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Abstract

We consider the problem of estimating a probability distribution that maximizes the en-
tropy while satisfying a finite number of moment constraints, possibly corrupted by noise.
Based on duality of convex programming, we present a novel approximation scheme using a
smoothed fast gradient method that is equipped with explicit bounds on the approximation
error. We further demonstrate how the presented scheme can be used for approximating
the chemical master equation through the zero-information moment closure method, and
for an approximate dynamic programming approach in the context of constrained Markov
decision processes with uncountable state and action spaces.

Keywords: Entropy maximization, convex optimization, relative entropy minimization,
fast gradient method, approximate dynamic programming

1. Introduction

This article investigates the problem of estimating an unknown probability distribution
given a finite number of observed moments that might be corrupted by noise. Given that the
observed moments are consistent, i.e., there exists a probability distribution that satisfies all
the moment constraints, the problem is underdetermined and has infinitely many solutions.
This raises the question of which solution to choose. A natural choice would be to pick the
one with the highest entropy, called the MaxEnt distribution. The main reason why the
MaxEnt distribution is a natural choice is due to a concentration phenomenon described
by Jaynes (2003):

“If the information incorporated into the maximum-entropy analysis includes all
the constraints actually operating in the random experiment, then the distribution
predicted by maximum entropy is overwhelmingly the most likely to be observed
experimentally.”
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See Jaynes (2003); Grünwald (2008) for a rigorous statement. This maximum entropy es-
timation problem subject to moment constraints, also known as the principle of maximum
entropy, is applicable to large classes of problems in natural and social sciences — in par-
ticular in economics, see Golan (2008) for a comprehensive survey. Furthermore it has
important applications in approximation methods to dynamical objects, such as in systems
biology, where MaxEnt distributions are key objects in the so-called moment closure method
to approximate the chemical master equation Smadbeck and Kaznessis (2013), or more re-
cently in the context of approximating dynamic programming Mohajerin Esfahani et al.
(2018) where MaxEnt distributions act as a regularizer, leading to computationally more
efficient optimization programs.

Their operational significance motivates the study of numerical methods to compute
MaxEnt distributions, which are the solutions of an infinite-dimensional convex optimization
problem and as such computationally intractable in general. Since it was shown that the
MaxEnt distribution subject to a finite number of moment constraints (if it exists) belongs
to the exponential family of distributions Csiszár (1975), its computation can be reduced to
solving a system of nonlinear equations, whose dimension is equal to the number of moment
constraints Mead and Papanicolaou (1984). Furthermore, the system of nonlinear equations
involves evaluating integrals over the support set K that are computationally difficult in
general. Even if K is finite, finding the MaxEnt distribution is not straightforward, since
solving a system of nonlinear equations can be computationally demanding.

In this article, we present a new approximation scheme to minimize the relative en-
tropy subject to noisy moment constraints. This is a generalization of the introduced
maximum entropy problem and extends the principle of maximum entropy to the so-called
principle of minimum discriminating information Kullback (1959). We show that its dual
problem exhibits a particular favorable structure that allows us to apply Nesterov’s smooth-
ing method Nesterov (2005) and hence tackle the presented problem using a fast gradient
method obtaining process convergence properties, unlike Lasserre (2009).

Computing the MaxEnt distribution has applications in randomized rounding and the
design of approximation algorithms. More precisely, it has been shown how to improve the
approximation ratio for the symmetric and the asymmetric traveling salesman problem via
MaxEnt distributions Asadpour et al. (2010); Gharan et al. (2011). Often, it is important
to efficiently compute the MaxEnt distribution. For example, the zero-information moment
closure method Smadbeck and Kaznessis (2013) (see Section 6), a recent approximate dy-
namic programming method for constrained Markov decision processes (see Section 7), as
well as the approximation of the channel capacity of a large class of memoryless channels Sut-
ter et al. (2015) deal with iterative algorithms that require the numerical computation of
the MaxEnt distribution in each iteration step.

Related results. Before comparing the approach presented in this article with existing
methods we provide a brief digression on the moment problem. Consider a one-dimensional
moment problem formulated as follows: Given a set K ⊂ R and a sequence (yi)i∈N ⊂ R of
moments, does there exist a measure µ supported on K such that

yi =

∫
K
xiµ(dx) for all i ∈ N ? (1)

2



Generalized maximum entropy estimation

For K = R and K = [a, b] with −∞ < a < b < ∞ the above moment problem is known
as the Hamburger moment problem and Hausdorff moment problem, respectively. If the
moment sequence is finite, the problem is called a truncated moment problem. In both
full and truncated cases, a measure µ that satisfies (1), is called a representing measure
of the sequence (yi)i∈N. If a representing measure is unique, it is said to be determined
by its moments. From the Stone-Weierstrass theorem it followes directly that every non-
truncated representing measure with compact support is determined by its moments. In the
Hamburger moment problem, given a representing measure µ for a moment sequence (yi)i∈N,
a sufficient condition for µ being determined by its moments is the so-called Carleman

condition, i.e.,
∑∞

i=1 y
−1/2i
2i = ∞. Roughly speaking this says that the moments should

not grow too fast, see Akhiezer (1965) for further details. For the Hamburger and the
Hausdorff moment problem, there are necessary and sufficient conditions for the existence
of a representing measure for a given moment sequence (yi)i∈N in both the full as well
as the truncated setting, that exploit the rich algebraic connection with Hankel matrices
see (Lasserre, 2009, Theorems 3.2, 3.3, 3.4).

In (Lasserre, 2009, Section 12.3) it is shown that the maximum entropy subject to
finite moment constraints can be approximated by using duality of convex programming.
The problem can be reduced to an unconstrained finite-dimensional convex optimization
problem and an approximation hierarchy of its gradient and Hessian in terms of two single
semidefinite programs involving two linear matrix inequalities is presented. The desired
accuracy is controlled by the size of the linear matrix inequalities. The method seems to
be powerful in practice, however a rate of convergence has not been proven. Furthermore,
it is not clear how the method extends to the case of uncertain moment constraints. In
a finite dimensional setting, Dudik et al. (2007) presents a treatment of the maximum
entropy principle with generalized regularization measures, that as a special case contains
the setting presented here. However, convergence rates of algorithms presented are not
known and again it is not clear how the method extends to the case of uncertain moment
constraints. The discrete case, where the support set K is discrete, has been studied in more
detail in the past. It has been shown the the maximum entropy problem in the discrete
case has a succinct description that is polynomial-size in the input and can be efficiently
computed Singh and Vishnoi (2014); Straszak and Vishnoi (2017). Furthermore it was
shown that the maximum entropy problem is equivalent to the counting problem Singh and
Vishnoi (2014).

Structure. The layout of this paper is as follows: In Section 2 we formally introduce
the problem setting. Our results on an approximation scheme in a continuous setting
are reported in Section 3. In Section 4, we show how these results simplify in the finite-
dimensional case. Section 5 discusses the gradient approximation that is the dominant step
of the proposed approximation method from a computational perspective. The theoretical
results are applied in Section 6 to the zero-information moment closure method and in
Section 7 to constrained Markov decision processes. We conclude in Section 8 with a
summary of our work and comment on possible subjects of further research.

