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Abstract Many decision problems in science, engineering and economics are affected by uncer-
tain parameters whose distribution is only indirectly observable through samples.
The goal of data-driven decision-making is to learn a decision from finitely many
training samples that will perform well on unseen test samples. This learning task is
difficult even if all training and test samples are drawn from the same distribution—
especially if the dimension of the uncertainty is large relative to the training sample
size. Wasserstein distributionally robust optimization seeks data-driven decisions that
perform well under the most adverse distribution within a certain Wasserstein distance
from a nominal distribution constructed from the training samples. In this tutorial
we will argue that this approach has many conceptual and computational benefits.
Most prominently, the optimal decisions can often be computed by solving tractable
convex optimization problems, and they enjoy rigorous out-of-sample and asymptotic
consistency guarantees. We will also show that Wasserstein distributionally robust
optimization has interesting ramifications for statistical learning and motivates new
approaches for fundamental learning tasks such as classification, regression, maximum
likelihood estimation or minimum mean square error estimation, among others.

Keywords distributionally robust optimization; data-driven optimization; Wasserstein distance;
optimizer’s curse; machine learning; regularization.

Update Several errors in the published version [57] of this paper have been corrected in
this version. For transparency, all updates are highlighted with a footnote.

1. Introduction

We consider a decision problem under uncertainty, where each admissible decision results in
an uncertain loss that is modeled by a measurable extended real-valued loss function £(£).
We assume that the random vector £ € R™ captures all decision-relevant risk factors and is
governed by a probability distribution IP. The feasible set of all available loss functions is
denoted by L. The risk of a decision ¢ € L is defined as the expected loss under P, that is,

R(P,0) =B [(€)], (1)

and the optimal risk is defined as the risk of the least risky admissible loss function, that is,
P,L)=inf R(P,¢). 2

R(P, L) = inf R(P,¢) (2)
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2 Wasserstein Distributionally Robust Optimization

To ensure that the expectations in (1) and (2) are defined for all measurable loss functions,
we set EF[((£)] = oo whenever the expectations of the positive and negative parts of £(€)
are both infinite. This convention means that infeasibility trumps unboundedness.

In most real decision-making situations, the distribution P is fundamentally unknown.
However, P may be indirectly observable through training samples &;,i € {1,..., N}, drawn
independently from IP. In addition, some structural properties of IP may be known. For exam-
ple, if £ represents a vector of uncertain prices, then IP must be supported on the nonnegative
orthant R". Alternatively, IP may be known to display certain symmetry or unimodality
properties, or it may even be known to belong to some parametric distribution family.

If the distribution IP is unknown, we lack an important input parameter for the risk evalua-
tion problem (1) and the decision problem (2). In this case, the unknown true distribution P
could be replaced with a nominal distribution IPAN estimated from the N training samples.
Note that unlike P, the nominal distribution Py is accessible as it is constructed from
observable quantities. Therefore, the nominal risk evaluation and decision problems (that is,
problems (1) and (2) with Py instead of IP) are at least in principle solvable. The following
example showcases common methods for constructing the nominal distribution Py .

Example 1 (Nominal distribution). In the remainder we will primarily work with
the following non-parametric and parametric models for the nominal distribution.

(1) In the absence of any structural information, it is convenient to set Py to the discrete
empirical distribution, that is, the uniform distribution on the N training samples,

. 1

where 0z denotes the Dirac point mass at the i*" training sample 57

(2) We say that Q=¢,(u,X) is an elliptical probability distribution if it has a density
function of the form f(¢) = Cdet(X) 1 g((€ — )X "¢ — p)) with density generator
g(u) >0 for all w >0, normalization constant C' > 0, mean vector p € R™ and covari-
ance matrix 3 € S, . Examples of elliptical distributions are reported in Table 3 of
Appendix A. In the presence of structural information, it is often convenient to set P N
to an elliptical distribution with a structure-dependent density generator g, that is,

Py =&(0,5), (4)

where only the mean vector i and the covariance matrix 5 depend on the training
samples and are constructed via maximum likelihood estimation.

