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Abstract. In this paper, we propose an event-based sampling policy to implement a constraint-tightening,

robust MPC method. The proposed policy enjoys a computationally tractable design and is applicable to

perturbed, linear time-invariant systems with polytopic constraints. In particular, the triggering mechanism

is suitable for plants with no centralized sensory node as the triggering mechanism can be evaluated locally

at each individual sensor. From a geometrical viewpoint, the mechanism is a sequence of hyper-rectangles

surrounding the optimal state trajectory such that robust recursive feasibility and robust stability are guaran-

teed. The design of the triggering mechanism is cast as a constrained parametric-in-set optimization problem

with the volume of the set as the objective function. Re-parameterized in terms of the set vertices, we show

that the problem admits a finite tractable convex program reformulation and a linear program relaxation.

Several numerical examples are presented to demonstrate the effectiveness and limitations of the theoretical

results.

1. Introduction

Nowadays, networked control systems (NCSs) generally demand an array of compatibility and efficiency

measures from control design methods, such as utilization under shared resources, applicability to mobile

tasks, and compatibility with digital communication infrastructures [4]. Event-based control (EBC) is a

class of strategies that aim to improve efficiency of NCSs in the context of communication and computation.

In EBC, the dynamics determine the instance to update a control action (contrary to the traditional case

where a control action is updated periodically) [17]. There are two options to implement such an event-based

logic: embedded in the sensory system, the so-called event-triggered control [36] and [15], or embedded in

the controller, the so-called self-triggered control [2] and [28]. The responsible entity to determine an update

instance is known as the triggering mechanism. In particular, model predictive control (MPC) methods [11]

have been the subject of many studies in order to be amended with an EBC mindset.

MPC methods are a class of on-line optimization-based control approaches. In these methods, a measure of

system performance is optimized over a finite horizon while states and inputs are subject to certain constraints.

When the underlying dynamics is uncertain, the specific term robust MPC (RMPC) is used for these methods

in the literature [25]. We refer the interested reader to the survey papers [27] and [26] that discuss about

different aspects of MPC.

Traditionally, the controller solves the corresponding optimization problem at every time step and produces

as outcomes two sequences of optimal inputs and states. Then, the controller sends the first element of input

sequence to the actuators and the remaining elements of the input sequence and the whole state sequence are

discarded. These discarded predictions in a standard MPC setting can serve as a basis to design a triggering

mechanism. Moreover, the computational burden of MPC methods is a major drawback, hindering their usage

in practice. One thus hopes by employing an EBC approach to reduce the frequency at which the underlying

optimization problem is solved. Notice that there are already some techniques in the MPC literature (the

so-called warm start approaches [40]) that exploit the computed sequences at the previous step to speed up

the computation process.
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There is also a big incentive to exploit the computed sequences of MPC methods in a class of NCSs,

namely, wireless sensor/actuator networks (WSANs). In these systems, the most important concern is the

energy efficiency, see e.g., [39, Section IV.B]. The main source of energy depletion in a wireless node is the

transceiver (responsible for sending and receiving data). To reduce the frequency of data transfer, it is hence

more efficient (energy-wise) to aggregate the data into a single packet (if possible) and transmit the resulting

packet at once over the communication network [22] and [24].

Statement of contribution: In this paper, an event-triggered (ET) approach is proposed to implement

an RMPC method on perturbed, linear time-invariant (LTI) systems. The RMPC method is originally

introduced in [31]. The core idea behind the ET approach is to construct a sequence of hyper-rectangles

around the optimal state sequence available from solving the RMPC problem. Then, these hyper-rectangles

will be sent to the sensors. The optimal input sequence will also be transmitted to the actuators. Once the

observed states at the sensory units leave these hyper-rectangles, a triggering happens and the states at the

triggering instance will be transmitted to the controller. This procedure is then repeated in a sampled-data

fashion. A key feature of the proposed ET approach is its ability to decide based on the local observation of

each individual sensor, whether to trigger or not. This feature stems from the fact that the sets describing the

triggering mechanism are hyper-rectangles. Hence, the conditions required for a triggering in different states of

the system are independent of each other. This feature is in particular appealing to systems with decentralized

(spatially dispersed) sensing units, including systems equipped with high-level (or supervisory) MPC methods,

e.g., water treatment systems [35], HVAC systems [20], and commercial refrigeration systems [18] to name a

few. Notice that the collocation of the triggering mechanism and the sensory units is physically impossible in

such systems. Moreover, the addition of a central node (on which the triggering mechanism is placed on) to

collect the sensory data comes at the price of extra communication bandwidth usage. On the theoretical side,

the design of the ET approach is decoupled from the design of the underlying RMPC method. As a result,

a fair comparison between the performances of the ET and standard implementations of the RMPC method

becomes possible. This paper extends the results of the authors’ previous work in [9] in multiple directions,

in particular, by simplifying the triggering “law”. The approach in [9] requires an “advanced” triggering

mechanism that is responsible for (i) constructing certain input and state sequences, (ii) evaluating the

satisfaction of MPC’s constraints by these sequences, and (iii) comparing the values of the cost function based

on the constructed sequences with the value function at the last triggering instance. The main contributions

of the paper are summarized as follows.

• Decoupled recursive feasibility and stability: Given an RMPC method in place, we propose a

set-theory-based, ET approach that preserves robust recursive feasibility and robust stability. The

proposed approach is decoupled from the control synthesis process and does not require additional

assumptions, such as extra conditions on eigenvalues of weighting matrices in the cost function or the

need to define user-specified thresholds for the triggering mechanism (Theorem 4.1).

• Decentralized applicability: The proposed approach enjoys a decentralized triggering mechanism

that only requires local sensory information (Definition 3.3).

• Tractable convex program reformulation: We show that a certain type of non-convex volume-

maximization problem with set-based constraints that is deployed to design the triggering mechanism

admits a finite tractable convex program (CP) reformulation (Theorem 4.4).

• Suboptimal linear program relaxation: Motivated by an approach in the literature, we further

show that a linear program (LP) relaxation of the CP reformulation is possible (Theorem 4.5).

Literature review: In what follows, we first review several event-triggered, MPC approaches. We then

close this section by giving a brief account of several computationally efficient approaches that are customized

for MPC problems.

Related works: Let us first mention the shared properties of the references below: linear discrete-time models,

event-triggering mechanisms, constrained MPC methods, minimal (to none) coupling of the parameters of
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the triggering mechanism and the considered MPC method, and a computationally viable approach to design

the triggering mechanism.

To deal with practical issues such as a band-limited communication channel, a novel design approach for

NCSs is proposed in [16]. They employ the notion of moving horizon [30] to design the estimator and con-

troller. A remarkable character of their approach is its ability to decide on-the-fly which input channel should

be updated (i.e., a certain type input-channel event-triggering control). In case of collocated controller and

actuator units, an event-based estimator with a bounded covariance matrix is designed in [34]. While the

estimator receives data via a Lebesgue sampling approach, it periodically updates the controller’s informa-

tion regarding the disturbances with a polytopic over-approximation of the covariance matrix. The authors

of [7] propose an interesting transmission strategy for wireless sensor/controller communications with prac-

tical energy-aware provisions (the controller is collocated with the actuator system). Using some predefined

thresholds for each state’s sensor (i.e., an `1-type triggering mechanism), the controller is computed offline

using an explicit MPC approach [6]. Based on a prescribed 2-norm ball around the optimal state trajectory,

the authors in [23] propose a triggering mechanism for WSANs. They show that the approach is robustly

stable to a set that is a function of the radius of threshold ball and the maximal 2-norm of disturbance.