Notation. The logarithm with basis 2 and e is denoted by log(·) and ln(·), respectively.
We define the standard n−simplex as ∆n := {x ∈ Rn : x ≥ 0,

∑n
i=1 xi = 1}. For a

probability mass function p ∈ ∆n we denote its entropy by H(p) :=
∑n

i=1−pi log pi. Let
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B(y, r) := {x ∈ Rn : ‖x−y‖2 ≤ r} denote the ball with radius r centered at y. Throughout
this article, measurability always refers to Borel measurability. For a probability density
p supported on a measurable set B ⊂ R we denote the differential entropy by h(p) :=
−
∫
B p(x) log p(x)dx. For A ⊂ R and 1 ≤ p ≤ ∞, let Lp(A) denote the space of Lp-functions

on the measure space (A,B(A), dx), where B(A) denotes the Borel σ-algebra and dx the
Lebesgue measure. Let X be a compact metric space, equipped with its Borel σ-field B(·).
The space of all probability measures on (X,B(X)) will be denoted by P(X). The relative
entropy (or Kullback-Leibler divergence) between any two probability measures µ, ν ∈ P(X)
is defined by

D
(
µ||ν

)
:=

{ ∫
X log

(
dµ
dν

)
dµ, if µ� ν

+∞, otherwise ,

where � denotes absolute continuity of measures, and dµ
dν is the Radon-Nikodym deriva-

tive. The relative entropy is non-negative, and is equal to zero if and only if µ ≡ ν. Let
X be restricted to a compact metric space and let us consider the pair of vector spaces
(M(X),B(X)) where M(X) denotes the space of finite signed measures on B(X) and B(X) is
the Banach space of bounded measurable functions on X with respect to the sup-norm and
consider the bilinear form 〈

µ, f
〉

:=

∫
X
f(x)µ(dx).

This induces the total variation norm as the dual norm on M(X), since by (Hernández-Lerma
and Lasserre, 1999, p.2)

‖µ‖∗ = sup
‖f‖∞≤1

〈
µ, f

〉
= ‖µ‖TV,

making M(X) a Banach space. In the light of (Hernández-Lerma and Lasserre, 1999, p. 206)
this is a dual pair of Banach spaces; we refer to (Anderson and Nash, 1987, Section 3)
for the details of the definition of dual pairs. The Lipschitz norm is defined as ‖u‖L :=

supx,x′∈X{|u(x)|, |u(x)−u(x
′)|

‖x−x′‖∞ } and L(X) denotes the space of Lipschitz functions on X.

2. Problem Statement

Let K ⊂ R be compact and consider the scenario where a probability measure µ ∈ P(K) is
unknown and only observed via the following measurement model

yi =
〈
µ, xi

〉
+ ui, ui ∈ Ui for i = 1, . . . ,M , (2)

where ui represents the uncertainty of the obtained data point yi and Ui ⊂ R is compact,
convex and 0 ∈ Ui for all i = 1, . . . ,M . Given the data (yi)

M
i=1 ⊂ R, the goal is to estimate

a probability measure µ that is consistent with the measurement model (2). This problem
(given that M is finite) is underdetermined and has infinitely many solutions. Among all
possible solutions for (2), we aim to find the solution that maximizes the entropy. Define
the set T := ×Mi=1{yi − u : u ∈ Ui} ⊂ RM and the linear operator A : M(K)→ RM by

(Aµ)i :=
〈
µ, xi

〉
=

∫
K
xiµ(dx) for all i = 1, . . . ,M .
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The operator norm is defined as ‖A‖ := sup‖µ‖TV=1,‖y‖2=1

〈
Aµ, y

〉
. Note that due to the

compactness of K the operator norm is bounded, see Lemma 4 for a formal statement. The
adjoint operator to A is given by A∗ : RM → B(K), where A∗z(x) :=

∑M
i=1 zix

i; note that
the domain and image spaces of the adjoint operator are well defined as (B(K),M(K)) is
a topological dual pairs and the operator A is bounded (Hernández-Lerma and Lasserre,
1999, Proposition 12.2.5).

Given a reference measure ν ∈ P(K), the problem of minimizing the relative entropy
subject to moment constraints (2) can be formally described by

J? = min
µ∈P(K)

{
D
(
µ||ν

)
: Aµ ∈ T

}
. (3)

We note that the reference measure ν ∈ P(K) is always fixed a priori. A typical choice for
ν is the uniform measure over K.

Proposition 1 (Existence & uniqueness of (3)) The optimization problem (3) attains
an optimal feasible solution that is unique.

Proof The variational representation of the relative entropy (Boucheron et al., 2013, Corol-
lary 4.15) implies that the mapping µ 7→ D

(
µ||ν

)
is lower-semicontinuous Luenberger (1969).

Note also that the space of probability measures on K is compact (Aliprantis and Border,
2007, Theorem 15.11). Moreover, since the linear operator A is bounded, it is continuous.
As a result, the feasible set of problem (3) is compact and hence the optimization problem
attains an optimal solution. Finally, the strict convexity of the relative entropy Csiszár
(1975) ensures uniqueness of the optimizer.

Note that if Ui = {0} for all i = 1, . . . ,M , i.e., there is no uncertainty in the measurement
model (2), Proposition 1 reduces to a known result Csiszár (1975). Consider the special
case where the reference measure ν is the uniform measure on K and let p denote the
Radon-Nikodym derivative dµ

dν (whose existence can be assumed without loss of generality).
Since A is weakly continuous and the differential entropy is known to be weakly lower semi-
continuous Boucheron et al. (2013), we can restrict attention to a (weakly) dense subset of
the feasible set and hence assume without loss of generality that p ∈ L1(K). Problem (3)
then reduces to

max
p∈L1(K)

{
h(p) :

∫
K
p(x)dx = 1,

∫
K
xip(x)dx ∈ Ti, ∀i = 1, . . . ,M

}
. (4)

Problem (4) is a generalized maximum entropy estimation problem that, in case Ui = {0}
for all i = 1, . . . ,M , simplifies to the standard entropy maximization problem subject to M
moment constraints. In this article, we present a new approach to solve (3) that is based on
its dual formulation. It turns out that the dual problem of (3) has a particular structure that
allows us to apply Nesterov’s smoothing method Nesterov (2005) to accelerate convergence.
Furthermore, we will show how an ε-optimal solution to (3) can be reconstructed. This is
done by solving the dual problem of (3). To achieve additional feasibility guarantees for
the ε-optimal solution to (3), we introduce and a second smoothing step that is motivated
by Devolder et al. (2012). The problem of entropy maximization subject to uncertain
moment constraints (4) can be seen as a special case of (3).
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3. Relative entropy minimization

We start by recalling that an unconstrained minimization of the relative entropy with an
additional linear term in the cost admits a closed form solution. Let c ∈ B(K), ν ∈ P(K)
and consider the optimization problem

min
µ∈P(K)

{
D
(
µ||ν

)
−
〈
µ, c
〉}
. (5)

Lemma 2 (Gibbs distribution) The unique optimizer to problem (5) is given by the
Gibbs distribution, i.e.,

µ?(dx) =
2c(x)ν(dx)∫
K 2c(x)ν(dx)

for x ∈ K,

which leads to the optimal value of − log
∫
K 2c(x)ν(dx).

Proof The result is standard and follows from Csiszár (1975) or alternatively by (Sutter
et al., 2015, Lemma 3.10).

Let RM 3 z 7→ σT (z) := maxx∈T
〈
x, z
〉
∈ R denote the support function of T , which is

continuous since T is compact (Rockafellar, 1997, Corollary 13.2.2). The primal-dual pair
of problem (3) can be stated as

(primal program) : J? = min
µ∈P(K)

{
D
(
µ||ν

)
+ sup
z∈RM

{〈
Aµ, z

〉
− σT (z)

}}
(6)

(dual program) : J?D = sup
z∈RM

{
− σT (z) + min

µ∈P(K)

{
D
(
µ||ν

)
+
〈
Aµ, z

〉}}
, (7)

where the dual function is given by

F (z) = −σT (z) + min
µ∈P(K)

{
D
(
µ||ν

)
+
〈
Aµ, z

〉}
. (8)

Note that the primal program (6) is an infinite-dimensional convex optimization problem.
The key idea of our analysis is driven by Lemma 2 indicating that the dual function, that
involves a minimization running over an infinite-dimensional space, is analytically available.
As such, the dual problem becomes an unconstrained finite-dimensional convex optimization
problem, which is amenable to first-order methods.

Lemma 3 (Zero duality gap) There is no duality gap between the primal program (6)
and its dual (7), i.e., J? = J?D. Moreover, if there exists µ̄ ∈ P(K) such that Aµ̄ ∈ int(T ),
then the set of optimal dual variables in (7) is compact.

