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Abstract. We introduce a distributionally robust maximum likelihood estimation model with a Wasserstein

ambiguity set to infer the inverse covariance matrix of a p-dimensional Gaussian random vector from n inde-

pendent samples. The proposed model minimizes the worst case (maximum) of Stein’s loss across all normal

reference distributions within a prescribed Wasserstein distance from the normal distribution characterized

by the sample mean and the sample covariance matrix. We prove that this estimation problem is equivalent

to a semidefinite program that is tractable in theory but beyond the reach of general purpose solvers for

practically relevant problem dimensions p. In the absence of any prior structural information, the estimation

problem has an analytical solution that is naturally interpreted as a nonlinear shrinkage estimator. Besides

being invertible and well-conditioned even for p > n, the new shrinkage estimator is rotation-equivariant and

preserves the order of the eigenvalues of the sample covariance matrix. These desirable properties are not

imposed ad hoc but emerge naturally from the underlying distributionally robust optimization model. Fi-

nally, we develop a sequential quadratic approximation algorithm for efficiently solving the general estimation

problem subject to conditional independence constraints typically encountered in Gaussian graphical models.

1. Introduction

The covariance matrix Σ := EP[(ξ−EP[ξ])(ξ−EP[ξ])>] of a random vector ξ ∈ Rp governed by a distribu-

tion P collects basic information about the spreads of all individual components and the linear dependencies

among all pairs of components of ξ. The inverse Σ−1 of the covariance matrix is called the precision matrix.

This terminology captures the intuition that a large spread reflects a low precision and vice versa. While

the covariance matrix appears in the formulations of many problems in engineering, science and economics,

it is often the precision matrix that emerges in their solutions. For example, the optimal classification rule

in linear discriminant analysis [17], the optimal investment portfolio in Markowitz’ celebrated mean-variance

model [35] or the optimal array vector of the beamforming problem in signal processing [15] all depend on

the precision matrix. Moreover, the optimal fingerprint method used to detect a multivariate climate change

signal blurred by weather noise requires knowledge of the climate vector’s precision matrix [41].

If the distribution P of ξ is known, then the covariance matrix Σ and the precision matrix Σ−1 can at

least principally be calculated in closed form. In practice, however, P is never known and only indirectly

observable through n independent training samples ξ̂1, . . . , ξ̂n from P. In this setting, Σ and Σ−1 need to

be estimated from the training data. Arguably the simplest estimator for Σ is the sample covariance matrix

Σ̂ := 1
n

∑n
i=1(ξ̂i − µ̂)(ξ̂i − µ̂)>, where µ̂ := 1

n

∑n
i=1 ξ̂i stands for the sample mean. Note that µ̂ and Σ̂ simply

represent the actual mean and covariance matrix of the uniform distribution on the training samples. For

later convenience, Σ̂ is defined here without Bessel’s correction and thus constitutes a biased estimator.1

Moreover, as a sum of n rank-1 matrices, Σ̂ is rank deficient in the big data regime (p > n). In this case, Σ̂

cannot be inverted to obtain a precision matrix estimator, which is often the actual quantity of interest.
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n
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If ξ follows a normal distribution with unknown mean µ and precision matrix X � 0, which we will assume

throughout the rest of the paper, then the log-likelihood function of the training data can be expressed as

L̂(µ,X) := −np
2

log(2π) +
n

2
log detX − 1

2

n∑
i=1

(ξ̂i − µ)>X(ξ̂i − µ)

= −np
2

log(2π) +
n

2
log detX − n

2
Tr
[
Σ̂X

]
− n

2
(µ̂− µ)>X(µ̂− µ). (1)

Note that L̂(µ,X) is strictly concave in µ and X [7, Chapter 7] and depends on the training samples only

through the sample mean and the sample covariance matrix. It is clear from the last expression that L̂(µ,X)

is maximized by µ? = µ̂ for any fixed X. The maximum likelihood estimator X? for the precision matrix is

thus obtained by maximizing L̂(µ̂,X) over all X � 0, which is tantamount to solving the convex program

inf
X�0
− log detX + Tr

[
Σ̂X

]
. (2)

If Σ̂ is rank deficient, which necessarily happens for p > n, then problem (2) is unbounded. Indeed, expressing

the sample covariance matrix as Σ̂ = RΛR> with R orthogonal and Λ � 0 diagonal, we may set Xk = RΛkR
>

for any k ∈ N, where Λk � 0 is the diagonal matrix with (Λk)ii = 1 if λi > 0 and (Λk)ii = k if λi = 0.

By construction, the objective value of Xk in (2) tends to −∞ as k grows. If Σ̂ is invertible, on the other

hand, then the first-order optimality conditions can be solved analytically, showing that the minimum of

problem (2) is attained at X? = Σ̂−1. This implies that maximum likelihood estimation under normality

simply recovers the sample covariance matrix but fails to yield a precision matrix estimator for p > n.

Adding an `1-regularization term to its objective function guarantees that problem (2) has a unique min-

imizer X? � 0, which constitutes a proper (invertible) precision matrix estimator [26]. Moreover, as the

`1-norm represents the convex envelope of the cardinality function on the unit hypercube, the `1-norm regu-

larized maximum likelihood estimation problem promotes sparse precision matrices that encode interpretable

Gaussian graphical models [1, 18]. Indeed, under the given normality assumption one can show that Xij = 0

if and only if the random variables ξi and ξj are conditionally independent given {ξk}k/∈{i,j} [29]. The sparsity

pattern of the precision matrix X thus captures the conditional independence structure of ξ.

In theory, the `1-norm regularized maximum likelihood estimation problem can be solved in polynomial

time via modern interior point algorithms. In practice, however, scalability to high dimensions remains

challenging due to the problem’s semidefinite nature, and larger problem instances must be addressed with

special-purpose methods such as the Newton-type QUIC algorithm [26].

Instead of penalizing the `1-norm of the precision matrix, one may alternatively penalize its inverse X−1

with the goal of promoting sparsity in the covariance matrix and thus controlling the marginal independence

structure of ξ [5]. Despite its attractive statistical properties, this alternative model leads to a hard non-convex

and non-smooth optimization problem, which can only be solved approximately.

By the Fisher-Neyman factorization theorem, Σ̂ is a sufficient statistic for the true covariance matrix Σ

of a normally distributed random vector, that is, Σ̂ contains the same information about Σ as the entire

training dataset. Without any loss of generality, we may thus focus on estimators that depend on the data

only through Σ̂. If neither the covariance matrix Σ nor the precision matrix Σ−1 are known to be sparse

and if there is no prior information about the orientation of their eigenvectors, it is reasonable to restrict

attention to rotation equivariant estimators. A precision matrix estimator X̂(Σ̂) is called rotation equivariant

if X̂(RΣ̂R>) = RX̂(Σ̂)R> for any rotation matrix R. This definition requires that the estimator for the

rotated data coincides with the rotated estimator for the original data. One can show that rotation equivariant

estimators have the same eigenvectors as the sample covariance matrix (see, e.g., [40, Lemma 5.3] for a simple

proof) and are thus uniquely determined by their eigenvalues. Hence, imposing rotation equivariance reduces

the degrees of freedom from p(p + 1)/2 to p. Using an entropy loss function introduced in [28], Stein was

the first to demonstrate that superior covariance estimators in the sense of statistical decision theory can

be constructed by shrinking the eigenvalues of the sample covariance matrix [46, 47]. Unfortunately, his
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proposed shrinkage transformation may alter the order of the eigenvalues and even undermine the positive

semidefiniteness of the resulting estimator when p > n, which necessitates an ad hoc correction step involving

an isotonic regression. Various refinements of this approach are reported in [14, 23, 56] and the references

therein, but most of these works focus on the low-dimensional case when n ≥ p.
Jensen’s inequality suggests that the largest (smallest) eigenvalue of the sample covariance matrix Σ̂ is

biased upwards (downwards), which implies that Σ̂ tends to be ill-conditioned [52]. This effect is most

pronounced for Σ ≈ I. A promising shrinkage estimator for the covariance matrix is thus obtained by

forming a convex combination of the sample covariance matrix and the identity matrix scaled by the average

of the sample eigenvalues [32]. If its convex weights are chosen optimally in view of the Frobenius risk, the

resulting shrinkage estimator can be shown to be both well-conditioned and more accurate than Σ̂. Alternative

shrinkage targets include the constant correlation model, which preserves the sample variances but equalizes

all pairwise correlations [31], the single index model, which assumes that each random variable is explained by

one systematic and one idiosyncratic risk factor [30], or the diagonal matrix of the sample eigenvalues [49] etc.

The linear shrinkage estimators described above are computationally attractive because evaluating convex

combinations is cheap. Computing the corresponding precision matrix estimators requires a matrix inversion

and is therefore more expensive. We emphasize that linear shrinkage estimators for the precision matrix itself,

obtained by forming a cheap convex combination of the inverse sample covariance matrix and a shrinkage

target, are not available in the big data regime when p > n and Σ̂ fails to be invertible.

More recently, insights from random matrix theory have motivated a new rotation equivariant shrinkage

estimator that applies an individualized shrinkage intensity to every sample eigenvalue [33]. While this

nonlinear shrinkage estimator offers significant improvements over linear shrinkage, its evaluation necessitates

the solution of a hard nonconvex optimization problem, which becomes cumbersome for large values of p.

Alternative nonlinear shrinkage estimators can be obtained by imposing an upper bound on the condition

number of the covariance matrix in the underlying maximum likelihood estimation problem [55].

Alternatively, multi-factor models familiar from the arbitrage pricing theory can be used to approximate

the covariance matrix by a sum of a low-rank and a diagonal component, both of which have only few free

parameters and are thus easier to estimate. Such a dimensionality reduction leads to stable estimators [8, 16].

This paper endeavors to develop a principled approach to precision matrix estimation, which is inspired by

recent advances in distributionally robust optimization [11, 22, 54]. For the sake of argument, assume that

the true distribution of ξ is given by P = N (µ0,Σ0), where Σ0 � 0. If µ0 and Σ0 were known, the quality of

some estimators µ and X for µ0 and Σ−1
0 , respectively, could conveniently be measured by Stein’s loss [28]

L(X,µ) := − log det(Σ0X) + Tr [Σ0X] + (µ0 − µ)>X(µ0 − µ)− p

= − log detX + EP [(ξ − µ)>X(ξ − µ)
]
− log det Σ0 − p, (3)

which is reminiscent of the log-likelihood function (1). It is easy to verify that Stein’s loss is nonnegative for

all µ ∈ Rp and X ∈ Sp+ and vanishes only at the true mean µ = µ0 and the true precision matrix X = Σ−1
0 . Of

course, we cannot minimize Stein’s loss directly because P is unknown. As a näıve remedy, one could instead

minimize an approximation of Stein’s loss obtained by removing the (unknown but irrelevant) normalization

constant − log det Σ0 − p and replacing P in (3) with the empirical distribution P̂n = N (µ̂, Σ̂). However, in

doing so we simply recover the standard maximum likelihood estimation problem, which is unbounded for

p > n and outputs the sample mean and the inverse sample covariance matrix for p ≤ n. This motivates us to

robustify the empirical loss minimization problem by exploiting that P̂n is close to P in Wasserstein distance.

Definition 1.1 (Wasserstein distance). The type-2 Wasserstein distance between two arbitrary distributions

P1 and P2 on Rp with finite second moments is defined as

W(P1,P2) := inf
Π

{(∫
Rp×Rp

∥∥ξ1 − ξ2∥∥2
Π(dξ1,dξ2)

) 1
2

:
Π is a joint distribution of ξ1 and ξ2
with marginals P1 and P2, respectively

}
.
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The squared Wasserstein distance between P1 and P2 can be interpreted as the cost of moving the distri-

bution P1 to the distribution P2, where ‖ξ1 − ξ2‖2 quantifies the cost of moving unit mass from ξ1 to ξ2.

A central limit type theorem for the Wasserstein distance between empirical normal distributions implies

that n ·W(P̂n,P)2 converges weakly to a quadratic functional of independent normal random variables as

the number n of training samples tends to infinity [42, Theorem 2.3]. We may thus conclude that for every

η ∈ (0, 1) there exists q(η) > 0 such that Pn[W(P̂n,P) ≤ q(η)n−
1
2 ] ≥ 1 − η for all n large enough. In the

following we denote by N p the family of all normal distributions on Rp and by

Pρ = {Q ∈ N p : W(P̂n,Q) ≤ ρ}

the ambiguity set of all normal distributions whose Wasserstein distance to P̂n is at most ρ ≥ 0. Note

that Pρ depends on the unknown true distribution P only through the training data and, for ρ ≥ q(η)n−
1
2 ,

contains P with confidence 1 − η asymptotically as n tends to infinity. It is thus natural to formulate a

distributionally robust estimation problem for the precision matrix that minimizes Stein’s loss—modulo an

irrelevant normalization constant—in the worst case across all reference distributions Q ∈ Pρ.

J (µ̂, Σ̂) := inf
µ∈Rp, X∈X

{
− log detX + sup

Q∈Pρ
EQ [(ξ − µ)>X(ξ − µ)

]}
(4)

Here, X ⊆ Sp++ denotes the set of admissible precision matrices. In the absence of any prior structural infor-

mation, the only requirement is that X be positive semidefinite and invertible, in which case X = Sp++. Known

conditional independence relationships impose a sparsity pattern on X, which is easily enforced through linear

equality constraints in X . By adopting a worst-case perspective, we hope that the minimizers of (4) will have

low Stein’s loss with respect to all distributions in Pρ including the unknown true distribution P. As Stein’s

loss with respect to the empirical distribution is proportional to the log-likelihood function (1), problem (4)

can also be interpreted as a robust maximum likelihood estimation problem that hedges against perturbations

in the training samples. As we will show below, this robustification is tractable and has a regularizing effect.