As a function of the training data, the nominal distribution P N constitutes itself a random
object, which is governed by the distribution PV of the N independent training samples. O

__Even if the most sophisticated statistical tools are deployed, the nominal distribution
Py will invariably differ from the unknown true distribution IP that generated the training
samples. Moreover, if Py is used instead of IP, the solutions of the risk evaluation problem (1)
and the decision problem (2) are likely to inherit any estimation errors in P . In the context
of financial portfolio theory it has even been observed that estimation errors in the input
parameters of an optimization problem are often amplified by the optimization [23, 60]. To
make things worse, one can generally show that even if the distributional input parameters
of a decision problem are unbiased, the optimization results tend to be optimistically biased.
Thus, implementing the optimal decisions leads to disappointment in out-of-sample tests.
In decision analysis this phenomenon is sometimes termed the optimizer’s curse [101], and
in stochastic optimization it is referred to as the optimization bias [49, 100].
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Example 2 (Optimizer’s curse). Let Py be an unbiased estimator for P. Thus, we
RN
have EF" [P ] = P, where the expectation is taken with respect to the distribution P of
the N independent training samples. Then, the risk of a fixed loss function ¢ € L satisfies

EP" [R(By,0)] =" [EFY[U(©)] = EP[£(9)] = R(P,0),

where the second equality holds because the inner expectation is linear in P ~- This implies
that R(PPy, £) constitutes an unbiased estimator for the true risk R(IP, £). Moreover, we have

PN ~ PN |. = . Py 3 .
fred < frnd frnd
EF" [R(Py, L) =B L;gg R(PN,m] <inf E”" [R(Py.0)] = inf R(P,0)=R(P,L),
where the inequality holds because the infimum inside the expectation can adapt to P N-
Hence, R(Py, L) constitutes an optimistically biased estimator for R(P7£),Ai.6., it under-
estimates the true risk. On the other hand, any optimizer £* € argminge, R(P y, £) satisfies

R(P,*) > inf R(P,0)=R(P,L).
€

The above observations can be interpreted as follows. Someone solving the nominal decision
problem thinks that the risk of £* amounts to R(Py,¢*) = R(Py, L) (the in-sample risk),
which is typically smaller than the optimal risk R(IP, L) attainable under full knowledge
of P. However, the actual risk R(IP,¢*) of the optimizer £* under the true distribution (the
out-of-sample risk) is always larger than R(IP, £). The difference between the out-of-sample
risk and the in-sample risk is termed the post-decision disappointment. The optimizer’s curse
refers to the observation that the post-decision disappointment is positive on average. [

In order to quantify the sensitivity of R(P,¢) and R(P, L) with respect to the unknown
true distribution P, we must introduce a distance measure between probability distributions.
As we will argue below, the Wasserstein distance is a particularly convenient choice.

Definition 1 (Wasserstein distance). For any p € [1,00), the type-p Wasserstein dis-
tance between two probability distributions Q and @’ on R™ is defined as

%
WQ,Q':( inf / —’Pwd,d’), 5
WQ@)=( [ je-eraaeas) o)
where || -|| is a norm on R™, while TI(Q, Q') denotes the set of all joint probability distribu-
tions of £ € R™ and & € R™ with marginals Q and Q’, respectively.

One can show that the Wasserstein distance is a metric, that is, it is nonnegative, sym-
metric and subadditive, and it vanishes only if @ = Q' [108, p. 94]. One can further show
that W,(Q,Q’) is finite whenever both Q and Q' have finite p*"-order moments [108, p. 95].