Proof Recall that the relative entropy is known to be lower semicontinuous and convex in
the first argument, which can be seen as a direct consequence of the duality relation for the
relative entropy (Boucheron et al., 2013, Corollary 4.15). Hence, the desired zero duality
gap follows by Sion’s minimax theorem (Sion, 1958, Theorem 4.2). The compactness of the
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set of dual optimizers is due to (Bertsekas, 2009, Proposition 5.3.1).

Because the dual function (8) turns out to be non-smooth, in the absence of any addi-
tional structure, the efficiency estimate of a black-box first-order method is of order O(1/ε2),
where ε is the desired absolute additive accuracy of the approximate solution in function
value Nesterov (2004). We show, however, that the generalized entropy maximization prob-
lem (6) has a certain structure that allows us to deploy the recent developments in Nesterov
(2005) for approximating non-smooth problems by smooth ones, leading to an efficiency es-
timate of order O(1/ε). This, together with the low complexity of each iteration step in
the approximation scheme, offers a numerical method that has an attractive computational
complexity. In the spirit of Nesterov (2005); Devolder et al. (2012), we introduce a smooth-
ing parameter η := (η1, η2) ∈ R2

>0 and consider a smooth approximation of the dual function

Fη(z) := −max
x∈T

{〈
x, z
〉
− η1

2
‖x‖22

}
+ min
µ∈P(K)

{
D
(
µ||ν

)
+
〈
Aµ, z

〉}
− η2

2
‖z‖22 , (9)

with respective optimizers denoted by x?z and µ?z. Consider the projection operator πT :
Rm → R, πT (y) = arg minx∈T ‖x− y‖22. It is straightforward to see that the optimizer x?z is
given by

x?z = arg min
x∈T
‖x− η−11 z‖22 = πT

(
η−11 z

)
.

Hence, the complexity of computing x?z is determined by the projection operator onto T ; for
simple enough cases (e.g., 2-norm balls, hybercubes) the solution is analytically available,
while for more general cases (e.g., simplex, 1-norm balls) it can be computed at relatively
low computational effort, see (Richter, 2012, Section 5.4) for a comprehensive survey. The
optimizer µ?z according to Lemma 2 is given by

µ?z(B) =

∫
B 2−A

∗z(x)ν(dx)∫
K 2−A∗z(x)ν(dx)

, for all B ∈ B(K).

Lemma 4 (Lipschitz gradient) The dual function Fη defined in (9) is η2-strongly con-
cave and differentiable. Its gradient ∇Fη(z) = −x?z+Aµ?z−η2z is Lipschitz continuous with

Lipschitz constant 1
η1

+
(∑M

i=1B
i
)2

+ η2 and B := max{|x| : x ∈ K}.

Proof The proof follows along the lines of (Nesterov, 2005, Theorem 1) and in particular by
recalling that the relative entropy (in the first argument) is strongly convex with convexity
parameter one and Pinsker’s inequality, that says that for any µ ∈ P(K) we have

‖µ− ν‖TV ≤
√

2D
(
µ||ν

)
. (10)
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Moreover, we use the bound

‖A‖ = sup
λ∈RM, µ∈P(K)

{〈
Aµ, λ

〉
: ‖λ‖2 = 1, ‖µ‖TV = 1

}
≤ sup

λ∈RM, µ∈P(K)

{‖Aµ‖2 ‖λ‖2 : ‖λ‖2 = 1, ‖µ‖TV = 1} (11)

≤ sup
µ∈P(K)

{‖Aµ‖1 : ‖µ‖TV = 1}

= sup
µ∈P(K)

{
M∑
i=1

∣∣∣∣∫
K
xiµ(dx)

∣∣∣∣ : ‖µ‖TV = 1

}

≤
M∑
i=1

Bi ,

where (11) is due to the Cauchy-Schwarz inequality.

Note that Fη is η2-strongly concave and according to Lemma 4 its gradient is Lipschitz
continuous with constant L(η) := 1

η1
+‖A‖2 +η2. We finally consider the approximate dual

program given by

(smoothed dual program) : J?η = sup
z∈RM

Fη(z) . (12)

It turns out that (12) belongs to a favorable class of smooth and strongly convex opti-
mization problems that can be solved by a fast gradient method given in Algorithm 1
(see Nesterov (2004)) with an efficiency estimate of the order O(1/

√
ε).

Algorithm 1: Optimal scheme for smooth & strongly convex optimization

Choose w0 = y0 ∈ RM and η ∈ R2
>0

For k ≥ 0 do∗ Step 1: Set yk+1 = wk + 1
L(η)∇Fη(wk)

Step 2: Compute wk+1 = yk+1 +

√
L(η)−√η2√
L(η)+

√
η2

(yk+1 − yk)

[*The stopping criterion is explained in Remark 7]

Under an additional regularity assumption, solving the smoothed dual problem (12)
provides an estimate of the primal and dual variables of the original non-smooth problems
(6) and (7), respectively, as summarized in the next theorem (Theorem 5). The main
computational difficulty of the presented method lies in the gradient evaluation ∇Fη. We
refer to Section 5, for a detailed discussion on this subject.

Assumption 1 (Slater point) There exits a strictly feasible solution to (3), i.e., µ0 ∈
P(K) such that Aµ0 ∈ T and δ := miny∈T c ‖Aµ0 − y‖2 > 0.
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Note that finding a Slater point µ0 such that Assumption 1 holds, in general can be diffi-
cult. In Remark 8 we present a constructive way of finding such an interior point. Given
Assumption 1, for ε > 0 define

C := D
(
µ0||ν

)
, D :=

1

2
max
x∈T
‖x‖2, η1(ε) :=

ε

4D
, η2(ε) :=

εδ2

2C2

N1(ε) := 2

(√
8DC2

ε2δ2
+

2‖A‖2C2

εδ2
+ 1

)
ln

(
10(ε+ 2C)

ε

)
(13)

N2(ε) := 2

(√
8DC2

ε2δ2
+

2‖A‖2C2

εδ2
+ 1

)
ln

(
C

εδ(2−
√

3)

√
4

(
4D

ε
+ ‖A‖2 +

εδ2

2C2

)(
C +

ε

2

))
.

Theorem 5 (Convergence rate) Given Assumption 1 and (13), let ε > 0 and N(ε) :=
dmax{N1(ε), N2(ε)}e. Then, N(ε) iterations of Algorithm 1 produce approximate solutions
to the problems (7) and (6) given by

ẑk,η := yk and µ̂k,η(B) :=

∫
B 2−A

∗ẑk,η(x)ν(dx)∫
K 2−A

∗ẑk,η(x)ν(dx)
, for all B ∈ B(K) , (14)

which satisfy

dual ε-optimality: 0 ≤ J? − F (ẑk(ε)) ≤ ε (15a)

primal ε-optimality: |D
(
µ̂k(ε)||ν

)
− J?| ≤ 2(1 + 2

√
3)ε (15b)

primal ε-feasibility: d(Aµ̂k(ε), T ) ≤ 2εδ

C
, (15c)

where d(·, T ) denotes the distance to the set T , i.e., d(x, T ) := miny∈T ‖x− y‖2.

In some applications, Assumption 1 does not hold, as for example in the classical case
where Ui = {0} for all i = 1, . . . ,M , i.e., there is no uncertainty in the measurement
model (2). Moreover, in other cases satisfying Assumption 1 using the construction de-
scribed in Remark 8 might be computationally expensive. Interestingly, Algorithm 1 can
be run irrespective of whether Assumption 1 holds or not, i.e. for any choice of C and δ.
While explicit error bounds of Theorem 5 as well as the a-posteriori error bound discussed
below do not hold anymore, the asymptotic convergence is not affected.
Proof Using Assumption 1, note that the constant defined as

ι :=
D
(
µ0||ν

)
−minµ∈P(K)D

(
µ||ν

)
miny∈T c ‖Aµ0 − y‖2

=
C

δ

can be shown to be an upper bound for the optimal dual multiplier (Nedić and Ozdaglar,
2008, Lemma 1), i.e., ‖z?‖2 ≤ ι. The dual function can be bounded from above by C, since
weak duality ensures F (z) ≤ J? ≤ D

(
µ0||ν

)
= C for all z ∈ RM . Moreover, if we recall the

preparatory Lemmas 3 and 4, we are finally in the setting such that the presented error
bounds can be derived from Devolder et al. (2012), see Appendix A for a detailed derivation.
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Theorem 5 directly implies that we need at most O(1ε log 1
ε ) iterations of Algorithm 1

to achieve ε-optimality of primal and dual solutions as well as ε-feasible primal variable.
Note that Theorem 5 provides an explicit bound on the so-called a-priori errors, together
with approximate optimizer of the primal (6) and dual (7) problem. The latter allows us
to derive an a-posteriori error depending on the approximate optimizers, which is often
significantly smaller than the a-priori error.