Recently it has been discovered that distributionally robust optimization models with Wasserstein ambigu-

ity sets centered at discrete distributions on Rp (and without any normality restrictions) are often equivalent to

tractable convex programs [36, 57]. Extensions of these results to general Polish spaces are reported in [6, 20].

The explicit convex reformulations of Wasserstein distributionally robust models have not only facilitated

efficient solution procedures but have also revealed insightful connections between distributional robustness

and regularization in machine learning. Indeed, many classical regularization schemes of supervised learning

such as the Lasso method can be explained by a Wasserstein distributionally robust model. This link was

first discovered in the context of logistic regression [45] and later extended to other popular regression and

classification models [6, 44] and even to generative adversarial networks in deep learning [19].

Model (4) differs fundamentally from all existing distributionally robust optimization models in that the

ambiguity set contains only normal distributions. As the family of normal distributions fails to be closed

under mixtures, the ambiguity set is thus nonconvex. In the remainder of the paper we devise efficient solution

methods for problem (4), and we investigate the properties of the resulting precision matrix estimator.

The main contributions of this paper can be summarized as follows.

• Leveraging an analytical formula for the Wasserstein distance between two normal distributions de-

rived in [21], we prove that the distributionally robust estimation problem (4) is equivalent to a

tractable semidefinite program—despite the nonconvex nature of the underlying ambiguity set.

• We prove that problem (4) and its unique minimizer depend on the training data only through Σ̂

(but not through µ̂), which is reassuring because Σ̂ is a sufficient statistic for the precision matrix.

• In the absence of any structural information, we demonstrate that problem (4) has an analytical

solution that is naturally interpreted as a nonlinear shrinkage estimator. Indeed, the optimal precision

matrix estimator shares the eigenvectors of the sample covariance matrix, and as the radius ρ of the

Wasserstein ambiguity set grows, its eigenvalues are shrunk towards 0 while preserving their order.
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At the same time, the condition number of the optimal estimator steadily improves and eventually

converges to 1 even for p > n. These desirable properties are not enforced ex ante but emerge

naturally from the underlying distributionally robust optimization model.

• In the presence of conditional independence constraints, the semidefinite program equivalent to (4) is

beyond the reach of general purpose solvers for practically relevant problem dimensions p. We thus

devise an efficient sequential quadratic approximation method reminiscent of the QUIC algorithm [26],

which can solve instances of problem (4) with p . 104 on a standard PC.

• We derive an analytical formula for the extremal distribution that attains the supremum in (4).

The paper is structured as follows. Section 2 demonstrates that the distributionally robust estimation

problem (4) admits an exact reformulation as a tractable semidefinite program. Section 3 derives an analytical

solution of this semidefinite program in the absence of any structural information, while Section 4 develops

an efficient sequential quadratic approximation algorithm for the problem with conditional independence

constraints. The extremal distribution that attains the worst-case expectation in (4) is characterized in

Section 5, and numerical experiments based on synthetic and real data are reported in Section 6.

Notation. For any A ∈ Rp×p we use Tr [A] to denote the trace and ‖A‖ =
√

Tr [A>A] to denote the

Frobenius norm of A. By slight abuse of notation, the Euclidean norm of v ∈ Rp is also denoted by ‖v‖.
Moreover, I stands for the identity matrix. Its dimension is usually evident from the context. For any

A,B ∈ Rp×p, we use
〈
A,B

〉
= Tr

[
A>B

]
to denote the inner product and A ⊗ B ∈ Rp2×p2 to denote the

Kronecker product of A and B. The space of all symmetric matrices in Rp×p is denoted by Sp. We use Sp+
(Sp++) to represent the cone of symmetric positive semidefinite (positive definite) matrices in Sp. For any

A,B ∈ Sp, the relation A � B (A � B) means that A−B ∈ Sp+ (A−B ∈ Sp++).

2. Tractable Reformulation

Throughout this paper we assume that the random vector ξ ∈ Rp is normally distributed. This is in line

with the common practice in statistics and in the natural and social sciences, whereby normal distributions

are routinely used to model random vectors whose distributions are unknown. The normality assumption is

often justified by the central limit theorem, which suggests that random vectors influenced by many small and

unrelated disturbances are approximately normally distributed. Moreover, the normal distribution maximizes

entropy across all distributions with given first- and second-order moments, and as such it constitutes the

least prejudiced distribution compatible with a given mean vector and covariance matrix.

In order to facilitate rigorous statements, we first provide a formal definition of normal distributions.

Definition 2.1 (Normal distributions). We say that P is a normal distribution on Rp with mean µ ∈ Rp and

covariance matrix Σ ∈ Sp+, that is, P = N (µ,Σ), if P is supported on supp(P) = {µ + Ev : v ∈ Rk}, and if

the density function of P with respect to the Lebesgue measure on supp(P) is given by

%P(ξ) :=
1√

(2π)k det(D)
e−(ξ−µ)>ED−1E>(ξ−µ),

where k = rank(Σ), D ∈ Sk++ is the diagonal matrix of the positive eigenvalues of Σ, and E ∈ Rp×k is the

matrix whose columns correspond to the orthonormal eigenvectors of the positive eigenvalues of Σ. The family

of all normal distributions on Rp is denoted by N p, while the subfamily of all distributions in N p with zero

means and arbitrary covariance matrices is denoted by N p
0 .

Definition 2.1 explicitly allows for degenerate normal distributions with rank deficient covariance matrices.

The normality assumption also has distinct computational advantages. In fact, while the Wasserstein

distance between two generic distributions is only given implicitly as the solution of a mass transportation

problem, the Wasserstein distance between two normal distributions is known in closed form. It can be

expressed explicitly as a function of the mean vectors and covariance matrices of the two distributions.
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Proposition 2.2 (Givens and Shortt [21, Proposition 7]). The type-2 Wasserstein distance between two

normal distributions P1 = N (µ1,Σ1) and P2 = N (µ2,Σ2) with µ1, µ2 ∈ Rp and Σ1,Σ2 ∈ Sp+ amounts to

W(P1,P2) =

√∥∥µ1 − µ2

∥∥2
+ Tr [Σ1] + Tr [Σ2]− 2 Tr

[√√
Σ2Σ1

√
Σ2

]
.

If P1 and P2 share the same mean vector (e.g., if µ1 = µ2 = 0), then the Wasserstein distance W(P1,P2)

reduces to a function of the covariance matrices Σ1 and Σ2 only, thereby inducing a metric on the cone Sp+.

Definition 2.3 (Induced metric on Sp+). Let WS : Sp+ × Sp+ → R+ be the metric on Sp+ induced by the type-2

Wasserstein metric on the family of normal distributions with equal means. Thus, for all Σ1,Σ2 ∈ Sp+ we set

WS(Σ1,Σ2) :=

√
Tr [Σ1] + Tr [Σ2]− 2 Tr

[√√
Σ2Σ1

√
Σ2

]
.

The definition of WS implies via Proposition 2.2 that W(P1,P2) = WS(Σ1,Σ2) for all P1 = N (µ1,Σ1) and

P2 = N (µ2,Σ2) with µ1 = µ2. Thanks to its interpretation as the restriction of W to the space of normal

distributions with a fixed mean, it is easy to verify that WS is symmetric and positive definite and satisfies

the triangle inequality. In other words, WS inherits the property of being a metric from W.

Corollary 2.4 (Commuting covariance matrices). If Σ1,Σ2 ∈ Sp+ commute (Σ1Σ2 = Σ2Σ1), then the induced

Wasserstein distance WS simplifies to the trace norm between the square roots of Σ1 and Σ2, that is,

WS(Σ1,Σ2) =
∥∥√Σ1 −

√
Σ2

∥∥.
Proof. The commutativity of Σ1 and Σ2 implies that

√
Σ2Σ1

√
Σ2 = Σ1Σ2, whereby

WS(Σ1,Σ2) =

√
Tr [Σ1] + Tr [Σ2]− 2 Tr

[√
Σ1Σ2

]
=

√
Tr

[(√
Σ1 −

√
Σ2

)2
]

=
∥∥√Σ1 −

√
Σ2

∥∥.
Thus, the claim follows. �

Proposition 2.2 reveals that the Wasserstein distance between any two (possibly degenerate) normal distri-

butions is finite. In contrast, the Kullback-Leibler divergence between degenerate and non-degenerate normal

distributions is infinite.

Remark 2.5 (Kullback-Leibler divergence between normal distributions). A simple calculation shows that

the Kullback-Leibler divergence from P2 = N (µ2,Σ2) to P1 = N (µ1,Σ1) amounts to

DKL(P1‖P2) =
1

2

[
(µ2 − µ1)>Σ−1

2 (µ2 − µ1) + Tr
[
Σ1Σ−1

2

]
− p− log det Σ1 + log det Σ2

]
whenever µ1, µ2 ∈ Rp and Σ1,Σ2 ∈ Sp++. If either P1 or P2 is degenerate (that is, if Σ1 is singular and

Σ2 invertible or vice versa), then P1 fails to be absolutely continuous with respect to P2, which implies that

DKL(P1‖P2) = ∞. Moreover, from the above formula it is easy to verify that DKL(P1‖P2) diverges if either

Σ1 or Σ2 tends to a singular matrix.

In the big data regime (p > n) the sample covariance matrix Σ̂ is singular even if the samples are drawn

from a non-degernerate normal distribution P = N (µ,Σ) with Σ ∈ Sp++. In this case, the Kullback-Leibler

distance between the empirical distribution P̂ = N (µ̂, Σ̂) and P is infinite, and thus P̂ and P are perceived as

maximally dissimilar despite their intimate relation. In contrast, their Wasserstein distance is finite.

In the remainder of this section we develop a tractable reformulation for the distributionally robust es-

timation problem (4). Before investigating the general problem, we first address a simpler problem variant

where the true mean µ0 of ξ is known to vanish. Thus, we temporarily assume that ξ follows N (0,Σ0). In

this setting, it makes sense to focus on the modified ambiguity set P0
ρ := {Q ∈ N p

0 : W(Q, P̂) ≤ ρ}, which
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contains all normal distributions with zero mean that have a Wasserstein distance of at most ρ ≥ 0 from the

empirical distribution P̂ = N (0, Σ̂). Under these assumptions, the estimation problem (4) thus simplifies to

J (Σ̂) := inf
X∈X

{
− log detX + sup

Q∈P0
ρ

EQ[
〈
ξξ>, X

〉
]

}
. (5)

We are now ready to state the first main result of this section.

Theorem 2.6 (Convex reformulation). For any fixed ρ > 0 and Σ̂ � 0, the simplified distributionally robust

estimation problem (5) is equivalent to

J (Σ̂) =

 inf
X,γ

− log detX + γ
(
ρ2 − Tr

[
Σ̂
])

+ γ2
〈
(γI −X)−1, Σ̂

〉
s. t. γI � X � 0, X ∈ X .

(6)

Moreover, the optimal value function J (Σ̂) is continuous in Σ̂ ∈ S+.

The proof of Theorem 2.6 relies on several auxiliary results. A main ingredient to derive the convex

program (6) is a reformulation of the worst-case expectation function g : S+ × S+ → R defined through

g(Σ̂, X) := sup
Q∈P0

ρ

EQ[
〈
ξξ>, X

〉
] . (7)

In Proposition 2.8 below we will demonstrate that g(Σ̂, X) is continuous and coincides with the optimal value

of an explicit semidefinite program, a result which depends on the following preparatory lemma.

Lemma 2.7 (Continuity properties of partial infima). Consider a function ϕ : E × Γ → R on two normed

spaces E and Γ, and define the partial infimum with respect to γ as Φ(ε) := infγ∈Γ ϕ(ε, γ) for every ε ∈ E.

(i) If ϕ(ε, γ) is continuous in ε at ε0 ∈ E for every γ ∈ Γ, then Φ(ε) is upper-semicontinuous at ε0.

(ii) If ϕ(ε, γ) is calm from below at ε0 ∈ E uniformly in γ ∈ Γ, that is, if there exists a constant L ≥ 0

such that ϕ(ε, γ)− ϕ(ε0, γ) ≥ −L‖ε0 − ε‖ for all γ ∈ Γ, then Φ(ε) is lower-semicontinuous at ε0.