For linear, continuous-time dynamical systems affected by a Wiener process, a co-design method (i.e., si-

multaneous design of the scheduler and the controller) is proposed in [3]. The main idea is inspired by the

notion of rollout from dynamic programming [8]. More importantly, the authors show that under some mild

conditions, an event-based control approach outperforms a traditional control approach w.r.t. closed-loop

performance/average transmission rate. (Notice that for most of the approaches in the literature including

our paper such a guarantee is not provided.) A set theoretic triggering mechanism is introduced in [10] for

systems with collocated controller and sensory units. The approach is inspired by the tube-based MPC pro-

posed in [29]. By exploiting the known probability distribution of disturbance, they also guarantee an average

sampling rate. However, their tube-contraction method requires a certain type of realization of a discrete-time

system, see [10, Remark 8]. Demirel et al., introduce a sensor/actuator event-triggering mechanism for control

systems with limited number of control messages (i.e., communication and computation resources are scarce)

[12]. They relax the underlying combinatorial problem into a convex one by an appropriate definition of

event thresholds. In [19], a packetized approach is proposed for input-affine, nonlinear systems with bounded

additive disturbances in continuous-time. In the proposed approach, an RMPC controller (connected via

a communication network to the plant) takes into account the mismatched uncertainties while an integral

sliding-mode controller [37] (placed at the plant) counters the effect of the matched uncertainties.

Algorithmic viewpoint: An MPC optimization problem is computationally expensive by itself. Hence, the

merit of an event-based policy of implementation would be lost if the mechanism demands a drastically

higher computational effort compared to the underlying MPC problem. Dunn and Bertsekas in [13] exploit

the structure of their problem to reduce the cubic complexity of computing a Newton step to a linear one. In

[38], the authors use a specific ordering of decision variables to promote a sparse structure that decreases the

cost of computing a control action. The authors in [32] employ a simple, gradient-based algorithm to solve

an MPC problem while providing a priori computational complexity certificate.

The layout of the paper is as follows. The mathematical notions used in the paper are outlined in Sec-

tion 2. Section 3 is devoted to the considered RMPC method. The main results regarding the event-based

implementation policy are introduced in Section 4. Section 5 contains the technical proofs. Several numerical

examples are presented in Section 6 to evaluate the effectiveness and limitations of the theoretical results.

Finally, we present several future research directions in Section 7.

2. Notation and Preliminaries

We begin with a brief review of the mathematical preliminaries employed in the rest of the paper.

Notation: The set of non-negative integers is denoted by Z≥0. Given positive integers m and n, Rm

and Rm×n represent the m-dimensional Euclidean space and the space of m × n matrices with real entries,
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respectively. Given two integers i, j where i ≤ j, {i : j} := {i, i+ 1, . . . , j}. For any pairs of vectors a, b ∈ Rn,

the inequality a < (≤)b is realized in a component-wise manner. Given a vector v ∈ Rn and a scalar p ≥ 1,

‖v‖p denotes the p-norm
(∑n

i=1 (vi)p
)1/p

. Given a matrix M ∈ Rm×n, Mij denotes the i-th row, j-th

column entry of M . Moreover, the matrix M+ ∈ Rm×n is the matrix with entries M+
ij := max{0,Mij}.

The n × n zero and identity matrices are denoted by 0n and In, respectively. Given a set S ⊂ Rn and a

matrix M ∈ Rm×n, the set MS denotes the set {c ∈ Rm : ∃s ∈ S,Ms = c}. Given a matrix M � 0

(i.e., positive definite), the squared weighted distance of a point r ∈ Rn from a closed set S ⊂ Rn is defined

as dM (r,S) := mins∈S ||r − s||2M = mins∈S (r − s)>M(r − s). Denote the projection of r onto S by

ΠM (r,S) ∈ argmins∈SdM (r,S). Note that when S is also convex, the projection is unique. Given sets C and

D, the Pontryagin difference C	D and the Minkowski sum C⊕D are defined as C	D := {c : c+d ∈ C,∀d ∈ D}
and C⊕D := {c+d : ∀c ∈ C,∀d ∈ D}, respectively. The function sign( · ) represents the standard sign function.

Given a set X ∈ Rn and an extended real-valued function f : X → [−∞,+∞], the effective domain of f is

the set dom(f) = {x ∈ X : f(x) <∞}.
The following result will be used frequently in the development of the triggering mechanism.

Lemma 2.1 (Set-difference lower bound [31]). Let r be a vector in Rn, B and C be two compact sets in Rn,

and M be a positive definite matrix in Rn×n. Then, dM (r + c,B) ≤ dM (r,B 	 C), for all c ∈ C.

We now revisit some notions from convex analysis (see e.g., [21, Section 2] for a compact exposition of the

subject). Given a set S ⊂ Rn, the support function of S evaluated at η ∈ Rn is hS(η) := sups∈S 〈η, s〉. The

domain KS on which the support function is defined is a convex cone pointed at the origin. If S is bounded,

then KS := Rn. Given a matrix M ∈ Rn×m and a vector v ∈ Rn, if M>v ∈ KS , then hMS(v) := hS(M>v).

Suppose S ⊂ Rn is closed and convex. Then, S := {s ∈ Rn : 〈η, s〉 ≤ hS(η),∀η ∈ KS}, i.e., the intersection

of its supporting halfplanes. A set S ⊂ Rn is called a polyhedron, if S = {s ∈ Rn : ASs ≤ bS}, AS ∈ Rm×n,

bS ∈ Rm. If the polyhedron S is bounded, the set is called a polytope and its representation given above

is known as the H-representation. Furthermore, the support function hS(η) of a polytope S is the solution

of the LP, hS(η) = maxs 〈η, s〉 subject to ASs ≤ bS . Given the H -representation of a polytope, we employ

the notations ai,S ∈ R1×n and aS,j ∈ Rm×1 to denote the i-th row and the j-th column of AS , respectively.

Moreover, bi,S is the i-th entry of bS . Given a polyhedron S ⊂ Rn and a set V ⊂ Rn, assume that hV(a>i,S)

is well-defined for all i ∈ {1 : m}. Then, S 	 V :=
{
z ∈ Rn : 〈a>i,S , z〉 ≤ bi,S − hV(a>i,S),∀i ∈ {1 : m}

}
. For

any vector-pairs l, u ∈ Rn such that l < u, the full-dimensional convex polytope B(l, u) := {x ∈ Rn : l ≤ x ≤
u} = {x ∈ Rn : ABx ≤ bB} is called a hyper-rectangle, where AB := [In − In]> and bB = [u> − l>]>.

3. Robust model Predictive Control Method

In this section, we introduce the class of constrained dynamical systems considered in this paper, followed

by the description of the RMPC method. At last, we formally state the problem addressed in this paper.

Consider an LTI system with a bounded additive disturbance given by

x+ = Ax+Bu+ w,(1)

where x+ is the successor state and x, u, and w are the current state, input and disturbance, respectively.

The current state, input, and disturbance are subject to the hard constraints

x ∈ X ⊂ Rnx , u ∈ U ⊂ Rnu , w ∈W ⊂ Rnx .(2)

A system is called the nominal system associated with (1) when w = 0. Given a positive integer N , let

U := UN =
∏N−1
i=0 U (W := WN ) denote the class of admissible control sequences u := {ui}i∈{0:N−1}

(admissible disturbance sequences w := {wi}i∈{0:N−1}). Initiated at state x, the solution to (1) at time i

with the control and disturbance sequences u and w, respectively, is denoted by φu,wi (x). Similarly, we define

φu,w(x) := {φu,wi (x)}i∈{0:N}. Moreover, let φu,0i (x) denote the nominal solution with the input sequence u

initiated at state x. The RMPC method is designed such that the state x and the input u eventually converge
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to some user-defined target sets TX ⊂ Rnx and TU ⊂ Rnu , respectively, while the constraints (2) are satisfied

at all times.