Corollary 6 (Posterior error estimation) Given Assumption 1, the approximate pri-
mal and dual variables µ̂ and ẑ given by (14), satisfy the following a-posteriori error bound

F (ẑ) ≤ J? ≤ D
(
µ̂||ν

)
+
C

δ
d(Aµ̂, T ) ,

where d(·, T ) denotes the distance to the set T , i.e., d(x, T ) := infy∈T ‖x− y‖2.

Proof The two key ingredients of the proof are Theorem 5 and the Lipschitz continuity
of the so-called perturbation function of convex programming. Let z? denote the dual
optimizer to (7). We introduce the perturbed program as

J?(ε) = min
µ∈P(K)

{D
(
µ||ν

)
: d(Aµ, T ) ≤ ε}

= min
µ∈P(K)

D
(
µ||ν

)
+ sup

λ≥0
inf
y∈T

λ‖Aµ− y‖ − λε

= sup
λ≥0
−λ ε+ inf

µ∈P(K)
y∈T

sup
‖z‖2≤λ

〈
Aµ− y, z

〉
+ D

(
µ||ν

)
(16a)

= sup
λ≥0
‖z‖2≤λ

−λ ε+ inf
µ∈P(K)
y∈T

〈
Aµ− y, z

〉
+ D

(
µ||ν

)
(16b)

≥ −‖z?‖2 ε+ inf
µ∈P(K)
y∈T

〈
Aµ− y, z?

〉
+ D

(
µ||ν

)
= −‖z?‖2 ε+ J?.

Equation (16a) uses the strong duality property that follows by the existence of a Slater
point that is due to the definition of the set T , see Section 2. Step (16b) follows by Sion’s
minimax theorem (Sion, 1958, Theorem 4.2). Hence, we have shown that the perturbation
function is Lipschitz continuous with constant ‖z?‖2. Finally, recalling ‖z?‖2 ≤ C

δ , estab-
lished in the proof of Theorem 5 completes the proof.

Remark 7 (Stopping criterion of Algorithm 1) There are two alternatives for defin-
ing a stopping criterion for Algorithm 1. Choose desired accuracy ε > 0.

(i) a-priori stopping criterion: Theorem 5 provides the required number of iterations N(ε)
to ensure an ε-close solution.

(ii) a-posteriori stopping criterion: Choose the smoothing parameter η as in (13). Fix
a (small) number of iterations ` that are run using Algorithm 1. Compute the a-
posteriori error D

(
µ̂||ν

)
+C

δ d(Aµ̂, T )−F (ẑ) according to Corollary 6 and if it is smaller
than If ε terminate the algorithm. Otherwise continue with another ` iterations.

10



Generalized maximum entropy estimation

Remark 8 (Slater point computation) To compute the respective constants in Assump-
tion 1, we need to construct a strictly feasible point for (3). For this purpose, we consider
a polynomial density of degree r defined as pr(α, x) :=

∑r−1
i=0 αix

i. For notational simplicity
we assume that the support set is the unit interval (K = [0, 1]), such that the moments
induced by the polynomial density are given by

〈
pr(α, x), xi

〉
=

∫ 1

0

r−1∑
j=0

αjx
j+idx =

r−1∑
j=0

αj
j + i+ 1

,

for i = 0, . . . ,M . Consider β ∈ RM+1, where β1 = 1 and βi = yi−1 for i = 2, . . . ,M + 1.
Hence, the feasibility requirement of (3) can be expressed as the linear constraint Aα = β,
where A ∈ R(M+1)×r, α ∈ Rr, β ∈ RM+1 and Ai,j = 1

i+j−1 and finding a strictly feasible
solution reduces to the following feasibility problem

max
α∈Rr

const

s. t. Aα = β
pr(α, x) ≥ 0 ∀x ∈ [0, 1],

(17)

where pr is a polynomial function in x of degree r with coefficients α. The second constraint
of the program (17) (i.e., pr(α, x) ≥ 0 ∀x ∈ [0, 1])1 can be equivalently reformulated as linear
matrix inequalities of dimension d r2e, using a standard result in polynomial optimization,
see (Lasserre, 2009, Chapter 2) for details. We note that for small degree r, the set of
feasible solutions to problem (17) may be empty, however, by choosing r large enough and
assuming that the moments can be induced by a continuous density, problem (17) becomes
feasible. Moreover, if 0 ∈ int(T ) the Slater point leads to a δ > 0 in Assumption 1.

Example 1 (Density estimation) We are given the first 3 moments of an unknown prob-
ability measure defined on K = [0, 1] as2

y :=

(
1− ln 2

ln 2
,
ln 4− 1

ln 4
,
5− ln 64

ln 64

)
≈ (0.44, 0.28, 0.20).

The uncertainty set in the measurement model (2) is assumed to be Ui = [−u, u] for all
i = 1, . . . , 3. A Slater point is constructed using the method described in Remark 8, where
r = 5 is enough for the problem (17) to be feasible, leading to the constant C = 0.0288. The
Slater point is depicted in Figure 1 and its differential entropy can be numerically computed
as −0.0288.

We consider two simulations for two different uncertainty sets (namely, u = 0.01 and
u = 0.005). The underlying maximum entropy problem (4) is solved using Algorithm 1.
The respective features of the a-priori guarantees by Theorem 5 as well as the a-posteriori
guarantees (upper and lower bounds) by Corollary 6 are reported in Table 1. Recall that
µ̂k(ε) denotes the approximate primal variable after k-iterations of Algorithm 1 as defined

in Theorem 5 and that d(Aµ̂k(ε), T ) (resp. 2εδ
C ) represent the a-posteriori (resp. a-priori)

1. In a multi-dimensional setting one has to consider a tightening (i.e., pr(α, x) > 0 ∀x ∈ [0, 1]n).
2. The considered moments are actually induced by the probability density f(x) := (ln 2 (1 + x))−1. We,

however, do not use this information at any point of this example.
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feasibility guarantees. It can be seen in Table 1 that increasing the uncertainty set U leads
to a higher entropy, where the uniform density clearly has the highest entropy. This is also
intuitively expected since enlarging the uncertainty set is equivalent to relaxing the moment
constraints in the respective maximum entropy problem. The corresponding densities are
graphically visualized in Figure 1.

Table 1: Some specific simulation points of Example 1.

U = [−0.01, 0.01] U = [−0.005, 0.005]

a-priori error ε 1 0.1 0.01 0.001 1 0.1 0.01 0.001
JUB -0.0174 -0.0189 -0.0194 -0.0194 -0.0223 -0.0236 -0.0237 -0.0238
JLB -0.0220 -0.0279 -0.0204 -0.0195 -0.0263 -0.0298 -0.0244 -0.0238

iterations k(ε) 99 551 5606 74423 232 1241 12170 157865
d(Aµ̂k(ε), T ) 0.0008 0.0036 0.0005 0 0 0.001 0.0001 0

2εδ
C 0.69 0.069 0.0069 0.00069 0.35 0.035 0.0035 0.00035

runtime [s]3 1.4 1.4 2.3 12.9 1.4 1.5 3.3 26.1

0 0.2 0.4 0.6 0.8 1
0.6

0.8

1

1.2

1.4

1.6
Slater point

µ̂k(ε), ε = 0.001, U = [−0.1, 0.1]

µ̂k(ε), ε = 0.001, U = [−0.01, 0.01]

µ̂k(ε), ε = 0.001, U = [−0.005, 0.005]

Figure 1: Maximum entropy densities obtained by Algorithm 1 for two different uncertainty
sets. As a reference, the Slater point density, that was computed as described in Remark 8
is depicted in red.