Proof. As for assertion (i), we have

lim sup
ε→ε0

Φ(ε) = inf
δ>0

sup
‖ε−ε0‖≤δ

Φ(ε) = inf
δ>0

sup
‖ε−ε0‖≤δ

inf
γ∈Γ

ϕ(ε, γ)

≤ inf
γ∈Γ

inf
δ>0

sup
‖ε−ε0‖≤δ

ϕ(ε, γ) = inf
γ∈Γ

lim sup
ε→ε0

ϕ(ε, γ) = inf
γ∈Γ

ϕ(ε0, γ) = Φ(ε0),

where the inequality follows from interchanging the infimum and supremum operators, while the penultimate

equality in the last line relies on the continuity assumption. As for assertion (ii), note that

lim inf
ε→ε0

Φ(ε) = sup
δ>0

inf
‖ε−ε0‖≤δ

Φ(ε) = sup
δ>0

inf
‖ε−ε0‖≤δ

inf
γ∈Γ

ϕ(ε, γ) = sup
δ>0

inf
γ∈Γ

inf
‖ε−ε0‖≤δ

ϕ(ε, γ)

≥ sup
δ>0

inf
γ∈Γ

inf
‖ε−ε0‖≤δ

(
ϕ(ε0, γ)− L‖ε0 − ε‖

)
= sup

δ>0
inf
γ∈Γ

(
ϕ(ε0, γ)− Lδ

)
= inf
γ∈Γ

ϕ(ε0, γ) = Φ(ε0),

where the inequality in the second line holds due to the calmness assumption. �

Proposition 2.8 (Worst-case expectation function). For any fixed ρ > 0, Σ̂ � 0 and X � 0, the worst-case

expectation g(Σ̂, X) defined in (7) coincides with the optimal value of the tractable semidefinite program

inf
γ

γ
(
ρ2 − Tr

[
Σ̂
])

+ γ2
〈
(γI −X)−1, Σ̂

〉
s. t. γI � X.

(8)

Moreover, the optimal value function g(Σ̂, X) is continuous in (Σ̂, X) ∈ Sp+ × Sp++.
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Proof. Using the definitions of the worst-case expectation g(Σ̂, X) and the ambiguity set P0
ρ , we find

g(Σ̂, X) = sup
Q∈P0

ρ

〈
EQ[ξξ>], X

〉
= sup
S∈Sp+

{〈
S,X

〉
: WS(S, Σ̂) ≤ ρ

}
,

where the second equality holds because the metric WS on Sp+ is induced by the type-2 Wasserstein met-

ric W on N p
0 , meaning that there is a one-to-one correspondence between distributions Q ∈ N p

0 with

W(Q, P̂) ≤ ρ and covariance matrices S ∈ Sp+ with WS(S, Σ̂) ≤ ρ. The continuity of g(Σ̂, X) thus follows

from Berge’s maximum theorem [2, pp. 115–116], which applies because
〈
S,X

〉
and WS(S, Σ̂) are continuous

in (S, Σ̂, X) ∈ Sp+ × Sp+ × Sp++, while {S ∈ Sp+ : WS(S, Σ̂) ≤ ρ} is nonempty and compact for every Σ̂ ∈ Sp+
and ρ > 0.

By the definition of the induced metric WS we then obtain

g(Σ̂, X) = sup
S∈Sp+

{〈
S,X

〉
: Tr

[
Σ̂
]

+ Tr [S]− 2 Tr
[√

Σ̂
1
2SΣ̂

1
2

]
≤ ρ2

}
. (9)

To establish the equivalence between (8) and (9), we first assume that Σ̂ � 0. The generalization to rank

deficient sample covariance matrices will be addressed later. By dualizing the explicit constraint in (9) and

introducing the constant matrix M = Σ̂
1
2 , which inherits invertibility from Σ̂, we find

g(Σ̂, X) = sup
S∈Sp+

inf
γ≥0

〈
S,X − γI

〉
+ 2γ

〈√
MSM, I

〉
+ γ

(
ρ2 − Tr

[
Σ̂
])

= inf
γ≥0

sup
S∈Sp+

〈
S,X − γI

〉
+ 2γ

〈√
MSM, I

〉
+ γ

(
ρ2 − Tr

[
Σ̂
])

= inf
γ≥0

{
γ
(
ρ2 − Tr

[
Σ̂
])

+ sup
B∈Sp+

{〈
B2,M−1(X − γI)M−1

〉
+ 2γ

〈
B, I

〉}}
. (10)

Here, the first equality exploits the identity Tr [A] = 〈A, I〉 for any A ∈ Rp×p, the second equality follows

from strong duality, which holds because Σ̂ constitutes a Slater point for problem (9) when ρ > 0, and the

third equality relies on the substitution B ←
√
MSM , which implies that S = M−1B2M−1. Introducing the

shorthand ∆ = M−1(X − γI)M−1 allows us to simplify the inner maximization problem over B in (10) to

sup
B∈Sp+

{〈
B2,∆

〉
+ 2γ

〈
B, I

〉}
. (11)

If ∆ 6≺ 0, then (11) is unbounded. To see this, denote by λ(∆) the largest eigenvalue of ∆ and by v

a corresponding eigenvector. If λ(∆) > 0, then the objective value of Bk = k · v v> � 0 in (11) grows

quadratically with k. If λ(∆) = 0, then γ > 0 for otherwise X � 0 contrary to our assumption, and thus the

objective value of Bk in (11) grows linearly with k. In both cases (11) is indeed unbounded.

If ∆ ≺ 0, then (11) becomes a convex optimization problem that can be solved analytically. Indeed, the

objective function of (11) is minimized by B? = −γ∆−1, which satisfies the first-order optimality condition

B∆ + ∆B + 2γI = 0 (12)

and is strictly feasible in (11) because ∆ ≺ 0. Moreover, as (12) is naturally interpreted as a continuous

Lyapunov equation, its solution B? can be shown to be unique; see, e.g., [25, Theorem 12.5]. We may thus

conclude that B? is the unique maximizer of (11) and that the maximum of (11) amounts to −γ2 Tr [∆].

Adding the constraint γI � X to the outer minimization problem in (10), thus excluding all values of γ for

which ∆ 6≺ 0 and the inner supremum is infinite, and replacing the optimal value of the inner maximization

problem with −γ2 Tr [∆] = γ2
〈
(γI −X)−1, Σ̂

〉
yields (8). This establishes the claim for Σ̂ � 0.

In the second part of the proof, we show that the claim remains valid for rank deficient sample covariance

matrices. To this end, we denote the optimal value of problem (8) by g′(Σ̂, X). From the first part of the

proof we know that g′(Σ̂, X) = g(Σ̂, X) for all Σ̂, X ∈ Sd++. We also know that g(Σ̂, X) is continuous in

(Σ̂, X) ∈ Sp+ × Sp++. It remains to be shown that g′(Σ̂, X) = g(Σ̂, X) for all Σ̂ ∈ Sd+ and X ∈ Sd++.
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Fix any Σ̂ ∈ Sp+ and X ∈ Sd++, and note that Σ̂ + εI � 0 for every ε > 0. Defining the intervals E = R+

and Γ = {γ ∈ R : γI � X} as well as the auxiliary functions

Φ(ε) = g′(Σ̂ + εI,X) and ϕ(ε, γ) = γ
(
ρ2 − Tr

[
Σ̂ + εI

])
+ γ2

〈
(γI −X)−1, Σ̂ + εI

〉
,

it follows from (8) that

Φ(ε) = inf
γ∈Γ

ϕ(ε, γ) ∀ε ∈ E .

One can show via Lemma 2.7 that Φ(ε) is continuous at ε = 0. Indeed, ϕ(ε, γ) is linear and thus continuous

in ε for every γ ∈ Γ, which implies via Lemma 2.7(a) that Φ(ε) is upper-semicontinuous at ε = 0. Moreover,

ϕ(ε, γ) is calm from below at ε = 0 with L = 0 uniformly in γ ∈ Γ because

ϕ(ε, γ)− ϕ(0, γ) = γ Tr
[
(I − γ−1X)−1 − I

]
ε ≥ 0 ∀γ ∈ Γ.

Here, the inequality holds for all γ ∈ Γ due to the conditions I � γ−1X � 0, which are equivalent to

0 ≺ I−γ−1X ≺ I and imply (I−γ−1X)−1 � I. Lemma 2.7(b) thus ensures that Φ(ε) is lower-semicontinuous

at ε = 0. In summary, we conclude that Φ(ε) is indeed continuous at ε = 0.

Combining the above results, we find

g(Σ̂, X) = lim
ε→0+

g(Σ̂ + εI,X) = lim
ε→0+

g′(Σ̂ + εI,X) = lim
ε→0+

Φ(ε) = Φ(0) = g′(Σ̂, X),

where the five equalities hold due to the continuity of g(Σ̂, X) in Σ̂, the fact that g(Σ̂, X) = g′(Σ̂, X) for all

Σ̂ � 0, the definition of Φ(ε), the continuity of Φ(ε) at ε = 0 and once again from the definition of Φ(ε),

respectively. The claim now follows because Σ̂ ∈ Sp+ and X ∈ Sd++ were chosen arbitrarily. �

We have now collected all necessary ingredients for the proof of Theorem 2.6.

Proof of Theorem 2.6. By Proposition 2.8, the worst-case expectation in (5) coincides with the optimal value

of the semidefinite program (8). Substituting this semidefinite program into (5) yields (6). Note that the

condition X � 0, which ensures that log detX is well-defined, is actually redundant because it is implied by

the constraint X ∈ X . Nevertheless, we make it explicit in (6) for the sake of clarity.

It remains to show that J (Σ̂) is continuous. To this end, we first construct bounds on the minimizers

of (6) that vary continuously with Σ̂. Such bounds can be constructed from any feasible decision (X0, γ0).

Assume without loss of generality that γ0 > p/ρ2, and denote by f0(Σ̂) the objective value of (X0, γ0) in (6),

which constitutes a linear function of Σ̂. Moreover, define two continuous auxiliary functions

x(Σ̂) :=
f0(Σ̂)− p(1− log γ0)

ρ2 − pγ−1
0

and x(Σ̂) :=
e−f0(Σ̂)

x(Σ̂)p−1
, (13)

which are strictly positive because γ0 > p/ρ2. Clearly, the infimum of problem (6) is determined only by

feasible decisions (X, γ) with an objective value of at most f0(Σ̂). All such decisions satisfy

f0(Σ̂) ≥ − log detX + γρ2 + γ
〈
(I − γ−1X)−1 − I, Σ̂

〉
≥ − log detX + γρ2 (14)

≥ −p log γ + γρ2 ≥ (ρ2 − γ−1
0 p)γ + p(1− log γ0),

where the second and third inequalites exploit the estimates (I − γ−1X)−1 � I and detX ≤ det(γI) = γp,

respectively, which are both implied by the constraint γI � X � 0, and the last inequality holds because

log γ ≤ log γ0 + γ−1
0 (γ − γ0) for all γ > 0. By rearranging the above inequality and recalling the definition of

x(Σ̂), we thus find γ ≤ x(Σ̂), which in turn implies that X ≺ λI � x(Σ̂)I.

Denoting by {xi}i≤p the eigenvalues of the matrix X and setting xmin = mini≤p xi, we further find

f0(Σ̂) ≥ − log detX = − log

( p∏
i=1

xi

)
≥ − log

(
xmin x(Σ̂)p−1

)
= − log xmin − (p− 1) log x(Σ̂),
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where the first inequality follows from (14), while the second inequality is based on overestimating all but the

smallest eigenvalue of X by x(Σ̂). By rearranging the above inequality and recalling the definition of x(Σ̂),

we thus find xmin ≥ x(Σ̂), which in turn implies that X � x(Σ̂)I.

The above reasoning shows that the extra constraint x(Σ̂)I � X � x(Σ̂)I has no impact on (6), that is,

J (Σ̂) =

 inf
X

− log detX + inf
γ

{
γ
(
ρ2 − Tr

[
Σ̂
])

+ γ2
〈
(γI −X)−1, Σ̂

〉
: γI � X

}
s. t. X ∈ X , x(Σ̂)I � X � x(Σ̂)I.

=

{
inf
X

− log detX + g(Σ̂, X)

s. t. X ∈ X , x(Σ̂)I � X � x(Σ̂)I,

where the second equality follows from Proposition 2.8. The continuity of J (Σ̂) now follows directly from

Berge’s maximum theorem [2, pp. 115–116], which applies due to the continuity of g(Σ̂, X) established in

Proposition 2.8, the compactness of the feasible set and the continuity of x(Σ̂) and x(Σ̂). �

An immediate consequence of Theorem 2.6 is that the simplified estimation problem (5) is equivalent to

an explicit semidefinite program and is therefore in principle computationally tractable.

Corollary 2.9 (Tractability). For any fixed ρ > 0 and Σ̂ � 0, the simplified distributionally robust estimation

problem (5) is equivalent to the tractable semidefinite program

J (Σ̂) =


inf
X,Y,γ

− log detX + γ
(
ρ2 − Tr

[
Σ̂
])

+ Tr [Y ]

s. t.

[
Y γΣ̂

1
2

γΣ̂
1
2 γI −X

]
� 0

γI � X � 0, Y � 0, X ∈ X .

(15)

Proof. We know from Theorem 2.6 that the estimation problem (5) is equivalent to the convex program (6).

As X represents a decision variable instead of a parameter, however, problem (6) fails to be a semidefinite

program per se. Indeed, its objective function involves the nonlinear term h(X, γ) := γ2
〈
(γI − X)−1, Σ̂

〉
,

which is interpreted as ∞ outside of its domain
{

(X, γ) ∈ S+ ×R : γI � X
}

. However, h(X, γ) constitutes a

matrix fractional function as described in [7, Example 3.4] and thus admits the semidefinite reformulation

h(X, γ) = inf
t

{
t : γI � X, γ2

〈
(γI −X)−1, Σ̂

〉
≤ t
}

= inf
Y,t

{
t : γI � X, Y � γ2Σ̂

1
2 (γI −X)−1Σ̂

1
2 , Tr [Y ] ≤ t

}
= inf

Y

{
Tr [Y ] : γI � X,

[
Y γΣ̂

1
2

γΣ̂
1
2 γI −X

]
� 0

}
,

where the second equality holds because A � B implies Tr [A] ≥ Tr [B], while the third equality follows from

a standard Schur complement argument; see, e.g., [7, Appendix A.5.5]. Thus, h(X, γ) is representable as

the optimal value of a parametric semidefinite program whose objective and constraint functions are jointly

convex in the auxiliary decision variable Y and the parameters X and γ. The postulated reformulation (15)

is then obtained by substituting the last expression into (6). �

Now that we have derived a tractable semidefinite reformulation for the simplified estimation problem (5),

we are ready to address the generic estimation problem (4), which does not assume knowledge of the mean

and is robustified against all distributions in the ambiguity set Pρ without mean constraints.

