contains the effective domain of `∗. Thus, κ ≤ L.

As for (ii), we have

`∗(θ) = sup
ξ∈Rm

〈
θ, ξ
〉
− `(ξ) ≤ sup

ξ∈Rm

〈
θ, ξ
〉
−
〈
z, ξ − ξ′

〉
− `(ξ′)
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= σRm(θ − z) +
〈
z, ξ′

〉
− `(ξ′),

which implies that `∗(θ) ≤
〈
θ, ξ′

〉
− `(ξ′) < ∞. Thus, θ belongs to the effective domain of `∗. We then

conclude that κ ≥ ‖θ‖∗ = L. �

Remark 6.6 (Consistent formulations). If Ξ = Rm and the loss function is given by `(ξ) = maxk≤K{
〈
ak, ξ

〉
+

bk}, then both Corollary 5.1 and Theorem 6.3 offer an exact reformulation of the worst-case expectation (10) in

terms of a finite-dimensional convex program. On the one hand, Corollary 5.1 implies that (10) is equivalent to min
λ

λε+ 1
N

N∑
i=1

`(ξ̂i)

s.t. ‖ak‖∗ ≤ λ ∀k ≤ K,

which is obtained by setting C = 0 and d = 0 in (15a). At optimality we have λ? = maxk≤K ‖ak‖∗,
which corresponds to the (best) Lipschitz constant of `(ξ) with respect to the norm ‖ · ‖. On the other hand,

Theorem 6.3 implies that (10) is equivalent to (22) with κ = λ?. Thus, Corollary 5.1 and Theorem 6.3 are

consistent.

Remark 6.7 (ε-insensitive optimizers3). Consider a loss function h(x, ξ) that is convex in ξ, and assume that

Ξ = Rm. In this case Theorem 6.3 remains valid, but the steepness parameter κ(x) may depend on x. For loss

functions whose Lipschitz modulus with respect to ξ is independent of x (e.g., the newsvendor loss), however,

κ(x) is constant. In this case the distributionally robust optimization problem (5) and the SAA problem (4)

share the same minimizers irrespective of the Wasserstein radius ε. This phenomenon could explain why the

SAA solutions tend to display a surprisingly strong out-of-sample performance in these problems.

7. Numerical Results

We validate the theoretical results of this paper in the context of a stylized portfolio selection problem.

The subsequent simulation experiments are designed to provide additional insights into the performance

guarantees of the proposed distributionally robust optimization scheme.

7.1. Mean-Risk Portfolio Optimization

Consider a capital market consisting of m assets whose yearly returns are captured by the random vector

ξ = [ξ1, . . . , ξm]ᵀ. If short-selling is forbidden, a portfolio is encoded by a vector of percentage weights

x = [x1, . . . , xm]ᵀ ranging over the probability simplex X = {x ∈ Rm+ :
∑m
i=1 xi = 1}. As portfolio x invests

a percentage xi of the available capital in asset i for each i = 1, . . . ,m, its return amounts to
〈
x, ξ
〉
. In the

remainder we aim to solve the single-stage stochastic program

J? = inf
x∈X

{
EP
[
−
〈
x, ξ
〉]

+ ρP-CVaRα

(
−
〈
x, ξ
〉)}

, (26)

which minimizes a weighted sum of the mean and the conditional value-at-risk (CVaR) of the portfolio loss

−
〈
x, ξ
〉
, where α ∈ (0, 1] is referred to as the confidence level of the CVaR, and ρ ∈ R+ quantifies the investor’s

risk-aversion. Intuitively, the CVaR at level α represents the average of the α×100% worst (highest) portfolio

losses under the distribution P. Replacing the CVaR in the above expression with its formal definition [41],

we obtain

J? = inf
x∈X

{
EP
[
−
〈
x, ξ
〉]

+ ρ inf
τ∈R

EP
[
τ +

1

α
max

{
−
〈
x, ξ
〉
− τ, 0

}]}
= inf
x∈X,τ∈R

EP
[

max
k≤K

ak
〈
x, ξ
〉

+ bkτ
]
,

3We are indepted to Vishal Gupta who has brought this interesting observation to our attention.
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where K = 2, a1 = −1, a2 = −1 − ρ
α , b1 = ρ and b2 = ρ(1 − 1

α ). An investor who is unaware of the

distribution P but has observed a dataset Ξ̂N of N historical samples from P and knows that the support of

P is contained in Ξ = {ξ ∈ Rm : Cξ ≤ d} might solve the distributionally robust counterpart of (26) with

respect to the Wasserstein ambiguity set Bε(P̂N ), that is,

ĴN (ε) := inf
x∈X,τ∈R

sup
Q∈Bε(P̂N )

