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Abstract. Treating optimization methods as dynamical systems can be traced back centuries ago in order to

comprehend the notions and behaviors of optimization methods. Lately, this mind set has become the driving

force to design new optimization methods. Inspired by the recent dynamical system viewpoint of Nesterov’s

fast method, we propose two classes of fast methods, formulated as hybrid control systems, to obtain pre-

specified exponential convergence rate. Alternative to the existing fast methods which are parametric-in-time

second order differential equations, we dynamically synthesize feedback controls in a state-dependent manner.

Namely, in the first class the damping term is viewed as the control input, while in the second class the

amplitude with which the gradient of the objective function impacts the dynamics serves as the controller. The

objective function requires to satisfy the so-called Polyak– Lojasiewicz inequality which effectively implies no

local optima and a certain gradient-domination property. Moreover, we establish that both hybrid structures

possess Zeno-free solution trajectories. We finally provide a mechanism to determine the discretization step

size to attain an exponential convergence rate.

1. Introduction

There is a renewed surge of interest in gradient-based algorithms in many computational communities

such as machine learning and data analysis. The following non-exhaustive list of references indicates typical

application areas: clustering analysis [24], neuro-computing [5], statistical estimation [37], support vector

machines [1], signal and image processing [4], and networked-constrained optimization [12]. This interest

primarily stems from low computational and memory loads of these algorithms (making them exceptionally

attractive in large-scale problems where the dimension of decision variables can be enormous). As a result, a

deeper understating of how these algorithms function has become a focal point of many studies.

One research direction that has been recently revitalized is the application of ordinary differential equations

(ODEs) to the analysis and design of optimization algorithms. Consider an iterative algorithm that can be

viewed as a discrete dynamical system, with the scalar s as its step size. As s decreases, one can observe that

the iterative algorithm in fact recovers a differential equation, e.g., in the case of gradient descent method

applied to an unconstrained optimization problem minX∈Rn f(X), one can inspect that

Xk+1 = Xk − s∇f(Xk)  Ẋ(t) = −∇f
(
X(t)

)
where f : Rn → R is a smooth function, X is the decision variable, k ∈ Z≥0 is the iteration index, and t ∈ R≥0
is the time. The main motivation behind this line of research has to do with well-established analysis tools

in dynamical systems described by differential equations.

The slow rate of convergence of the gradient descent algorithm (O( 1
t ) in continuous and O( 1

k ) in discrete

time), limits its application in large-scale problems. In order to address this shortcoming, many researchers

resort to the following class of 2nd-order ODEs, which is also the focus of this study:

(1) Ẍ(t) + γ(t)Ẋ(t) +∇f
(
X(t)

)
= 0.

Increasing the order of the system dynamics interestingly helps improve the convergence rate of the corre-

sponding algorithms to O( 1
k2 ) in the discrete-time domain or to O( 1

t2 ) in the continuous-time domain. Such

methods are called momentum, accelerated, or fast gradient-based iterative algorithms in the literature. The
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time-dependent function γ : R≥0 → R>0 is a damping or a viscosity term, which has also been referred to as

the asymptotically vanishing viscosity since limt→∞ γ(t) = 0 [7].

Chronological developments of fast algorithms: It is believed that the application of (1) to speed-up

optimization algorithms is originated from [36] in which Polyak was inspired by a physical point of view (i.e.,

a heavy-ball moving in a potential field). Later on, Nesterov introduced his celebrated accelerated gradient

method in [30] using the notion of “estimate sequences” and guaranteeing convergence rate of O( 1
k2 ). Despite

several extensions of Nesterov’s method [31, 32, 33], the approach has not yet been fully understood. In

this regard, many have tried to study the intrinsic properties of Nesterov’s method such as [10, 6, 9, 25].

Recently, the authors in [38] and in details [39] surprisingly discovered that Nesterov’s method recovers (1)

in its continuous limit, with the time-varying damping term γ(t) = 3
t .

A dynamical systems perspective: Based on the observation suggested by [38], several novel fast

algorithms have been developed. Inspired by the mirror descent approach [29], the ODE (1) has been extended

to non-Euclidean settings using the Bregman divergence in [21]. Then, the authors in [40] further generalized

the approach in [21] to higher order methods using instead the Bregman Lagrangian. Following [40], a

“rate-matching” Lyapunov function is proposed in [42] with its monotonicity property established for both

continuous and discrete dynamics. Recently, the authors in [25] make use of an interesting semidefinite

programming framework developed by [9] and use tools from robust control theory to analyze the convergence

rate of optimization algorithms. More specifically, the authors exploit the concept of integral quadratic

constraints (IQCs) [27] to design iterative algorithms under the strong convexity assumption. Later, the

authors in [11] extend the results of IQC-based approaches to quasi-convex functions. The authors in [17] use

dissipativity theory [41] along with the IQC-based analysis to construct Lyapunov functions enabling rate

analyses. In [2], the ODE (1) is amended with an extra Hessian driven damping β∇2f(X(t)) for some positive

scalar β. It is shown that the proposed dynamics can be generalized to the case of lower-semicontinuous

functions via an appropriate reparameterization of the dynamics. The authors in [22] propose an averaging

approach to construct a broad family of fast mirror descent methods. They also introduce a state-dependent,

heuristic method to adaptively update the averaging function.

Restarting schemes: A characteristic feature of fast methods is the non-monotonicity in the subop-

timality measure f − f∗, where f∗ refers to the optimal value of function f . The reason behind such an

undesirable behavior can be intuitively explained in two ways: (i) a momentum based argument indicating as

the algorithm evolves, the algorithm’s momentum gradually increases to a level that it causes an oscillatory

behavior [35]; (ii) an acceleration-based argument indicating that the asymptotically vanishing damping term

becomes so small that the algorithm’s behavior drifts from an over-damped regime into an under-damped

regime with an oscillatory behavior [39]. To prevent such an undesirable behavior in fast methods, an optimal

fixed restart interval is determined in terms of the so-called condition number of function f such that the

momentum term is restarted to a certain value, see e.g., [31, 28, 15, 23, 33]. It is worth mentioning that [35]

proposes two heuristic adaptive restart schemes. It is numerically observed that such restart rules practically

improve the convergence behavior of a fast algorithm.

Regularity for exponential convergence: Generally speaking, exponential convergence rate and the

corresponding regularity requirements of the function f are two crucial metrics in fast methods. In what

follows, we discuss about these metrics for three popular fast methods in the literature. (Notice that these

fast methods are in general designed for wider classes of functions and not limited to the specific cases reported

below.) When the objective functions are strongly convex with a constant σf and their gradient is Lipschitz

with a constant Lf , [39] proposes the “speed restarting” scheme

sup
{
t > 0 : ∀τ ∈ (0, t),

d‖Ẋ(τ)‖2

dτ
> 0
}
,

to achieve the convergence rate of:

f
(
X(t)

)
− f∗ ≤ d1e−d2t‖X(0)−X∗‖2.
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The positive scalars d1 and d2 depend on the constants σf and Lf . Assuming the convexity of the function

f with a certain choice of parameters in their “ideal scaling” condition, [40] uses the dynamics

Ẍ(t) + cẊ(t) + c2ect
(
∇2h

(
X(t) +

1

c
Ẋ(t)

))−1
∇f
(
X(t)

)
= 0,

and guarantees the convergence rate of O(e−ct) for some positive scalar c, where the function h is a distance

generating function. Under uniform convexity assumption with a constant νf , it is further shown that

f
(
X(t)

)
− f∗ ≤

(
f
(
X(0)

)
− f∗

)
e−νf

1
p−1 t.

where p− 1 is the order of smoothness of f . The authors in [42] introduce the Lyapunov function

E(t) = eβ(t)
(
f
(
X(t)

)
− f∗ +

σf
2
‖X∗ − Z(t)‖2

)
,

to guarantee the rate of convergence

E(t) ≤ E(0)e−
∫
β̇(s)ds,

where Z(t) = X(t) + 1
β̇(t)

Ẋ, Ż(t) = −Ẋ(t)− 1
σf
β̇(t)∇f

(
X(t)

)
, and β(t) is a user-defined function.

Statement of hypothesis: Much of the references reviewed above (excluding, e.g., [2] and [22]) primarily

deal with constructing a time-dependent damping term γ(t) that is sometimes tied to a Lyapunov function.

Furthermore, due to underlying oscillatory behavior of the corresponding 2nd-order ODE, researchers utilize

restarting schemes to over-write the steady-state non-monotonic regime with the transient monotonic regime

of the dynamics. In general, notice that these schemes are based on time-dependent schedulers.

With the above argument in mind, let us view an algorithm as a unit point mass moving in a potential

field caused by an objective function f under a parametric (or possibly constant) viscosity, similar to the

second order ODE (1). In this view, we aim to address the following two questions:

Is it possible to

(I) synthesize the damping term γ as a state-dependent term (i.e., γ(X, Ẋ)), or

(II) dynamically control the magnitude of the potential force ∇f(X),

such that the underlying properties of the optimization algorithm are improved?