Assumption 3.1 (System & constraint sets). (i) Nominal controllability: The pair (A,B) is controllable.

(ii) Polytopic sets: The sets X, U, TX, TU, and W are all convex, compact polytopes containing their underlying

spaces’ origin in their interior.

We start with introducing two types of feedback gains which are used in the RMPC method and are

essential for the construction of the triggering mechanism. Let F ∈ Rn×m be a given feedback gain that

guarantees the stability of the nominal system with u = Fx. The nominal gain F can be designed so that a

satisfactory performance (e.g., in an LQ optimal control sense) is guaranteed for the nominal system.

Let integer N ≥ nx + 1 be the horizon length of the RMPC method and integer M be given, where

M ∈ {nx : N − 1}. Suppose next that a set of feedback gains K = {Ki}i∈{0:N−1} are given such that∏M
i=1(A + BKi) = 0, i.e., for all k ≥ M , φu,0k (x) = 0. We call the set of gains K the tightening gains since

these gains are employed in the state and input constraint tightening process. We refer the interested reader

to [31, Section IV] for a possible approach to construct the gains K. The constraint tightening approach is

applied to the input, state, input target, and state target sets, that is, for all i ∈ {0 : N − 2},
U0 = U, Ui+1 = Ui 	KiLiW,(3a)

X0 = X, Xi+1 = Xi 	 LiW,(3b)

T U
0 = TU, T U

i+1 = T U
i 	KiLiW,(3c)

T X
0 = TX, T X

i+1 = T X
i 	 LiW,(3d)

where L0 = Inx
and Li+1 = (A + BKi)Li for all i ∈ {0 : N − 2}. Notice that the M -step nilpotency of the

set of gains K implies that for all i ∈ {M : N − 1}, Li = 0nx .

Let the terminal set Xf ⊂ Rnx be a control invariant set for the nominal system, i.e., (A+BF )ξ ∈ Xf for

all ξ ∈ Xf .

Assumption 3.2 (Terminal set). For all ζ ∈ Xf , the following conditions hold:

ζ ∈ XN−1 ∩ T X
N−1, F ζ ∈ UN−1 ∩ T U

N−1.

For the sake of notational simplicity, let us define UN :=
∏N−1
i=0 Ui and XN :=

∏N−1
i=0 Xi × Xf . The cost

function of the RMPC problem is

VN (x,u) :=

N−1∑
i=0

dQ(φu,0i (x), T X
i ) + dR(ui, T U

i ) + δfeas

(
u,φu,0(x)

)
,(4)

where δfeas

(
u,φu,0(x)

)
= 0 if u ∈ UN and φu,0(x) ∈ XN , and = ∞ otherwise, is the indicator function of

the set UN ×XN . Notice that the input and state constraints are embedded in the objective function via

the indicator function. The optimization problem for a finite horizon N with an initial state x reads as

V ∗N (x) := min
u
VN (x,u),(5)

with umpc(x) := argminuVN (x,u) as the optimal input sequence. When it is clear from the context, we

may instead use the shorthand notation umpc. The above sequence of inputs is indeed an optimal solution

to a nominal (i.e., w = 0) finite optimization problem emerging in the context of finite horizon MPC in the

rest of the paper. In this light, we denote this nominally optimal controller by a similar label, for which the

associated nominal state sequence is φumpc,0(x).

In a standard RMPC setting, the optimal control problem (5) is solved. The first element umpc
0 (x) of

umpc(x) is then applied to the plant yielding to the closed-loop dynamics x+ = Ax + Bumpc
0 (x) + w. In

an event-based setting, the triggering mechanism generally exploits the optimal state sequence φumpc,0(x) in

order to possibly employ the rest of elements in the nominally optimal input vector umpc(x). The challenge
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in designing the triggering mechanism is then to guarantee robust stability and robust recursive feasibility of

the resulting event-triggered, closed-loop dynamics.

Definition 3.3 (Triggering mechanism). Given an initial state x and a sequence of (possibly) state-dependent,

hyper-rectangular sets E(x) := E0 ∪ {Ei(x)}N−1
i=1 ⊂ (Rnx)N , the triggering instance is defined by

kwtrig(x) := min
{
j ∈ {0 : N − 1} : φu

mpc,w
j (x)− φu

mpc,0
j (x) /∈ Ej(x)

}
,(6)

where E0 := Rnx .

The quantity kwtrig(x) is known as the inter-execution time in the literature. One can observe that

φu
mpc,w

0 (x) = φu
mpc,0

0 (x) = x. As a result, φu
mpc,w

0 (x) − φu
mpc,0

0 (x) = 0 ∈ Rnx = E0, and thus kwtrig(x) ≥ 1.

The closed-loop dynamics is then, for all t ∈ Z≥0,

ξt+1 = Aξt +Bumpc
t−τt(ξτt) + wt,(7a)

τt+1 =

{
τt, t− τt ≤ N − 1 and ξt − φu

mpc,0
t−τt (ξτt) ∈ Et−τt(ξτt),

t, otherwise,
(7b)

given the initial state ξ0 and the initial triggering instance τ0 = 0. Here, τt denotes the last triggering instance

up to time t. Also, notice that a mandatory triggering is put in place at time τt +N . The problem addressed

in this paper is now introduced.

Problem 3.4. Consider the closed-loop dynamics (7) under Assumptions 3.1-3.2. Devise an approach to

construct the sequence of triggering sets E(ξτt) in (6) such that the trajectories of the closed-loop dynamics

satisfy:

• Recursive feasibility: If V ∗N (ξ0) <∞, then V ∗N (ξt) <∞, for all t ∈ Z≥0;

• Robust stability: The states and inputs of the closed-loop dynamics converge to the target sets TX

and TU, respectively (limt→∞ V ∗N (ξt) = 0).

Remark 3.5 (Smart actuators and sensors). The actuator and sensor units are “smart” in the following

sense. The actuator (sensor) units can buffer the time-stamped and packetized sequence umpc(ξτt) ({φumpc,0
s (ξτt)⊕

Es(ξτt)}N−1
s=1 ). The actuator units consecutively apply the input action umpc

s−τt(ξτt) on the plant at each time s ∈
{τt : τt+1 − 1}. The sensor units evaluate the triggering condition

ξs /∈ φu
mpc,0

s−τt (ξτt)⊕ Es−τt(ξτt),
at each time s ∈ {τt + 1 : τt +N − 1}. When the triggering condition holds at some time s, the sensors send

the most recent states ξs to the controller and the triggering instance is set to τt+1 = s.

Remark 3.6 (Iteration Complexity). RMPC problems with linear dynamics, a quadratic cost function, and

polytopic constraints are quadratic programs for which dedicated solvers provide the complexity per iteration

O(N(nx + nu)3) [38].

4. Main Results

In this section, we provide several approaches to construct the sequence of sets E(x) which meets the

requirements of Problem 3.4. To this end, we begin with describing a certain type of constrained optimization

problem that produces E(x). Based on these constructed sets, we then state the main theoretical results of

this paper.

4.1. Construction of Hyper-Rectangles

Let j ∈ {1 : N − 1}. The procedure to construct each hyper-rectangle Ej(x) comprises the parametric

representation of Ej(x), the definition of auxiliary quantities associated with Ej(x), and finally the optimization

problem to find Ej(x).