EQ
[

max
k≤K

ak
〈
x, ξ
〉

+ bkτ
]
,

where we make the dependence on the Wasserstein radius ε explicit. By Corollary 5.1 we know that

ĴN (ε) =



inf
x,τ,λ,si,γik

λε+ 1
N

N∑
i=1

si

s.t. x ∈ X
bkτ + ak

〈
x, ξ̂i

〉
+
〈
γik, d− Cξ̂i

〉
≤ si ∀i ≤ N, ∀k ≤ K

‖Cᵀγik − akx‖∗ ≤ λ ∀i ≤ N, ∀k ≤ K
γik ≥ 0 ∀i ≤ N, ∀k ≤ K.

(27)

Before proceeding with the numerical analysis of this problem, we provide some analytical insights into its

optimal solutions when there is significant ambiguity. In what follows we keep the training data set fixed and

let x̂N (ε) be an optimal distributionally robust portfolio corresponding to the Wasserstein ambiguity set of

radius ε. We will now show that, for natural choices of the ambiguity set, x̂N (ε) converges to the equally

weighted portfolio 1
me as ε tends to infinity, where e := (1, . . . , 1)ᵀ. The optimality of the equally weighted

portfolio under high ambiguity has first been demonstrated in [37] using analytical methods. We identify this

result here as an immediate consequence of Theorem 4.2, which is primarily a computational result.

For any non-empty set S ⊆ Rm we denote by recc(S) := {y ∈ Rm : x + λy ∈ S ∀x ∈ S, ∀λ ≥ 0} the

recession cone and by S◦ := {y ∈ Rm :
〈
y, x
〉
≤ 0 ∀x ∈ S} the polar cone of S.

Lemma 7.1. If {εk}k∈N ⊂ R+ tends to infinity, then any accumulation point x? of
{
x̂N (εk)

}
k∈N is a portfolio

that has minimum distance to (recc(Ξ))◦ with respect to ‖ · ‖∗.

Proof. Note first that x̂N (εk), k ∈ N, and x? exist because X is compact. For large Wasserstein radii ε,

the term λε dominates the objective function of problem (27). Using standard epi-convergence results [42,

Section 7.E], one can thus show that

x? ∈ arg min
x∈X

min
γik≥0

max
i≤N, k≤K

‖Cᵀγik − akx‖∗

= arg min
x∈X

max
i≤N, k≤K

min
γ≥0

‖Cᵀγ + |ak|x‖∗

= arg min
x∈X

min
γ≥0

‖Cᵀγ + x‖∗ max
k≤K
|ak|

= arg min
x∈X

min
γ≥0

‖Cᵀγ + x‖∗,

where the first equality follows from the fact that ak < 0 for all k ≤ K, the second equality uses the

substitution γ → γ|ak|, and the last equality holds because the set of minimizers of an optimization problem

is not affected by a positive scaling of the objective function. Thus, x? is the portfolio nearest to the cone

C = {Cᵀγ : γ ≥ 0}. The claim now follows as the polar cone

C◦ := {y ∈ Rm : yᵀx ≤ 0 ∀x ∈ C} = {y ∈ Rm : yᵀCᵀγ ≤ 0 ∀γ ≥ 0} = {y ∈ Rm : Cy ≥ 0}

is readily recognized as the recession cone of Ξ and as C = (C◦)◦. �

Proposition 7.2 (Equally weighted portfolio). Assume that the Wasserstein metric is defined in terms of the

p-norm in the uncertainty space for some p ∈ [1,∞). If {εk}k∈N ⊂ R+ tends to infinity, then
{
x̂N (εk)

}
k∈N

converges to the equally weighted portfolio x? = 1
me provided that the uncertainty set is given by
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(c) N = 3000 training samples

Figure 4. Optimal portfolio composition as a function of the Wasserstein radius ε averaged

over 200 simulations; the portfolio weights are depicted in ascending order, i.e., the weight

of asset 1 at the bottom (dark blue area) and that of asset 10 at the top (dark red area)

(i) the entire space, i.e., Ξ = Rm, or

(ii) the nonnegative orthant shifted by −e, i.e., Ξ = {ξ ∈ Rm : ξ ≥ −e}, which captures the idea that no

asset can lose more than 100% of its value.