Contribution: In this paper, we answer these questions by amending the 2nd-order ODE (1) in two ways

as follows:

(I) Ẍ(t) + uI
(
X(t), Ẋ(t)

)
Ẋ(t) +∇f(X(t)) = 0,

(II) Ẍ(t) + Ẋ(t) + uII
(
X(t), Ẋ(t)

)
∇f(X(t)) = 0,

where the indices indicate to which question each structure is related to in the above hypothesis. Evidently,

in the first structure, the state-dependent input uI replaces the time-dependent damping γ in (1). While in

the second structure, the feedback input uII dynamically controls the magnitude with which the potential

force enters the dynamics (we assume for simplicity of exposition that γ(t) = 1, however, one can modify our

proposed framework and following a similar path develop the corresponding results for the case γ(t) 6= 1).

Let f be a twice differentiable function that satisfies the so-called Polyak– Lojasiewicz (PL) inequality (see

Assumption (A2)). Given a positive scalar α, we seek to achieve an exponential rate of convergence O(e−αt)

for an unconstrained, smooth optimization problem in the suboptimality measure f
(
X(t)

)
− f∗. To do so,

we construct the state-dependent feedback laws for each structure as follows:

uI
(
X(t), Ẋ(t)

)
:= α+

‖∇f(X(t))‖2 − 〈∇2f
(
X(t)

)
Ẋ(t), Ẋ(t)〉

〈∇f
(
X(t)

)
,−Ẋ(t)〉

,

uII
(
X(t), Ẋ(t)

)
:=
〈∇2f

(
X(t)

)
Ẋ(t), Ẋ(t)〉+ (1− α)〈∇f

(
X(t)

)
,−Ẋ(t)〉

‖∇f(X(t))‖2
.
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Motivated by restarting schemes, we further extend the class of dynamics to hybrid control systems (see

Definition 2.1 for further details) in which both of the above ODE structures play the role of the continuous

flow in their respective hybrid dynamical extension. We next suggest an admissible control input range

[umin, umax] that determines the flow set of each hybrid system. Based on the model parameters α, umin, and

umax, we then construct the jump map of each hybrid control system by the mapping
(
X>,−β∇>f(X)

)>
guaranteeing that the range space of the jump map is contained in its respective flow set. Notice that the

velocity restart schemes take the form of Ẋ = −β∇f(X).

This paper extends the results of [20] in several ways which are summarized as follows:

• We synthesize a state-dependent gradient coefficient (uII(x)) given a prescribed control input bound

and a desired convergence rate (Theorem 3.4). This is a complementary result to our earlier study

[30] which is concerned with a state-dependent damping coefficient (uI(x)). Notice that the state-

dependent feature of our proposed dynamical systems differs from commonly time-dependent method-

ologies in the literature.

• We derive a lower bound on the time between two consecutive jumps for each hybrid structure. This

ensures that the constructed hybrid systems admit the so-called Zeno-free solution trajectories. It

is worth noting that the regularity assumptions required by the proposed structures are different

(Theorems 3.2 and 3.5).

• The proposed frameworks are general enough to include a subclass of non-convex problems. Namely,

the critical requirement is that the objective function f satisfies the Polyak– Lojasiewicz (PL) inequal-

ity (Assumption (A2)), which is a weaker regularity assumption than the strong convexity that is

often assumed in this context for exponential convergence.

• We utilize the forward-Euler method to discretize both hybrid systems (i.e., obtain optimization

algorithms). We further provide a mechanism to compute the step size such that the corresponding

discrete dynamics have an exponential rate of convergence (Theorem 3.11).

The remainder of this paper is organized as follows. In Section 2, the mathematical notions are represented.

The main results of the paper are introduced in Section 3. Section 4 contains the proofs of the main results.

We introduce a numerical example in Section 5. This paper is finally concluded in Section 6.

Notations: The sets Rn and Rm×n denote the n-dimensional Euclidean space and the space of m × n
dimensional matrices with real entries, respectively. For a matrix M ∈ Rm×n, M> is the transpose of M ,

M � 0 (≺ 0) refers to M positive (negative) definite, M � 0 (� 0) refers to M positive (negative) semi-

definite, and λmax(M) denotes the maximum eigenvalue of M . The n × n identity matrix is denoted by In.

For a vector v ∈ Rn and i ∈ {1, · · · , n}, vi represents the i-th entry of v and ‖v‖ :=
√

Σni=1 v
2
i is the Euclidean

2-norm of v. For two vectors x, y ∈ Rn, 〈x, y〉 := x>y denotes the Euclidean inner product. For a matrix M ,

‖M‖ :=
√
λmax(M>M) is the induced 2-norm. Given the set S ⊆ Rn, ∂S and int(S) represent the boundary

and the interior of S, respectively.

2. Preliminaries

We briefly recall some notions from hybrid dynamical systems that we will use to develop our results. We

state the standing assumptions related to the optimization problem to be tackled in this paper. The problem

statement is then introduced. We adapt the following definition of a hybrid control system from [13] that is

sufficient in the context of this paper.

Definition 2.1 (Hybrid control system). A time-invariant hybrid control system H comprises a controlled

ODE and a jump (or a reset) rule introduced as:

(H)

{
ẋ = F

(
x, u(x)

)
, x ∈ C

x+ = G(x), otherwise,
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where x+ is the state of the hybrid system after a jump, the function u : Rn → Rm denotes a feedback signal,

the function F : Rn × Rm → Rn is the flow map, the set C ⊆ Rn is the flow set, and the function G : ∂C →
int(C) represents the jump map.

Notice that the jump map G(x) will be activated as soon as the state x reaches the boundary of the flow

set C, that is ∂C. In hybrid dynamical systems, the notion of Zeno behavior refers to the phenomenon that

an infinite number of jumps occur in a bounded time interval. We then call a solution trajectory of a hybrid

dynamical system Zeno-free if the number of jumps within any finite time interval is bounded. The existence

of a lower bound on the time interval between two consecutive jumps suffices to guarantee the Zeno-freeness

of a solution trajectory of a hybrid control system. Nonetheless, there exist solution concepts in the literature

that accept Zeno behaviors, see for example [3, 13, 14, 26] and the references therein.

Consider the following class of unconstrained optimization problems:

(2) f∗ := min
X∈Rn

f(X),

where f : Rn → R is an objective function.

Assumption 2.2 (Regularity assumptions). We stipulate that the objective function f : Rn → R is twice

differentiable and fulfills the following

• (Bounded Hessian) The Hessian of function f , denoted by ∇2f(x), is uniformly bounded, i.e.,

(A1) − `fIn � ∇2f(x) � LfIn,

where `f and Lf are non-negative constants.

• (Gradient dominated) The function f satisfies the Polyak- Lojasiewicz inequality with a positive con-

stant µf , i.e., for every x in Rn we have

(A2)
1

2

∥∥∇f(x)
∥∥2 ≥ µf(f(x)− f∗

)
,

where f∗ is the minimum value of f on Rn.

• (Lipschitz Hessian) The Hessian of the function f is Lipschitz, i.e., for every x, y in Rn we have∥∥∇2f(x)−∇2f(y)
∥∥ ≤ Hf‖x− y‖,(A3)

where Hf is a positive constant.

We now formally state the main problem to be addressed in this paper:

Problem 2.3. Consider the unconstrained optimization problem (2) where the objective function f is twice

differentiable. Given a positive scalar α, design a fast gradient-based method in the form of a hybrid control

system (H) with α-exponential convergence rate, i.e. for any initial condition X(0) and any t ≥ 0 we have

f
(
X(t)

)
− f∗ ≤ e−αt

(
f
(
X(0)

)
− f∗

)
,

where {X(t)}t≥0 denotes the solution trajectory of the system (H).

Remark 2.4 (Lipschitz gradient). Since the function f is twice differentiable, Assumption (A1) implies that

the function ∇f is also Lipschitz with a positive constant Lf , i.e., for every x, y in Rn we have

(3)
∥∥∇f(x)−∇f(y)

∥∥ ≤ Lf‖x− y‖.
We now collect two remarks underlining some features of the set of functions that satisfy (A2).

Remark 2.5 (PL functions and invexity). The PL inequality in general does not imply the convexity of a

function but rather the invexity of it. The notion of invexity was first introduced by [16]. The PL inequality

(A2) implies that the suboptimality measure f − f∗ grows at most as a quadratic function of ∇f .
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Remark 2.6 (Non-uniqueness of stationary points). While the PL inequality does not require the uniqueness

of the stationary points of a function (i.e., {x : ∇f(x) = 0}), it ensures that all stationary points of the

function f are global minimizers [8].

We close our preliminary section with a couple of popular examples borrowed from [18].

Example 1 (PL functions). The composition of a strongly convex function and a linear function satisfies the PL

inequality. This class includes a number of important problems such as least squares, i.e., f(x) = ‖Ax− b‖2
(obviously, strongly convex functions also satisfy the PL inequality). Any strictly convex function over a

compact set satisfies the PL inequality. As such, the log-loss objective function in logistic regression, i.e.,

f(x) = Σni=1 log
(
1 + exp(bia

>
i x)

)
, locally satisfies the PL inequality.

3. Main Results

In this section, the main results of this paper are provided. We begin with introducing two types of

structures for the hybrid system (H) motivated by the dynamics of fast gradient methods [39]. Given a

positive scalar α, these structures, indexed by I and II, enable achieving the rate of convergence O(e−αt) in the

suboptimality measure f
(
x1(t)

)
− f∗. We then collect multiple remarks highlighting the shared implications

of the two structures along with a naive type of time-discretization for these structures. The technical proofs

are presented in Section 4. For notational simplicity, we introduce the notation x = (x1, x2) such that the

variables x1 and x2 represent the system trajectories X and Ẋ, respectively.