Theorem 2.10 (Sufficiency of Σ̂). For any fixed ρ > 0, µ̂ ∈ Rp and Σ̂ ∈ Sp+, the general distributionally

robust estimation problem (4) is equivalent to the optimization problem (6) and the tractable semidefinite

program (15). Moreover, the optimal value function J (µ̂, Σ̂) is constant in µ̂ and continuous in Σ̂.
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Proof. By Proposition 2.2, the optimal value of the estimation problem (4) can be expressed as

J (µ̂, Σ̂) = inf
µ,X∈X

− log detX +


sup

µ′, S�0
(µ′ − µ)>X(µ′ − µ) +

〈
S,X

〉
s. t. Tr [S] + Tr

[
Σ̂
]
− 2 Tr

[√
Σ̂

1
2SΣ̂

1
2

]
≤ ρ2 −

∥∥µ′ − µ̂∥∥2

= inf
µ,X∈X

− log detX + sup
µ′:‖µ′−µ̂‖≤ρ

(µ′ − µ)>X(µ′ − µ)

+ inf
γ:γI�X

γ
(
ρ2 −

∥∥µ′ − µ̂∥∥2 − Tr
[
Σ̂
])

+ γ2
〈
(γI −X)−1, Σ̂

〉
.

Here, the second equality holds because the Wasserstein constraint is infeasible unless ‖µ′ − µ̂‖ ≤ ρ and

because the maximization problem over S, which constitutes an instance of (9) with ρ2 − ‖µ′ − µ̂‖2 instead

of ρ2, can be reformulated as a minimization problem over γ thanks to Proposition 2.8. By the minimax

theorem [4, Proposition 5.5.4], which applies because µ′ ranges over a compact ball and because X − γI ≺ 0,

we may then interchange the maximization over µ′ with the minimization over γ to obtain

J (µ̂, Σ̂) = inf
µ, X ∈ X ,
γ : γI � X

− log detX + sup
µ′:‖µ′−µ̂‖≤ρ

(µ′ − µ)>X(µ′ − µ)

+ γ
(
ρ2 −

∥∥µ′ − µ̂∥∥2 − Tr
[
Σ̂
])

+ γ2
〈
(γI −X)−1, Σ̂

〉
.

Using the minimax theorem [4, Proposition 5.5.4] once again to interchange the minimization over µ with the

maximization over µ′ yields

J (µ̂, Σ̂) = inf
X ∈ X ,

γ : γI � X

− log detX + sup
µ′:‖µ′−µ̂‖≤ρ

inf
µ

(µ′ − µ)>X(µ′ − µ)

+ γ
(
ρ2 −

∥∥µ′ − µ̂∥∥2 − Tr
[
Σ̂
])

+ γ2
〈
(γI −X)−1, Σ̂

〉
= inf

X ∈ X ,
γ : γI � X

− log detX + γ
(
ρ2 − Tr

[
Σ̂
])

+ γ2
〈
(γI −X)−1, Σ̂

〉
,

where the second equality holds because µ′ is the unique optimal solution of the innermost minimization

problem over µ, while µ̂ is the unique optimal solution of the maximization problem over µ′. Thus, the

general estimation problem (4) is equivalent to (6), and J (µ̂, Σ̂) is manifestly constant in µ̂. Theorem 2.6

further implies that J (µ̂, Σ̂) is continuous in Σ̂, while Corollary 2.9 implies that (4) is equivalent to the

tractable semidefinite program (15). These observations complete the proof. �

Theorem 2.10 asserts that the general estimation problem (4) is equivalent to the simplified estimation

problem (5), which is based on the hypothesis that the mean of ξ is known to vanish. Theorem 2.10 further

reveals that the general estimation problem (4) as well as its (unique) optimal solution depend on the training

data only through the sample covariance matrix Σ̂. This is reassuring because Σ̂ is known to be a sufficient

statistic for the precision matrix. As solving (4) is tantamount to solving (5), it suffices to devise solution

procedures for the simplified estimation problem (5) or its equivalent reformulations (6) and (15).

We emphasize that the strictly convex log-determinant term in the objective of (15) is supported by state-

of-the-art interior point solvers for semidefinite programs such as SDPT3 [51]. In principle, problem (15) can

therefore be implemented directly in MATLAB using the YALMIP interface [34], for instance. In spite of

its theoretical tractability, however, the semidefinite program (15) quickly becomes excruciatingly large, and

direct solution with a general purpose solver becomes impracticable already for moderate values of p. This

motivates us to investigate practically relevant special cases in which the estimation problem (5) can be solved

either analytically (Section 3) or numerically using a dedicated fast Newton-type algorithm (Section 4).

3. Analytical Solution without Sparsity Information

If we have no prior information about the precision matrix, it is natural to set X = Sp++. In this case, the

distributionally robust estimation problem (5) can be solved in quasi-closed form.
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Theorem 3.1 (Analytical solution without sparsity information). If ρ > 0, X = Sp++ and Σ̂ ∈ Sp+ admits the

spectral decomposition Σ̂ =
∑p
i=1 λiviv

>
i with eigenvalues λi and corresponding orthonormal eigenvectors vi,

i ≤ p, then the unique minimizer of (5) is given by X? =
∑p
i=1 x

?
i viv

>
i , where

x?i = γ?
[
1− 1

2

(√
λ2
i (γ

?)2 + 4λiγ? − λiγ?
)]

∀i ≤ p (16a)

and γ? > 0 is the unique positive solution of the algebraic equation

(
ρ2 − 1

2

p∑
i=1

λi

)
γ − p+

1

2

p∑
i=1

√
λ2
i γ

2 + 4λiγ = 0. (16b)

Proof. We first demonstrate that the algebraic equation (16b) admits a unique solution in R+. For ease

of exposition, we define ϕ(γ) as the left-hand side of (16b). It is easy to see that ϕ(0) = −p < 0 and

limγ→∞ ϕ(γ)/γ = ρ2, which implies that ϕ(γ) grows asymptotically linearly with γ at slope ρ2 > 0. By the

intermediate value theorem, we may thus conclude that the equation (16b) has a solution γ? > 0.

As λiγ + 2 >
√
λ2
i γ

2 + 4λiγ, the derivative of ϕ(γ) satisfies

d

dγ
ϕ(γ) = ρ2 +

1

2

p∑
i=1

λi

(
λiγ + 2√
λ2
i γ

2 + 4λiγ
− 1

)
> 0 ,

whereby ϕ(γ) is strictly increasing in γ ∈ R+. Thus, the solution γ? is unique. The positive slope of ϕ(γ)

further implies via the implicit function theorem that γ? changes continuously with λi ∈ R+, i ≤ p.
In analogy to Proposition 2.8, we prove the claim first under the assumption that Σ̂ � 0 and postpone the

generalization to rank deficient sample covariance matrices. Focussing on Σ̂ � 0, we will show that (X?, γ?)

is feasible and optimal in (6). By Theorem 2.6, this will imply that X? is feasible and optimal in (5).

As γ? > 0 and Σ̂ � 0, which means that λi > 0 for all i ≤ p, an elementary calculation shows that

2 >
√
λ2
i (γ

?)2 + 4λiγ? − λiγ? > 0 ⇐⇒ 1 > 1− 1

2

(√
λ2
i (γ

?)2 + 4λiγ? − λiγ?
)
> 0.

Multiplying the last inequality by γ? proves that γ? > x?i > 0 for all i ≤ p, which in turn implies that

γ?I � X? � 0. Thus, (X?, γ?) is feasible in (6), and X? is feasible in (5).

To prove optimality, we denote by f(X, γ) the objective function of problem (6) and note that its gradient

with respect to X vanishes at (X?, γ?). Indeed, we have

∇Xf(X?, γ?) = −(X?)−1 + (γ?)2(γ?I −X?)−1Σ̂(γ?I −X?)−1

=

p∑
i=1

(
(γ?)2(γ? − x?i )−2λi − (x?i )

−1
)
viv
>
i

=

p∑
i=1

(γ?)2x?i λi − (γ? − x?i )2

(γ? − x?i )2xi
viv
>
i = 0,

where the first equality exploits the basic rules of matrix calculus (see, e.g., [3, p. 631]), the second equality

holds because Σ̂ and X share the same eigenvectors vi, i ≤ p, and the last equation follows from the identity

(γ?)2x?i λi = (γ? − x?i )2 ∀i ≤ p, (17)
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which is a direct consequence of the definitions of γ? and x?i , i ≤ p, in (16). Similarly, the partial derivative

of f(X, γ) with respect to γ vanishes at (X?, γ?), too. In fact, we have

∂

∂γ
f(X?, γ?) = ρ2 − Tr

[
Σ̂
]

+ 2γ? Tr
[
(γ?I −X?)−1Σ̂

]
− (γ?)2 Tr

[
(γ?I −X?)−1Σ̂(γ?I −X?)−1

]
= ρ2 −

p∑
i=1

λi

(
1− 2γ?

γ? − x?i
+

(γ?)2

(γ? − x?i )2

)
= ρ2 −

p∑
i=1

(x?i )
2

(γ? − x?i )2
λi

=
1

(γ?)2

(
ρ2(γ?)2 −

p∑
i=1

x?i

)
= 0,

where the second equality expresses Σ̂ and X in terms of their respective spectral decompositions, the fourth

equality holds due to (17), and the last equality follows from the observation that ρ2(γ?)2 =
∑p
i=1 x

?
i . In

summary, we have shown that (X?, γ?) satisfies the first-order optimality conditions of the convex optimization

problem (6), which ensures that X? is optimal in (5).

Consider now any (possibly singular) sample covariance matrix Σ̂ ∈ Sp+. As γ? > 0, similar arguments as

in the first part of the proof show that γ? ≥ x?i > 0 for all i ≤ p, which in turn implies that γ?I � X? � 0.

Moreover, if Σ̂ has at least one zero eigenvalue, it is easy to see that γ?I 6� X?, in which case (X?, γ?) fails to

be feasible in (6). However, X? remains feasible and optimal in (5). To see this, consider the invertible sample

covariance matrix Σ̂ + εI � 0 for some ε > 0, and denote by (X?(ε), γ?(ε)) the corresponding minimizer of

problem (6) as constructed in (16). As the solution of the algebraic equation (16b) depends continuously on

the eigenvalues of the sample covariance matrix, we conclude that the auxiliary variable γ?(ε) and—by virtue

of (16a)—the estimator X?(ε) are both continuous in ε ∈ R+. Thus, we find

J (Σ̂) = lim
ε→0+

J (Σ̂ + εI) = lim
ε→0+

− log detX?(ε) + g(Σ̂ + εI,X?(ε)) = − log detX? + g(Σ̂, X?),

where the first equality follows from the continuity of J (Σ̂) established in Theorem 2.6, the second equality

holds because X?(ε) is the optimal estimator corresponding to the sample covariance matrix Σ̂ + εI � 0 in

problem (5), and the third equality follows from the continuity of g(Σ̂, X) established in Proposition 2.8 and

the fact that limε→0+ X?(ε) = X? � 0. Thus, X? is indeed optimal in (5). The strict convexity of − log detX

further implies that X? is unique. This observation completes the proof. �

Remark 3.2 (Properties of X?). The optimal distributionally robust estimator X? identified in Theorem 3.1

commutes with the sample covariance matrix Σ̂ because both matrices share the same eigenbasis. Moreover,

the eigenvalues of X? are obtained from those of Σ̂ via a nonlinear transformation that depends on the size ρ

of the ambiguity set. We emphasize that all eigenvalues of X? are positive for every ρ > 0, which implies that

X? is invertible. These insights suggest that X? constitutes a nonlinear shrinkage estimator, which enjoys the

rotation equivariance property (when all data points are rotated by R ∈ Rp×p, then X? changes to RX?R>).

Theorem 3.1 characterizes the optimal solution of problem (5) in quasi-closed form up to the spectral

decomposition of Σ̂ and the numerical solution of equation (16b). By [39, Theorem 1.1], the eigenvalues of Σ̂

can be computed to within an absolute error ε in O(p3) arithmetic operations. Moreover, as its left-hand side

is increasing in γ?, equation (16b) can be solved reliably via bisection or by the Newton-Raphson method.

The following lemma provides a priori bounds on γ? that can be used to initialize the bisection interval.