Proof. (i) One easily verifies from the definitions that (recc(Ξ))◦ = {0}. Moreover, we have ‖ · ‖∗ = ‖ · ‖q
where 1

p + 1
q = 1. As p ∈ [1,∞), we conclude that q ∈ (1,∞], and thus the unique nearest portfolio to

(recc(Ξ))◦ with respect to ‖ · ‖∗ is x? = 1
me. The claim then follows from Lemma 7.1. Assertion (ii) follows

in a similar manner from the observation that (recc(Ξ))◦ is now the non-positive orthant. �

With some extra effort one can show that for every p ∈ [1,∞) there is a threshold ε̄ > 0 with x̂N (ε) = x?

for all ε ≥ ε̄, see [37, Proposition 3]. Moreover, for p ∈ {1, 2} the threshold ε̄ is known analytically.

7.2. Simulation Results: Portfolio Optimization

Our experiments are based on a market with m = 10 assets considered in [7, Section 7.5]. In view of the

capital asset pricing model we may assume that the return ξi is decomposable into a systematic risk factor

ψ ∼ N (0, 2%) common to all assets and an unsystematic or idiosyncratic risk factor ζi ∼ N (i× 3%, i× 2.5%)

specific to asset i. Thus, we set ξi = ψ + ζi, where ψ and the idiosyncratic risk factors ζi, i = 1, . . . ,m,

constitute independent normal random variables. By construction, assets with higher indices promise higher

mean returns at a higher risk. Note that the given moments of the risk factors completely determine the

distribution P of ξ. This distribution has support Ξ = Rm and satisfies Assumption 3.3 for the tail exponent

a = 1, say. We also set α = 20% and ρ = 10 in all numerical experiments, and we use the 1-norm to measure

distances in the uncertainty space. Thus, ‖ · ‖∗ is the ∞-norm, whereby (27) reduces to a linear program.

7.2.A. Impact of the Wasserstein Radius

In the first experiment we investigate the impact of the Wasserstein radius ε on the optimal distributionally

robust portfolios and their out-of-sample performance. We solve problem (27) using training datasets of

cardinality N ∈ {30, 300, 3000}. Figure 4 visualizes the corresponding optimal portfolio weights x̂N (ε) as a

function of ε, averaged over 200 independent simulation runs. Our numerical results confirm the theoretical

insight of Proposition 7.2 that the optimal distributionally robust portfolios converge to the equally weighted

portfolio as the Wasserstein radius ε increases; see also [37].
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(a) N = 30 training samples
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(b) N = 300 training samples
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(c) N = 3000 training samples

Figure 5. Out-of-sample performance J(x̂N (ε)) (left axis, solid line and shaded area) and

reliability PN [J(x̂N (ε)) ≤ ĴN (ε)] (right axis, dashed line) as a function of the Wasserstein

radius ε and estimated on the basis of 200 simulations

The out-of-sample performance

J
(
x̂N (ε)

)
:= EP

[
−
〈
x̂N (ε), ξ

〉]
+ ρP-CVaRα

(
−
〈
x̂N (ε), ξ

〉)
of any fixed distributionally robust portfolio x̂N (ε) can be computed analytically as P constitutes a normal

distribution by design, see, e.g., [41, p. 29]. Figure 5 shows the tubes between the 20% and 80% quantiles

(shaded areas) and the means (solid lines) of the out-of-sample performance J
(
x̂N (ε)

)
as a function of ε—

estimated using 200 independent simulation runs. We observe that the out-of-sample performance improves

(decreases) up to a critical Wasserstein radius εcrit and then deteriorates (increases). This stylized fact

was observed consistently across all of simulations and provides an empirical justification for adopting a

distributionally robust approach.

Figure 5 also visualizes the reliability of the performance guarantees offered by our distributionally robust

portfolio model. Specifically, the dashed lines represent the empirical probability of the event J
(
x̂N (ε)

)
≤

ĴN (ε) with respect to 200 independent training datasets. We find that the reliability is nondecreasing in ε.

This observation has intuitive appeal because ĴN (ε) ≥ J(x̂N (ε)) whenever P ∈ Bε(P̂N ), and the latter event

becomes increasingly likely as ε grows. Figure 5 also indicates that the certificate guarantee sharply rises

towards 1 near the critical Wasserstein radius εcrit. Hence, the out-of-sample performance of the distribution-

ally robust portfolios improves as long as the reliability of the performance guarantee is noticeably smaller

than 1 and deteriorates when it saturates at 1. Even though this observation was made consistently across

all simulations, we were unable to validate it theoretically.