3.1. Structure I: state-dependent damping coefficient

The description of the first structure follows. We start with the flow map FI : R2n × R→ R2n defined as

FI

(
x, uI(x)

)
=

(
x2

−∇f(x1)

)
+

(
0

−x2

)
uI(x).(4a)

Notice that FI( · , · ) is the state-space representation of a 2nd-order ODE. The feedback law uI : R2n → R is

given by

(4b) uI(x) = α+
‖∇f(x1)‖2 − 〈∇2f(x1)x2, x2〉

〈∇f(x1),−x2〉
.

Intuitively, the control input uI(x) is designed such that the flow map FI

(
x, uI(x)

)
renders a level set σ(t) :=

〈∇f
(
x1(t)

)
, x2(t)〉 + α

(
f
(
x1(t)

)
− f∗

)
invariant, i.e., d

dtσ(t) = 0. Next, the candidate flow set CI ⊂ R2n is

characterized by an admissible input interval [uI uI], i.e.,

(4c) CI =
{
x ∈ R2n : uI(x) ∈ [uI, , uI]

}
,

where the interval bounds uI, uI represent the range of admissible control values. Notice that the flow set CI
is the domain in which the hybrid system (H) can evolve continuously. Finally, we introduce the jump map

GI : R2n → R2n parameterized by a constant βI

GI(x) =

(
x1

−βI∇f(x1)

)
.(4d)

The parameter βI ensures that the range space of the jump map GI is a strict subset of int(CI). By con-

struction, one can inspect that any neighborhood of the optimizer x∗1 has a non-empty intersection with the

flow set CI. That is, there always exist paths in the set CI that allow the continuous evolution of the hybrid

system to approach arbitrarily close to the optimizer.

We are now in a position to formally present the main results related to the structure I given in (4). For

the sake of completeness, we borrow the first result from [20]. This theorem provides a framework to set

the parameters uI, uI, and βI in (4c) and (4d) in order to ensure the desired exponential convergence rate

O(e−αt).
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Theorem 3.1 (Continuous-time convergence rate - I). Consider a positive scalar α and a smooth function

f : Rn → R satisfying Assumptions (A1) and (A2). Then, the solution trajectory of the hybrid control system

(H) with the respective parameters (4) starting from any initial condition x1(0) satisfies

(5) f
(
x1(t)

)
− f∗ ≤ e−αt

(
f
(
x1(0)

)
− f∗

)
, ∀t ≥ 0,

if the scalars uI, uI, and βI are chosen such that

uI < α+ β−1I − LfβI,(6a)

uI > α+ β−1I + `fβI,(6b)

α ≤ 2µfβI.(6c)

The next result establishes a key feature of the solution trajectories generated by the dynamics (H) with

the respective parameters (4), that the solution trajectories are indeed Zeno-free.

Theorem 3.2 (Zeno-free hybrid trajectories - I). Consider a smooth function f : Rn → R satisfying Assump-

tion 2.2, and the corresponding hybrid control system (H) with the respective parameters (4) satisfying (6).

Given the initial condition
(
x1(0),−βI∇f

(
x1(0)

))
the time between two consecutive jumps of the solution

trajectory, denoted by τI, satisfies for any scalar r > 1

τI ≥ log

(
min

{
a1

a2 + a3
∥∥∇f(x1(0)

)∥∥ + 1, r

}1/δ
)
,(7)

where the involved constants are defined as

C :=
(uI − α) +

√
(uI − α)2 + 4Lf
2

,(8a)

δ := C + max{uI,−uI},(8b)

Lf := max{`f , Lf},(8c)

a1 := min{uI − (α+ β−1I + `fβI), (α+ β−1I − LfβI)− uI},(8d)

a2 := rLfδ
−1(rβIC + 1) + β−1I + (r2 + r + 1)βILf ,(8e)

a3 := r3β2
IHfδ

−1.(8f)

Consequently, the solution trajectories are Zeno-free.

Remark 3.3 (Non-uniform inter-jumps - I). Notice that Theorem 3.2 suggests a lower-bound for the inter-

jump interval τI that depends on ‖∇f
(
x1
)
‖. In light of the fact that the solution trajectories converge to the

optimal solutions, and as such ∇f
(
x1
)

tends to zero, one can expect that the frequency at which the jumps

occur reduces as the hybrid control system evolves in time.

3.2. Structure II: state-dependent potential coefficient

In this subsection, we first provide the structure II for the hybrid control system (H). We skip the the

details of differences with the structure I and differ it to Subection 3.3 and Section 4. Consider the flow map

FII : R2n × R→ R2n given by

FII

(
x, uII(x)

)
=

(
x2

−x2

)
+

(
0

−∇f(x1)

)
uII(x),(9a)

and the feedback law uII : R2n → R given by

uII(x) =
〈∇2f(x1)x2, x2〉+ (1− α)〈∇f(x1),−x2〉

‖∇f(x1)‖2
.(9b)

Notice that here the input uII(x) is derived along the same lines as in structure I. The feedback input uII(x)

is synthesized such that the level set σ(t) := 〈∇f
(
x1(t)

)
, x2(t)〉 + α

(
f
(
x1(t)

)
− f∗

)
remains constant as the
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dynamics x evolve based on the flow map FII

(
x, uII(x)

)
. The candidate flow set CII ⊂ R2n is parameterized

by an admissible interval [uII uII] as follows:

CII =
{
x ∈ R2n : uII(x) ∈ [uII, uII]

}
.(9c)

Parameterized in a constant βII, the jump map GII : R2n → R2n is given by

GII(x) =

(
x1

−βII∇f(x1)

)
.(9d)

Theorem 3.4 (Continuous-time convergence rate - II). Consider a positive scalar α and a smooth function f :

Rn → R satisfying Assumptions (A1) and (A2). Then, the solution trajectory of the hybrid control system (H)

with the respective parameters (9) starting from any initial condition x1(0) satisfies the inequality (5) if the

scalars uII, uII, and βII are chosen such that

uII < −`fβ2
II + (1− α)βII,(10a)

uII > Lfβ
2
II + (1− α)βII,(10b)

α ≤ 2µfβII.(10c)

Theorem 3.5 (Zeno-free hybrid trajectories - II). Consider a smooth function f : Rn → R satisfying

Assumptions (A1) and (A2), and the hybrid control system (H) with the respective parameters (9) satisfying

(10). Given the initial condition
(
x1(0),−βII∇f

(
x1(0)

))
the time between two consecutive jumps of the

solution trajectory, denoted by τII, satisfies for any scalar r ∈ (0, 1)

τII ≥ min
{
rω−1, δ(b1 + b2)−1

}
.(11)

where the involved scalars are defined as

δ := min
{
uII − (Lfβ

2
II + (1− α)βII), (−`fβ2

II + (1− α)βII)− uII
}
,

U := max{uII,−uII},
Lf := max{`f , Lf},

ω := Lf (β2
II + βIIU)

1
2 ,

b1 :=
2LfβII

(
U + ω(βII + U)

)
(1− r)3

,

b2 := |α− 1| 2ωβII
(1− r)3

+ |α− 1|αβII(1 + r).

Thus, the solution trajectories are Zeno-free.

Remark 3.6 (Uniform inter-jumps - II). Notice that unlike Theorem 3.2, the derived lower-bound for the

inter-jump interval τII is uniform in the sense that the bound is independent of ‖∇f
(
x1
)
‖. Furthermore, the

regularity requirement on the function f is weaker than the one used in Theorem 3.2, i.e., the function f is

not required to satisfy the Assumption (A3).

Notice that the main differences between the structures (4), (9) lie in the flow maps and the feedback laws.

On the other hand, these structures share the key feature of enabling an α-exponential convergence rate for

the hybrid system (H) through their corresponding control inputs. The reason explaining the aforementioned

points is deferred until later in Section 4.

3.3. Further Discussions

In what follows, we collect several remarks regarding the common features of the proposed structures.

Then, we apply the forward-Euler method of time-discretization to these structures of the hybrid control

system (H). The proposed discretizations guarantee an exponential rate of convergence in the suboptimality

measure f(xk1)− f∗, where k is the iteration index.
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Remark 3.7 (Weaker regularity than strong convexity). The PL inequality is a weaker requirement than

strong convexity. Notice that although the class of functions that satisfy the PL inequality are in general

non-convex, the set of minimizers of such functions should still be a convex set.

Remark 3.8 (Hybrid embedding of restarting). The hybrid frameworks intrinsically capture restarting

schemes through the jump map. The schemes are a weighted gradient where the weight factor βI or βII
is essentially characterized by the given data α, µf , `f , and Lf . One may inspect that the constant βI
or βII can be in fact introduced as a state-dependent weight factor to potentially improve the performance.

Nonetheless, for the sake of simplicity of exposition, we do not pursue this level of generality in this paper.

Remark 3.9 (2nd-order information). Although our proposed frameworks require 2nd-order information,

i.e., the Hessian ∇2f , this requirement only appears in a mild form as an evaluation in the same spirit as

the modified Newton step proposed in [34]. Furthermore, we emphasize that our results still hold true if one

replaces ∇2f(x1) with its upper-bound LfIn following essentially the same analysis. For further details we

refer the reader to the proof of Theorem 3.4.