The optimal value of the optimization problem in (5) can be interpreted as the minimum
cost of turning one pile of dirt represented by Q into another pile of dirt represented by Q’,
where the cost of moving a unit mass from ¢ to ¢ amounts to || — &||P. The decision
variable 7 thus encodes a transportation plan, that is, for any measurable sets A, B C
R™ the probability 7(A x B) reflects the amount of mass that is moved from the source
region A to the target region B. Because of this interpretation, the Wasserstein distance
is often referred to as the earth mover’s distance in statistics and computer science [91].
The theory of optimal transport was pioneered by Monge in 1781 [63] and formalized by
Kantorovich in 1942 [50]. Accordingly, the Wasserstein distance is often referred to as the
Monge-Kantorovich distance [108]. The Wasserstein distance is used in many areas of science.
In the wider context of machine learning, for instance, the Wasserstein distance is used for
the analysis of mixture models [56, 71] as well as for image processing [1, 32, 55, 76, 105],
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computer vision and graphics [79, 80, 91, 102, 103], data-driven bioengineering [33, 58, 110],
clustering [48], dimensionality reduction [18, 34, 88, 94, 96], deep learning with generative
adversarial networks [2, 40, 44], domain adaptation [24, 64], signal processing [107], etc. For a
comprehensive survey of different applications of the optimal transport problem see [54, 83].

The optimization problem in (5) constitutes an infinite-dimensional linear program over
the transportation plan . This linear program admits a strong dual, which in turn provides
an alternative characterization of the Wasserstein distance.

Theorem 1 (Dual Kantorovich problem). For any p € [1,00), the p'® power of the
type-p Wasserstein distance between Q and Q' admits the dual representation

WHQQ) = s [ ue)@ue)- [ eloaas

R'm,
s.t. ¢ and Y are bounded continuous functions on R™ with

()=o) <€ -¢NP V& eR™.

For a proof of Theorem 1 see [108, § 5]. The dual problem can be interpreted as the
profit maximization problem of a third party that reallocates the dirt from Q to Q" on
behalf of the problem owner by buying dirt at the origin £ at unit price ¢(£) and selling
dirt at the destination £’ at unit price (¢’). The constraints ensure that the problem owner
prefers to use the services of the third party for every origin-destination pair (£,&’) instead
of reallocating the dirt independently at her own transportation cost ||£ —¢&||P. The optimal
price functions ¢* and y*—if they exist—are called Kantorovich potentials [108, p. 99].

If p=1, the dual problem can be further simplified. To see this, we define the Lipschitz

modulus of an extended real-valued function ¢ on R™ with respect to the norm || - || as
: [9(§) — (&)
Lip(¢) =sup ————>+.
e €=€l

The Lipschitz modulus can be viewed as the slope of the steepest line segment connecting
any two points on the graph of ¢. The following result simplifies Theorem 1 for p=1.

Theorem 2 (Kantorovich-Rubinstein theorem). The type-1 Wasserstein distance
between Q and Q' admits the dual representation

Wi(Q,Q) = sup ¢(§) Q(dE) — (€)Q'(dg).

Llp(¢)§1 Rm™ Rm

Kantorovich and Rubinstein [51] originally established this result for compactly supported
distributions. A modern proof for arbitrary distributions can be found in [108, Remark 6.5].
Theorem 2 asserts that the type-1 Wasserstein distance between Q and Q' equals the dif-
ference between the expected values of a test function ¢ under Q and Q’, respectively,
maximized across all Lipschitz-continuous test functions with Lipschitz modulus of at most 1.

The Kantorovich-Rubinstein theorem enables us to estimate the sensitivity of R(IP,¢)
and R(P, £) with respect to the unknown true distribution P. To see this, assume that the
type-1 Wasserstein distance between P and its noisy estimate Py is known to be at most €.
Thus, € can be viewed as a measure of the estimation error. Assume further that a fixed loss
function ¢(&) is Lipschitz-continuous with Lipschitz constant L. The risk of ¢ then satisfies

R(By.€) ~R(P.0)] = L- |EP*[0(6)/L] ~ EV[¢(¢)/L]| < L-Wa(Bx.P) < L e,

where the equality holds due to the definition of the risk, while the first inequality follows
from the Kantorovich-Rubinstein theorem, which applies because Lip(¢/L) < 1. Moreover,
if all loss functions ¢ € £ are Lipschitz continuous with the same Lipschitz constant L, then
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a similar reasoning implies that the optimal risk satisfies |R(I?’N, L)—R(P,L)|<L-e. This
analysis offers a rough understanding of how estimation errors in the input distribution are
propagated to the (optimal) risk: they are amplified at most by the Lipschitz constant of
the involved loss functions. Arguments of this type are central to the stability theory of
stochastic programming. For example, it is known that under standard regularity condi-
tions, the optimal values of two-stage stochastic programs with random right hand sides are
Lipschitz continuous in the distribution of the uncertainty with respect to the Wasserstein
distance [89]. Classical stability results in stochastic programming are surveyed in [30, 90].
The above reasoning suggests that in order to approximate the (optimal) risk well, one
should construct an estimator Py that has a small Wasserstein distance to the unknown
true distribution IP with high confidence. Unfortunately, however, estimators are subject to
fundamental performance limitations and cannot be improved beyond a certain level.