7.2.B. Portfolios Driven by Out-of-Sample Performance

Different Wasserstein radii ε may result in robust portfolios x̂N (ε) with vastly different out-of-sample

performance J(x̂N (ε)). Ideally, one should select the radius ε̂ opt
N that minimizes J(x̂N (ε)) over all ε ≥ 0;

note that ε̂ opt
N inherits the dependence on the training data from J(x̂N (ε)). As the true distribution P is

unknown, however, it is impossible to evaluate and minimize J(x̂N (ε)). In practice, the best we can hope for

is to approximate ε̂ opt
N using the training data. Statistics offers several methods to accomplish this goal:

• Holdout method: Partition ξ̂1, . . . , ξ̂N into a training dataset of size NT and a validation dataset of size

NV = N −NT . Using only the training dataset, solve (27) for a large but finite number of candidate

radii ε to obtain x̂NT (ε). Use the validation dataset to estimate the out-of-sample performance of

x̂NT (ε) via the sample average approximation. Set ε̂ hm
N to any ε that minimizes this quantity. Report

x̂ hm
N = x̂NT (ε̂ hm

N ) as the data-driven solution and Ĵ hm
N = ĴNT (ε̂ hm

N ) as the corresponding certificate.



DATA-DRIVEN DISTRIBUTIONALLY ROBUST OPTIMIZATION USING THE WASSERSTEIN METRIC 33

• k-fold cross validation: Partition ξ̂1, . . . , ξ̂N into k subsets, and run the holdout method k times. In

each run, use exactly one subset as the validation dataset and merge the remaining k − 1 subsets to

a training dataset. Set ε̂ cv
N to the average of the Wasserstein radii obtained from the k holdout runs.

Resolve (27) with ε = ε̂ cv
N using all N samples, and report x̂ cv

N = x̂N (ε̂ cv
N ) as the data-driven solution

and Ĵ cv
N = ĴN (ε̂ cv

N ) as the corresponding certificate.

The holdout method is computationally cheaper, but cross validation has superior statistical properties. There

are several other methods to estimate the best Wassertein radius ε̂ opt
N . By construction, however, no method

can provide a radius ε̂N such that x̂N (ε̂N ) has a better out-of-sample performance than x̂N (ε̂ opt
N ).

In all experiments we compare the distributionally robust approach based on the Wasserstein ambiguity set

with the classical sample average approximation (SAA) and with a state-of-the-art data-driven distributionally

robust approach, where the ambiguity set is defined via a linear-convex ordering (LCX)-based goodness-of-fit

test [7, Section 3.3.2]. The size of the LCX ambiguity set is determined by a single parameter, which should be

tuned to optimize the out-of-sample performance. While the best parameter value is unavailable, it can again

be estimated using the holdout method or via cross validation. To our best knowledge, the LCX approach

represents the only existing data-driven distributionally robust approach for continuous uncertainty spaces

that enjoys strong finite-sample guarantees, asymptotic consistency as well as computational tractability.4

To keep the computational burden manageable, in all experiments we select the Wasserstein radius as well

as the LCX size parameter from within the discrete set E = {ε = b · 10c : b ∈ {0, . . . , 9}, c ∈ {−3,−2,−1}}
instead of R+. We have verified that refining or extending E has only a marginal impact on our results, which

indicates that E provides a sufficiently rich approximation of R+.

In Figures 6(a)–6(c) the sizes of the (LCX and Wasserstein) ambiguity sets are determined via the holdout

method, where 80% of the data are used for training and 20% for validation. Figure 6(a) visualizes the tube

between the 20% and 80% quantiles (shaded areas) as well as the mean value (solid lines) of the out-of-sample

performance J(x̂N ) as a function of the sample size N and based on 200 independent simulation runs, where

x̂N is set to the minimizer of the SAA (blue), LCX (purple) and Wasserstein (green) problems, respectively.

The constant dashed line represents the optimal value J? of the original stochastic program (1), which is

computed through an SAA problem with N = 106 samples. We observe that the Wasserstein solutions tend

to be superior to the SAA and LCX solutions in terms of out-of-sample performance.

Figure 6(b) shows the optimal values ĴN of the SAA, LCX and Wasserstein problems, where the sizes of

the ambiguity sets are chosen via the holdout method. Unlike Figure 6(a), Figure 6(b) thus reports in-sample

estimates of the achievable portfolio performance. As expected, the SAA approach is over-optimistic due to

the optimizer’s curse, while the LCX and Wasserstein approaches err on the side of caution. All three methods

are known to enjoy asymptotic consistency, which is in agreement with all in-sample and out-of-sample results.