Remark 3.10 (Fundamental limits on control input). An implication of Theorem 3.4 is that if the desired

convergence rate α >
( 2µf

2µf+`f

)
, it is then required to choose uII < 0, indicating that the system may need

to receive energy through a negative damping. On a similar note, Theorem 3.1 asserts that the upper bound

requires uI > α, and if α >
( 2µf√

max{Lf−2µf ,0}

)
, we then have to set uI < 0 [20, Remark 3.4].

3.4. Discrete-Time Dynamics

In the next result, we show that if one applies the forward-Euler method on the two proposed structures

properly, the resulting discrete-time hybrid control systems possess exponential convergence rates. Suppose

i ∈ {I, II} and let us denote by s the time-discretization step size. Consider the discrete-time hybrid control

system

(12) xk+1 =

{
Fd,i

(
xk, ud,i(x

k)
)
, xk ∈ Cd,i

Gd,i(x
k), otherwise,

where Fd,i, Gd,i, and Cd,i are the flow map, the jump map, and the flow set, respectively. The discrete flow

map Fd,i : R2n × R→ R2n is given by

Fd,i
(
xk, ud,i(x

k)
)

= xk + sFi
(
xk, ui(x

k)
)
, i ∈ {I, II},(13a)

where Fi and ui are defined in (4a) and (4b), or (9a) and (9b) based on the considered structure i. The

discrete flow set Cd,i ⊂ R2n is defined as

Cd,i =
{

(xk1 , x
k
2) ∈ R2n : c1‖xk2‖2 ≤ ‖∇f(xk1)‖2 ≤ c2〈∇f(xk1),−xk2〉

}
,(13b)

and, c1 and c2 are two positive scalars. The discrete jump map Gd,i : R2n → R2n is given by Gd,i(x
k) =(

(xk)>,−β∇>f(xk)
)>

.

It is evident in the flow sets Cd,i of the discrete-time dynamics that these sets are no longer defined based on

admissible input intervals. The reason has to do with the difficulties that arise from appropriately discretizing

the control inputs uI and uII. Nonetheless, the next result guarantees exponential rate of convergence of the

discrete-time control system (12) with either of the respective structure I or II, by introducing a mechanism

to set the scalars c1, c2, and β.

Theorem 3.11 (Stable discretization - I & II). Consider a smooth function f : Rn → R satisfying As-

sumptions (A1) and (A2). The solution trajectory of the discrete-time hybrid control system (12) with the

respective structure i ∈ {I, II} and starting from any initial condition x01, satisfies

f(xk+1
1 )− f∗ ≤ λ(s, c1, c2, β)

(
f(xk1)− f∗

)
,(14)
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Algorithm 1 Sate-dependent fast gradient method

Input: data x01, `f , Lf , µf , α ∈ R+, kmax ∈ N+, i ∈ {I, II}
Set:

√
c1 = c2 = β−1 = Lfs, x

0
2 = −β∇f(x01)

x0 = (x01, x
0
2)

for k = 1 to kmax do

if c1‖xk2‖2 ≤ ‖∇f(xk1)‖2 ≤ c2〈∇f(xk1),−xk2〉 then

xk+1 ← Fd,i(x
k)

else

xk+1 ← Gd,i(x
k)

end if

end for

with λ(s, c1, c2, β) ∈ (0, 1) given by

λ(s, c1, c2, β) := 1 + 2µf
(
− s

c2
+
Lf
2c1

s2
)
,(15)

if the parameters s, c1 ,c2, and β satisfy

√
c1 ≤ c2,(16a)

β2c1 ≤ 1 ≤ βc2,(16b)

c2Lfs < 2c1.(16c)

Remark 3.12 (Naive discretization). We would like to emphasize that the exponential convergence of the

proposed discretization method solely depends on the dynamics x1 and the properties of the objective function

f . Thus, we deliberately avoid labeling the scalars c1, c2, and β by the structure index i. Crucially, the

structures of the control laws do not impact the relations (16) in Theorem 3.11, see Subsection 4.4 for more

details. In light of the above facts, we believe that a more in-depth analysis of the dynamics along with the

control structures may provide a more intelligent way to improve the discretization result of Theorem 3.11.

Corollary 3.13 (Optimal guaranteed rate). The optimal convergence rate guaranteed by Theorem 3.11 for

the discrete-time dynamics is λ∗ :=
(
1− µf

Lf

)
and√
c∗1 = c∗2 =

1

β∗
= Lfs

∗.

The pseudocode to implement the above corollary is presented in Algorithm 1 using the discrete-time

dynamics (12) with the respective parameters I or II.

Remark 3.14 (Gradient-descent rate matching). Notice that the rate 1− µf

Lf
in Corollary 3.13 is equal to the

rate guaranteed by the gradient descent method for functions that satisfy the PL inequality (A2), see e.g., [18].

This is in fact another inefficiency indicator of a straightforward application of the forward-Euler method on

the continuous-time hybrid control systems that are proposed in this paper. Moreover, it is worth emphasizing

that Nesterov’s fast method achieves the optimal rate 1−
√

σf

Lf
for strongly convex functions with the strong

convexity constant σf [31].

4. Technical Proofs

4.1. Proof of Theorem 3.2

In this subsection, we first set the stage by providing two intermediate results regarding the properties of

dynamics of the hybrid control system (H) with the respective parameters (4). We then employ these facts

to formally state the proof of Theorem 3.2. The next lemma reveals a relation between ∇f(x1) and x2 along



CONTINUOUS-TIME ACCELERATED METHODS VIA A HYBRID CONTROL LENS 11

the trajectories of the hybrid control system. In this subsection, for the sake of brevity we denote x1(t) and

x1(0) by x1 and x1,0, respectively. We adapt the same change of notation for x2 and x, as well.

Lemma 4.1 (Velocity lower bound). Consider the continuous-time hybrid control system (H) with the re-

spective parameters (4) satisfying (6) where the function f satisfies Assumptions (A1) and (A2). Then, we

have

(17)
∥∥∇f(x1)

∥∥ ≤ C‖x2‖,
where C is given by (8a).

Proof. Notice that, by the definition of the control law and the upper bound condition uI(x) ≤ uI, we have∥∥∇f(x1)
∥∥2 − 〈∇2f(x1)x2, x2〉 ≤ (uI − α)〈∇f(x1),−x2〉 ≤ (uI − α)

∥∥∇f(x1)
∥∥ · ‖x2‖,

where the second inequality follows from the Cauchy-Schwarz inequality. Since the function f satisfies As-

sumption (A1), one can infer that∥∥∇f(x1)
∥∥2 − Lf‖x2‖2 ≤ (uI − α)

∥∥∇f(x1)
∥∥ · ‖x2‖,

which in turn can be reformulated into∥∥∇f(x1)
∥∥2

‖x2‖2
− (uI − α)

∥∥∇f(x1)
∥∥

‖x2‖
− Lf ≤ 0.(18)

Defining the variable y :=
∥∥∇f(x1)

∥∥/‖x2‖, the inequality (18) becomes the quadratic inequality y2 − (uI −
α)y − Lf ≤ 0. Taking into account that y ≥ 0, it then follows from (17) that

y =

∥∥∇f(x1)
∥∥

‖x2‖
≤

(uI − α) +
√

(uI − α)2 + 4Lf
2

=: C.

This concludes the proof of Lemma 4.1. �

In the following, we provide a result that indicates the variation of norms x1 and x2, along the trajectories

of the hybrid control system, are bounded in terms of time while they evolve according to the continuous

mode. Since the hybrid control system is time-invariant, such bounds can be generalized to all inter-jump

intervals.

Lemma 4.2 (Trajectory growth rate). Suppose that the same conditions as specified in Lemma 4.1 hold, and

the hybrid control system (H), (4) starts from the initial condition
(
x1,0,−βI∇f(x1,0)

)
for some x1,0 ∈ Rn.

Then

‖x1 − x1,0‖ ≤ δ−1‖x2,0‖
(
eδt − 1

)
,(19a)

‖x2 − x2,0‖ ≤ ‖x2,0‖
(
eδt − 1

)
,(19b)

where δ is given by (8b).

Proof. Using the flow dynamics (4a) we obtain

(20)
d

dt
‖x2‖ ≤

∥∥∥ d
dt
x2

∥∥∥ ≤ ∥∥∇f(x1)
∥∥+

∣∣uI(x)
∣∣ · ‖x2‖ ≤ (C + max{uI,−uI})‖x2‖ = δ‖x2‖.

The inequality (20) implies that

‖x2‖ ≤ ‖x2,0‖eδt.(21)

Furthermore, notice that

d

dt
‖x1 − x1,0‖ ≤

∥∥∥ d
dt

(x1 − x1,0)
∥∥∥ = ‖x2‖.

Integrating the two sides of the above inequality leads to

‖x1 − x1,0‖ ≤
∫ t

0

∥∥x2(s)
∥∥ ds ≤ ∫ t

0

‖x2,0‖eδs ds =
‖x2,0‖
δ

(
eδt − 1

)
,
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in which we made use of (21). Hence, the inequality (19a) in Lemma 4.1 is concluded. Next, we shall establish

the inequality (19b). Note that

d

dt
‖x2 − x2,0‖ ≤

∥∥∥ d
dt

(x2 − x2,0)
∥∥∥ =

∥∥∥ d
dt
x2

∥∥∥ ≤ δ∥∥x2∥∥ ≤ δ‖x2 − x2,0‖+ δ‖x2,0‖.