Lemma 3.3 (Bisection interval). For ρ > 0, the unique solution of (16b) satisfies γ? ∈ [γmin, γmax], where

γmin =
p2λmax + 2pρ2 − p

√
p2λ2

max + 4pρ2λmax

2ρ4
> 0, γmax = min

 p

ρ2
,

1

ρ

√√√√ p∑
i=1

1

λi

 , (18)

and λmax denotes the maximum eigenvalue of Σ̂.
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Proof. By the definitions of γ? and x?i in (16) we have λix
?
i = (γ? − x?i )

2/(γ?)2 < 1, which implies that

x?i ≤ 1
λi

. Using (16) one can further show that (γ?)2 = 1
ρ2

∑p
i=1 x

?
i ≤ 1

ρ2

∑p
i=1

1
λi

, which is equivalent to

γ? ≤ 1
ρ (
∑p
i=1

1
λi

)
1
2 . Note that this upper bound on γ? is finite only if λi > 0 for all i ≤ p. To derive an upper

bound that is universally meaningful, we denote the left-hand side of (16b) by ϕ(γ) and note that ρ2γ − p ≤
ϕ(γ) for all γ ≥ 0. This estimate implies that γ? ≤ p

ρ2 . Thus, we find γ? ≤ min{ pρ2 ,
1
ρ (
∑p
i=1

1
λi

)
1
2 } = γmax.

To derive a lower bound on γ?, we set λmax = maxi≤p λi and observe that

ϕ(γ) ≤ ρ2γ − p+

p∑
i=1

√
λiγ ≤ ρ2γ − p+ p

√
λmaxγ ,

where the first inequality holds because
√
a+ b ≤

√
a+
√
b for all a, b ≥ 0. As the unique positive zero of the

right-hand side, γmin provides a nontrivial lower bound on γ?. Thus, the claim follows. �

Lemma 3.3 implies that γ? can be computed via the standard bisection algorithm to within an absolute

error of ε in log2((γmax − γmin)/ε) = O(log2 p) iterations. As evaluating the left-hand side of (16b) requires

only O(p) arithmetic operations, the computational effort for constructing X? is largely dominated by the

cost of the spectral decomposition of the sample covariance matrix.

Remark 3.4 (Numerical stability). If both γ? and λi are large numbers, then formula (16a) for x?i becomes

numerically instable. A mathematically equivalent but numerically more robust reformulation of (16a) is

x?i = γ?

1− 2

1 +
√

1 + 4
λiγ?

 .

In the following we investigate the impact of the Wasserstein radius ρ on the optimal Lagrange multiplier γ?

and the corresponding optimal estimator X?.

Proposition 3.5 (Sensitivity analysis). Assume that the eigenvalues of Σ̂ are sorted in ascending order, that

is, λ1 ≤ · · · ≤ λp. If γ?(ρ) denotes the solution of (16b), and x?i (ρ), i ≤ p, represent the eigenvalues of X?

defined in (16a), which makes the dependence on ρ > 0 explicit, then the following assertions hold:

(i) γ?(ρ) decreases with ρ, and limρ→∞ γ?(ρ) = 0;

(ii) x?i (ρ) decreases with ρ, and limρ→∞ x?i (ρ) = 0 for all i ≤ p;

(iii) the eigenvalues of X? are sorted in descending order, that is, x?1(ρ) ≥ · · · ≥ x?p(ρ) for every ρ > 0;

(vi) the condition number x?1(ρ)/x?p(ρ) of X? decreases with ρ, and limρ→∞ x?1(ρ)/x?p(ρ) = 1.

Proof. As the left-hand side of (16b) is strictly increasing in ρ, it is clear that γ?(ρ) decreases with ρ.

Moreover, the a priori bounds on γ?(ρ) derived in Lemma 3.3 imply that

0 ≤ lim
ρ→∞

γ?(ρ) ≤ lim
ρ→∞

p

ρ2
= 0.

Thus, assertion (i) follows. Next, by the definition of the eigenvalue x?i in (16a), we have

∂x?i
∂γ?

= 1 + λiγ
? − 1

2

(√
λ2
i (γ

?)2 + 4λiγ? +
λ2
i (γ

?)2 + 2λiγ
?√

λ2
i (γ

?)2 + 4λiγ?

)
= 1 + λiγ

? − λ2
i (γ

?)2 + 3λiγ
?√

λ2
i (γ

?)2 + 4λiγ?
.

Elementary algebra indicates that (1 + z)
√
z2 + 4z ≥ z2 + 3z for all z ≥ 0, whereby the right-hand side of the

above expression is strictly positive for every λi ≥ 0 and γ? ≥ 0. We conclude that x?i grows with γ? and, by

the monotonicity of γ?(ρ) established in assertion (i), that x?i (ρ) decreases with ρ. As γ?(ρ) drops to 0 for

large ρ and as the continuous function (16a) evaluates to 0 at γ? = 0, we thus find that x?i (ρ) converges to

0 as ρ grows. These observations establish assertion (ii). As for assertion (iii), use (16a) to express the i-th
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eigenvalue of X? as x?i = 1− 1
2ψ(λi), where the auxiliary function ψ(λ) =

√
λ2(γ?)2 + 4λγ? − λγ? is defined

for all λ ≥ 0. Note that ψ(λ) is monotonically increasing because

d

dλ
ψ(λ) =

λ(γ?)2 + 2γ?√
λ2(γ?)2 + 4λγ?

− γ? = γ?

(
λγ? + 2√

λ2(γ?)2 + 4λγ?
− 1

)
> 0 .

As λi+1 ≥ λi for all i < p, we thus have ψ(λi+1) ≥ ψ(λi), which in turn implies that x?i+1 ≤ x?j . Hence,

assertion (iii) follows. As for assertion (iv), note that by (16a) the condition number of X? is given by

x?1(ρ)

x?p(ρ)
=

1− 1
2

(√
λ2

1γ
?(ρ)2 + 4λ1γ?(ρ)− λ1γ

?(ρ)
)

1− 1
2

(√
λ2
pγ
?(ρ)2 + 4λpγ?(ρ)− λpγ?(ρ)

) .
The last expression converges to 1 as ρ tends to infinity because γ?(ρ) vanishes asymptotically due to asser-

tion (i). A tedious but straightforward calculation using (16a) shows that ∂
∂γ? log(x?1/x

?
p) > 0, which implies

via the monotonicity of the logarithm that x?1/x
?
p increases with γ?. As γ?(ρ) decreases with ρ by virtue of

assertion (i), we may then conclude that the condition number x?1(ρ)/x?p(ρ) decreases with ρ. �

Figure 1 visualizes the dependence of γ? and X? on the Wasserstein radius ρ in an example where p = 5

and the eigenvalues of Σ̂ are given by λi = 10i−3 for i ≤ 5. Figure 1(a) displays γ? as well as its a priori

bounds γmin and γmax derived in Lemma 3.3. Note first that γ? drops monotonically to 0 for large ρ, which is

in line with Proposition 3.5(i). As γ? represents the Lagrange multiplier of the Wasserstein constraint, which

limits the size of the ambiguity set to ρ, this observation indicates that the worst-case expectation (7) displays

a decreasing marginal increase in ρ. Figure 1(b) visualizes the eigenvalues x?i , i ≤ 5, as well as the condition

number of X?. Note that all eigenvalues are monotonically shrunk towards 0 and that their order is preserved

as ρ grows, which provides empirical support for Propositions 3.5(ii) and 3.5(iii), while the condition number

decreases monotonically to 1, which corroborates Proposition 3.5(iv).

In summary, we have shown that X? constitutes a nonlinear shrinkage estimator that is rotation equivari-

ant, positive definite and well-conditioned. Moreover, (X?)−1 preserves the order of the eigenvalues of Σ̂. We

emphasize that neither the interpretation of X? as a shrinkage estimator nor any of its desirable properties—

most notably the improvement of its condition number with ρ—were dictated ex ante. Instead, these prop-

erties arose naturally from an intuitively appealing distributionally robust estimation scheme. In contrast,

existing estimation schemes sometimes impose ad hoc constraints on condition numbers; see, e.g., [55]. On

the downside, as X? shares the same eigenbasis as the sample covariance matrix Σ̂, it does not prompt a new

robust principal component analysis. We henceforth refer to X? as the Wasserstein shrinkage estimator.

4. Numerical Solution with Sparsity Information

We now investigate a more general setting where X may be a strict subset of Sp++, which captures a

prescribed conditional independence structure of ξ. Specifically, we assume that there exists E ⊆ {1, . . . , p}2
such that the random variables ξi and ξj are conditionally independent given ξ−{i,j} for any pair (i, j) ∈ E ,

where ξ−{i,j} represents the truncation of the random vector ξ without the components ξi and ξj . It is well

known that if ξ follows a normal distribution with covariance matrix S � 0 and precision matrix X = S−1,

then ξi and ξj are conditionally independent given ξ−(i,j) if and only if Xij = 0. This reasoning forms the

basis of the celebrated Gaussian graphical models, see, e.g., [29]. Any prescribed conditional independence

structure of ξ can thus conveniently be captured by the feasible set

X = {X ∈ Sp++ : Xij = 0 ∀(i, j) ∈ E}.

We may assume without loss of generality that E inherits symmetry from X, that is, (i, j) ∈ E =⇒ (j, i) ∈ E .

In Section 3 we have seen that the robust maximum likelihood estimation problem (5) admits an analytical

solution when E = ∅. In the general case, analytical tractability is lost. Indeed, if E 6= ∅, then even the

nominal estimation problem obtained by setting ρ = 0 requires numerical solution [9]. In this section we
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(a) Lagrange multiplier γ? and its a priori bounds

γmin and γmax from Lemma 3.3.
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(b) Eigenvalues (left axis) and condition number

(round marker - right axis) of X?.

Figure 1. Dependence of the Lagrange multiplier γ? (left panel) as well as the eigenvalues

x?i , i ≤ 5, and the condition number x?5/x
?
1 of the optimal estimator X? (right panel) on ρ.

develop a Newton-type algorithm to solve (5) in the presence of prior conditional independence information.

For the sake of consistency, we will refer to the optimal solution of problem (5) as the Wasserstein shrinkage

estimator even in the presence of sparsity constraints.

Remark 4.1 (Conditional independence information in Pρ). We emphasize that our proposed estimation

model accounts for the prescribed conditional independence structure only in the feasible set X but not in the

ambiguity set Pρ. Otherwise, the ambiguity set would have to be redefined as

Pρ =
{
Q ∈ N p

0 : W(Q, P̂) ≤ ρ, (EQ[ξξ>]−1)ij = 0 ∀(i, j) ∈ E
}
.

While conceptually attractive, this new ambiguity set is empty even for some ρ > 0 because the inverse sample

covariance matrix Σ̂−1 violates the prescribed conditional independence relationships with probability 1.

Recall from Theorem 2.6 that the estimation problem (5) is equivalent to the convex program (6) and

that the optimal value of (6) depends continuously on Σ̂ ∈ Sp+. In the remainder of this section we may

thus assume without much loss of generality that Σ̂ � 0. Otherwise, we can replace Σ̂ with Σ̂ + εI for some

small ε > 0 without significantly changing the estimation problem’s solution. Inspired by [38, 26], we now

develop a sequential quadratic approximation algorithm for solving problem (6) with sparsity information.

Note that the set X of feasible precision matrices typically fixes many entries to zero, thus reducing the

effective problem dimension and making a second-order algorithm attractive even for large instances of (6).

The proposed algorithm starts at X0 = I and at some γ0 > 1, which are trivially feasible in (6). In each

iteration the algorithm moves from the current iterate (Xt, γt) along a feasible descent direction, which is

constructed from a quadratic approximation of the objective function of problem (6). A judiciously chosen

step size guarantees that the next iterate (Xt+1, γt+1) remains feasible and has a better (lower) objective

value; see Algorithm 1. The construction of the descent direction relies on the following lemma.

Lemma 4.2 (Fact 7.4.8 in [3]). For any A,B ∈ Rp×p and X ∈ Sp, we have

Tr [AXBX] = vec(X)>(B ⊗A>) vec(X).

Proposition 4.3 (Descent direction). Fix (X, γ) ∈ Sp++ × R++ with γI � X, and define the orthogonal

projection P : Rp2+1 → Rp2+1 through (Pz)k = 0 if k = j(p− 1) + i for some (i, j) ∈ E; = 1
2zj(p−1)+i +

1
2zi(p−1)+j if k = j(p− 1) + i for some i, j ≤ p with (i, j) /∈ E; = zk if k = p2+1. Moreover, define G := I−X

γ ,

H :=

[
X−1 ⊗X−1 + 2

γG
−1Σ̂G−1 ⊗G−1 − 1

γ2 vec(G−1[XG−1Σ̂ + Σ̂G−1X]G−1)

− 1
γ2 vec(G−1[XG−1Σ̂ + Σ̂G−1X]G−1)> 2

γ3 Tr[G−1XG−1Σ̂G−1X]

]
∈ Sp

2+1
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and

g :=

[
vec(G−1Σ̂G−1 −X−1)

ρ2 + Tr[G−1Σ̂(I − 1
γG
−1X)− Σ̂]

]
∈ Rp

2+1.

Then, the unique solution (∆?
X ,∆

?
γ) ∈ Sp × R of the linear system

PH
(
(vec(∆?

X)>,∆?
γ)> + g

)
= 0 and (∆?

X)ij = 0 ∀(i, j) ∈ E (19)

represents a feasible descent direction for the optimization problem (6) at (X, γ).