Example 3 (Limitations of estimator performance). Depending on the available
structural information on P, the nominal distributions portrayed in Example 1, which will
be used throughout this tutorial, are essentially optimal within certain estimator families.

(1) Discrete distributions: Assume that IP is only known to be supported on a compact
set 2 CR™, and let Py be the family of all discrete distributions on = with N atoms.
The theory of optimal quantization shows that there exist N € N and ¢ > 0 such
that infgepy, W1(Q,P) > cN~/™ for all N > N [17, Theorem 3.3]. Thus, the type-1
Wasserstein distance between IP and its closest N-point distribution Cannot decay faster
than N~1/™_ Maybe surprisingly, the empirical distribution P N=% Z 0z attains
this optimal decay rate in a probabilistic sense even though it is constructeé from N
random samples but without knowledge of PP. Indeed, [35, Theorem 2] implies that
for every n € (0,1) there exist N € N and ¢ > 0 such that Wl(IPN P) <eN~'/™ with
confidence 1 —1 for every N > N. Thus, if we aim to approximate IP with a sequence of
discrete distributions, the empirical distribution P is essentially optimal in the sense
that it attains the best possible convergence rate at any desired confidence level.

(2) Elliptical distributions: Assume that P is known to be an elliptical distribution with
a known density generator g but unknown mean vector p and covariance matrix 3.
In this case, the problem of finding an estimator Py for the distribution P reduces
to finding an estimator 0y for the vector 6 = (i, ) of unknown distribution param-
eters. Under mild regularity conditions, the Cramér-Rao inequality guarantees that
the covariance matrix of v/N - 0, N exceeds the inverse Flsher information matrix in a
positive semidefinite sense for any unbiased estimator HN As the maximum likelihood
estimator HML is asymptotically unbiased and efficient, i.e., the mean of 6y pML converges
to 6 and the variance of VN - ML converges to the inverse Fisher mformatlon matrix
as N grows, it is asymptotlcally optimal among all conceivable unbiased estimators.

We emphasize that, by mobilising more powerful results from statistics, the above optimality
guarantees could be extended to even larger families of estimators. O

Example 3 suggests that the accuracy of the nominal distribution cannot be increased
beyond some fundamental limit by tuning the estimator. The only remaining option to
reduce the estimation error is to increase the sample size N, which may be expensive or
impossible. Indeed, additional training samples may only become available in the future.
Thus, the optimizer’s curse illustrated in Example 2 is fundamental and cannot be elimi-
nated. However, once the potential to improve the estimator Py is exhausted, it may still be
possible to mitigate the optimizer’s curse by altering the risk evaluation and decision prob-
lems (1) and (2) directly. Specifically, we propose here to robustify these problems against
the uncertainty about the true distribution IP. Distributional uncertainty is often referred
to as ambiguity or Knightian uncertainty and is conveniently captured by an ambiguity set,
that is, an uncertainty set in the space of probability distributions. To formalize this idea,
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we let Z CR™ be a closed set that is known to contain the support of IP. In the absence of
any structural information, we may simply set Z = R™. Moreover, we denote by P(Z) the
family of all probability distributions supported on =, and we define the ambiguity set

B.,(By) = {QEP(E): W,(QPy) <c}

as the ball of radius € > 0 in P(Z) centered at the nominal distribution Py with respect to

the type-p Wasserstein distance. By construction, this ambiguity set contains all distribu-

tions supported on = that can be obtained by reshaping the nominal distribution Py at a

transportation cost of at most €. We can think of B, ,(IPx) as the set of all distributions for

which the estimation error—as measured by the type-p Wasserstein distance—is at most ¢,

and we can interpret € as the maximum estimation error against which we seek protection.
Using the proposed ambiguity set, we define the worst-case risk as