Applying Grownwall’s inequality [19, Lemma A.1] then leads to the desired inequality (19b). The claims in

Lemma 4.2 follow. �

Proof of Theorem 3.2: The proof comprises five steps, and the key part is to guarantee that during the

first inter-jump interval the quantity
∣∣uI(x)−uI(x,0)

∣∣ is bounded by a continuous function φ
(
t,
∥∥∇f(x1,0)

∥∥),

which is exponential in its first argument and linear in its second argument. Then, it follows from the

continuity of the function φ that the solution trajectories of the hybrid control system are Zeno-free.

Step 1: Let us define g(t) := 〈∇f(x1),−x2〉. We now compute the derivative of g(t) along the trajectories

of the hybrid control system (H), (4) during the first inter-jump interval, i.e.,

d

dt
g(t) = 〈∇2f(x1)x2,−x2〉+ 〈∇f(x1), uI(x)x2 +∇f(x1)〉

= −〈∇2f(x1)x2, x2〉+
∥∥∇f(x1)

∥∥2 + uI(x)〈∇f(x1), x2〉
= −α〈∇f(x1),−x2〉 = −α g(t).

According to the above discussion and considering the initial state x2,0 = −βI∇f(x1,0), it follows that

〈∇f(x1),−x2〉 = βI
∥∥∇f(x1,0)

∥∥2e−αt.(22)

Step 2: The quantity
∣∣∣eαt∥∥∇f(x1)

∥∥2−∥∥∇f(x1,0)
∥∥2∣∣∣ is bounded along the trajectories of the hybrid control

system (H) with the respective parameters (4) during the first inter-jump interval, i.e.,∣∣∣eαt∥∥∇f(x1)
∥∥2 − ∥∥∇f(x1,0)

∥∥2∣∣∣ =
∣∣∣eαt∥∥∇f(x1)

∥∥2 − (eαt − eαt + 1)
∥∥∇f(x1,0)

∥∥2∣∣∣
(i)

≤ eαt
∣∣∣∥∥∇f(x1)

∥∥2 − ∥∥∇f(x1,0)
∥∥2∣∣∣+ (eαt − 1)

∥∥∇f(x1,0)
∥∥2

= eαt
∣∣∣〈∇f(x1)−∇f(x1,0),∇f(x1) +∇f(x1,0)

〉∣∣∣
+ (eαt − 1)

∥∥∇f(x1,0)
∥∥2

(ii)

≤ eαt
∥∥∇f(x1)−∇f(x1,0)

∥∥ ·∥∥∇f(x1) +∇f(x1,0)
∥∥

+ (eαt − 1)
∥∥∇f(x1,0)

∥∥2
(iii)

≤ eαtLf‖x1 − x1,0‖ ·
(
βICe

δt + 1
)‖x2,0‖

βI
+
(
eαt − 1

)‖x2,0‖2
β2
I

(iv)

≤ eαtLf
(
eδt − 1

)‖x2,0‖
δ
·
(
βICe

δt + 1
)‖x2,0‖

βI
+
(
eαt − 1

)‖x2,0‖2
β2
I

=

(
Lf
δβI

eαt
(
βICe

δt + 1
)(
eδt − 1

)
+

1

β2
I

(
eαt − 1

))
‖x2,0‖2,

where we made use of the triangle inequality in the inequality (i), the Cauchy-Schwarz inequality in the

inequality (ii), Assumption (A1) and its consequence in Remark 2.4 along with the triangle inequality in the

inequality (iii), and the inequality (19a) in the inequality (iv), respectively.
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Step 3: Observe that

∣∣eαt〈∇2f(x1)x2, x2〉 − 〈∇2f(x1,0)x2,0, x2,0〉
∣∣

=
∣∣∣eαt〈[∇2f(x1)−∇2f(x1,0) +∇2f(x1,0)

]
x2, x2

〉
−
(
eαt − eαt + 1

)
〈∇2f(x1,0)x2,0, x2,0〉

∣∣∣
=
∣∣∣eαt〈[∇2f(x1)−∇2f(x1,0)

]
x2, x2

〉
+ eαt〈∇2f(x1,0)x2, x2〉 − eαt〈∇2f(x1,0)x2,0, x2,0〉

+
(
eαt − 1

)
〈∇2f(x1,0)x2,0, x2,0〉

∣∣∣
(i)

≤ eαt
∣∣∣〈[∇2f(x1)−∇2f(x1,0)

]
x2, x2

〉∣∣∣+ eαt
∣∣∣〈∇2f(x1,0)x2, x2〉 − 〈∇2f(x1,0)x2,0, x2,0〉

∣∣∣
+
(
eαt − 1

)∣∣∣〈∇2f(x1,0)x2,0, x2,0〉
∣∣∣

(ii)

≤ eαtHf‖x1 − x1,0‖ · ‖x2‖2 + eαt
∣∣∣〈∇2f(x1,0)

[
x2 − x2,0

]
, x2 + x2,0

〉∣∣∣+ Lf‖x2,0‖2
(
eαt − 1

)
,

where the inequality (i) follows from the triangle inequality, and the inequality (ii) is an immediate consequence

of Assumptions (A3) and (A1), recalling Lf = max{`f , Lf}. According to the above analysis, one can deduce

that

∣∣eαt〈∇2f(x1)x2, x2〉 − 〈∇2f(x1,0)x2,0, x2,0〉
∣∣

(i)

≤ eαtHf
‖x2,0‖
δ

(
eδt − 1

)
· e2δt‖x2,0‖2 + eαtLf‖x2 − x2,0‖ · ‖x2 + x2,0‖+

(
eαt − 1

)
Lf‖x2,0‖2

(ii)

≤ Hf

δ
e(α+2δ)t

∥∥x2(0)
∥∥3 · (eδt − 1) + eαtLf

(
eδt − 1

)
‖x2,0‖ ·

(
eδt + 1

)
‖x2,0‖+ Lf‖x2,0‖2

(
eαt − 1

)
=
(

(Hf/δ) e
(α+2δ)t‖x2,0‖ ·

(
eδt − 1

)
+ Lf

(
e(α+δ)t + eαt

)(
eδt − 1

)
+ Lf (eαt − 1)

)
‖x2,0‖2,

where we made use of the inequality (19a), the inequality (19b), and the triangle inequality in the inequality

(i), and the inequality (19b) and the triangle inequality in the inequality (ii), respectively.

Step 4: We now study the input variation
∣∣uI(x) − uI(x,0)

∣∣ along the solution trajectories of the hybrid

control system (H), (4) during the first inter-jump interval. Observe that

∣∣uI(x)− uI(x,0)
∣∣

=
∣∣∣∥∥∇f(x1)

∥∥2 − 〈∇2f(x1)x2(t), x2〉
〈∇f(x1),−x2〉

−
∥∥∇f(x1,0)

∥∥2 − 〈∇2f(x1,0)x2,0, x2,0〉
〈∇f(x1,0),−x2,0〉

∣∣∣
=
∣∣∣ ∥∥∇f(x1)

∥∥2
βI
∥∥∇f(x1,0)

∥∥2e−αt − 〈∇2f(x1)x2, x2〉
βI
∥∥∇f(x1,0)

∥∥2e−αt −
∥∥∇f(x1,0)

∥∥2
βI
∥∥∇f(x1,0)

∥∥2 +
〈∇2f(x1,0)x2,0, x2,0〉
βI
∥∥∇f(x1,0)

∥∥2 ∣∣∣
(i)

≤ 1

βI
∥∥∇f(x1,0)

∥∥2 ∣∣∣eαt∥∥∇f(x1)
∥∥2 − ∥∥∇f(x1,0)

∥∥2∣∣∣
+

1

βI
∥∥∇f(x1,0)

∥∥2 ∣∣∣eαt〈∇2f(x1)x2, x2
〉
− 〈∇2f(x1,0)x2,0, x2,0〉

∣∣∣
(ii)
=

βI
‖x2,0‖2

∣∣∣eαt∥∥∇f(x1)
∥∥2 − ∥∥∇f(x1,0)

∥∥2∣∣∣+
βI

‖x2,0‖2
∣∣∣eαt〈 ∇2f(x1)x2, x2〉 − 〈∇2f(x1,0)x2,0, x2,0〉

∣∣∣,
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where we made use of the triangle inequality in the inequality (i) and the relation (22) in the equality (ii),

respectively. Based on the above discussion, we then conclude that∣∣uI(x)− uI(x,0)
∣∣

(i)

≤ βI
‖x2,0‖2

(
Lf
δβI

eαt
(
βICe

δt + 1
)(
eδt − 1

)
+

1

β2
I

(
eαt − 1

))
‖x2,0‖2

+
βI

‖x2,0‖2

(
Hf

δ
e(α+2δ)t‖x2,0‖ ·

(
eδt − 1

)
+ Lf

(
e(α+δ)t + eαt

)(
eδt − 1

)
+ Lf

(
eαt − 1

))
‖x2,0‖2

(ii)

≤ Lf
δ
eδt(βICe

δt + 1)(eδt − 1) +
1

βI
(eδt − 1)

+ βI

(
βIHfδ

−1 · e3δt
∥∥∇f(x1,0)

∥∥ · (eδt − 1
)

+ Lf
(
e2δt + eδt

)(
eδt − 1

)
+ Lf

(
eδt − 1

))
=
(
Lfδ

−1 · eδt(βICeδt + 1) +
1

βI
+
β2
IHf

δ
e3δt

∥∥∇f(x1,0)
∥∥+ βILf (e2δt + eδt) + βILf

)(
eδt − 1

)
=: φ

(
t,
∥∥∇f(x1,0)

∥∥),
where the inequality (i) follows from the implications of Steps 2 and 3, and the equality (ii) is an immediate

consequence of the relation α < δ and the equality x2,0 = −βI∇f(x1,0).