Proof. We first expand the objective function of problem (6) around (X, γ) ∈ Sp++ × R++ with γI � X. By

the rules of matrix calculus, the second-order Taylor expansion of the negative log-determinant is given by

− log det(X + ∆X) = − log det(X)− Tr
[
X−1∆X

]
+

1

2
Tr
[
X−1∆XX

−1∆X

]
+O(‖∆X‖3)

for ∆X ∈ Sp, see also [7, page 644]. Moreover, by using a geometric series expansion, we obtain(
I − X + ∆X

γ + ∆γ

)−1

=

(
I − X + ∆X

γ

(
1− ∆γ

γ
+

∆2
γ

γ2
+O(‖∆γ‖3)

))−1

=

(
I − X

γ
+
X∆γ

γ2
−
X∆2

γ

γ3
− ∆X

γ
+

∆X∆γ

γ2
+O(‖(∆X ,∆γ)‖3)

)−1

for ∆γ ∈ R. Expanding the matrix inverse as a Neumann series and setting G = I − X
γ , which is invertible

because γI � X, the above expression can be reformulated as

G−
1
2

(
I +

G−
1
2XG−

1
2 ∆γ

γ2 − G−
1
2XG−

1
2 ∆2

γ

γ3 − G−
1
2 ∆XG

− 1
2

γ +
G−

1
2 ∆XG

− 1
2 ∆γ

γ2 +O(‖(∆X ,∆γ)‖3)

)−1

G−
1
2

= G−1 − G−1XG−1∆γ

γ2
+
G−1XG−1∆2

γ

γ3
+
G−1∆XG

−1

γ
− G−1∆XG

−1∆XG
−1∆γ

γ2
+
G−1XG−1XG−1∆2

γ

γ4

+
G−1∆XG

−1∆XG
−1

γ2
− G−1XG−1∆XG

−1∆γ

γ3
− G−1∆XG

−1XG−1∆γ

γ3
+O(‖(∆X ,∆γ)‖3) .

Thus, the second-order Taylor expansion of the last term in the objective function of (6) is given by

(γ + ∆γ)2 Tr
[
((γ + ∆γ)I − (X + ∆X))

−1
Σ̂
]

= (γ + ∆γ) Tr

[(
I − X + ∆X

γ + ∆γ

)−1

Σ̂

]

= γ Tr
[
G−1Σ̂

]
+ ∆γ Tr

[
G−1Σ̂(I − 1

γ
G−1X)

]
+

∆2
γ

γ3
Tr
[
G−1XG−1Σ̂G−1X

]
+ Tr

[
G−1Σ̂G−1∆X

]
− ∆γ

γ2
Tr
[
G−1Σ̂G−1∆XG

−1X +G−1Σ̂G−1XG−1∆X

]
+

1

γ
Tr
[
G−1∆XG

−1Σ̂G−1∆X

]
+O(‖(∆X ,∆γ)‖3) ,

where the second equality follows from the Taylor expansion of the matrix inverse derived above. Using

Lemma 4.2, the objective function of (6) is thus representable as

− log det(X + ∆X) + (γ + ∆γ)
(
ρ2 − Tr

[
Σ̂
])

+ (γ + ∆γ)2 Tr
[
((γ + ∆γ)I − (X + ∆X))

−1
Σ̂
]

= c+ g>(vec(∆X)>,∆γ)> +
1

2
(vec(∆X)>,∆γ)H(vec(∆X)>,∆γ)> +O(‖(∆X ,∆γ)‖3)

for some c ∈ R, where the gradient g ∈ Rp and the Hessian H ∈ Sp are defined as in the proposition statement.

A feasible descent direction for problem (6) is thus obtained by solving the auxiliary quadratic program

min
∆X ,∆γ

g>(vec(∆X)>,∆γ)> + 1
2 (vec(∆X)>,∆γ)H(vec(∆X)>,∆γ)>

s. t. ∆X ∈ Sp, (∆X)ij = 0 ∀(i, j) ∈ E
(20)
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Note that (20) has a unique minimizer because H is positive definite. Indeed, we have

4

γ4
vec(G−1XG−1Σ̂G−1)>

(
X−1 ⊗X−1 +

2

γ
G−1Σ̂G−1 ⊗G−1

)−1

vec(G−1XG−1Σ̂G−1)

<
4

γ4
vec(G−1XG−1Σ̂G−1)>

(
2

γ
G−1Σ̂G−1 ⊗G−1

)−1

vec(G−1XG−1Σ̂G−1)

=
2

γ3
vec(G−1XG−1Σ̂G−1)>

(
GΣ̂−1G⊗G

)
vec(G−1XG−1Σ̂G−1)

=
2

γ3
Tr
[
G−1XG−1Σ̂G−1X

]
,

where the inequality holds because X ⊗ X is positive definite and G−1XG−1Σ̂G−1 6= 0, the first equality

follows from [3, Proposition 7.1.7], which asserts that (A ⊗ B)−1 = A−1 ⊗ B−1 for any A,B ∈ Sp++, and

the second equality follows from Lemma 4.2. The above derivation shows that the Schur complement of the

positive definite block X−1⊗X−1 + 2
γG
−1Σ̂G−1⊗G−1 in H is a positive number, which in turn implies that

the Hessian H is positive definite. In the following, we denote the unique minimizer of (20) by (∆?
X ,∆

?
γ). As

∆X = 0 and ∆γ = 0 is feasible in (20), it is clear that the objective value of (∆?
X ,∆

?
γ) is nonpositive. In fact,

as H � 0, the minimum of (20) is negative unless g = 0. Thus, (∆?
X ,∆

?
γ) is a feasible descent direction.

Note that P defined in the proposition statement represents the orthogonal projection on the linear space

Z =
{
z = (vec(∆X)>,∆γ)> ∈ Rp

2+1 : ∆X ∈ Sp, (∆X)ij = 0 ∀(i, j) ∈ E
}
.

Indeed, it is easy to verify that P 2 = P = P> because the range and the null space of P correspond to Z
and its orthogonal complement, respectively. The quadratic program (20) is thus equivalent to

min
z∈Z

{
g>z +

1

2
z>Hz

}
= min
z∈Rp2+1

{
g>z +

1

2
z>Hz : Pz = z

}
.

The minimizer z? of the last reformulation and the optimal Lagrange multiplier µ? associated with its equality

constraint correspond to the unique solution of the Karush-Kuhn-Tucker optimality conditions

Hz? + g + (I − P )µ? = 0, (1− P )z? = 0 ⇐⇒ P (Hz? + g) = 0, (1− P )z? = 0,

which are mainfestly equivalent to (19). Thus, the claim follows. �

Given a descent direction (∆?
X ,∆

?
γ) at a feasible point (X, γ), we use a variant of Armijo’s rule [37,

Section 3.1] to choose a step size α > 0 that preserves feasibility of the next iterate (X + α∆?
X , γ + α∆?

γ)

and ensures a sufficient decrease of the objective function. Specifically, for a prescribed line search parameter

σ ∈ (0, 1
2 ), we set the step size α to the largest number in { 1

2m }m∈Z+
satisfying the following two conditions:

(C1) Feasibility: (γ + α∆?
γ)I � X + α∆?

X � 0;

(C2) Sufficient decrease: f(X +α∆?
X , γ+α∆?

γ) ≤ f(X, γ) +σαδ, where δ = g>(vec(∆?
X)>,∆?

γ)> < 0, and

g is defined as in Propostion 4.3.

Notice that the sparsity constraints are automatically satisfied at the next iterate thanks to the construction

of the descent direction (∆?
X ,∆

?
γ) in (19). Algorithm 1 repeats the procedure outlined above until ‖g‖ drops

below a given tolerance (10−3) or until the iteration count exceeds a given threshold (102). Throughout the

numerical experiments in Section 6 we set σ = 10−4, which is the value recommended in [37].

Remark 4.4 (Steepest descent algorithm). The computation of the descent direction in Proposition 4.3

requires second-order information. It is easy to verify that Proposition 4.3 remains valid if the Hessian H is

replaced with the identity matrix, in which case the sequential quadratic approximation algorithm reduces to

the classical steepest descent algorithm [37, Chapter 3].

The next proposition establishes that Algorithm 1 converges to the unique minimizer of problem (6).
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Algorithm 1: Sequential quadratic approximation algorithm

Data: Sample covariance matrix Σ̂ � 0, Wasserstein radius ρ > 0, line search parameter σ ∈ (0, 1
2 ).

Initialize X0 = I and γ0 > 1, and set t← 0;

while stopping criterion is violated do
Find the descent direction (∆?

X ,∆
?
γ) at (X, γ) = (Xt, γt) by solving (19);

Find the largest step size αt ∈ { 1
2m }m∈Z+

satisfying (C1) and (C2);

Set Xt+1 = Xt + αt∆
?
X , γt+1 = γt + αt∆

?
γ ;

Set t← t+ 1;

Proposition 4.5 (Convergence). Assume that Σ̂ � 0, ρ > 0 and σ ∈ (0, 1
2 ). For any initial feasible solution

(X0, γ0), the sequence
{

(Xt, γt)
}
t∈Z+

generated by Algorithm 1 converges to the unique minimizer (X?, γ?)

of problem (6). Moreover, the sequence converges locally quadratically.

Proof. Denote by f(X, γ) the objective function of problem (6), and define

C :=
{

(X, γ) ∈ X × R+ : f(X, γ) ≤ f(X0, γ0), 0 ≺ X ≺ γI
}

as the set of all feasible solutions that are at least as good as the initial solution (X0, γ0). The proof of

Theorem 2.6 implies that xI � X � xI and x ≤ γ ≤ x for all (X, γ) ∈ C, where the strictly positive constants

x and x are defined as in (13). Note that, as Σ̂ is fixed in this proof, the dependence of x and x on Σ̂ is

notationally suppressed to avoid clutter. Thus, C is bounded. Moreover, as Σ̂ � 0, it is easy to verify f(X, γ)

tends to infinity if the smallest eigenvalue of X approaches 0 or if the largest eigenvalue of X approaches γ.

The continuity of f(X, γ) then implies that C is closed. In summary, we conclude that C is compact.

By the definition of f(X, γ) in (6), any (X, γ) ∈ C satisfies

0 ≤ f(X0, γ0) + log det(X)− γ
(
ρ2 − Tr

[
Σ̂
])
− γ
〈
(I − γ−1X)−1, Σ̂

〉
≤ f(X0, γ0) + p log(x) + xTr

[
Σ̂
]
− xλmin Tr

[
(I − γ−1X)−1

]
,

where λmin denotes the smallest eigenvalue of Σ̂, which is positive by assumption. Thus, we have

Tr
[
(I − γ−1X)−1

]
≤ 1

xλmin

(
f(X0, γ0) + p log(x) + xTr

[
Σ̂
])
,

which implies that the eigenvalues of I − X
γ are uniformly bounded away from 0 on C. More formally, there

exists c0 > 0 with I − X
γ � c0I for all (X, γ) ∈ C. As the objective function f(X, γ) is smooth wherever

it is defined, its gradient and Hessian constitute continuous functions on C. Moreover, as f(X, γ) is strictly

convex on the compact set C, the eigenvalues of its Hessian matrix are uniformly bounded away from 0. This

implies that the inverse Hessian matrix and the descent direction (∆?
X ,∆

?
γ) constructed in Proposition 4.3

are also continuous on C. Hence, there exist c1, c2 > 0 such that ∆?
X � c1I and |∆?

γ | ≤ c2 uniformly on C.
We conclude that any positive step size α < x min

{
c−1
1 , (c1 + c2)−1c0

}
satisfies the feasibility condi-

tion (C1) uniformly on C because X + α∆?
X �

(
x− αc1

)
I � 0 and

(γ + α∆?
γ)I � X + c0xI + α

(
∆?
X −∆?

X + ∆?
γI
)
� X + c0xI + α

(
∆?
X − (c1 + c2)I

)
� X + α∆?

X

for all (X, γ) ∈ C. Moreover, by [50, Lemma 5(b)] there exists α > 0 such that any positive step size α ≤ α

satisfies the descent condition (C2) for all (X, γ) ∈ C. In summary, there exists m? ∈ Z+ such that

α? =
1

2m?
< min

{
α, x min

{
c−1
1 , (c1 + c2)−1c0

}}
satisfies both line search conditions (C1) and (C2) uniformly on C. By induction, the iterates {(Xt, γt)}t∈N
generated by Algorithm 1 have nonincreasing objective values and thus all belong to C, while the step sizes

{αt}t∈N generated by Algorithm 1 are all larger or equal to α?. Hence, the algorithm’s global convergence is

guaranteed by [50, Theorem 1], while the local quadratic convergence follows from [26, Theorem 16]. �
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Remark 4.6 (Refinements of Algorithm 1). For large values of p, computing and storing the exact Hessian

matrix H from Proposition 4.3 is prohibitive. In this case, H can be approximated by a low-rank matrix as

in the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) method without sacrificing global conver-

gence [50]. Alternatively, one can resort to a coordinate descent method akin to the QUIC algorithm [26], in

which case both the global and local convergence guarantees of Proposition 4.5 remain valid.

5. Extremal Distributions

It is instructive to characterize the extremal distributions that attain the supremum in (7) for a given

sample covariance matrix Σ̂ and a fixed candidate estimator X.