A DECENTRALIZED EVENT-BASED APPROACH FOR ROBUST MODEL PREDICTIVE CONTROL 7

Notice that one way to represent a hyper-rectangle Ej(x) is

Ej(x) :=
{
ε ∈ Rnx : −ej(x) ≤ ε ≤ ej(x)

}
,

for some vectors ej(x), ej(x) ∈ Rnx

≥0 . In other words, each hyper-rectangle Ej(x) is parameterized by 2nx
entries of ej(x) and ej(x).

Let us now introduce the auxiliary quantities involved in the derivation of Ej(x). Let Acl := (A + BF )

be the nominal, closed-loop state matrix. Define the input sequence ũ(x; j) and the associated state se-

quence φũ,0(x; j) as

ũi(x; j) :=

{
umpc
j+i (x), i ∈ {0 : N − j − 1},
FAj+i−Ncl φu

mpc,0
N (x), i ∈ {N − j : N − 1},

(8a)

φũ,0i (x; j) :=

φu
mpc,0

j+i (x), i ∈ {0 : N − j},
Aj+i−Ncl φu

mpc,0
N (x), i ∈ {N − j + 1 : N}.

(8b)

Notice that the above candidate input sequence is constructed by concatenating the last N − j elements of

umpc(x) with the nominal feedback F (recursively) applied to the optimal terminal state φu
mpc,0

N (x).

Define T U
N :=

∏N−1
i=0 T U

i and T X
N :=

∏N−1
i=0 T X

i . Denote now the projections of optimal state and input

sequences φumpc,0(x) and umpc(x) onto their corresponding target sets by sX(x) ∈ T X
N and sU(x) ∈ T U

N ,

where for all i ∈ {0 : N − 1},
sXi (x) := ΠQ(φu

mpc,0
i (x), T X

i ), sUi (x) := ΠR(umpc
i (x), T U

i ).

Based on the above definition, the next two auxiliary quantities are defined as follows. Let s̃U(x; j) and

s̃X(x; j) represent the projection of ũ(x; j) and φũ,0(x; j) onto T U
N and T X

N , respectively. We have

s̃Ui (x; j) :=

{
sUj+i(x), i ∈ {0 : N − j − 1},
ũi+j(x; j), i ∈ {N − j : N − 1},

(9a)

s̃Xi (x; j) :=

{
sXj+i(x), i ∈ {0 : N − j},
φũ,0j+i(x; j), i ∈ {N − j + 1 : N − 1}.

(9b)

Let us clarify the conventions used in (9). Notice that the definition of ũi(x; j) in (8a) implies that ũi(x; j) ∈
T U
N−1 ⊆ T U

i , for all i ∈ {N − j : N − 1}. That is, the distance dR(ũi(x; j), T U
i ) = 0, and hence,

ΠR(ũi(x; j), T U
i ) = ũi(x; j), as given in (9a). A similar line of reasoning has been used in (9b).

We next adopt the feedback gains K̃i and the state-transition matrices L̃i defined as

K̃0 = 0nu×nx
, K̃i+1 = Ki, ∀i ∈ {0 : N − 2},(10a)

L̃0 = Inx
, L̃i+1 = (A+BK̃i)L̃i, ∀i ∈ {0 : N − 1}.(10b)

In the following, we use the matrices (10) to identify certain sets around the optimal state sequence φumpc,0(x).

These sets in turn will be used to formulate recursive feasibility and robust stability for the event-triggering

setting (see the problem (12) and Section 5.1).

Let us now provide two definitions for the volume of Ej(x), that are

vol1(Ej(x)) :=
∏

p∈{1:nx}

(
epj (x) + epj (x)

)
,(11a)

vol2(Ej(x)) :=
∏

p∈{1:nx}

(
epj (x)× epj (x)

)
,(11b)

where epj (x) (resp. epj (x)) denotes the p-th entry of ej(x) (resp. ej(x)). Notice that (11a) is the standard

definition of volume for Ej(x) in Rnx . As it will be discussed later on, the application of (11a) to construct

Ej(x) leads to a more asymmetric spread of Ej(x) around φu
mpc,0

j (x) compared to the application of (11b).
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The asymmetry in turn implies that the triggering mechanism has no robustness in certain error directions,

see Remark 4.7 for further details. Nonetheless, the definition (11a) leads to the construction of sets that

have the maximum possible volume, in particular, higher than the ones constructed based on (11b).

For all j ∈ {1 : N − 1}, the problem to find each Ej(x) is

max
ej(x),ej(x)≥0

volq(Ej(x))(12a)

s.t.

φũ,0i (x; j) ∈ Xi 	 L̃iEj(x), ∀i ∈ {0 : N − 1},(12b)

ũi(x; j) ∈ Ui 	 K̃iL̃iEj(x), ∀i ∈ {0 : N − 1},(12c)

s̃Xi (x; j) ∈ T X
i 	 L̃iEj(x), ∀i ∈ {0 : N − 1},(12d)

s̃Ui (x; j) ∈ T U
i 	 K̃iL̃iEj(x), ∀i ∈ {0 : N − 1},(12e)

where q ∈ {1, 2} determines which type of the volume definition in (11) is chosen. Notice that the objective

function volq(Ej(x)) is a nonlinear, non-convex function with a decision variable Ej(x). Hence, the prob-

lem (12) is difficult to solve. In the next subsection, we show that this problem remains practically solvable,

in particular, the set-based constraints (12b)-(12e) are effectively representable by linear inequalities (i.e.,

polytopic inequalities) such that (i) the optimization problem (12) has a CP counterpart (in Theorem 4.4),

and (ii) the optimization problem (12) admits an LP relaxation (in Theorem 4.5).

4.2. Event-Based Implementation

We first show that robust stability of the event-triggered, closed-loop dynamics (7) is guaranteed, which

in turn leads to recursive feasibility of the closed-loop system. The triggering mechanism (6) is constructed

by the approach proposed in (12). We next establish that the non-convex problem (12) to construct the

hyper-rectangles E(x) has a CP reformulation and an LP relaxation, and therefore can be efficiently solved

in practice.

Theorem 4.1 (Robust convergence). Consider the closed-loop dynamics (7), and suppose that the initial

state ξ0 is feasible (i.e., V ∗N (ξ0) < ∞). For all s ∈ {τt + 1 : τt+1}, there exists an input sequence u ∈ UN

such that

V ∗N (ξτt+1
)− V ∗N (ξτt) ≤ VN

(
ξs,u(ξs)

)
− V ∗N (ξτt) ≤ −

( s−τt−1∑
k=0

dQ(φu
mpc,0

k (ξτt), T X
k ) + dR(umpc

k (ξτt), T U
k )
)
.

(13)

In particular, the closed-loop dynamics (7) is asymptotically stable, i.e., limt→∞ V ∗N (ξt) = 0.

Remark 4.2 (Recursive feasibility). Notice that the second inequality in (13) implies that VN
(
ξs,u(ξs)

)
<∞,

for all s ∈ {τt + 1 : τt+1}. In other words, the optimization problem (5) remains feasible for all time t ∈ Z>0.

Remark 4.3 (Transmission protocol). We assume that all sensor and actuator units are clock-synchronized.

When the problem (5) is solved, the controller node sends: (i) umpc(ξτt) to the actuator nodes and (ii)

each entry of φu
mpc,0

j (ξτt) − ej(ξτt) and φu
mpc,0

j (ξτt) + ej(ξτt) to the corresponding sensory nodes, for all

j ∈ {1 : N − 1}. Moreover, the nx sensor units declare a triggering instance to each other, through a

cost-efficient short-range transmission. Then, all sensors declare their time-stamped, observed states to the

controller.