RepPn, )= sup  R(Q,0) (6)
QeBe ,(Py)

and the worst-case optimal risk as
Rg,p(]PN,E):ggﬁ Rep(Pn,f). (7)

Problem (7) constitutes a distributionally robust optimization problem. It seeks decisions
that have minimum risk under the most adverse distributions in the ambiguity set. Intu-
itively, problem (7) can thus be viewed as a zero-sum game, where the decision-maker first
selects an admissible loss function with the goal to minimize the risk, in response to which
some fictitious adversary or ‘nature’ selects a distribution from within the ambiguity set
with the goal to maximize the risk. The hope is that by minimizing the worst-case risk,
we actually push down the risk under all distributions in the ambiguity set—in particular
under the unknown true distribution IP, which is contained in the ambiguity set if € is large
enough. Thus, there is reason to hope that the solutions of distributionally robust optimiza-
tion problems with carefully calibrated ambiguity sets display low out-of-sample risk.

The distributionally robust risk evaluation and decision problems (6) and (7) are attractive
for a multitude of diverse reasons.

e Fidelity: Distributionally robust models are more ‘honest’ than their nominal counter-
parts as they acknowledge the presence of distributional uncertainty. They also benefit
from information about the type and magnitude of the estimation errors, which is
conveniently encoded in the geometry and size of the ambiguity set.

e Managing expectations: Due to the optimizer’s curse, the solutions of nominal
decision problems equipped with noisy estimators display an optimistic in-sample risk,
which cannot be realized out of sample; see Example 2. In contrast, the solutions of
distributionally robust decision problems are guaranteed to display an out-of-sample
risk that falls below the worst-case optimal risk whenever the ambiguity set contains the
unknown true distribution. Thus, nominal decision problems over-promise and under-
deliver, while distributionally robust decision problems under-promise and over-deliver.

e Computational tractability: The distributionally robust problems (6) and (7) can
often be reformulated as (or tightly approximated by) finite convex programs that are
solvable in polynomial time. Section 2 will showcase some key tractability results.

e Performance guarantees: For judiciously calibrated ambiguity sets, one can prove
that the worst-case optimal risk for any fixed sample size IV provides an upper confi-
dence bound on the out-of-sample risk attained by the optimizers of (7) (finite sample
guarantee) and that the optimizers of (7) converge almost surely to an optimizer of (2)
as N tends to infinity (asymptotic guarantee); see Section 3.
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e Regularization by robustification: The optimizer’s curse is reminiscent of over-
fitting phenomena that plague most statistical learning models. One can show that
distributionally robust learning models equipped with a Wasserstein ambiguity set are
often equivalent to regularized learning models that minimize the sum of a nominal
objective and a norm term that penalizes hypothesis complexity. Similarly, one can
show that some distributionally robust maximum likelihood estimation models produce
shrinkage estimators. Thus, Wasserstein distributional robustness offers new proba-
bilistic interpretations for popular regularization techniques. The empirical success of
regularization methods in statistics fuels hope that Wasserstein distributionally robust
models can effectively combat the optimizer’s curse across many application areas.
Connections between robustification and regularization will be explored in Section 4.

e Anticipating black swans: If uncertainty is modeled by the empirical distribution,
then the nominal decision problem evaluates the admissible loss functions only at the
training samples. However, possible future uncertainty realizations that differ from all
training samples but could have devastating consequences (‘black swans’) are ignored.
If the empirical distribution may be perturbed within a Wasserstein ball with a positive
radius, on the other hand, then (possibly small amounts of) probability mass can be
moved anywhere in the support set =. Thus, the Wasserstein distributionally robust
decision problem faithfully anticipates the possibility of black swans. We emphasize
that all distributions in a Kullback-Leibler divergence ball must be absolutely contin-
uous with respect to the nominal distribution, which implies that the corresponding
distributionally robust decision problems ignore the possibility of black swans.