Theorem 5.1 (Extremal distributions). For any Σ̂, X ∈ Sp++, the supremum in (7) is attained by the normal

distribution Q? = N (0, S?) with covariance matrix

S? = (γ?)2(γ?I −X)−1Σ̂(γ?I −X)−1,

where γ? is the unique solution with γ?I � X of the following algebraic equation

ρ2 − Tr
[
Σ̂
]

+ 2γ? Tr
[
(γ?I −X)−1Σ̂

]
− (γ?)2 Tr

[
(γ?I −X)−1Σ̂(γ?I −X)−1

]
= 0 . (21)

Proof. From Proposition 2.8 we know that the worst-case expectation problem (7) is equivalent to the semi-

definite program (8). Note that the strictly convex objective function of (8) is bounded below by

γ
(
ρ2 − Tr

[
Σ̂
])

+ λminγ
2 Tr

[
(γI −X)−1

]
,

where λmin denotes the smallest eigenvalue of Σ̂. As λmin is positive by assumption, the objective function

of (8) tends to infinity as γ approaches the largest eigenvalue of X, in which case γI − X becomes sin-

gular. Thus, the unique optimal solution γ? of (8) satisfies γ?I � X and solves the first-order optimality

condition (21).

Now we are ready to prove that Q? is both feasible and optimal in (7). By the formula for S? in terms of

γ?, Σ̂ and S and by using Definition 2.3 and Proposition 2.2, it is easy to verify that (21) is equivalent to

Tr [S?] + Tr
[
Σ̂
]
− 2 Tr

[√
Σ̂

1
2S?Σ̂

1
2

]
= ρ2 ⇐⇒ WS(S?, Σ̂) = W(Q?, P̂) = ρ,

which confirms that Q? is feasible in (7). Moreover, the objective value of Q? in (7) amounts to

EQ? [
〈
ξξ>, X

〉
] =

〈
S?, X

〉
= (γ?)2

〈
(γ?I −X)−1Σ̂(γ?I −X)−1, X

〉
= (γ?)2

〈
(γ?I −X)−1Σ̂(γ?I −X)−1, (X − γ?I) + γ?I

〉
= −(γ?)2 Tr

[
(γ?I −X)−1Σ̂

]
+ (γ?)3 Tr

[
(γ?I −X)−1Σ̂(γ?I −X)−1

]
= γ?(ρ2 − Tr

[
Σ̂
]
) + (γ?)2

〈
(γ?I −X)−1, Σ̂

〉
= g(Σ̂, S?),

where the penultimate equality exploits (21), while the last equality follows from the optimality of S? in (8)

and from Proposition 2.8. Thus, Q? is optimal in (7). �

In the absence of sparsity information (that is, if X = Sp++), the unique minimizer X? of problem (5) is

available in closed form thanks to Theorem 3.1. In this case, the extremal distribution attaining the supremum

in (7) at X = X? can also be computed in closed form even if Σ̂ is rank deficient.

Corollary 5.2 (Extremal distribution for optimal estimator). Assume that ρ > 0, X = Sp++ and Σ̂ ∈
Sp+ admits the spectral decomposition Σ̂ =

∑p
i=1 λiviv

>
i with eigenvalues λi and corresponding orthonormal

eigenvectors vi, i ≤ p. If (X?, γ?) represents the unique solution of (6) given in Theorem 3.1, then the

supremum in (7) at X = X? is attained by the normal distribution Q? = N (0, S?) with covariance matrix

S? =

p∑
i=1

s?i viv
>
i , where s?i =

{
(γ?)2λi(γ

? − x?i )−2 if λi > 0,

(γ?)−1 if λi = 0.
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Proof. If Σ̂ � 0, the claim follows immediately by substituting the formula for X? from Theorem 3.1 into the

formula for S? from Theorem 5.1. If Σ̂ � 0 is rank deficient, we consider the invertible sample covariance

matrix Σ̂ + εI � 0 for some ε > 0, denote by (X?(ε), γ?(ε)) the corresponding minimizer of problem (6) as

constructed in (16) and let S?(ε) be the covariance matrix of the extremal distribution of problem (7) at

X = X?(ε). Using the same reasoning as in the proof of Theorem 3.1, one can show that (X?(ε), γ?(ε)) is

continuous in ε ∈ R+ and converges to (X?, γ?) as ε tends to 0. Similarly, S?(ε) is continuous in ε ∈ R+ and

converges to S? as ε tends to 0. To see this, note that the eigenvalues s?i (ε), i ≤ p, of S?(ε) satisfy

lim
ε→0+

s?i (ε) = lim
ε→0+

γ?(ε)2(λi + ε)

(γ?(ε)− x?i (ε))2

= lim
ε→0+

4(λi + ε)(√
(λi + ε)2γ?(ε)2 + 4(λi + ε)γ?(ε)− (λi + ε)γ?(ε)

)2 = s?i ∀i ≤ p ,

where the first equality follows from the first part of the proof, the second equality exploits (16a) and the

third equality holds due to the definition of s?i .

We are now armed to prove that Q? is both feasible and optimal in (7). Indeed, using the continuity of

S?(ε) and WS(S1, S2) in their respective arguments, we find

W(Q?, P̂) = WS(S?, Σ̂) = lim
ε→0+

WS(S?(ε), Σ̂ + εI) = ρ ,

where the last equality follows from the construction of S?(ε) in the proof of Theorem 5.1. Thus, Q? is

feasible in (7). Similarly, using the continuity of S?(ε) and X?(ε) in ε, we have

EQ? [
〈
ξξ>, X?

〉
] =

〈
S?, X?

〉
= lim
ε→0+

〈
S?(ε), X?(ε)

〉
= lim
ε→0+

g(Σ̂ + εI, S?(ε)) = g(Σ̂, S?) ,

where the last two equalities follow from the construction of S?(ε) in the proof of Theorem 5.1 and the

continuity of g(Σ̂, X) established in Proposition 2.8, respectively. Thus, Q? is optimal in (7). �

6. Numerical Experiments

To assess the statistical and computational properties of the proposed Wasserstein shrinkage estimator, we

compare it against two state-of-the-art precision matrix estimators from the literature.

Definition 6.1 (Linear shrinkage estimator). Denote by diag(Σ̂) the diagonal matrix of all sample variances.

Then, the linear shrinkage estimator with mixing parameter α ∈ [0, 1] is defined as

X? =
[
(1− α)Σ̂ + α diag(Σ̂)

]−1

.

The linear shrinkage estimator uses the diagonal matrix of sample variances as the shrinkage target. Thus,

the sample covariances are shrunk to zero, while the sample variances are preserved. We emphasize that the

most prevalent shrinkage target is a scaled identity matrix [32]. The benefits of using diag(Σ̂) instead are

discussed in [43, § 2.4]. Note that while Σ̂ is never invertible for n < p, diag(Σ̂) is almost surely invertible

whenever the true covariance matrix is invertible and n > 1. Thus, the linear shrinkage estimator is almost

surely well-defined for all α > 0. Moreover, it can be efficiently computed in O(p3) arithmetic operations.

Definition 6.2 (`1-Regularized maximum likelihood estimator). The `1-regularized maximum likelihood es-

timator with penalty parameter β ≥ 0 is defined as

X? = arg min
X�0

− log detX +
〈
Σ̂, X

〉
+ β

p∑
i,j=1

|Xij |

 .

Adding an `1-regularization term to the standard maximum likelihood estimation problem gives rise to

sparse—and thus interpretable—estimators [1, 18]. The resulting semidefinite program can be solved with

general-purpose interior point solvers such as SDPT3 or with structure-exploiting methods such as the QUIC
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algorithm, which enjoys a quadratic convergence rate and requires O(p3) arithmetic operations per itera-

tion [26]. In the remainder of this section we test the Wasserstein shrinkage, linear shrinkage and `1-regularized

maximum likelihood estimators on synthetic and real datasets. All experiments are implemented in MAT-

LAB, and the corresponding codes are included in the Wasserstein Inverse Covariance Shrinkage Estimator

(WISE) package available at https://www.github.com/nvietanh/wise.

Remark 6.3 (Bessel’s correction). So far we used N (µ̂, Σ̂) as the nominal distribution, where the sample co-

variance matrix Σ̂ was identified with the (biased) maximum likelihood estimator. In practice, it is sometimes

useful to use Σ̂/κ as the nominal covariance matrix, where κ ∈ (0, 1) is a Bessel correction that removes the

bias; see, e.g., Sections 6.2.1 and 6.2.2 below. Under the premise that X is a cone, it is easy to see that if

(X?, γ?) is optimal in (15) for a prescribed Wasserstein radius ρ and a scaled sample covariance matrix Σ̂/κ,

then (κX?, κγ?) is optimal in (15) for a scaled Wasserstein radius
√
κρ and the original sample covariance

matrix Σ̂. Thus, up to scaling, using a Bessel correction is tantamount to shrinking ρ.

6.1. Experiments with Synthetic Data

Consider a (p = 20)-variate Gaussian random vector ξ with zero mean. The (unknown) true covariance

matrix Σ0 of ξ is constructed as follows. We first choose a density parameter d ∈ {12.5%, 50%, 100%}. Using

the legacy MATLAB 5.0 uniform generator initialized with seed 0, we then generate a matrix C ∈ Rp×p with

bd× p2c randomly selected nonzero elements, all of which represent independent Bernoulli random variables

taking the values +1 or −1 with equal probabilities. Finally, we set Σ0 = (C>C + 10−3I)−1 � 0.

As usual, the quality of an estimator X? for the precision matrix Σ−1
0 is evaluated using Stein’s loss function

L(X?,Σ0) = − log det(X?Σ0) +
〈
X?,Σ0

〉
− p,

which vanishes if X? = Σ−1
0 and is strictly positive otherwise [28].

All simulation experiments involve 100 independent trials. In each trial, we first draw n ∈ {10, 20, 40, 60}
independent samples from N (0,Σ0), which are used to compute the sample covariance matrix Σ̂ and the

corresponding precision matrix estimators. Figure 2 shows Stein’s loss of the Wasserstein shrinkage estimator

without structure information for ρ ∈ [10−2, 101], the linear shrinkage estimator for α ∈ [10−5, 100] and the

`1-regularized maximum likelihood estimator for β ∈ [5× 10−5, 100]. Lines represent averages, while shaded

areas capture the tubes between the empirical 20% and 80% quantiles across all 100 trials. Note that all

three estimators approach Σ̂−1 when their respective tuning parameters tend to zero. As Σ̂ is rank deficient

for n < p = 20, Stein’s loss thus diverges for small tuning parameters when n = 10.

The best Wasserstein shrinkage estimator in a given trial is defined as the one that minimizes Stein’s loss

over all ρ ≥ 0. The best linear shrinkage and `1-regularized maximum likelihood estimators are defined anal-

ogously. Figure 2 reveals that the best Wasserstein shrinkage estimators dominate the best linear shrinkage

and—to a lesser extent—the best `1-regularized maximum likelihood estimators in terms of Stein’s loss for

all considered parameter settings. The dominance is more pronounced for small sample sizes. We emphasize

that Stein’s loss depends explicitly on the unknown true covariance matrix Σ0. Thus, Figure 2 is not available

in practice, and the optimal tuning parameters ρ?, α? and β? cannot be computed exactly. The performance

of different precision matrix estimators with estimated tuning parameters will be studied in Section 6.2.

For d = 12.5% and d = 50%, the true precision matrix Σ−1
0 has many zeros, and prior knowledge of their

positions could be used to improve estimator accuracy. To investigate this effect, we henceforth assume that

the feasible set X correctly reflects a randomly selected portion of 50%, 75% or 100% of all zeros of Σ−1
0 ,

while X contains no (neither correct nor incorrect) information about the remaining zeros. In this setting,

we construct the Wasserstein shrinkage estimator by solving problem (5) numerically.

Figure 3 shows Stein’s loss of the Wasserstein shrinkage estimator with prior information for ρ ∈ [10−2, 101].

Lines represent averages, while shaded areas capture the tubes between the empirical 20% and 80% quantiles

across 100 trials. As expected, correct prior sparsity information improves estimator quality, and the more

zeros are known, the better. Note that Σ−1
0 contains 21.5% zeros for d = 12.5% and 68% zeros for d = 50%.

https://www.github.com/nvietanh/wise


DISTRIBUTIONALLY ROBUST INVERSE COVARIANCE ESTIMATION 23

(a) Wasserstein shrinkage (b) Linear shrinkage (c) `1-regularized ML

(d) Wasserstein shrinkage (e) Linear shrinkage (f) `1-regularized ML

(g) Wasserstein shrinkage (h) Linear shrinkage (i) `1-regularized ML

Figure 2. Stein’s loss of the Wasserstein shrinkage, linear shrinkage and `1-regularized

maximum likelihood estimators as a function of their respective tuning parameters for d =

100% (panels 2(a)–2(c)), d = 50% (panels 2(d)–2(f)) and d = 12.5% (panels 2(g)–2(i)).

In the last experiment, we investigate the Wasserstein radius ρ? of the best Wasserstein shrinkage estimator

without sparsity information. Figure 4 visualizes the average of ρ? across 100 independent trials as a function

of the sample size n. A standard regression analysis based on the data of Figure 4 reveals that ρ? converges

to zero approximately as n−κ with κ ≈ 61% for d = 12.5%, κ ≈ 66% for d = 50% and κ ≈ 68% for d = 100%.

6.2. Experiments with Real Data

We now study the properties of the Wasserstein shrinkage estimator in the context of linear discriminant

analysis, portfolio selection and the inference of solar irradiation patterns.