The successful usage of the above results is conditioned upon the premise that there exist computationally

tractable methods to construct the sets E(x). We now revisit problem (12) to show that such a premise is

valid by providing two frameworks: one in a CP form and another one in an LP form. In these frameworks,

the parametric-in-set constraints (12b)-(12e) can be reformulated into a new set of linear inequalities in terms

of the vertices of each set Ej(x). We shall call the polytope represented by the derived linear inequalities, the



A DECENTRALIZED EVENT-BASED APPROACH FOR ROBUST MODEL PREDICTIVE CONTROL 9

principal polytope S̄. Both frameworks try to find a maximum-volume hyper-rectangle Ej(x) inscribed (or

contained) in the principal polytope such that 0 ∈ Ej(x). In the LP framework, we partly employ some results

from [5], see Section 5.2 and avoid reiterating the proofs of borrowed material. For notational convenience,

let ξ ∈ S 	 MB(l, u) represent a concatenated version of the constraint (12b)-(12e) where, in particular,

B(l, u) := Ej(x). Hereafter, when we take volume (of a hyper-rectangle) as defined in (11) with index q = 1

and q = 2 referring to (11a) and (11b), respectively.

Theorem 4.4 (Volume maximization - CP reformulation). Consider a vector ξ ∈ Rp, a matrix M ∈ Rp×k,

and a polytope S = {s ∈ Rp : ASs ≤ bS} containing the origin where AS ∈ Rm×p and bS ∈ Rm. The

maximum volume hyper-rectangle B(l, u) ⊂ Rk that contains the origin and satisfies ξ ∈ S 	 MB(l, u) is

B(−v∗, v∗) where v∗ and v∗ are the optimal solutions of the problem

(14)

min
v,v

fq
(
v, v
)

s.t. 〈wi, [v> v>]>〉 ≤ bi,S − ai,Sξ,∀i ∈ {1 : m},
v ≥ 0, v ≥ 0,

where for q ∈ {1, 2}

f1

(
v, v
)

:= − Σ
j∈{1:k}

log
(
vj + vj),(15a)

f2

(
v, v
)

:= − Σ
j∈{1:k}

log
(
vj
)

+ log
(
vj),(15b)

and for all j ∈ {1 : k}

wij =

{(
M>a>i,S

)
j
, if ŵij = 1,

0, otherwise,
(16a)

wik+j =

{
−
(
M>a>i,S

)
j
, if ŵij = −1,

0, otherwise,
(16b)

with ŵi := sign(M>a>i,S), for all i ∈ {1 : m}.

Theorem 4.5 (Volume maximization - LP relaxation). Suppose the hypotheses in Theorem 4.4 hold.

• (q = 1) The maximum volume r-constrained hyper-rectangle B(l, u) ⊂ Rk that contains the origin and

satisfies ξ ∈ S 	MB(l, u) is B(z∗, z∗ + λ∗r) for which z∗ ∈ Rk and λ∗ ∈ R are the optimal solution

of the problem

(17a)

max
z,λ

λ

s.t. ASMz + (ASM)+rλ ≤ bS −ASξ
z + λr ≥ 0, z ≤ 0,

where the j-th entry of r, j ∈ {1 : k}, is defined as

(17b)

rj(S̄) := max
z,ω

ω

s.t. ASMz ≤ bS −ASξ
ASM(z + ωej) ≤ bS −ASξ
z + ωej ≥ 0, z ≤ 0,

where ej ∈ Rk is the unit vector in the j-th direction and the polytope S̄ is

S̄ := {z ∈ Rk : ASMz ≤ bS −ASξ}.
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• (q = 2) The maximum volume r-constrained hyper-rectangle B(l, u) ⊂ Rk that contains the origin and

satisfies ξ ∈ S 	MB(l, u) is B(−λ∗r1, λ
∗r2) for which λ∗ ∈ R is the optimal solution of the problem

(18a)
max
λ

λ

s.t. (W )+rλ ≤ B,

where r =
(
r>2 , r

>
1

)>
and the j-th entry of r, j ∈ {1 : 2k}, is defined as

(18b)
rj := max

ω
ω

s.t. W ′(ωej) ≤ B′,
where ej ∈ R2k is the unit vector in the j-th direction,

W =
(
w1, · · · , wm

)>
, W ′ =

 W

− Ik 0k×1

0k×1 −Ik

 ,

B = bS −ASξ, B′ =
(
B>, 01×2k

)>
,

and for all i ∈ {1 : m}, wi are defined in (16).

We should emphasize that although Theorems 4.4 & 4.5 provide a way to construct Ej(x) with a maximal

volume, the derived set is not unique (the corresponding cost functions of these approaches are not strictly

convex to guarantee the uniqueness of solution). In the remainder of the paper, we denote the construction

approach based on the CP (14) with q = 1 and q = 2 by CP1 and CP2, respectively. Furthermore, LP1

represents the LP relaxation (17) of CP1 and LP2 denotes the LP relaxation (18) of CP2.

4.3. Further Comments on Complexity and Sensitivity

In the rest of this section, we allude briefly to two important practical aspects of the proposed construction

approaches and possible directions to improve them. First, since these approaches are implemented online,

they require an extra computation step besides the computation of the optimal input sequence. Notice

that fixed-thresholding approaches in the literature, for example [23], avoid this extra step by considering

pre-defined triggering sets. We provide the arithmetic complexity of the proposed approaches to quantify

the extra computational burden. To this end, we adopt the following notion of an oracle to represent the

optimization problems in this paper. Let A ∈ Rnc×nd , b ∈ Rnc , c ∈ Rnd , and f : Rnd → R be a concave

function. Also, let lp(nc, nd) denote the oracle complexity for solving maxη{c>η : Aη ≤ b}, and cp(nc, nd)

denote the oracle complexity for solving maxη{f(η) : Aη ≤ b}.

Remark 4.6 (Computational complexity). The oracle complexity of the CP reformulations (14) in Theo-

rem 4.4 is cp(m+2k, 2k) and of the LP reformulations (17) and (18) in Theorem 4.5 are lp(m+2k, k+1) +

k× lp(2m+ 2k, k+ 1) and lp(m, 1) + 2k× lp(m+ 2k, 1), respectively. A possible remedy to circumvent these

computations is to introduce a state-independent triggering law, as opposed to the current state-dependent

law (6). This extension would allow to compute the desired sets offline and only once.

The other issue regarding the proposed approaches is the asymmetry of the triggering sets with respect to

the optimal state sequence. Let polytope S ⊂ Rnx represent the constraints (12b)-(12e) that the triggering

set Ej(x) satisfies. In other words, Ej(x) is constructed inside S. Recall that Ej(x) represents the “allowable”

prediction error so that the triggering mechanism is not activated. Qualitatively speaking, for a “better”

directional resilience against prediction errors, one would prefer symmetry in the constructed Ej(x). The

above statements are schematically depicted in Figure 1. When S is well-shaped as in Figure 1(a), the

approaches in Theorems 4.4 & 4.5 lead to a relatively symmetric set Ej(x) with respect to the origin. When S
is ill-shaped as in Figure 1(b), the constructed set Ej(x) is however extremely asymmetric with respect to the

origin along some coordinates. This difference is well-captured by the geometric measure rc
r◦

of S, where rc is
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(a) Well-shaped polytope example, rc
r◦

= 1.0861.
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(b) Ill-shaped polytope example, rc
r◦

= 8.0669.