e Axiomatic justification: If the random vector £ may follow any distribution in some
ambiguity set Q (e.g., a Wasserstein ball), then the scalar random variable £(£) cor-
responding to a fixed loss function ¢ € £ may follow any distribution in the induced
ambiguity set £,(Q) = {£.(Q) : Q € Q}, where £,(Q) is the pushforward measure of Q
under £. We call a loss function £ € £ unambiguous if £, (Q) is a singleton. Assume now
that £ is preferred to ¢/ under any of the following natural conditions: (i) £ and ¢’ are
unambiguous, and R(Q, ¢) < R(Q,¢) for some Q € Q; (ii) £.(Q) C ¢, (Q); (iil) R(Q,¢) <
R(Q,¢) for every Q € Q. Under a mild technical condition, the loss functions must
then be ranked by the worst-case risk supgego R(Q,¢) [27, Theorem 12]. This result
provides an axiomatic justification for adopting a distributionally robust approach.

e Optimality principle: Data-driven optimization aims to use the training data
directly to construct an estimator for the objective of problem (2) (a predictor) and a
decision that minimizes this predictor (a prescriptor) without the detour of construct-
ing an estimator for IP. It has been shown that optimal predictors and the corresponding
prescriptors can be constructed by solving a meta-optimization model that minimizes
the in-sample risk of the predictor-prescriptor pairs subject to constraints guaranteeing
that the in-sample risk is actually attainable out of sample. It has been shown that this
meta-optimization problem admits a unique solution: the best predictor-prescriptor
pair is obtained by solving a distributionally robust optimization problem over all dis-
tributions in some neighborhood of the empirical distribution [78, Theorem 7]. Thus,
if one aims to transform training data to decisions, it is in some precise sense optimal
to do this by solving a data-driven distributionally robust optimization problem.

Distributionally robust optimization models with Wasserstein ambiguity sets were intro-
duced in [85]. Reformulations of these models as nonconvex optimization problems as well
as initial attempts to solve these problems via algorithms from global optimization are
reported in [113] and [84, § 7.1]. In the next section we will review convex reformulations and
approximations that were discovered in [61, 115] and significantly generalized in [12, 37].
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Notation. The conjugate of a function £(£) on R™ is defined as £*(z) =sup; z ' £ —£(§).
The indicator function of a set = C R™ is defined as 0=(§) =0if { € E and §=(§) =0 if £ ¢ E.
The conjugate 0=(2) = supgcz 2T ¢ of the indicator function is termed the support function.
If [|§]| represents the norm of £ € R™, then | z[[. = supy¢ <, zT¢ denotes the corresponding
dual norm. The set of all symmetric (positive semidefinite) matrices A € R™*™ is denoted
by S™ (ST). For A, B € S™, the relation A > B (A~ B) means that A — B is positive
semidefinite (positive definite). The trace of A € R™*™ is denoted by Tr[A], the smallest
and largest eigenvalues of A € S™ are denoted by Amin(A) and Apax(A), respectively, and the
Moore-Penrose pseudoinverse of A € ST is denoted by AT. For N € Nwe set [N] ={1,...,N}.

2. Computation

The aim of this section is to show that the worst-case risk evaluation problem (6) and the
distributionally robust decision problem (7) are computationally tractable in many situa-
tions of practical interest. Note first that checking whether a fixed distribution Q is feasible
in (6) requires computing the Wasserstein distance W,(Q, Py ). It is therefore instructive to
study the complexity of evaluating Wasserstein distances between arbitrary distributions.
Computing the Wasserstein distance between two discrete distributions amounts to solv-
ing a tractable linear program that is susceptible to the network simplex algorithm [7] as
well as dual ascent methods [9] or specialized auction algorithms [5, 6], etc. The set of fea-
sible transportation plans is termed the transportation polytope and displays many useful
theoretical properties, which are surveyed in [15]. The need to evaluate Wasserstein dis-
tances between increasingly fine-grained histograms has recently motivated efficient approx-
imation schemes. When augmented with an entropic regularization term, for instance, the
finite-dimensional transportation problem can be solved quickly by using Sinkhorn’s algo-
rithm [22, 26, 52, 81, 82, 95, 102]. Variants of this approach use Tikhonov regularizers [31],
Bregman divergences [4] or Tsallis entropies [66] instead of the entropic regularization term.
A survey of algorithms for the finite-dimensional transportation problem is provided in [83].
As soon as at least one of the two involved distributions ceases to be discrete, the Wasser-
stein distance can no longer be evaluated in polynomial time. Even in the simplest imaginable
scenario where one distribution is uniform on a hypercube and the other distribution is
discrete with two atoms, computing the Wasserstein distance becomes intractable [106].