Figure 6(c) visualizes the reliability of the different performance certificates, that is, the empirical proba-

bility of the event J(x̂N ) ≤ ĴN evaluated over 200 independent simulation runs. Here, x̂N represents either

an optimal portfolio of the SAA, LCX or Wasserstein problems, while ĴN denotes the corresponding optimal

value. The optimal SAA portfolios display a disappointing out-of-sample performance relative to the opti-

mistically biased mimimum of the SAA problem—particularly when the training data is scarce. In contrast,

the out-of-sample performance of the optimal LCX and Wasserstein portfolios often undershoots ĴN .

4Much like worst-case expectations over Wasserstein balls, worst-case expectations over LCX ambiguity sets can be reformu-

lated as finite convex programs whenever the underlying loss function represents a pointwise maximum of K concave component

functions. Unlike problem (11) in Theorem 4.2, however, the resulting convex program scales exponentially with K.
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(d) k-fold cross validation
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(e) k-fold cross validation
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(f) k-fold cross validation
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(g) Optimal size
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Figure 6. Out-of-sample performance J(x̂N ), certificate ĴN , and certificate reliability

PN
[
J(x̂N ) ≤ ĴN

]
for the performance-driven SAA, LCX and Wasserstein solutions as a

function of N

Figures 6(d)–6(f) show the same graphs as Figures 6(a)–6(c), but now the sizes of the ambiguity sets

are determined via k-fold cross validation with k = 5. In this case, the out-of-sample performance of both

distributionally robust methods improves slightly, while the corresponding certificates and their reliabilities

increase significantly with respect to the näıve holdout method. However, these improvements come at the

expense of a k-fold increase in the computational cost.

One could think of numerous other statistical methods to select the size of the Wasserstein ambiguity set.

As discussed above, however, if the ultimate goal is to minimize the out-of-sample performance of x̂N (ε), then

the best possible choice is ε = ε̂ opt
N . Similarly, one can construct a size parameter for the LCX ambiguity

set that leads to the best possible out-of-sample performance of any LCX solution. We emphasize that these

optimal Wasserstein radii and LCX size parameters are not available in practice because computing J(x̂N (ε))

requires knowledge of the data-generating distribution. In our experiments we evaluate J(x̂N (ε)) to high
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accuracy for every fixed ε ∈ E using 2 · 105 validation samples, which are independent from the (much fewer)

training samples used to compute x̂N (ε). Figures 6(g)–6(i) show the same graphs as Figures 6(a)–6(c) for

optimally sized ambiguity sets. By construction, no method for sizing the Wasserstein or LCX ambiguity

sets can result in a better out-of-sample performance, respectively. In this sense, the graphs in Figure 6(g)

capture the fundamental limitations of the different distributionally robust schemes.

7.2.C. Portfolios Driven by Reliability

In Section 7.2.B the Wasserstein radii and LCX size parameters were calibrated with the goal to achieve

the best out-of-sample performance. Figures 6(c), 6(f) and 6(i) reveal, however, that by optimizing the out-

of-sample performance one may sacrifice reliability. An alternative objective more in line with the general

philosophy of Section 2 would be to choose Wasserstein radii that guarantee a prescribed reliability level. Thus,

for a given β ∈ [0, 1] we should find the smallest Wasserstein radius ε ≥ 0 for which the optimal value ĴN (ε)

of (27) provides an upper 1− β confidence bound on the out-of-sample performance J(x̂N (ε)) of its optimal

solution. As the true distribution P is unknown, however, the optimal Wasserstein radius corresponding to a

given β cannot be computed exactly. Instead, we must derive an estimator ε̂ βN that depends on the training

data. We construct ε̂ βN and the corresponding reliability-driven portfolio via bootstrapping as follows:

(1) Construct k resamples of size N (with replacement) from the original training dataset. It is well

known that, as N grows, the probability that any fixed training data point appears in a particular

resample converges to e−1
e ≈

2
3 . Thus, about N

3 training samples are absent from any resample. We

collect all unused samples in a validation dataset.

(2) For each resample κ = 1, . . . , k and ε ≥ 0, solve problem (27) using the Wasserstein ball of ra-

dius ε around the empirical distribution P̂κN on the κ-th resample. The resulting optimal decision

and optimal value are denoted as x̂κN (ε) and ĴκN (ε), respectively. Next, estimate the out-of-sample

performance J(x̂κN (ε)) of x̂κN (ε) using the sample average over the κ-th validation dataset.

(3) Set ε̂ βN to the smallest ε ≥ 0 so that the certificate ĴκN (ε) exceeds the estimate of J(x̂κN (ε)) in at least

(1− β)× k different resamples.