Figure 1. Comparison of the CP and LP approaches to construct Ej(x) ⊆ S. (a) S is

distributed in a fairly uniform manner around the origin. All the approaches provide close

behaviors. (b) S is distributed in a relatively uneven manner around the origin. The ap-

proaches CP2 and LP2 promote more symmetric constructions compared to the approaches

CP1 and LP1.

the radius of the maximal 2-norm ball inside S, and r◦ is the radius of the maximal 2-norm ball, centered at

the origin and inside S. By definition, we have rc
r◦
≥ 1. Observe that in well-shaped cases rc/r◦ ≈ 1 and in

ill-shaped cases rc/r◦ � 1.

Remark 4.7 (Directional sensitivity to prediction errors). The directional sensitivity issue is the main reason

for introducing the second definition (11b) of the volume. To see this, assume first that our goal is to maximize

the log value of the volume of Ej(x). Notice that the first definition (11a) solely aims for maximizing the width

of Ej(x) within S along each coordinate. On the other hand, the second definition (11b) maximizes the width

of Ej(x) in both positive and negative directions along each coordinate. As shown in Figure 1, in both cases

the set Ej(x) constructed by the approaches CP2 and LP2 is typically more symmetric compared to those

constructed by the approaches CP1 and LP1. An interesting research direction to alleviate this sensitivity

issue is to investigate the impact of the MPC design parameters (e.g., the tightening gains K or the target

sets TX and TU).

5. Technical Proofs

5.1. Proof of Theorem 4.1

The proof consists of five main steps. Each step is labeled by the guaranteed property. Let x := ξτt be the

state at the last triggering instance. Define the prediction error

ewj (x) = φu
mpc,w

j (x)− φu
mpc,0

j (x),(19)

indicating the mismatch between the perturbed system and the nominal one. For some integer j ∈ {0 : N−1},
suppose that the mechanism is enabled at time j + 1, that is, either (1) j < N − 1 so that for all i ∈ {0 : j},
ewi (x) ∈ Ei(x) and ewj+1(x) /∈ Ej+1(x), or (2) j = N − 1 (see equation (7b)). We omit the arguments of

variables for convenience when it is clear from the context (unless mentioned otherwise). In what follows, we

also use the notation `(xi, ui) for dQ(xi, T X
i ) + dR(ui, T U

i ) for notational simplicity.

1) Inter-event recursive feasibility: Define the candidate input sequence uc(x; j) such that for all

i ∈ {0 : N − 1},

uc
i := ũi + K̃iL̃ie

w
j ,(20a)
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and its associated candidate state sequence φuc,0(x; j), where for all i ∈ {0 : N},
φu

c,0
i := φũ,0i + L̃ie

w
j .(20b)

Note that φu
c,0

0 = φu
mpc,w

j and uc
0 = umpc

j . We now establish that the sequences uc and φuc,0 satisfy uc ∈ UN

and φuc,0 ∈ XN , i.e., VN (φu
mpc,w

j ,uc) < ∞. By assumption, ewj ∈ Ej . Moreover, Ej satisfies (12b)-(12c).

From the definition of the Pontryagin difference, it follows that uc
i ∈ Ui and φu

c,0
i ∈ Xi, for all i ∈ {0 : N −1}.

Recall that LN−1 = 0. Hence, L̃N = 0 and φu
c,0

N = φũ,0N . From (8b), we have φũ,0N = Ajclφ
umpc,0
N (x). Since

Xf is a control invariant set, φu
c,0

N ∈ Xf . We conclude that VN (φu
mpc,w

j ,uc) <∞.

2) Inter-event cost function decay: Observe that

dQ(φu
c,0

i , T X
i ) = dQ(φũ,0i + L̃ie

w
j , T X

i ) ≤ dQ(φũ,0i , T X
i 	 L̃iEj),

where we made use of the definition (20b) and Lemma 2.1, respectively. Recall from (12d) that s̃Xi ∈ T X
i 	L̃iEj .

Hence,

0 ≤ dQ(φu
c,0

i , T X
i ) ≤ dQ(φũ,0i , s̃Xi ).(21a)

Similarly, one can arrive at

0 ≤ dR(uc
i , T U

i ) ≤ dR(ũi, s̃
U
i ).(21b)

Consider i ∈ {0 : N − j − 1}. In light of the definitions (8b) and (9b), we have dQ(φũ,0i , s̃Xi ) =

dQ(φu
mpc,0

j+i , T X
j+i). Thus,

dQ(φu
c,0

i , T X
i ) ≤ dQ(φu

mpc,w
j+i , T X

j+i).(22a)

In a similar fashion, we can show

dR(uc
i , T U

i ) ≤ dQ(umpc
j+i , T U

j+i).(22b)

From (22), it is then straightforward that

N−j−1∑
i=0

`(φu
c,0

i , uc
i ) ≤

N−j−1∑
i=0

`(φu
mpc,0

j+i , umpc
j+i ).(23a)

Now, let i ∈ {N − j : N − 1} and consider the definition (9). Then, dQ(φũ,0i , s̃Xi ) = dR(ũi, s̃
U
i ) = 0. These

equality relations coupled with (21) give rise to

N−1∑
i=N−j

`(φu
c,0

i , uc
i ) = 0.(23b)

From (23), we finally infer that if ewj ∈ Ej , then

VN (φu
mpc,w

j ,uc) = VN (φu
c,0

0 ,uc) ≤ V ∗N (x)−
j−1∑
i=0

`(φu
mpc,0

i , umpc
i ).(24)

3) At-event recursive feasibility: Consider now the new candidate input sequence ûc(x; j + 1) where

ûc
i :=

{
uc
i+1 +KiLiwj , ∀i ∈ {0 : N − 2},
Fφu

c,0
N + FLN−1wj , i = N − 1,

(25a)

and its associated candidate state sequence φ̂ûc,0(x; j + 1) such that

φ̂û
c,0

i :=

φu
c,0

i+1 + Liwj , ∀i ∈ {0 : N − 1},
Aclφ̂

ûc,0
N−1, i = N,

(25b)

where wj ∈W. Observe that

φ̂û
c,0

0 = φu
c,0

1 + wj = Aφu
c,0

0 +Buc
0 + wj
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= Aφu
mpc,w

j +Bumpc
j + wj = φu

mpc,w
j+1 .

We now show that ûc ∈ UN and φ̂ûc,0 ∈ XN , i.e., VN (φu
mpc,w

j+1 , ûc) < ∞. Observe that uc
i+1 ∈ Ui+1 and

wj ∈ W. Hence, uc
i+1 ∈ Ui+1 ⊕KiLiW for all i ∈ {0 : N − 2}. Since Ui+1 = Ui 	KiLiW, we have ûc

i ∈ Ui
for all i ∈ {0 : N − 2}. Recall now φu

c,0
N ∈ Xf (from Step 1). Assumption 3.2 along with LN−1 = 0 imply

that ûc
N−1 ∈ UN−1. We have φu

c,0
i+1 ∈ Xi+1 for all i ∈ {0 : N − 2}. Then, φ̂û

c,0
i ∈ Xi+1 ⊕ LiW. For all

i ∈ {0 : N − 2}, it follows from Xi+1 = Xi 	 LiW that φ̂û
c,0

i ∈ Xi. Recall that φu
c,0

N ∈ Xf and LN−1 = 0.

Hence, we arrive at φ̂û
c,0

N−1 ∈ Xf and as a result φ̂û
c,0

N ∈ Xf . We thus have ûc ∈ UN and φ̂ûc,0 ∈ XN , i.e.,

VN (φu
mpc,w

j+1 , ûc) <∞.