Theorem 3 (Hardness of computing Wasserstein distances). Computing the type-
p Wasserstein distance between two distributions Q and Q' is #P-hard even if || - | is the
Euclidean norm, Q is the uniform distribution on the standard hypercube [0,1]™, and Q' is
a discrete distribution supported on only two points.

If p=2and ||-|| is the Euclidean norm, then the Wasserstein distance admits an analytical
lower bound that depends only on the distributions’ first- and second-order moments. This
bound is available for any pair of distributions even if their exact Wasserstein distance
cannot be computed efficiently. Moreover, the bound is exact for elliptical distributions.

Theorem 4 (Gelbrich bound). If || -|| is the Euclidean norm, and the distributions Q
and Q' have mean vectors p, 1’ € R™ and covariance matrices ¥,%" € ST, respectively, then

W,(Q,Q) > \/IIMM’H% +Tr [Z £ -2 (2%2'2%) 2} . (8)

The bound is exact if Q and Q' are elliptical distributions with the same density generator.

The inequality (8) may be loose if Q and Q' are elliptical distributions with different
density generators. Maybe unexpectedly, however, the Wasserstein distance between two
elliptical distributions with the same density generator g is actually independent of g. In its
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general form, Theorem 4 is due to Gelbrich [39]. The exact formula for the type-2 Wasserstein
distance between normal distributions has been discovered earlier in [29, 42, 73].

As any Wasserstein ball with a strictly positive radius contains non-discrete distributions
(the nominal distribution can be smeared out even if the transportation budget is small), it
is perhaps surprising that the worst-case risk evaluation problem (6) may be tractable at all.
Indeed, Theorem 3 indicates that checking feasibility is already hard in general. We will see
below, however, that the extremal distributions determining the worst-case risk are often
structurally equivalent to the nominal distribution. Thus, there is hope that problems (6)
and (7) become tractable if we choose a nominal distribution with a particularly simple
structure (e.g., a discrete or an elliptical distribution).

In order to ensure that any admissible loss function £ € £ has a finite expected value under
the nominal distribution, we impose the following technical regularity condition borrowed
from [12], which will tacitly be assumed to hold throughout the rest of the paper.

Assumption 1 (Regularity). Any loss function £ € L is upper semicontinuous and
integrable with respect to the nominal distribution Py, that is, [p,. [€(§)|Pn(d€) < co.

In the remainder of this section, we will first review tractable bounds on the worst-
case risk and present a strong duality result that paves the way towards exact tractable
reformulations (Section 2.1). Next, we will delineate efficient methods to compute the worst-
case risk as well as the underlying worst-case distributions in situations when the nominal
distribution is discrete (Section 2.2) or elliptical (Section 2.3).

2.1. General Analysis of the Worst-Case Risk

Before attempting to derive exact tractable reformulations for the worst-case risk (6), we
focus on the simpler task of establishing efficiently computable upper and lower bounds. To
derive a pessimistic upper bound, we note that the transportation cost ||£ —¢&'||P is a convex
function of the random variable ||£ —¢&’|| for any p > 1. Jensen’s inequality thus implies

Wy(Q,Py) >W1i(Q,Py) VQEP(E) = B.,(Py)CB1(Py).

Hence, the worst-case risk of a loss function ¢ € £ over the type-p Wasserstein ball satisfies

RepPr,0) SRen(Pr, ) =EP¥[0(€)] +  sup  EQ[L(€)] — EP¥[¢(€)]
QeB.,1(PN)

<R(Py,0) +¢-Lip(¥),

where the equality follows from the definition of the worst-case risk, while the second inequal-
ity is a direct consequence of the Kantorovich-Rubinstein theorem (see Theorem 2). We
summarize the above reasoning in the following theorem.