6.2.1. Linear Discriminant Analysis

Linear discriminant analysis aims to predict the class y ∈ Y, |Y| < ∞, of a feature vector z ∈ Rp under

the assumption that the conditional distribution of z given y is normal with a class-dependent mean µy ∈ Rp

and class-independent covariance matrix Σ0 ∈ Sp++ [24]. If all µy and Σ0 are known, the maximum likelihood
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(a) 50% sparsity information (b) 75% sparsity information (c) 100% sparsity information

(d) 50% sparsity information (e) 75% sparsity information (f) 100% sparsity information

Figure 3. Stein’s loss of the Wasserstein shrinkage estimator with 50%, 75% or 100% spar-

sity information as a function of the Wasserstein radius ρ for d = 50% (panels 3(a)–3(c)) and

d = 12.5% (panels 3(d)–3(f)).

101 102 103 104 105 106

10-4
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Figure 4. Dependence of the the best Wasserstein radius ρ? on the sample size n.

classifier C : Rp → Y assigns z to a class that maximizes the likelihood of observing y, that is,

C(z) ∈ arg min
y∈Y

(z − µy)>Σ−1
0 (z − µy). (22)

In practice, however, the conditional moments are typically unknown and must be inferred from finitely many

training samples (ẑi, ŷi), i ≤ n. If we estimate µy by the sample average

µ̂y =
1

|Iy|
∑
i∈Iy

x̂i ,

where Iy = {i ∈ {1, . . . , n} : ŷi = y} records all samples in class y, then it is natural to define the residual

feature vectors as ξ̂i = ẑi − µ̂ŷi , i ≤ n. Accounting for Bessel’s correction, the conditional distribution of ξ̂i
given ŷi is normal with mean 0 and covariance matrix (|Iŷi |−1) |Iŷi |−1Σ0. The marginal distribution of ξ̂i thus
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constitutes a mixture of |Y| normal distributions with mean 0, all of which share the same covariance matrix up

to a scaling factor close to unity. As such, the residuals fail to be normally distributed. Moreover, due to their

dependence on the sample means, the residuals are correlated. However, if each class accommodates many

training samples, then the residuals can approximately be regarded as independent samples from N (0,Σ0).

Irrespective of these complications, the sample covariance matrix

Σ̂ =
1

n− |Y|

n∑
i=1

ξ̂iξ̂
>
i

provides an unbiased estimator for Σ0. Indeed, by the law of total expectation we have

EP[Σ̂] =
1

n− |Y|
EP

[
n∑
i=1

EP
[
ξ̂iξ̂
>
i

∣∣∣ ŷi]]

=
1

n− |Y|
∑
y∈Y

EP

∑
i∈Iy

|Iŷi | − 1

|Iŷi |
Σ

 =
1

n− |Y|
∑
y∈Y

(|Iy| − 1)Σ0 = Σ0 ,

where P stands for the unknown true joint distribution of the residuals and class labels. In a data-driven

setting, the ideal maximum likelihood classifier (22) is replaced with

Ĉ(ξ) = arg min
y∈Y

(ξ − µ̂y)>X?(ξ − µ̂y) , (23)

which depends on the raw data through the sample averages µ̂y, y ∈ Y, and some precision matrix estima-

tor X?. The possible choices for X? include the Wasserstein shrinkage estimator without prior information,

the linear shrinkage estimator and the `1-regularized maximum likelihood estimator, all of which depend on

the data merely through Σ̂. Note that the näıve precision matrix estimator Σ̂−1 exists only for n > p and

is therefore disregarded. All estimators depend on a scalar parameter (the Wasserstein radius ρ, the mixing

parameter α or the penalty parameter β) that can be used to tune the performance of the classifier (23).

We test the classifier (23) equipped with different estimators X? on two preprocessed datasets from [13]:

(1) The “colon cancer” dataset contains 62 gene expression profiles, each of which involves 2,000 features

and is classified either as normal tissue (NT) or tumor-affected tissue (TT). The data is split into

a training dataset of 29 observations (9 in class NT and 20 in class TT) and a test dataset of 33

observations (13 in class NT and 20 in class TT).

(2) The “leukemia” dataset contains 72 gene expression profiles, each of which involves 3,571 features

and is classified either as acute lymphocytic leukemia (ALL) or acute myeloid leukemia (AML). The

data is split into a training dataset of 38 observations (27 in class ALL and 11 in class AML) and a

test dataset of 34 observations (20 in class ALL and 14 in class AML).

Classification is based solely on the first p ∈ {20, 40, 80, 100} features of each gene expression profile. We

use leave-one-out cross validation on the training data to tune the precision matrix estimator X? with the

goal to maximize the correct classification rate of the classifier (23). To keep the computational overhead

manageable, we optimize the tuning parameters over the finite search grids

ρ ∈ {10
j
20−1 : j = 0, . . . , 60}, α ∈ {10

j
20−3 : j = 0, . . . , 60} and β ∈ {10

j
20−3 : j = 0, . . . , 60}.

We highlight that, in case of the `1-regularized maximum likelihood estimator, cross validation becomes com-

putationally prohibitive for p > 80 even if the state-of-the-art QUIC routine is used [26] to solve the underlying

semidefinite programs. In contrast, the Wasserstein and linear shrinkage estimators can be computed and

tuned quickly even for p� 100. Once the optimal tuning parameters are found, we fix them and recalculate

X? on the basis of the entire training dataset. Finally, we substitute the resulting precision matrix estimator

into the classifier (23) and evaluate its correct classification rate on the test dataset. The test results are

reported in Table 1. We observe that the Wasserstein shrinkage estimator frequently outperforms the linear

shrinkage and `1-regularized maximum likelihood estimators, especially for higher values of p.
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Table 1. Correct classification rate of the classifier (23) instantiated with different precision

matrix estimators. The best result in each experiment is highlighted in bold.

Colon cancer dataset Leukemia dataset

Estimator p = 20 p = 40 p = 80 p = 100 p = 20 p = 40 p = 80 p = 100

Wasserstein shrinkage 72.73 75.76 78.79 75.76 73.53 67.65 91.18 91.18

Linear shrinkage 57.58 72.73 72.73 72.73 70.59 70.59 82.35 82.35

`1-regularized ML 72.73 78.79 78.79 72.73 70.59 64.71 82.35 82.35

6.2.2. Minimum Variance Portfolio Selection

Consider the minimum variance portfolio selection problem without short sale constraints [27]

min
w∈Rp

w>Σ0w

s. t. 1
>w = 1 ,

where the portfolio vector w ∈ Rp captures the percentage weights of initial capital allocated to p different

assets with random returns, 1 ∈ Rp stands for the vector of ones, and Σ0 ∈ Sp++ denotes the covariance matrix

of the asset returns. The objective represents the variance of the portfolio return, which is strictly convex in

w thanks to the positive definiteness of Σ0. The unique optimal solution of this portfolio selection problem

is given by w? = Σ−1
0 1/1>Σ−1

0 1. In practice, the unknown true precision matrix Σ−1
0 must be replaced with

an estimator X?, which gives rise to the estimated minimum variance portfolio ŵ? = X?
1/1>X?

1.

A vast body of literature in finance focuses on finding accurate precision matrix estimators for portfolio

construction, see, e.g., [12, 31, 48]. In the following we compare the minimum variance portfolios based on

the Wasserstein shrinkage estimator without structural information, the linear shrinkage estimator and `1-

regularized maximum likelihood estimator on two preprocessed datasets from the Fama-French online data

library:2 the “48 industry portfolios” dataset (FF48) and the “100 portfolios formed on size and book-to-

market” dataset (FF100). Recall that the estimators depend on the data only through the sample covariance

matrix Σ̂, which is computed from the residual returns relative to the sample means and thus needs to

account for Bessel’s correction. The datasets both consist of monthly returns for the period from January

1996 to December 2016. The first 120 observations from January 1996 to December 2005 serve as the training

dataset. The optimal tuning parameters that minimize the portfolio variance are estimated via leave-one-out

cross validation on the training dataset using the finite search grids

ρ ∈ {10
j

100−2 : j = 0, . . . , 200}, α ∈ {10
j

100−2 : j = 0, . . . , 200} and β ∈ {10
j
50−4 : j = 0, . . . , 200}.

The out-of-sample performance of the minimum variance portfolio corresponding to a particular precision

matrix estimator is then evaluated using the rolling horizon method over the period from January 2006 to

December 2016, where the sample covariance matrix needed as an input for the precision matrix is re-estimated

every three months based on the most recent 120 observations (10 years), while the tuning parameter is kept

fixed. The resulting out-of-sample mean, standard deviation and Sharpe ratio of the portfolio return are

reported in Table 2. While the `1-regularized maximum likelihood estimator yields the portfolio with the

lowest standard deviation for both datasets, the Wasserstein shrinkage estimator always generates the highest

mean and, maybe surprisingly, the highest Sharpe ratio.

2See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html (accessed January 2018)

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 2. Standard deviation, mean and Sharpe ratio of the minimum variance portfolio

based on different estimators. The best result in each experiment is highlighted in bold.

FF48 dataset FF100 dataset

Estimator std mean Sharpe std mean Sharpe

Wasserstein shrinkage 3.146 0.701 0.223 3.518 1.079 0.307

Linear shrinkage 3.152 0.688 0.218 3.484 0.965 0.277

`1-regularized ML 3.077 0.668 0.217 3.423 1.010 0.295
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Figure 5. Average solar irradiation intensities (W/m
2
) for the Diablerets region in Switzerland.

6.2.3. Inference of Solar Irradiation Patterns

In the last experiment we aim to estimate the spatial distribution of solar irradiation in Switzerland using

the “surface incoming shortwave radiation” (SIS) data provided by MeteoSwiss.3 The SIS data captures the

horizontal solar irradiation intensities in W/m
2

for pixels of size 1.6km by 2.3km based on the effective cloud

albedo, which is derived from satellite imagery. The dataset spans 13 years from 2004 to 2016, with a total

number of 4,749 daily observations. We deseasonalize the time series of each pixel as follows. First, we divide

the original time series by a shifted sinusoid with a yearly period, whose baseline level, phase and amplitude

are estimated via ordinary least squares regression. Next, we subtract unity. The resulting deseasonalized

time series is viewed as the sample path of a zero mean Gaussian noise process. This approach relies on the

assumption that the mean and the standard deviation of the original time series share the same seasonality

pattern. It remains to estimate the joint distribution of the pixel-wise Gaussian white noise processes, which

is fully determined by the precision matrix of the deseasonalized data. We estimate the precision matrix

using the Wasserstein shrinkage, linear shrinkage and `1-regularized maximum likelihood estimators. As each

pixel represents a geographical location and as the solar irradiation intensities at two distant pixels are likely

to be conditionally independent given the intensities at all other pixels, it is reasonable to assume that the

precision matrix is sparse; see also [10, 53]. Specifically, we assume here that the solar irradiation intensities

at two pixels indexed by (i, j) and (i′, j′) are conditionally independent and that the corresponding entry of

the precision matrix vanishes whenever |i− i′|+ |j−j′| > 3. This sparsity information can be used to enhance

the basic Wasserstein shrinkage estimator.

3See http://www.meteoschweiz.admin.ch/data/products/2014/raeumliche-daten-globalstrahlung.html (accessed Janu-

ary 2018)

http://www.meteoschweiz.admin.ch/data/products/2014/raeumliche-daten-globalstrahlung.html
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(a) Wasserstein shrinkage (b) Linear shrinkage (c) `1-regularized ML

Figure 6. Stein’s loss of the Wasserstein shrinkage, linear shrinkage and `1-regularized

maximum likelihood estimators as a function of their respective tuning parameters.

Consider now the Diablerets region of Switzerland, which is described by a spatial matrix of 20×20 pix-

els. Thus, the corresponding precision matrix has dimension 400×400. The average daily solar irradiation

intensities within the region of interest are visualized in Figure 5. We note that the sunshine exposure is

highly variable due to the heterogeneous geographical terrain characterized by a high mountain range in the

south intertwined with deep valleys in the north. In order to assess the quality of a specific precision matrix

estimator, we use K-fold cross validation with K = 13. The k-th fold comprises all observations of year k

and is used to construct the estimator X?
k . The data of the remaining 12 years, without year k, are used to

compute the empirical covariance matrix Σ̂−k. The estimation error of X?
k is then measured via Stein’s loss

L(X?
k , Σ̂−k) = − log det(X?

k Σ̂−k) +
〈
X?
k , Σ̂−k

〉
− p.

We emphasize that here, in contrast to the experiment with synthetic data, Σ̂−k is used as a proxy for the

unknown true covariance matrix Σ. Figure 6 shows Stein’s loss of the Wasserstein shrinkage estimator with

and without structure information for ρ ∈ [10−2, 100], the linear shrinkage estimator for α ∈ [10−3, 2× 10−2]

and the `1-regularized maximum likelihood estimator for β ∈ [10−5, 10−3]. Lines represent averages, while

shaded areas capture the tubes between the best- and worst-case loss realizations across all K folds.

The Wasserstein shrinkage estimator with structure information reduces the minimum average loss by

13.5% relative to the state-of-the-art `1-regularized maximum likelihood estimator. Moreover, the average

runtimes for computing the different estimators amount to 51.84s for the Wasserstein shrinkage estimator

with structural information (Algorithm 1), 0.08s for the Wasserstein shrinkage estimator without structural

information (analytical formula and bisection algorithm), 0.01s for the linear shrinkage estimator (analytical

formula) and 1493.61s for the `1-regularized maximum likelihood estimator (QUIC algorithm [26]).
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