(4) Compute the data-driven portfolio x̂N = x̂N (ε̂ βN ) and the corresponding certificate ĴN = ĴN (ε̂ βN )

using the original training dataset.

As in Section 7.2.B, we compare the Wasserstein approach with the LCX and SAA approaches. Specifically,

by using bootstrapping, we calibrate the size of the LCX ambiguity set so as to guarantee a desired reliability

level 1−β. The SAA problem, on the other hand, has no free parameter that can be tuned to meet a prescribed

reliability target. Nevertheless, we can construct a meaningful certificate of the form ĴN (∆) := ĴSAA + ∆ for

the SAA portfolio by adding a non-negative constant to the optimal value of the SAA problem. Our aim is to

find the smallest offset ∆ ≥ 0 with the property that ĴN (∆) provides an upper 1−β confidence bound on the

out-of-sample performance J(x̂SAA) of the optimal SAA portfolio x̂SAA. The optimal offset corresponding to

a given β cannot be computed exactly. Instead, we must derive an estimator ∆̂ β
N that depends on the training

data. Such an estimator can be found through a simple variant of the above bootstrapping procedure.

In all experiments we set the number of resamples to k = 50. Figures 7(a)–7(c) visualize the out-of-

sample performance, the certificate and the empirical reliability of the reliability-driven portfolios obtained

with the SAA, LCX and Wasserstein approaches, respectively, for the reliability target 1 − β = 90% and

based on 200 independent simulation runs. Figures 7(d)–7(f) show the same graphs as Figures 7(a)–7(c)

but for the reliability target 1 − β = 75%. We observe that the new SAA certificate now overestimates the

true optimal value of the portfolio problem. Moreover, while the empirical reliability of the SAA solution

now closely matches the desired reliability target, the empirical reliabilities of the LCX and Wasserstein
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(d) β = 25%
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Figure 7. Out-of-sample performance J(x̂N ), certificate ĴN , and certificate reliability

PN
[
J(x̂N ) ≤ ĴN

]
for the reliability-driven SAA, LCX and Wasserstein portfolios as a func-

tion of N

solutions are similar but noticeably exceed the prescribed reliability threshold. A possible explanation for

this phenomenon is that the k resamples generated by the bootstrapping algorithm are not independent,

which may give rise to a systematic bias in estimating the Wasserstein radii required for the desired reliability

levels.

7.2.D. Impact of the Sample Size on the Wasserstein Radius

It is instructive to analyze the dependence of the Wasserstein radii on the sample size N for different data-

driven schemes. As for the performance-driven portfolios from Section 7.2.B, Figure 8 depicts the best possible

Wasserstein radius ε̂ opt
N as well as the Wasserstein radii ε̂ hm

N and ε̂ cv
N obtained by the holdout method and

via k-fold cross validation, respectively. As for the reliability-driven portfolios from Section 7.2.C, Figure 8

further depicts the Wasserstein radii ε̂βN , for β ∈ {10%, 25%}, obtained by bootstrapping. All results are

averaged across 200 independent simulation runs. As expected from Theorem 3.6, all Wasserstein radii tend

to zero as N increases. Moreover, the convergence rate is approximately equal to N−
1
2 . This rate is likely to

be optimal. Indeed, if X is a singleton, then every quantile of the sample average estimator ĴSAA converges

to J? at rate N−
1
2 due to the central limit theorem. Thus, if ε̂N = o(N−

1
2 ), then ĴN also converges to J?

at leading order N−
1
2 by Theorem 6.3, which applies as the loss function is convex. This indicates that the

a priori rate N−
1
m suggested by Theorem 3.4 is too pessimistic in practice.
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Figure 8. Optimal performance-driven Wasserstein radius ε̂ opt
N and its estimates ε̂ hm

N and

ε̂ cv
N obtained via the holdout method and k-fold cross validation, respectively, as well as the

reliability-driven Wasserstein radius ε̂βN for β ∈ {10%, 25%} obtained via bootstrapping

7.3. Simulation Results: Uncertainty Quantification

Investors often wish to determine the probability that a given portfolio will outperform various benchmark

indices or assets. Our results on uncertainty quantification developed in Section 5.2 enable us to compute

this probability in a meaningful way—solely on the basis of the training dataset.

Assume for example that we wish to quantify the probability that any data-driven portfolio x̂N outperforms

the three most risky assets in the market jointly. Thus, we should compute the probability of the closed

polytope

Â =
{
ξ ∈ Rm :

〈
x̂N , ξ

〉
≥ ξi ∀i = 8, 9, 10

}
.