4. Finite-dimensional case

We consider the finite-dimensional case where K = {1, . . . , N} and hence we optimize
in (3) over the probability simplex P(K) = ∆N . One substantial simplification, when
restricting to the finite-dimensional setting, is that the Shannon entropy is non-negative
and bounded from above (by logN). Therefore, we can substantially weaken Assumption 1
to the following assumption.

3. Runtime includes Slater point computation. Simulations were run with Matlab on a laptop with a 2.2
GHz Intel Core i7 processor.
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Assumption 2 (Regularity)

(i) There exists δ > 0 such that B(0, δ) ⊂ {x−Aµ : µ ∈ ∆N , x ∈ T}.

(ii) The reference measure ν ∈ ∆N has full support, i.e., min
1≤i≤N

νi > 0.

Consider the the definitions given in (13) with C := max
1≤i≤N

log 1
νi

, then the following

finite-dimensional equivalent to Theorem 5 holds.

Corollary 9 (A-priori error bound) Given Assumption 2, C := max
1≤i≤N

log 1
νi

and the

definitions (13), let ε > 0 and N(ε) := d{N1(ε), N2(ε)}e. Then, N(ε) iterations of Algo-
rithm 1 produce the approximate solutions to the problems (7) and (6), given by

ẑk(ε) := yk(ε) and µ̂k(ε)(B) :=

∑
i∈B 2−(A∗ẑk(ε))iνi∑N
i=1 2−(A∗ẑk(ε))iνi

for all B ⊂ {1, 2, . . . , N} , (18)

which satisfy

dual ε-optimality: 0 ≤ F (ẑk(ε))− J? ≤ ε (19a)

primal ε-optimality: |D
(
µ̂k(ε)||ν

)
− J?| ≤ 2(1 + 2

√
3)ε (19b)

primal ε-feasibility: d(Aµ̂k(ε), T ) ≤ 2εδ

C
, (19c)

where d(·, T ) denotes the distance to the set T , i.e., d(x, T ) := miny∈T ‖x− y‖2.

Proof Under Assumption 2 the dual optimal solutions in (7) are bounded by

‖z?‖ ≤ 1

r
max
1≤i≤N

log
1

νi
. (20)

This bound on the dual optimizer follows along the lines of (Devolder et al., 2012, Theo-
rem 6.1). The presented error bounds can then be derived along the lines of Theorem 5.

In addition to the explicit error bound provided by Corollary 9, the a-posteriori upper and
lower bounds presented in Corollary 6 directly apply to the finite-dimensional setting as
well.

5. Gradient Approximation

The computationally demanding element for Algorithm 1 is the evaluation of the gradient
∇Fη(·) given in Lemma 4. In particular, Theorem 5 and Corollary 9 assume that this
gradient is known exactly. While this is not restrictive if, for example, K is a finite set,
in general, ∇Fη(·) involves an integration that can only be computed approximately. In
particular if we consider a multi-dimensional setting (i.e., K ⊂ Rd), the evaluation of the
gradient ∇Fη(·) represents a multi-dimensional integration problem. This gives rise to
the question of how the fast gradient method (and also Theorem 5) behaves in a case of
inexact first-order information. Roughly speaking, the fast gradient method Algorithm 1,

13
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while being more efficient than the classical gradient method (if applicable), is less robust
when dealing with inexact gradients Devolder et al. (2014). Therefore, depending on the
computational complexity of the gradient, one may consider the possibility of replacing
Algorithm 1 with a classical gradient method. A detailed mathematical analysis of this
tradeoff is a topic of further research, and we refer the interested readers to Devolder et al.
(2014) for further details in this regard.

In this section we discuss two numerical methods to approximate this gradient. Note
that in Lemma 4, given that T is simple enough the optimizer x?z is analytically available,
so what remains is to compute Aµ?z, that according to Lemma 2 is given by

(Aµ?z)i =

∫
K x

i2−A
∗z(x)ν(dx)∫

K 2−A∗z(x)ν(dx)
for all i = 1, . . . ,M . (21)

Semidefinite programming. Due to the specific structure of the considered prob-
lem, (21) represents an integration of exponentials of polynomials for which an efficient
approximation in terms of two single semidefinite programs (SDPs) involving two linear
matrix inequalities has been derived, where the desired accuracy is controlled by the size
of the linear matrix inequalities constraints, see Bertsimas et al. (2008); Lasserre (2009) for
a comprehensive study and for the construction of those SDPs. While the mentioned hier-
archy of SDPs provides a certificate of optimality (hat is easy to evaluate and asymptotic
convergence (in the size of the SDPs), a convergence rate that explicitly quantifies the size
of the SDPs required for a desired accuracy is unknown. In practice, the hierarchy often
converges in few iteration steps, which however, depends on the problem and is not known
a priori.

Quasi-Monte Carlo. The most popular methods for integration problems of the from
(21) are Monte Caro (MC) schemes, see Robert and Casella (2004) for a comprehensive
summary. The main advantage of MC methods is that the root-mean-square error of the
approximation converges to 0 with a rate of O(N−1/2) that is independent of the dimension,
where N are the number of samples used. In practise, this convergence often is too slow.
Under mild assumptions on the integrand, the MC methods can be significantly improved
with a more recent technique known as Quasi-Monte Carlo (QMC) methods. QMC methods
can reach a convergence rate arbitrarily close to O(N−1) with a constant not depending on
the dimension of the problem. We would like to refer the reader to Dick et al. (2013); Sloan
and Woźniakowski (1998); Kuo and Sloan (2005); Niederreiter (2010); Thély (2017) for a
detailed discussion about the theory of QMC methods.

Remark 10 (Computational stability) The evaluation of the gradient in Lemma 4 in-
volves the term Aµ?z, where µ?z is the optimizer of the second term in (9). By invoking
Lemma 2 and the definition of the operator A, the gradient evaluation reduces to

(Aµ?z)i =

∫
K x

i2−
∑M
j=1 zjx

j

dx∫
K 2−

∑M
j=1 zjx

j
dx

for i = 1, . . . ,M . (22)

Note that a straightforward computation of the gradient via (22) is numerically difficult. To
alleviate this difficulty, we follow the suggestion of (Nesterov, 2005, p. 148) which we briefly
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elaborate here. Consider the functions f(z, x) := −
∑M

j=1 zjx
j, f̄(z) := maxx∈K f(z, x) and

g(z, x) := f(z, x)− f̄(z). Note, that g(z, x) ≥ 0 for all (z, x) ∈ RM ×R. One can show that

(Aµ?z)i =

∫
K 2g(z,x) ∂

∂zi
g(z, x)dx∫

K 2g(z,x)dx
+

∂

∂zi
f̄(z) for i = 1, . . . ,M ,

which can be computed with significantly smaller numerical error than (22) as the numerical
exponent are always negative, leading to values always being smaller than 1.