4) At-event value function decay: Consider now ûc and φ̂ûc,0 as the candidate input and state

sequences at time j + 1, respectively. For all i ∈ {0 : N − 2} and for all wj ∈W,

dQ(φ̂û
c,0

i , T X
i ) = dQ(φu

c,0
i+1 + Liwj , T X

i )(26a)

≤ dQ(φu
c,0

i+1 , T X
i 	 L̃iEj) = dQ(φu

c,0
i+1 , T X

i+1),

where the first inequality follows from (25b), the inequality is implied by Lemma 2.1, and the second equality

is derived from (3b). Following a similar argument, we arrive at

dR(ûc
i , T U

i ) ≤ dR(uc
i+1, T U

i+1).(26b)

Since LN−1 = 0, φ̂û
c,0

N−1 = φu
c,0

N and ûc
N−1 = Fφu

c,0
N . In Step 3, it is shown that φ̂û

c,0
N−1 ∈ Xf . Then

Asuumption 3.2 implies that φ̂û
c,0

N−1 ∈ T X
N−1 and ûc

N−1 ∈ T U
N−1. Hence, `(φ̂û

c,0
N−1, û

c
N−1) = 0. By virtue of the

inequalities in (26), we then arrive at

VN (φu
mpc,w

j+1 , ûc) = VN (φ̂û
c,0

0 , ûc) ≤
N−1∑
i=1

`(φu
c,0

i , uc
i )

= VN (φu
c,0

0 ,uc)− `(φu
c,0

0 , uc
0)

= VN (φu
c,0

0 ,uc)− `(φu
mpc,0

j , umpc
j )

≤ V ∗N (x)−
j∑
i=0

`(φu
mpc,0

i , umpc
i ).

(27)

It follows from the optimality principle that V ∗N (φu
mpc,w

j+1 ) ≤ VN (φu
mpc,w

j+1 , ûc). This inequality along with (27)

in turn implies that

V ∗N (φu
mpc,w

j+1 ) ≤ V ∗N (x)−
j∑
i=0

`(φu
mpc,0

i , umpc
i ).(28)

5) Robust convergence: First, observe that (13) is an immediate consequence of (24) and (28). Let us

now recall that x = ξτt and φu
mpc,w

j+1 (x) = ξτt+1
. Then, one can rewrite (28) as follows:

V ∗N (ξτt+1
)− V ∗N (ξτt) ≤ −

τt+1−τt−1∑
i=0

`
(
φu

mpc,0
i (ξτ ), umpc

i (ξτ )
)
.

Notice that the right-hand side of the above inequality is strictly negative unless when φu
mpc,0

i (ξτ ) ∈ T X
i and

umpc
i (ξτ ) ∈ T U

i for all i ∈ {0 : τt+1 − τt − 1}. Since V ∗N (ξτt+1
) is a non-negative value, it is straightforward

to observe that the states and inputs of the closed-loop dynamics (7) converge to their corresponding target

sets. This concludes the proof.
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5.2. Proof of Theorems 4.4 & 4.5

We first begin with a preliminary argument that is shared between both theorems. We then carry on

with the proof of each case in an orderly fashion. Notice that ξ ∈ S 	MB(l, u) and S is a polytope by the

theorems’ hypothesis. Let hMB be the support function of MB. One can infer that

〈a>i,S , ξ〉 ≤ bi,S − hMB(a>i,S),∀i ∈ {1 : m}.

Next, observe that B(l, u) ⊂ Rk is a polytope (and as a result bounded), and the domain KB on which the

support function hB is defined is the whole space, i.e., KB = Rk. Hence, hMB(a>i,S) = hB(M>a>i,S), and as a

consequence

〈a>i,S , ξ〉 ≤ bi,S − hB(M>a>i,S),∀i ∈ {1 : m}.

Rearranging the above inequality, we arrive at

hB(M>a>i,S) ≤ bi,S − 〈a>i,S , ξ〉,∀i ∈ {1 : m},

where the only unknown entity is hB(M>a>i,S) with M>a>i,S ∈ Rk. It follows from the definition of the support

function that 〈M>a>i,S , z〉 ≤ hB(M>a>i,S) for all z ∈ Rk. Thus,

〈M>a>i,S , z〉 ≤ bi,S − 〈a>i,S , ξ〉,∀i ∈ {1 : m},∀z ∈ B.(29)

Let us now define for all i ∈ {1 : m}, a>
i,S̄ := M>a>i,S , bi,S̄ := bi,S − 〈a>i,S , ξ〉, and the convex polytope (which

we referred to as the principal polytope in the paragraph before Theorem 4.4)

(30)
S̄ := {s ∈ Rk : 〈a>i,S̄ , s〉 ≤ bi,S̄ ,∀i ∈ {1 : m}}

= {s ∈ Rk : AS̄s ≤ bS̄},

where AS̄ := [a>
1,S̄ , · · · , a>m,S̄ ]> = (M>A>S )> = ASM and bS̄ := [b1,S̄ , · · · , bm,S̄ ]> = bS − ASξ. Now, one

can deduce from the inequalities (29) and the definition (30) that the convex polytope S̄ contains the hyper-

rectangle B(l, u), i.e., B(l, u) ⊆ S̄. Notice that B(l, u) is parametric in the variables l and u.

Theorem 4.4: In the CP framework, we propose a convex nonlinear program to compute the hyper-

rectangle B(l, u) ⊆ S̄ such that its volume is maximized. Suppose B(l, u) is parameterized as l := −v =

[−v1, · · · ,−vk]> and u := v = [v1, · · · , vk]> such that for all i ∈ {1 : k}, vi and vi are positive scalars (this

condition has to do with the fact that the resulting hyper-rectangle should contain the origin). Recall the

inequality (29), that is 〈M>a>i,S , z〉 ≤ bi,S − ai,Sξ, for all i ∈ {1 : m} and for all z ∈ B. In what follows, we

show that although the hyper-rectangle B(l, u) = B(−v, v) is parametric, one can provide a closed form for

its support function evaluated at M>a>i,S . By definition of a support function,

(31)
hB(M>a>i,S) = max

z
〈M>a>i,S , z〉

s.t. ABz ≤ bB,

where AB = [Ik − Ik]> and bB = [v> v>]>. The above problem is an LP with a bounded feasible set. Thus,

the optimal solution lies on the boundary of the hyper-rectangle towards which the normal M>a>i,S points.

Let us define, for all i ∈ {1 : m}, ŵi := sign(M>a>i,S) ∈ Rk, where the sign operator is applied entry-wise.

(Notice that this vector simply indicates the orthant(s) that the vector M>a>i,S points to.) It then becomes

clear that the vectors wi ∈ R2k, as defined in (16), enable us to express the optimal solution of (31) in terms

of a linear combination of the vertices of B, i.e.,

hB
(
M>a>i,S

)
= 〈wi, [v> v>]>〉,∀i ∈ {1 : m}.

Based on the above relation, the inequality (29) simplifies to

〈wi, [v> v>]>〉 ≤ bi,S − ai,Sξ,∀i ∈ {1 : m},
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in which the vectors v, v ∈ Rk are the decision variables. Intuitively, the above inequalities represents

the linear constraints that the vertices of the hyper-rectangle B(−v, v) should satisfy in order to guarantee

ξ ∈ S 	MB(−v, v).

Based on the chosen definition of volume for B(−v, v) in (11), we intend to find a hyper-rectangle B(−v, v)

that possesses the maximal volume. Unfortunately, regardless of the definition choice for the volume, the

resulting objective function is non-convex and becomes unsuitable for optimization. Interestingly enough, one

can simply use the logarithmic mapping for the volume definitions in (11) to obtain the objective functions

suggested in (15), that are monotonic nonlinear concave functions. Then, it follows that a maximum hyper-

rectangle B that contains the origin and satisfies ξ ∈ S 	MB is the solution of the CP (14).