Step 5: Consider a1 defined in (8d) and recall that uI(x,0) by design lies inside the input interval [uI, uI].

The quantity a1 is a lower bound on the distance of uI(x,0) to the boundaries of the interval [uI, uI]. Thus,

the inter-jump interval τI satisfies

τI ≥ max
{
t ≥ 0 :

∣∣uI(x)− uI(x,0)
∣∣ ≤ a1} ≥ max

{
t ≥ 0 : φ

(
t,
∥∥∇f(x1,0)

∥∥) ≤ a1} ,
where the second inequality is implied by the analysis provided in Step 4. Consider a positive constant r > 1.

One can infer for every t ∈
[
0, δ−1log r

]
that

φ
(
t,
∥∥∇f(x1,0)

∥∥) ≤ (rLfδ−1(rβIC + 1) + β−1I + r3β2
IHfδ

−1∥∥∇f(x1,0)
∥∥

+ (r2 + r)βILf + βILf
)

(eδt − 1)

=
(
a2 + a3

∥∥∇f(x1,0)
∥∥)(eδt − 1)

=: φ′
(
t,
∥∥∇f(x1,0)

∥∥),
where the constants a2 and a3 are defined in (8e), (8f), respectively, and the inequality eδt < r is used.

Suppose now τ ′ is the lower bound of the inter jump in (7). Then φ′
(
τ ′,
∥∥∇f(x1,0)

∥∥) = a1, where the

constant a1 is defined in (8d). It is straightforward to establish the assertion made in (7).

In the second part of the assertion, we should show that the proposed lower bound in (7) is uniformly

away from zero along any trajectories of the hybrid system. To this end, we only need to focus on the term

‖∇f
(
x1(t)

)
‖. Recall that Theorem 3.1 effectively implies that limt→∞ ‖∇f

(
x1(t)

)
‖ = 0, possibly not in a

monotone manner though. This observation allows us to deduce that M := supt≥0 ‖∇f
(
x1(t)

)
‖ <∞. Using

the uniform bound M , we have a minimum non-zero inter-jump interval, giving rise to a Zeno-free behavior

for all solution trajectories.

4.2. Proof of Theorem 3.4

The proof follows a similar idea as in [20, Theorem 3.1] but the required technical steps are somewhat

different, leading to another set of technical assumptions. In the first step, we begin with describing on how

the chosen input uII(x) in (9b) ensures achieving the desired exponential convergence rate O
(
e−αt

)
. Let

us define the set Eα :=
{
x ∈ R2n : α

(
f(x1) − f∗

)
< 〈∇f(x1),−x2〉

}
. We demonstrate that as long as a



CONTINUOUS-TIME ACCELERATED METHODS VIA A HYBRID CONTROL LENS 15

solution trajectory of the continuous flow (9a) is contained in the set Eα, the function f obeys the exponential

decay (5). To this end, observe that if
(
x1(t), x2(t)

)
∈ Eα,

d

dt

(
f
(
x1(t)

)
− f∗

)
=
〈
∇f
(
x1(t)

)
, x2(t)

〉
≤ −α

(
f(x1)− f∗

)
.

The direct application of Gronwall’s inequality, see [19, Lemma A.1], to the above inequality yields the desired

convergence claim (5). Hence, it remains to guarantee that the solution trajectory renders the set Eα invariant.

Let us define the quantity

σ(t) := 〈∇f
(
x1(t)

)
, x2(t)〉+ α

(
f
(
x1(t)

)
− f∗

)
.

By construction, if σ(t) < 0, it follows that
(
x1(t), x2(t)

)
∈ Eα. As a result, if we synthesize the feedback

input uII(x) such that σ̇(t) ≤ 0 along the solution trajectory of (9a), the value of σ(t) does not increase, and

as such (
x1(t), x2(t)

)
∈ Eα, ∀t ≥ 0 ⇐⇒

(
x1(0), x2(0)

)
∈ Eα.

To ensure non-positivity property of σ̇(t), note that we have

σ̇(x) = 〈∇2f(x1)x2, x2〉+ 〈∇f(x1), ẋ2〉+ α〈∇f(x1), x2〉

= 〈∇2f(x1)x2, x2〉+ 〈∇f(x1),−x2 − uII(x)∇f(x1)〉+ α〈∇f(x1), x2〉

= 〈∇2f(x1)x2, x2〉+ 〈∇f(x1),−x2〉 − uII(x)‖∇f(x1)‖2 − α〈∇f(x1),−x2〉

= 〈∇2f(x1)x2, x2〉+ (1− α)〈∇f(x1),−x2〉 − uII(x)‖∇f(x1)‖2 = 0,

where the last equality follows from the definition of the proposed control law (9b). It is worth noting that

one can simply replace the information of the Hessian ∇2f
(
x1(t)

)
with the upper bound Lf and still arrive

at the desired inequality, see also Remark 3.9 with regards to the 1st-order information oracle. Up to now,

we showed that the structure of the control feedback guarantees the α-exponential convergence. It remains

then to ensure that x(0) ∈ Eα. Consider the initial state x2(0) = −βII∇f
(
x1(0)

)
. Notice that

α
(
f
(
x1(0)

)
− f∗

)
≤ α

2µf

∥∥∇f(x1(0)
)∥∥2 =

α

2µfβII
〈−x2(0),∇f

(
x1(0)

)
〉 ≤ 〈∇f

(
x1(0)

)
,−x2(0)〉,

where in the first inequality we use the gradient-dominated assumption (A2), and in the second inequality

the condition (10c) is employed. Suppose
(
x>1 (0), x>2 (0)

)>
as the jump state x+. It is evident that the range

space of the jump map (9d) lies inside the set Eα. At last, it is required to show that the jump policy is

well-defined in the sense that the trajectory lands in the interior of the flow set CI (9c), i.e., the control values

also belong to the admissible set [uII, uII]. To this end, we only need to take into account the initial control

value since the switching law is continuous in the states and serves the purpose by design. Suppose that

x+ ∈ CII, we then have the sufficient requirements

uII <
−`fβ2

II‖∇f(x+1 )‖2 + (1− α)βII‖∇f(x+1 )‖2

‖∇f(x+1 )‖2

≤ uII(x+) ≤

Lfβ
2
II‖∇f(x+1 )‖2 + (1− α)βII‖∇f(x+1 )‖2

‖∇f(x+1 )‖2
< uII,

where the relations (9b) and (A1) are considered. Factoring out the term ‖∇f(x+1 )‖2 leads to the sufficiency

requirements given in (10a) and (10b). Hence, the claim of Theorem 3.4 follows.

4.3. Proof of Theorem 3.5

In order to facilitate the argument regarding the proof of Theorem 3.5, we begin with providing a lemma

describing the norm-2 behaviors of 〈∇f(x1),−x2〉, x2, and ∇f(x1). For the sake of brevity, we employ the

same notations used in Subsection 4.1, as well.
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Lemma 4.3 (Growth bounds). Consider the continuous-time hybrid control system (H) with the respective

parameters (9) satisfying (10) where the function f satisfies Assumptions (A1) and (A2). Suppose the hybrid

control system is initiated from
(
x1,0, βII∇f(x1,0)

)
for some x1,0 ∈ Rn. Then,

〈∇f(x1),−x2〉 = βIIe
−αt‖∇f(x1,0)‖2,(23a)

‖x2‖ ≤ D(t)‖∇f(x1,0)‖,(23b)

η(t)‖∇f(x1,0)‖ ≤ ‖∇f(x1)‖ ≤ η(t)‖∇f(x1,0)‖,(23c)

with the time-varying scalars D, η, and η given by

D(t) :=
(
β2
IIe
−2t + βIIU

(
1− e−2t

)) 1
2

,(24a)

η(t) := 1− Lf (β2
II + βIIU)

1
2 t,(24b)

η(t) := 1 + Lf (β2
II + βIIU)

1
2 t,(24c)

respectively, where U := max{uII,−uII} and Lf := max{`f , Lf}.

Proof. Considering the flow dynamics (9a) and the feedback input (9b), one obtains

d

dt
〈∇f(x1),−x2〉 = 〈∇2f(x1)x2,−x2〉+ 〈∇f(x1),−ẋ2〉

= 〈∇2f(x1)x2,−x2〉+ 〈∇f(x1), x2 + uII(x)∇f(x1)〉

= 〈∇2f(x1)x2,−x2〉+ 〈∇f(x1), x2〉+ uII(x)‖∇f(x1)‖2

= 〈∇2f(x1)x2,−x2〉+ 〈∇f(x1), x2〉+ 〈∇2f(x1)x2, x2〉 − (1− α)〈∇f(x1), x2〉
= −α〈∇f(x1),−x2〉,

and as a result given the initial state
(
x1,0,−βII∇f(x1,0)

)
, the equality given in (23a) is valid. We next turn

to establish that (23b) holds. Let us define h(t) = ‖x2‖2. Hence,

d

dt
h(t)

(i)
= 2〈x2,−x2 − uII(x)∇f(x1)〉 = −2‖x2‖2 + 2uII(x)〈∇f(x1),−x2〉

(ii)
= −2h(t) + 2uII(x)βIIe

−αt‖∇f(x1,0)‖2 ≤ −2h(t) + 2UβII‖∇f(x1,0)‖2,

where we made use of the flow dynamics (9a) in the inequality (i) and the equation (23a) in the equality (ii).