6. Zero-information moment closure method

In chemistry, physics, systems biology and related fields, stochastic chemical reactions are
described by the chemical master equation (CME), that is a special case of the Chapman-
Kolmogorov equation as applied to Markov processes van Kampen (1981); Wilkinson (2006).
These equations are usually infinite-dimensional and analytical solutions are generally im-
possible. Hence, effort has been directed toward developing of a variety of numerical schemes
for efficient approximation of the CME, such as stochastic simulation techniques (SSA) Gille-
spie (1976). In practical cases, one is often interested in the first few moments of the num-
ber of molecules involved in the chemical reactions. This motivated the development of
approximation methods to those low-order moments without having to solve the underlying
infinite-dimensional CME. One such approximation method is the so-called moment closure
method Gillespie (2009), that briefly described works as follows: First the CME is recast in
terms of moments as a linear ODE of the form

d

dt
µ(t) = Aµ(t) +Bζ(t) , (23)

where µ(t) denotes the moments up to order M at time t and ζ(t) is an infinite vector
describing the contains moments of order M + 1 or higher. In general ζ can be an infinite
vector, but for most of the standard chemical reactions considered in, e.g., systems biology
it turns out that only a finite number of higher order moments affect the evolution of the
first M moments. Indeed, if the chemical system involves only the so-called zeroth and first
order reactions the vector ζ has dimension zero (reduces to a constant affine term), whereas
if the system also involves second order reactions then ζ also contains some moments of
order M + 1 only. It is widely speculated that reactions up to second order are sufficient
to realistically model most systems of interest in chemistry and biology Gillespie (2007);
Gillespie et al. (2013). The matrix A and the linear operator B (that may potentially be
infinite-dimensional) can be found analytically from the CME. The ODE (23), however,
is intractable due to its higher order moments dependence. The approximation step is
introduced by a so-called closure function

ζ = ϕ(µ) ,

where the higher-order moments are approximated as a function of the lower-oder moments,
see Singh and Hespanha (2006, 2007). A closure function that has recently attracted interest
is known as the zero-information closure function (of order M) Smadbeck and Kaznessis
(2013), and is given by

(ϕ(µ))i =
〈
p?µ, x

M+i
〉
, for i = 1, 2, . . . , (24)
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where p?µ denotes the maximizer to the problem (4), where T = ×Mi=1

{〈
µ, xi

〉
− u : u ∈ Ui

}
,

where Ui = [−κ, κ] ⊂ R for all i and for a given κ > 0, that acts as a regularizer, in the
sense of Assumption 1. This approximation reduces the infinite-dimensional ODE (23) to
a finite-dimensional ODE

d

dt
µ(t) = Aµ(t) +Bϕ(µ(t)) . (25)

To numerically solve (25) it is crucial to have an efficient evaluation of the closure func-
tion ϕ. In the zero-information closure scheme this is given by to the entropy maximization
problem (4) and as such can be addressed using Algorithm 1.

To illustrate this point, we consider a reversible dimerisation reaction where two monomers
(M) combine in a second-order monomolecular reaction to form a dimer (D); the reverse
reaction is first order and involves the decomposition of the dimer into the two monomers.
This gives rise to the chemical reaction system

2M k1−→ D

D k2−→ 2M ,
(26)

with reaction rate constants k1, k2 > 0. Note that the system as described has a single degree
of freedom since M = 2D0 − 2D +M0, Where M denotes the count of the monomers, D
the count of dimers, and M0 and D0 the corresponding initial conditions. Therefore, the
matrices can be reduced to include only the moments of one component as a simplification
and as such the zero-information closure function (24) consists of solving a one-dimensional
entropy maximization problem such as given by (4), where the support are the natural
numbers (upper bounded byM0 +D0 and hence compact). For illustrative purposes, let us
look at a second order closure scheme, where the corresponding moment vectors are defined
as µ = (1, 〈M〉, 〈M2〉)> ∈ R3 and ζ = 〈M3〉 ∈ R and the corresponding matrices are given
by

A =

 0 0 0
k2S0 2k1 − k2 −2k1
2k2S0 2k2(S0 − 1)− 4k1 8k1 − 2k2

 , B =

 0
0
−4k1

 ,

where S0 =M0 + 2D0. The simulation results, Figure 2, show the time trajectory for the
average and the second moment of the number ofMmolecules in the reversible dimerization
model (26), as calculated for the zero information closure (25) using Algorithm 1, for a
second-order closure as well as a third-order closure. To solve the ODE (25) we use an
explicit Runge-Kutta (4,5) formula (ode45) built into MATLAB. The results are compared
to the average of 106 SSA Wilkinson (2006) trajectories. It can be seen how increasing the
order of the closure method improves the approximation accuracy.

7. Approximate dynamic programming for constrained Markov decision
processes

In this section, we show that problem (3) naturally appears in the context of approxi-
mate dynamic programming, which is at the heart of reinforcement learning (see Bertsekas
and Tsitsiklis (1996); Bertsekas (1995); Recht (2018) and references therein). We consider
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(a) second-order moment closure
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(b) third-order moment closure
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(c) second-order moment closure
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(d) third-order moment closure

Figure 2: Reversible dimerization system (26) with reaction constants K = k2/k1: Compari-
son of the zero-information moment closure method (25), solved using Algorithm 1 and the
average of 106 SSA trajectories. The initial conditions are M0 = 10 and D0 = 0 and the
regularization term κ = 0.01.

constrained Markov decision processes (MDPs) that form an important class of stochastic
control problems with applications in many areas; see Piunovskiy (1997); Altman (1999)
and the comprehensive bibliography therein. A look at these references shows that most of
the literature concerns constrained MDPs where the state and action spaces are either finite
or countable. Inspired by the recent work Mohajerin Esfahani et al. (2018), we show here
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that the entropy maximization problem (3) is a key element to approximate constrained
MDPs on general, possibly uncountable, state and action spaces.

7.1 Constrained MDP problem formulation

Consider a discrete-time constrained MDP
(
S,A, {A(s) : s ∈ S}, Q, c, d, κ

)
, where S (resp.

A) is a metric space called state space (resp. action space) and for each s ∈ S the measurable
set A(s) ⊆ A denotes the set of feasible actions when the system is in state s ∈ S. The
transition law is a stochastic kernel Q on S given the feasible state-action pairs in K :=
{(s, a) : s ∈ S, a ∈ A(s)}. A stochastic kernel acts on real-valued measurable functions
u from the left as Qu(s, a) :=

∫
S u(s′)Q(ds′|s, a), for all (s, a) ∈ K, and on probability

measures µ on K from the right as µQ(B) :=
∫
K Q(B|s, a)µ

(
d(s, a)

)
, for all B ∈ B(S). The

(measurable) function c : K → R+ denotes the so-called one-stage cost function, and the
(measurable) function d : K→ Rq the one-stage constraint cost along with the preassigned
budget level κ ∈ Rq.

In short, the MDP model described above may read as follows: When the system at
the state s ∈ S deploys the action a ∈ A(s), it incurs the one-stage cost and constraint
c(s, a) and d(s, a), respectively, and subsequently lands in the next state whose distribution
is supported on S and described via Q(·|s, a). We consider the expected long-run average
cost criteria4, i.e., for any measurable function ψ : K→ Rp with p ∈ {1, q}, we define

Jψ(π, ν) := lim sup
n→∞

1

n
Eπν

(
n−1∑
t=0

ψ(st, at)

)
.

Using the defintion above, the central object of this section is the optimization problem

J? :=


inf
ν,π

Jc(π, ν)

s.t. Jd(π, ν) ≤ κ
ν ∈ P(S), π ∈ Π,

(27)

where Π denotes the set of all control policies. We refer the reader to Hernández-Lerma and
Lasserre (1996); Hernández-Lerma et al. (2003); Altman (1999) for a detailed mathematical
treatment of this setting. It is well known that the MDP problem (27) can be stated
equivalently as an infinite-dimensional linear program and its corresponding dual

J?P :=


inf
µ

〈
µ, c
〉

s.t. µ(B ×A) = µQ(B) ∀B ∈ B(S)〈
µ, d
〉
≤ κ

µ ∈ P(K),

(28a)

J?D :=


sup
u,ρ,γ

ρ− γ>κ

s.t. ρ+ u(x)−Qu(x, a) ≤ c(x, a) + γ>d(x, a) ∀(x, a) ∈ K〈
µ, d
〉
≤ κ

u ∈, ρ ∈ R, γ ∈ Rq+.

(28b)

4. We refer the interested reader to Mohajerin Esfahani et al. (2018) for extension to the discounted cost.
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The following regularity assumption is required in order to ensure that the solutions are
well posed and that equivalence between (27) and the LPs (28a), (28b) holds.