As the true distribution P is unknown, the probability P[ξ ∈ Â] cannot be evaluated exactly. Note that Â as

well as P[ξ ∈ Â] constitute random objects that depend on x̂N and thus on the training data. Using the same

training dataset that was used to compute x̂N , however, we may estimate P[ξ ∈ Â] from above and below by

sup
Q∈Bε(P̂N )

Q
[
ξ ∈ Â

]
and inf

Q∈Bε(P̂N )
Q
[
ξ ∈ Â

]
= 1− sup

Q∈Bε(P̂N )

Q
[
ξ /∈ Â

]
,

respectively. Indeed, recall that the true data-generating probability distribution resides in the Wasserstein

ball of radius εN (β) defined in (8) with probability 1− β. Therefore, we have

1− β ≤ PN
[
Ξ̂N : P ∈ BεN (β)(P̂N )

]
≤ PN

[
Ξ̂N : sup

Q∈BεN (β)(P̂N )

Q
[
A
]
≥ P

[
A
]
∀A ∈ B(Ξ)

]
= PN

[
Ξ̂N : inf

A∈B(Ξ)
sup

Q∈BεN (β)(P̂N )

Q
[
A
]
− P

[
A
]
≥ 0
]
,

where B(Ξ) denotes the set of all Borel subsets of Ξ. The data-dependent set ÂN can now be viewed as a

(measurable) mapping from Ξ̂N to the subsets in B(Ξ). The above inequality then implies

PN
[
Ξ̂N : sup

Q∈BεN (β)(P̂N )

Q
[
ÂN
]
− P

[
ÂN
]
≥ 0
]
≥ 1− β.

Thus, sup{Q[ÂN ] : Q ∈ BεN (β)(P̂N )} provides indeed an upper bound on P[ÂN ] with confidence 1 − β.

Similarly, one can show that inf{Q[ÂN ] : Q ∈ BεN (β)(P̂N )} provides a lower confidence bound on P[ÂN ].
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(a) N = 30
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Figure 9. Excess Ĵ+
N (ε)− P[Â] and shortfall Ĵ−N (ε)− P[Â] (solid lines, left axis) as well as

reliability PN [Ĵ−N (ε) ≤ P[Â] ≤ Ĵ+
N (ε)] (dashed lines, right axis) as a function of ε

The upper confidence bound can be computed by solving the linear program (17a). Replacing Â with

its interior in the lower confidence bound leads to another (potentially weaker) lower bound that can be

computed by solving the linear program (17b). We denote these computable bounds by Ĵ+
N (ε) and Ĵ−N (ε),

respectively. In all subsequent experiments x̂N is set to a solution of the distributionally robust program (27)

calibrated via k-fold cross validation as described in Section 7.2.B.

7.3.A. Impact of the Wasserstein Radius

As Ĵ+
N (ε) and Ĵ−N (ε) estimate a random target P[Â], it makes sense to filter out the randomness of the

target and to study only the differences Ĵ+
N (ε)−P[Â] and Ĵ−N (ε)−P[Â]. Figures 9(a) and 9(b) visualize the

empirical mean (solid lines) as well as the tube between the empirical 20% and 80% quantiles (shaded areas)

of these differences as a function of the Wasserstein radius ε, based on 200 training datasets of cardinality

N = 30 and N = 300, respectively. Figure 9 also shows the empirical reliability of the bounds (dashed lines),

that is, the empirical probability of the event Ĵ−N (ε) ≤ P[Â] ≤ Ĵ+
N (ε). Note that the reliability drops to 0 for

ε = 0, in which case both Ĵ+
N (0) and Ĵ−N (0) coincide with the SAA estimator for P[Â]. Moreover, at ε = 0 the

set Â is constructed from the SAA portfolio x̂N , whose performance is overestimated on the training dataset.

Thus, the SAA estimator for P[Â], which is evaluated using the same training dataset, is positively biased.

For ε > 0, finally, the reliability increases as the shaded confidence intervals move away from 0.

7.3.B. Impact of the Sample Size

We propose a variant of the k-fold cross validation procedure for selecting ε in uncertainty quantification.

Partition ξ̂1, . . . , ξ̂N into k subsets and repeat the following holdout method k times. Select one of the

subsets as the validation set of size NV and merge the remaining k − 1 subsets to a training dataset of size

NT = N −NV . Use the validation set to compute the SAA estimator of P[Â], and use the training dataset to

compute Ĵ+
NT

(ε) for a large but finite number of candidate radii ε. Set ε̂ hm
N to the smallest candidate radius

for which the SAA estimator of P[Â] is not larger than Ĵ+
NT

(ε). Next, set ε̂ cv
N to the average of the Wasserstein

radii obtained from the k holdout runs, and report Ĵ+
N = Ĵ+

N (ε̂ cv
N ) as the data-driven upper bound on P[Â].