We then use the Gronwall’s inequality to infer that

‖x2‖2 ≤ e−2t‖x2,0‖2 +

∫ t

0

e−2(t−τ)2UβII
∥∥∇f(x1,0)

∥∥2dτ
= e−2tβ2

II

∥∥∇f(x1,0)
∥∥2 + e−2t2UβII

∥∥∇f(x1,0)
∥∥2 ∫ t

0

e2τdτ

= e−2t
∥∥∇f(x1,0)

∥∥2(β2
IIe
−2t + βIIU

(
1− e−2t

))
=: D2(t)

∥∥∇f(x1,0)
∥∥2,

where D(t) is defined in (24a). As a result, the claim in (23b) holds. The argument to show the last claim in

Lemma 4.3 is discussed now. Let us define g(t) :=
∥∥∇f(x1)

∥∥2. Observe that

d

dt
g(t) = 2〈∇2f(x1)x2,∇f(x1)〉,

and as a result∣∣∣∣ ddtg(t)

∣∣∣∣ (i)≤ 2Lf‖x2‖ ·
∥∥∇f(x1)

∥∥ = 2Lf‖x2‖
√
g(t)

(ii)

≤ 2LfD(t)
∥∥∇f(x1,0)

∥∥√g(t),
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where the inequalities (i) and (ii) are implied by Assumption (A1) and the inequality (23b), respectively.

Hence, we deduce that

d

dt
g(t) ≥ −2LfD(t)

∥∥∇f(x1,0)
∥∥√g(t),

and as a consequence

dg(t)√
g(t)

≥ −2LfD(t)
∥∥∇f(x1,0)

∥∥dt.
Integrating the two sides of the above inequality results in√

g(t)−
√
g(0) ≥ −Lf

∥∥∇f(x1,0)
∥∥ ∫ t

0

D(τ)dτ

= −Lf
∥∥∇f(x1,0)

∥∥ ∫ t

0

(
β2
IIe
−2τ + βIIU

(
1− e−2τ

)) 1
2

dτ

≥ −Lf
∥∥∇f(x1,0)

∥∥ ∫ t

0

(
β2
II + βIIU

) 1
2 dτ

= −Lf
∥∥∇f(x1,0)

∥∥(β2
II + βIIU

) 1
2 t.

Based on the above analysis and the definition of g(t), it follows that∥∥∇f(x1)
∥∥ ≥ η(t)

∥∥∇f(x1,0)
∥∥,

where η(t) is given in (24b). Proceeding with a similar approach to the one presented above, one can use the

inequality

d

dt
g(t) ≤ 2LfD(t)

∥∥∇f(x1,0)
∥∥√g(t),

and infer that ∥∥∇f(x1)
∥∥ ≤ η(t)

∥∥∇f(x1,0)
∥∥,

where η(t) is defined in (24c). Thus, the last claim in Lemma 4.3 also holds. �

Proof of Theorem 3.5: We are now in a position to formally state the proof of Theorem 3.5. Consider

the parameter δ as defined in Theorem 3.5. Intuitively, this quantity represents a lower bound on the distance

of uII(0) from the endpoints of the flow set interval. Thus, one can obtain a lower bound on the inter-jump

interval τII as follows

τII ≥ sup {t > 0 : |uII(t)− uII(0)| ≤ δ}.(25)

On the other hand, given the structure of uII in (9b),

− `f‖x2‖2

‖∇f(x1)‖2
+ (1− α)

βIIe
−αt‖∇f(x1,0)‖2

‖∇f(x1)‖2
≤ uII(t) ≤

Lf‖x2‖2

‖∇f(x1)‖2
+ (1− α)

βIIe
−αt‖∇f(x1,0)‖2

‖∇f(x1)‖2
,

since the function f satisfies Assumption (A1). In light of Lemma 4.3 and considering the above relation, one

can infer that for α ≤ 1, we name Case(i),

e(t) := −`fD(t)2

η(t)2
+ (1− α)

βIIe
−αt

η(t)2
≤ uII(t) ≤

LfD(t)2

η(t)2
+ (1− α)

βIIe
−αt

η(t)2
=: e(t),(26a)

and that for α > 1, we denote by Case (ii),

p(t) := −`fD(t)2

η(t)2
+ (1− α)

βIIe
−αt

η(t)2
≤ uII(t) ≤

LfD(t)2

η(t)2
+ (1− α)

βIIe
−αt

η(t)2
=: p(t).(26b)

According to the above discussion, we employ (26) to obtain a lower bound τII instead of using (25). Consider

a time instant t◦ such that t◦ < 1/ω where ω is defined in Theorem 3.5.
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Case (i) (α ≤ 1): Let us denote supt∈[0,t◦] ė(t) by b1. Observe that

ė(t) =
2LfβIIe

−2t(−βII + U)(1− ωt)2 + 2ω(1− ωt)LfβII
(
βIIe

−2t + U(1− e−2t)
)

(1− ωt)4

+ (1− α)
−αβIIe−αt(1− ωt)2 + 2ω(1− ωt)βIIe−2t

(1− ωt)4

≤
2LfβIIUe

−2t(1− ωt)2 + 2ω(1− ωt)LfβII
(
βIIe

−2t + U(1− e−2t)
)

(1− ωt)4

+ (1− α)
2ω(1− ωt)βIIe−2t

(1− ωt)4

≤
2LfβII

(
U + ω(βII + U)

)
(1− ωt)3

+ (1− α)
2ωβII

(1− ωt)3

≤
2LfβII

(
U + ω(βII + U)

)
(1− ωt◦)3

+ (1− α)
2ωβII

(1− ωt◦)3
=: b1,

considering (26a). Hence, e(t) ≤ b1t+ e(0) and as a result

τII ≥ max{t ∈ (0, t◦] : b1t+ e(0)− e(0) ≤ δ} = min{t◦, δ/b1},(27)

by virtue of the fact that b1t + e(0) is a monotonically increasing function that upper bounds uII(t). Now,

let us define b2 := inft∈(0,t◦] ė(t). Notice that

ė(t) =
2`fβIIe

−2t(βII − U)(1− ωt)2 − 2ω(1− ωt)`fβII
(
βIIe

−2t + U(1− e−2t)
)

(1− ωt)4

+ (1− α)
−αβIIe−αt(1 + ωt)2 − 2ω(1 + ωt)βIIe

−2t

(1 + ωt)4

≥
−2`fβIIe

−2tU(1− ωt)2 − 2ω(1− ωt)`fβII
(
βIIe

−2t + U(1− e−2t)
)

(1− ωt)4

− (1− α)
αβIIe

−αt(1 + ωt)2 + 2ω(1 + ωt)βIIe
−2t

(1 + ωt)4

≥ −
2`fβII

(
U + ω(βII + U)

)
(1− ωt◦)3

− (1− α)
αβII(1 + ωt◦) + 2ωβII

1
=: −b2.

Thus, e(t) ≥ −b2t+ e(0) and as a consequence

τII ≥ max{t ∈ (0, t◦] : e(0)−
(
− b2t+ e(0)

)
≤ δ} = min{t◦, δ/b2},(28)

because the function −b2t+ e(0) is a monotonically decreasing function that lower bounds uII(t).

Case (ii) (α > 1): Much of this case follows the same line of reasoning used in Case (i). We thus provide

only main mathematical derivations and refer the reader to the previous case for the argumentation. Define

b3 := supt∈(0,t◦] ṗ(t). One can deduce from (26b) that

ṗ(t) =
2LfβIIe

−2t(−βII + U)(1− ωt)2 + 2ω(1− ωt)LfβII
(
βIIe

−2t + U(1− e−2t)
)

(1− ωt)4

+ (1− α)
−αβIIe−αt(1 + ωt)2 − 2ω(1 + ωt)βIIe

−2t

(1 + ωt)4

≤
2LfβII

(
U + ω(βII + U)

)
(1− ωt◦)3

+ (α− 1)
αβII(1 + ωt◦) + 2ωβII

1
=: b3.

Hence, p(t) ≤ b4t+ p(0) and as a result

τ ≥ min{t◦, δ/b3}.(29)
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Finally, define ṗ(t) := inft∈(0,t◦] p(t) from which it follows that

ṗ(t) =
2`fβIIe

−2t(βII − U)(1− ωt)2 − 2ω(1− ωt)`fβII
(
βIIe

−2t + U(1− e−2t)
)

(1− ωt)4

+ (1− α)
−αβIIe−αt(1− ωt)2 + 2ω(1− ωt)βIIe−2t

(1− ωt)4

≥ −
2`fβII

(
U + ω(βII + U)

)
(1− ωt◦)3

− (α− 1)
2ωβII

(1− ωt◦)3
=: −b4,

considering (26b). Now, since p(t) ≥ −b4t+ p(0), it is implied that

τII ≥ min{t◦, δ/b4}.(30)

Notice that based on the relations derived in (28)-(30),

τII ≥ min
{
t◦,

2LfβII
(
U + ω(βII + U)

)
(1− ωt◦)3

+ |α− 1| 2ωβII
(1− ωt◦)3

+ |α− 1|αβII(1 + ωt◦)
}
.