Assumption 3 (Control model) We stipulate that

(i) the set of feasible state-action pairs is the unit hypercube K = [0, 1]dim(S×A);

(ii) the transition law Q is Lipschitz continuous, i.e., there exists LQ > 0 such that for all
k, k′ ∈ K and all continuous functions u

|Qu(k)−Qu(k′)| ≤ LQ‖u‖∞‖k − k′‖`∞ ;

(iii) the cost function c is non-negative and Lipschitz continuous on K and d is continuous
on K.

Under this assumption, strong duality between the linear programs (28a) and (28b) holds
(i.e., the supremum and infimum are attained and J?P = J?D). Moreover, the LP formulation
is equivalent to the original problem (27) in the sense that J? = J?P = J?D, see (Hernández-
Lerma et al., 2003, Theorem 5.2).

Finding exact solutions to either (28a) or (28b) generally is impossible as the linear
programs are infinite dimensional. This challenge has given rise to a wealth of approximation
schemes in the literature under the names of approximate dynamic programming. Typically,
one restricts decision space in (28b) to a finite dimensional subspace spanned by basis
functions {ui}ni=1 ⊂ L(S) denoted by Un := {

∑n
i=1 αiui : ‖α‖2 ≤ θ}. Motivated by

de Farias and Roy (2004); Mohajerin Esfahani et al. (2018) we then approximate the solution
J? by

J?P,n :=


inf
µ

〈
µ, c
〉

+ θ‖Tnµ− e‖2
s.t.

〈
µ, d
〉
≤ κ

µ ∈ P(K),

(29)

where the operator Tn : P(K)→ Rn+1 is defined as (Tnµ)1 = −1, (Tnµ)i+1 =
〈
Qui − ui, µ

〉
,

i = 1, . . . , n and e := (−1, 0, . . . , 0) ∈ Rn+1. The optimization problem (29) can be solved
with an accelerated first-order method provided by Algorithm 2, stated below, where each
iteration step involves solving a problem an entropy maximization problem of the form (3).
We define

cα,ζ :=
1

ζ
(c− α0 +

n∑
i=1

αi(Qui − ui)), Y := {µ ∈ P(K) :
〈
µ, d
〉
≤ κ},

T
(
q, α) := (α− q) min{1, θ‖q − α‖−12 }, y?ζ(α) := arg min

y∈Y

{
D
(
y||λ
)

+
〈
y, cα,ζ

〉}
. (30)

Steps 2 and 3 of Algorithm 2 are simple arithmetic operations. Step 1 relies on the
solution to the optimization problem (30) that can be reduced to (3). To see this, note
that the additional linear term in the objective function can be directly integrated into the
analysis of Section 3. We provide the explicit construction in Section 7.2 for an inventory
management system. We are interested in establishing bounds on the quality of the ap-

proximate solution J
(k)
n,ζ obtained by Algorithm 2. The results of (Mohajerin Esfahani et al.,

2018, Theorem 3.3 and 5.3) allow us to obtain the following bound.

19



Sutter, Sutter, Mohajerin Esfahani and Lygeros

Algorithm 2: Approximate dynamic programming scheme

Input: n, k ∈ N, ζ, θ > 0, and w(0) ∈ Rn+1 such that ‖w(0)‖2 ≤ θ

For 0 ≤ ` ≤ k do Step 1: Define r(`) := ζ
4n(e− Tn y?ζ(w

(`)))

Step 2: Let z(`) := T
(∑`

j=0
j+1
2 r(j), 0

)
and β(`) = T

(
r(`), w(`)

)
Step 3: Set w(`+1) = 2

`+3z
(`) + `+1

`+3β
(`)

Output: J
(k)
n,ζ :=

〈
c, ŷζ

〉
+ θ‖Tnŷζ − e‖2 with ŷζ :=

∑k
j=0

2(j+1)
(k+1)(k+2) y?ζ(w

(j))

Theorem 11 (Approximation error) Under Assumption 3, Algorithm 2 provides an
approximation to (27) with the following error bound

|J (k)
n,ζ − J

?| ≤ (1 + max{LQ, 1})‖u? −ΠUn(u?)‖L +

(
4n2θ

k2ζ
+ dim(K)ζ max{log (β/ζ) , 1}

)
,

where β := e
dim(K)(θ

√
n(max{LQ, 1}+ 1) + ‖c‖L).

Note that the bound depends on the projection residual ‖u? − ΠUn(u?)‖L, where the
projection mapping is defined as ΠUn(u?) := arg minu∈Un ‖u? − u‖2, the parameters of the
problem (notably the dimensions of the state and action spaces, the stage cost, and the
Lipschitz constant of the kernel LQ), and the design choices of the algorithm (the number
of basis functions n, norm bound θ and ζ).

Remark 12 (Tuning parameters)

(i) The residual error ‖u? − ΠUn(u?)‖L can be approximated by leveraging results from
the literature on universal function approximation. Prior information about the value
function u? may offer explicit quantitative bounds. For instance, for MDP under
Assumption 3 we know that u? is Lipschitz continuous. For appropriate choice of basis
functions, we can therefore ensure a convergence rate of n−1/ dim(S), see for instance
Farouki (2012) for polynomials and Olver (2009) for the Fourier basis functions.

(ii) The regularization parameter θ has to be chosen such that θ > ‖c‖L. An optimal
choice for θ and ζ is described in (Mohajerin Esfahani et al., 2018, Remark 4.6 and
Theorem 5.3).

7.2 Inventory management system

Consider an inventory model in which the state variable describes the stock level st at the
beginning of period t. The control or action variable at at t is the quantity ordered and
immediately supplied at the beginning of period t, and the “disturbance” or “exogenous”
variable ξt is the demand during that period. We assume ξt to be i.i.d. random variables
following an exponential distribution with parameter λ. The system equation Hernández-
Lerma and Lasserre (1996) is

st+1 = max{0, st + at − ξt} =: (st + at − ξt)+, t = 0, 1, 2, . . . . (31)
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We assume that the system has a finite capacity C. Therefore S = A = [0, C] and since
the current stock plus the amount ordered cannot exceed the system’s capacity, the set of
feasible actions is A(s) = [0, C − s] for every s ∈ S. Suppose we wish to maximize an
expected profit for operating the system, we might take the net profit at stage t to be

r(st, at, ξt) := vmin{st + at, ξt} − pat − h(st + at), (32)

which is of the form “profit = sales - production cost - holding cost”. In (32), v, p and h
are positive numbers denoting unit sale price, unit production cost, and unit holding cost,
respectively. To write the cost (32) in the form of our control model (27), we define

c(s, a) := E[−r(st, at, ξt)|st = s, at = a]

= − v(s+ a)e−λ(s+a) − v

λ

(
1− e−λ(s+a) (λ(s+ a) + 1)

)
+ pa+ h(s+ a).

(33)

Note that non-negativity of the cost can be ensured by subtracting the term 2vC from
(32). We assume that there are regulatory constraints on the required stock level st, for
example to avoid the risk of running into a shortage of a certain critical product. For
simplicity, let us assume that the regulator enforces constraints on the long-term first and
second moments of the stock st in the following sense

lim sup
n→∞

1

n
Eπν

(
n−1∑
t=0

st

)
≥ `1, and lim sup

n→∞

1

n
Eπν

(
n−1∑
t=0

s2t

)
≤ `2, (34)

for given `1, `2 ∈ R+, where we assume that `21 < `2
5. To express it in the form of our

control model (27), we define d1(s, a) := −s, d2(s, a) := s2, and κ := (−`1, `2) ∈ R2. From
the described assumptions on the constants `1 and `2, it can be directly seen that the Slater
point assumption described in Lemma 3 holds (consider the set T := {x ∈ R2 : x1 ≥
`1, x2 ≤ `2, x21 ≤ x2}).