Theorem 4.5: In the LP framework, we follow the procedure proposed in [5] with which one is able to

cast the problem as a linear program. We first provide the proof for the LP relaxation of the problem (14)

with q = 1. Let us denote the maximum length of a line segment containing the origin, parallel to the j-th

coordinate axis, and contained in S̄ by rj . It follows from [5, Proposition3] that one can use (17b) to find

rj , for all j ∈ {1 : k}. It is worth nothing that in the LP (17b), the constraints z ≤ 0 and z + ωej ≥ 0

are two extra regularity conditions that we placed on the line segment compared to [5, Proposition3]. These

conditions ensure that the origin lies inside this line segment. Now, define the strictly positive vector r ∈ Rk

by rj = ωj for all j ∈ {1 : k}. Then, it follows from [5, Proposition2] that a maximum r-constrained inner

hyper-rectangular B of S̄ that contains the origin is given by B(z∗, z∗+λ∗r) where z∗ and λ∗ are the optimal

solutions of (17a). Here, we also emphasize the fact that we have introduced the extra constraints z ≤ 0 and

z + λr ≥ 0 with respect to [5, Proposition2]. By doing so, the LP (17a) is forced to find a hyper-rectangular

B such that it contains the origin. Then, the claim for the LP case follows.

We now present a sketch of proof for the LP relaxation of the problem (14) with q = 2. Observe that the

polytope S̄ ′ :=
{
s ∈ R2k : W ′s ≤ B′

}
is the inequality representation of the constraints in the CP (14), where

W ′ and B′ are defined in Theorem 4.5. We seek to find a hyper-rectangle that fits inside this lifted polytope

as follows. In the first step, we place a vertex of the hyper-rectangle at the origin. We then find the width of

the line segment along each coordinate that is inside the lifted polytope and contains the origin using (18b).

In the second step, we use (18a) to find a scaling factor λ such that the λ-scaled hyper-rectangle constructed

based on the first step fits inside the polytope S̄ ′. This concludes the proof.

6. Numerical Examples

In this section, we provide a numerical example to study the results presented in Section 4. For the

numerical simulations, we use CVXOPT [1] and (py)cddlib [14]. The system is an unstable batch reactor

borrowed from [33, Page 213]. We discretized the model using the zero-order-hold method with step-size 0.05,

that is,

x+=


1.08 −0.05 0.29 −0.24

−0.03 0.81 0.00 0.03

0.04 0.19 0.73 0.24

0.00 0.19 0.05 0.91

x+


0.00 −0.02

0.26 0.00

0.08 −0.13

0.08 −0.00

u+ w

where the state and input constraint sets are X = {x ∈ R4 : ‖x‖∞ ≤ 2} and U = {u ∈ R2 : ‖u‖∞ ≤ 2},
respectively. The disturbance set is defined as W = {w ∈ R4 : ‖w‖∞ ≤ 0.02}. The state and input target

sets are Tx = {x ∈ R4 : ‖x‖∞ ≤ 0.5} and Tu = {u ∈ R2 : ‖u‖∞ ≤ 1.5}, respectively. The horizon length N

is set to 10. The weight matrices in the cost function (4) are Q = 2× I4 and r = I2. Finally, the terminal set

is Xf = {x ∈ R4 : ‖x‖∞ ≤ 0.2}.
In what follows, we employ the triggering set construction approaches of Theorems 4.4 & 4.5 for q = 1.

Two types of disturbance realizations are considered: (1) a uniform distribution with the bounded support W,

and (2) a worst case disturbance wt = argmaxw∈W ξ>t w at each time t. In the case of uniform disturbance,

we also manually applied an impulse-type disturbance to the closed-loop dynamics by resetting the second

state ξ2
25 to 1.7. This disturbance does not belong to the admissible disturbance set W.
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Figure 2. Comparison of the event-based implementation using the construction approach

CP1 with the standard implementation. (Top four) The Solid lines are the evolution of states.

The crosses are the states at triggering instances. The (gray) shaded areas are the projection

of constructed hyper-rectangles E on the corresponding state’s coordinate axis. (Bottom

left) The lines are the input of the closed-loop system. (Bottom right) The crosses are the

value function V ∗N at triggering instances. The solid line is the inter-event cost function VN
computed using Theorem 4.1.
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Figure 3. Comparison of the event-based implementation using the construction approach

LP1 with the standard implementation. (Top four) The Solid lines are the evolution of states.

The crosses are the states at triggering instances. The (gray) shaded areas are the projection

of constructed hyper-rectangles E on the corresponding state’s coordinate axis. (Bottom

left) The lines are the input of the closed-loop system. (Bottom right) The crosses are the

value function V ∗N at triggering instances. The solid line is the inter-event cost function VN
computed using Theorem 4.1.

Figures 2 and 3 show the behavior of the event-based implementation of the MPC method. (Notice that

the behavior of the standard MPC was almost identical, we did not include the results of the standard MPC

for the sake clarity.)

We begin with pointing out the shared properties of the approaches CP1 and LP1. First of all, it is

evident that the number of instances that the optimization problem (5) is solved has effectively reduced in
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all considered cases compared to standard periodic implementation. Observe that the inputs and states of

the closed-loop dynamics (7) do not violate the constraint sets X and U, respectively, in all considered cases.

Moreover, the closed-loop states ξt and the inputs ut converge to the target sets Tx and Tu, respectively.

Finally, both of the approaches CP1 and LP1 can effectively recover from the impulse-type disturbance applied

on time t = 25. We also note that the event-based implementations exhibit an almost limit-cyclic behavior

inside the target set Tx in the worst case disturbance realizations.

Let us now highlight the difference between the construction approaches CP1 and LP1. As depicted in the

top right plots of Figures 2(a) and 3(a), the construction method LP1 is more conservative in comparison

with the construction method CP1. The width of the shaded areas represents the projection of the triggering

sets E(x). In Figure 2(a), one can also observe in the top right plot that the triggering intervals are tight

with respect to the target sets, as well.

7. Future Directions

In this paper, an event-triggering approach was proposed to implement an RMPC method to constrained,

perturbed LTI systems. The procedure to design the triggering mechanism is online, and is decoupled from

the controller design. Specifically, we introduced two theoretical frameworks to construct the triggering

mechanism as a volume maximization problem. There are multiple directions that one can pursue to extend

the results in this paper. First, it is interesting to investigate the possibility of extending the results of

this paper to a nonlinear MPC case. In qualitative manner, we have observed that the choice of tightening

gains K directly impacts the constructed triggering sets E. Hence, another possible direction is to explore the

possibility of characterizing this unknown dependency in a more quantitative manner. Lastly, the triggering

approach proposed in this paper is online (and in fact state-dependent). It is thus valuable to investigate

whether it is possible to make the triggering set design offline.
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[10] F. D. Brunner, W. P. M. H. Heemels, and F. Allgöwer, Robust event-triggered MPC with guaranteed asymptotic bound

and average sampling rate, IEEE Transactions on Automatic Control, 62 (2017), pp. 5694–5709.

[11] E. F. Camacho and C. B. Alba, Model predictive control, Springer Science & Business Media, 2013.

[12] B. Demirel, E. Ghadimi, D. E. Quevedo, and M. Johansson, Optimal control of linear systems with limited control

actions: threshold-based event-triggered control, IEEE Transactions on Control of Network Systems, 5 (2017), pp. 1275–

1286.

[13] J. C. Dunn and D. P. Bertsekas, Efficient dynamic programming implementations of Newton’s method for unconstrained

optimal control problems, Journal of Optimization Theory and Applications, 63 (1989), pp. 23–38.

[14] K. Fukuda, cddlib reference manual, cddlib Version 0.92, ETHZ, Zürich, Switzerland, (2001).
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