Suppose now for some scalar r ∈ (0, 1), t◦ is chosen such that t◦ ≤ r
ω . It is evident that

τII ≥ min
{ r
ω
, δ
/(2LfβII

(
U + ω(βII + U)

)
(1− r)3

+ |α− 1| 2ωβII
(1− r)3

+ |α− 1|αβII(1 + r)
)}
.

It turns out that the relation (11) in Theorem 3.5 is valid and this concludes the proof.

4.4. Proof of Theorem 3.11

In what follows, we provide the proof for the structure II and refer the interested reader to [20, Theorem 3.7]

for the structure I. We emphasize that the technical steps to establish a stable discretization for both structures

are similar.

According to the forward-Euler method, the velocity ẋ1 and the acceleration ẋ2 in the dynamics (H) with

(9) are discretized as follows:

xk+1
1 − xk1

s
= xk2 ,(31a)

xk+1
2 − xk2

s
= −ud,II(xk)∇f(xk1)− xk2 ,(31b)

where the discrete input ud,II(x
k) = uII(x

k). Now, observe that the definition of the flow set Cd,II (13b)

implies

c1‖xk2‖2 ≤ ‖∇f(xk1)‖2 ≤ c2〈∇f(xk1),−xk2〉 ≤ c2‖∇f(xk1)‖ · ‖xk2‖,

where the extra inequality follows from the Cauchy-Schwarz inequality (∀ a, b ∈ Rn, 〈a, b〉 ≤ ‖a‖ · ‖b‖). In

order to guarantee that the flow set Cd,II is non-empty the relation (16a) should hold between the parameters c1

and c2 since
√
c1 ≤ ‖∇f(x

k
1 )‖

‖xk
2‖

≤ c2. Next, suppose that the parameters c1, c2, and β satisfy (16b). Multiplying

(16b) by ‖∇f(xk1)‖, one can observe that the range space of the jump map Gd,II(x
k) =

(
(xk)>,−β∇>f(xk)

)>
is inside the flow set Cd,II (13b). From the fact that the discrete dynamics (12) evolves respecting the flow

set Cd,II defined in (13b), we deduce

f(xk+1
1 )− f(xk1) ≤ 〈∇f(xk1), xk+1

1 − xk1〉+
Lf
2
‖xk+1

1 − xk1‖2

≤ −s〈∇f(xk1),−xk2〉+
Lfs

2

2
‖xk2‖2

< − s

c2
‖∇f(xk1)‖2 +

Lfs
2

2c1
‖∇f(xk1)‖2

=
(
− s

c2
+
Lf
2c1

s2
)
‖∇f(xk1)‖2 ≤ 2µf

(
− s

c2
+
Lf
2c1

s2
)(
f(xk1)− f∗

)
,



20 A. SHARIFI KOLARIJANI, P. MOHAJERIN ESFAHANI, T. KEVICZKY

time
1 2 3 4 5

f
(X

(t
))
!

f
$

10-5

100

Struct 1
Struct 2
NWR
NSR
AA-AMD
HDA

(a) Objective value along system trajectories.

time
1 2 3 4 5

f
(X

(t
))
!

f
$

-15

-10

-5

0

5

10

15

20

25

30

35

40
uI

uII

.(t)-NSR

(b) State-dependent and time-varying coefficients.

Figure 1. Continuous-time dynamics of Struct I, Struct II, NSR.

where we made use of the relation (3), the definition (31a), the relation (13b), and the assumption (A2),

respectively. Then, considering the inequality implied by the first and last terms given above and adding

f(xk1)− f∗ to both sides of the considered inequality, we arrive at

f(xk+1
1 )− f∗ ≤ λ(s, c1, c2, β)

(
f(xk1)− f∗

)
where λ(s, c1, c2, β) is given by (15). As a result, if the step size s is chosen such that s < 2c1

c2Lf
then

λ(s, c1, c2, β) ∈ (0, 1). The claim of Theorem 3.11 follows.

5. Numerical Examples

In this section a numerical example illustrating the results in this paper is represented. The example is a

least mean square error (LMSE) problem f(X) = ‖AX − b‖2 where X ∈ R5 denotes the decision variable,

A ∈ R50×5 with Lf = 2λmax(A>A) = 136.9832 and µf = 2λmin(A>A) = 3.6878, and b ∈ R50. Since the

LMSE function is convex (in our case, this function is strongly convex), we take `f = 0. We begin with

providing the results concerning the continuous-time case. Then, the discrete-time case’s results are shown.

Continuous-time case: In what follows, we compare the behaviors of the proposed structures I and II

(denoted by Struct I and Struct II, respectively) with the following fast methods:

• (NWR): Nesterov’s fast method (1) with γ(t) = 3
t and without any restarting scheme,

• (NSR): Nesterov’s fast method (1) with γ(t) = 3
t with the speed restarting scheme proposed in [39,

Section 5],

• (AA-AMD): the adaptive averaging accelerated mirror descent method proposed in [22, Section 2]

with the choice of parameters given in [22, Example 1], β = 3, and the adaptive heuristic a(t) =
3
t + sign

(
max

{
0,−〈∇f(X(t)), Ẋ(t)〉

})
× 1

t2 ,

• (HDA): the Hessian driven accelerated method proposed in [2] with α = 3 and β = 1.

(The notations for some of the parameters involved in the above methods are identical, e.g., the parameter

β appears in both AA-AMD and HDA. Notice that these parameters are not necessarily the same. We

refer the reader to consult with the cited references for more details.) We set the desired convergence rates

αI and αII equal to each other. We then select βI and βII such that the corresponding flow sets [uI, uI] and

[uII, uII] are relatively close using Theorem 3.1 and Theorem 3.4, respectively. The corresponding parameters

of Struct I and Struct II are as follows: αI = 0.2, βI = 0.1356, uI = −14.352, uI = 15.1511; αII = 0.2,

βII = 0.0298, uII = −0.1861, uII = 5.7457.
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Figure 2. Discrete-time dynamics of Struct I, Struct II, NSR.

In Figure 1(a), the behaviors of the suboptimality measure f
(
X(t)

)
− f∗ of the considered methods are

depicted. The corresponding control inputs of Struct I, Struct II, and NSR are represented in Figure 1(b).

With regards to Struct I, observe that the length of inter-jump intervals is small during the early stages of

simulation. As time progresses and the value of ∇f(X) decreases, the length of inter-jump intervals relatively

increases (echoing the same message conveyed in Theorem 3.2). Furthermore, in the case of Struct I where

uI plays the role of damping, the input uI admits a negative range unlike most of the approaches in the

literature.

Discrete-time case: The discrete-time case’s results are now shown. We employ Algorithm 1 for Struct I

and Struct II.

In Figure 2(a), we compare these two structures with the discrete-time methods:

• (NWR): Algorithm 1 in [35] with q = 0 and tk = 1
Lf

,

• (NSR): Algorithm 1 in [39] with kmin = 1 and s = 1
Lf

,

• (AA-AMD): Algorithm 1 in the supplementary material of [22] with β = βmax = 3,

• (NGR): Nesterov’s method with the gradient restarting scheme proposed in [35, Section 3.2] with

q = 0 and tk = 1
Lf

.

It is evident that the discrete counterparts of our proposed structures perform poorly compared to these

algorithms, reinforcing the assertion of Remark 3.12 calling for a smarter discretization technique. Observe

that NGR provides the best convergence with respect to the other consider methods. In Figure 2(b), we

depict the best behavior of the considered methods (excluding NGR) for this specific example. It is interesting

that NGR still outperforms all other methods.

Consider the three methods Struct I, Struct II, and NSR in Figure 2(a). The results depicted in

Figure 2(a) correspond to the standard parameters involved in each algorithm, i.e., the step size s = 1/Lf for

the proposed methods in Corollary 3.13, and the parameter kmin = 1 in NSR. As we saw in Figure 2(b), these

parameters can also be tuned depending on the application at hand. In case of NSR, the role of the parameter

kmin is to prevent unnecessary restarting instants that may degrade the overall performance. On the other

hand, setting kmin > 1 may potentially cause the algorithm to lose its monotonicity property. Figure 3(a)

shows how changing kmin affects the performance. The best performance is achieved by setting kmin = 19

and the algorithm becomes non-monotonic for kmin > 19. With regards to our proposed methods we observe

that if one increases the step size s, the performance improves, see Figure 3(b) for Struct I and Figure 3(c)

for Struct II. Moreover, it is obvious that the discrete-time couterparts of Struct I and Struct II behave
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Figure 3. Discrete-time dynamics under different tuning parameters.

in a very similar fashion that has to do with the lack of a proper discretization that can fully exploit the

properties of the corresponding feedback input, see Remark 3.12.

6. Conclusions

Inspired by a control-oriented viewpoint, we proposed two hybrid dynamical structures to achieve expo-

nential convergence rates for a certain class of unconstrained optimization problems, in a continuous-time

setting. The distinctive feature of our methodology is the synthesis of certain inputs in a state-dependent

fashion compared to a time-dependent approach followed by most results in the literature. Due to the state-

dependency of our proposed methods, the time-discretization of continuous-time hybrid dynamical systems

is in fact difficult (and to some extent even more involved than the time-varying dynamics that is commonly

used in the literature). In this regard, we have been able to show that one can apply the the forward-Euler

method to discretize the continuous-time dynamics and still guarantee exponential rate of convergence. Thus,

a more in-depth analysis is due. We expect that because of the state-dependency of our methods a proper

venue to search is geometrical types of discretization.
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