The data-driven lower bound Ĵ−N is constructed analogously in the obvious way.
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Figure 10. Dependence of the confidence bounds and the Wasserstein radius on N

Figure 10(a) visualizes the empirical means (solid lines) as well as the tubes between the empirical 20%

and 80% quantiles (shaded areas) of Ĵ+
N − P[Â] and Ĵ−N − P[Â] as a function of the sample size N , based

on 300 independent training datasets. As expected, the confidence intervals shrink and converge to 0 as N

increases. We emphasize that Ĵ+
N and Ĵ−N are computed solely on the basis of N training samples, whereas

the computation of P[Â] necessitates a much larger dataset, particularly if Â constitutes a rare event.

Figure 10(b) shows the Wasserstein radius ε̂ cv
N obtained via k-fold cross validation (both for Ĵ+

N and Ĵ−N ).

As usual, all results are averaged across 300 independent simulation runs. A comparison with Figure 8 reveals

that the data-driven Wasserstein radii in uncertainty quantification display a similar but faster polynomial

decay than in portfolio optimization. We conjecture that this is due to the absence of decisions, which implies

that uncertainty quantification is less susceptible to the optimizer’s curse. Thus, nature (i.e., the fictitious

adversary choosing the distribution in the ambiguity set) only has to compensate for noise but not for bias.

A smaller Wasserstein radius seems to be sufficient for this purpose.

Acknowledgments. We thank Soroosh Shafieezadeh Abadeh for helping us with the numerical experiments.

The authors are grateful to Vishal Gupta, Ruiwei Jiang and Nathan Kallus for their valuable comments. This

research was supported by the Swiss National Science Foundation under Grant BSCGI0 157733.

Appendix A.

The following technical lemma on the pointwise approximation of an upper semicontinuous function by a

non-increasing sequence of Lipschitz continuous majorants strengthens [31, Theorem 4.2], which focuses on

bounded domains and continuous (but not necessarily Lipschitz continuous) majorants.

Lemma A.1. If h : Ξ → R is upper semicontinuous and satisfies h(ξ) ≤ L(1 + ‖ξ‖) for some L ≥ 0, then

there exists a non-increasing sequence of Lipschitz continuous functions that converge pointwise to h on Ξ.

Proof. The proof is constructive. Define the functions

hk(ξ) = sup
ξ′∈Ξ

h(ξ′)− kL‖ξ − ξ′‖, k ∈ N,
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where L is the linear growth rate of h. Note that by construction hk(ξ) ≤ L(1 + ‖ξ‖). As ξ′ = ξ is feasible

in the maximization problem defining hk(ξ), we have hk(ξ) ≥ h(ξ) for all ξ ∈ Ξ and k ∈ N. Moreover, hk(ξ)

is Lipschitz continuous with Lipschitz constant kL (as hk(ξ) constitutes a supremum of norm functions with

this property). Given any ξ ∈ Ξ, it remains to be shown that limk→∞ hk(ξ) = h(ξ). Thus, choose ξ′k ∈ Ξ

with

hk(ξ) = sup
ξ′∈Ξ

h(ξ′)− kL‖ξ − ξ′‖ ≤ h(ξ′k)− kL‖ξ − ξ′k‖+
1

k
.

We first show that ξk converges to ξ as k tends to ∞. Indeed, we have

h(ξ) ≤ hk(ξ) ≤ h(ξ′k)− kL‖ξ − ξ′k‖+
1

k
≤ L(1 + ‖ξ′k‖)− kL‖ξ − ξ′k‖+

1

k

≤ L(1 + ‖ξ − ξ′k‖+ ‖ξ‖)− kL‖ξ − ξ′k‖+
1

k
= L(1 + ‖ξ‖) +

1

k
− (k − 1)L‖ξ − ξ′k‖,

which implies

‖ξ − ξ′k‖ ≤
1

L(k − 1)

(
h(ξ)− L(1 + ‖ξ‖)− 1

k

)
,

that is, ‖ξ − ξ′k‖ → 0 as k →∞. Therefore, we find

h(ξ) ≤ lim
k→∞

hk(ξ) ≤ lim sup
k→∞

h(ξ′k)− kL‖ξ − ξ′k‖+
1

k
≤ lim sup

k→∞
h(ξ′k) ≤ h(ξ),

where the last inequality is due to the upper semicontinuity of h. This concludes the proof. �
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