In the following, we will describe how Algorithm 2 and the respective error bounds
given by Theorem 11 can be applied to the inventory management system. In particular
we show how the computationally demanding part of Algorithm 2, given by (30), is di-
rectly addressed by the methodology presented in Section 3. To fulfill Assumption 3, we
equivalently reformulate the above problem using the dynamics

st+1 = (min{C, st + at} − ξt)+, t = 0, 1, 2, . . . , (35)

where the admissible actions set is now the state-independent set A = [0, C]. Finally by
normalizing the state and action variables through the definitions s̃t := st

C and ãt := at
C , we

have

s̃t+1 =

(
min{1, s̃t + ãt} −

ξt
C

)
+

, t = 0, 1, 2, . . . . (36)

Furthermore, it can be seen directly using Leibnitz’ rule that the transition law is Lipschitz
continuous and LQ ≤

√
2Cλ. It remains to argue how (30) can be addressed by the

5. Note that the enforced constraints (34) imply the upper and lower bounds `1 ≤
lim supn→∞

1
n
Eπν
(∑n−1

t=0 st
)
≤
√
`2 and `21 ≤ lim supn→∞

1
n
Eπν
(∑n−1

t=0 s
2
t

)
≤ `2.
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methodology presented in Section 3. We introduce the linear operator A : P(K) → R2,
defined by (Aµ)i :=

〈
µ, di

〉
for i = 1, 2. Then, the optimization problem (30) can be

expressed as

(primal program) : J? = min
µ∈P(K)

{
D
(
µ||ν

)
−
〈
µ, cα,ζ

〉
+ sup
z∈RM

{〈
Aµ, z

〉
− σT (z)

}}
, (37)

(dual program) : J?D = sup
z∈RM

{
− σT (z) + min

µ∈P(K)

{
D
(
µ||ν

)
+
〈
µ,A∗z − cα,ζ

〉}}
, (38)

which apart from the additional linear term are in the form of (6) and (7). Due to our
assumptions on `1 and `2 described above, there exists a strictly feasible solution to (30),
i.e., µ0 ∈ P(K) such that Aµ0 ∈ T and δ := miny∈T c ‖Aµ0 − y‖2 > 0. Hence, the method
from Section 3 is applicable.

Numerical Simulation. For a given set of model parameters (C = 1, λ = 1
2 , v = 1,

p = 1
2 , h = 1

10) we consider four different scenarios:

(i) Unconstrained case (i.e., `1 = 0 and `2 = 1);

(ii) `1 = 0.5 and `2 = 0.4;

(iii) `1 = 0.5 and `2 = 0.3, which is strictly more constrained than scenario (ii);

(iv) `1 = 0.1 and `2 = 0.1.

For each scenario we run Algorithm 2 and plot the value of the resulting approximation

J
(k)
n,ζ as a function of the number of iterations in Figure 3. In each iteration of Algorithm 2

the variable (30) is required, which is computed with Algorithm 1. The following simulation
parameters were used:

Algorithm 1: η1 = η2 = 10−3, 1500 iterations;

Algorithm 2: ζ = 10−1.5, θ = 3, n = 10, Fourier basis u2i−1(s) = C
2iπ cos

(
2iπs
C

)
and

u2i(s) = C
2iπ sin

(
2iπs
C

)
for i = 1, . . . , n2 .

As shown in Figure 3, the value of J
(k)
n,ζ converges at around 1000 iterations of Algo-

rithm 2.6 The fact that scenario (ii) is a (strict) relaxation in terms of the constraints
compared to scenario (iii) is visualized by the numerical simulation as the expected profit of
scenario (ii) is continuously higher compared to scenario (iii). Figure 3 also indicates that
in Scenario (iv) the constraints are the most restrictive.

8. Conclusion and future work

We presented an approximation scheme to a generalization of the classical problem of esti-
mating a density via a maximum entropy criterion, given some moment constraints. The
key idea used is to apply smoothing techniques to the non-smooth dual function of the en-
tropy maximization problem, that enables us to solve the dual problem efficiently with fast

6. 1000 iterations of Algorithm 2 took around 5.5 hours with Matlab on a laptop with a 2.2 GHz Intel Core
i7 processor.
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Figure 3: The expected profit of the inventory system, approximated by −J (k)
n,ζ , resulting

from Algorithm 2 is displayed for four different scenarios (i)-(iv) representing four different
constraints on the inventory system.

gradient methods. Due to the favorable structure of the considered entropy maximization
problem, we provide explicit error bounds on the approximation error as well as a-posteriori
error estimates.

The proposed method requires one to evaluate the gradient (21) in every iteration step,
which, as highlighted in Section 5, in the infinite-dimensional setting involves an integral.
As such the method used to compute those integrals has to be included to the complex-
ity of the proposed algorithm and, in higher dimensions, may become is the dominant
factor. Therefore, it would be interesting to investigate this integration step in more de-
tail. Two approaches, one based on semidefinite programming and another invoking Quasi-
Monte Carlo integration techniques, are briefly sketched. What remains open is to quantify
the accuracy required in the gradient approximations, which could be done along the lines
of Devolder et al. (2014). Another potential direction, would be to test the proposed nu-
merical method in the context of approximating the channel capacity of a large class of
memoryless channels Sutter et al. (2015), as mentioned in the introduction.

Finally it should be mentioned that the approximation scheme proposed in this article
can be further generalized to quantum mechanical entropies. In this setup probability mass
functions are replaced by density matrices (i.e., positive semidefinite matrices, whose trace
is equal to one). The von Neumann entropy of such a density matrix ρ is defined by
H(ρ) := −tr(ρ log ρ), which reduces to the (Shannon) entropy in case the density matrix
ρ is diagonal. Also the relative entropy can be generalized to the quantum setup Umegaki
(1962) and general treatment of our approximation scheme, its analysis can be lifted to the
this (strictly) more general framework. As demonstrated in Sutter et al. (2016), (quantum)
entropy maximization problems can be used to efficiently approximate the classical capacity
of quantum channels.
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Appendix A. Detailed proof of Theorem 5

Given the bounds ‖z?‖2 ≤ C
δ and F (z) ≤ J? ≤ D

(
µ0||ν

)
= C for all z ∈ RM as argued

above, we show how the error bounds of Theorem 5 follow from Devolder et al. (2012). The
dual ε-optimality (15a) is derived from (Devolder et al., 2012, Equation (7.8)), that in our
setting states

0 ≤ J? − F (ẑk) ≤
3ε

4
+ 5

(
F (z?)− F (0) +

ε

2

)
e
− k

2

√
η2
L(η) . (39)

Using the parameters as defined in Theorem 5, i.e.,

C := D
(
µ0||ν

)
, D :=

1

2
max
x∈T
‖x‖2, η1(ε) :=

ε

4D
, η2(ε) :=

εδ2

2C2
, (40)

the fact that F (z?)−F (0) = F (z?) ≤ C, and the Lipschitz constant L(η) = 1
η1

+ ‖A‖2 + η2
derived in Lemma 4, inequality (39) ensures 0 ≤ J? − F (ẑk) ≤ ε if

k ≥ N1(ε) := 2

(√
8DC2

ε2δ2
+

2‖A‖2C2

εδ2
+ 1

)
ln

(
10(ε+ 2C)

ε

)
.

The primal ε-optimality bound (15b) following the derivations in Devolder et al. (2012) is
implied if k is chosen large enough such that ‖∇Fη(zk)‖2 ≤ 2εδ

C . According to (Devolder
et al., 2012, Equation (7.11)) the gradient can be bounded by

‖∇Fη(zk)‖2 ≤
√

4L(η)
(
F (z?)− F (0) +

ε

2

)
e
− k

2

√
η2
L(η) + 2

√
3η2

C

δ
. (41)

Again using the parameters and constants as we did for the dual ε-optimality bound we
find that ‖∇Fη(zk)‖2 ≤ 2εδ

C if

k≥N2(ε) :=2

(√
8DC2

ε2δ2
+

2‖A‖2C2

εδ2
+1

)
ln

(
C

εδ(2−
√

3)

√
4

(
4D

ε
+‖A‖2+

εδ2

2C2

)(
C+

ε

2

))
.

The primal ε-feasiblility (15c) finally directly follows from (Devolder et al., 2012, Equa-
tion (7.14)) and the bound ‖z?‖2 ≤ C

δ .
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