Theorem 5 (Lipschitz regularization). The worst-case risk (6) of any fized loss func-
tion £ € L is bounded above by the Lipschitz-reqularized nominal risk, that is,

Rep(Pn,0) <R(Py,€) +e - Lip(£).

If the loss function / fails to be Lipschitz continuous (i.e., Lip(£) = 00), then Theorem 5 is
trivially satisfied. Note that R(Py, £) is linear in ¢ for any choice of the nominal distribution
and that Lip(¥) is a convex function of ¢. Thus, minimizing the upper bound of Theorem 5
amounts to solving a convex optimization problem whenever L is a convex set.

An optimistic lower bound on the worst-case risk can be obtained by replacing the Wasser-
stein ball in (6) with a smaller ambiguity set. If the distributions in the restricted Wasserstein
ball admit a finite parameterization, then the lower bounding problem coincides with a
finite optimization problem. Depending on the parameterization, this problem may even
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be convex. If P ~ is the empirical distribution, for example, one may restrict the original
Wasserstein ball to a subset that contains only perturbed empirical distributions of the form

1 N
Q(@) = N Z 5gi+9i’
=1

where §; € R™ is the displacement of the i*" training sample. Thus, all distributions in
the restricted Wasserstein ball are encoded by a perturbation matrix © = (01,...,0N) €
R™*N_ The requirement that Q(©) € P(Z) translates to & +6; € Z for all i € [N], while the
Wasserstein constraint W,(Q(©), I/E\’N) < ¢ is equivalent to the inequality & >_;", [|6;]|? < eP.

Theorem 6 (Robust lower bound). If Py is the empirical distribution, then the
worst-case risk (6) of any fized loss function £ € L is bounded below by the worst-case empir-
ical loss, where the worst case is taken over all perturbation matrices © = (01,...,0N) €
R™*N of the training samples in an Ly, 1-norm uncertainty set, that is, we have

N
) 1 ~
Rep(Pn,€) > sup N E £(&i +0;)
i=1

s.t. 6, eR™ Vi e [N]
&+0,€= Vi€ [N]

1 N
Yl <er.
i=1

Note that if the loss function ¢ is concave, then the robust lower bounding problem of
Theorem 6 constitutes a finite convex optimization problem. In the remainder we will argue
that both the upper bound of Theorem 5 as well as the lower bound of Theorem 6 can
become exact in situations of practical interest. To see this, we first derive the Lagrangian
dual of the worst-case risk evaluation problem (6).

Theorem 7 (Strong duality). The worst-case risk (6) of any fived £ € L satisfies

Rep(Br,0) = inf EFY (4, (6)] +7", (10)

vz
where £y(§) =sup,cz 4(2) — 7|z —&||P is a Moreau-Yosida reqularization [77] of £(£).

The minimization problem on the right hand side of (10) can indeed be identified with
the strong Lagrangian dual of problem (6), where v > 0 is the Lagrange multiplier of the
Wasserstein constraint W,(Q, P ~) <e. We emphasize that the Moreau-Yosida regularization
£,(&) is jointly convex in « and ¢ for every fixed uncertainty realization £. Thus the dual
problem (10) represents a convex minimization problem whose optimal value is convex in /.
One can further show that (10) is solvable for any € > 0 under the mild assumption that
there exists C' > 0 such that [€(£)] < C(1+ ||€||”) for all £ € E. For type-1 Wasserstein balls
centered at the empirical distribution, Theorem 7 is a corollary of [61, Theorem 4.2] and
[115, Proposition 2]. An extension of Theorem 7 to situations where £ ranges over a Polish
space is discussed in [12, 37]. It has been shown that Theorem 7 remains even valid if the
transportation cost ||£ —&'||P in the definition of the Wasserstein distance is replaced with
a general nonnegative and lower semicontinuous function ¢(&,¢’) that vanishes if and only
if £=¢' [12]. Note that the Wasserstein distance may cease to be a metric in this case.

In the next sections we will describe specific settings in which (6) and (10) are tractable.
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2.2. Tractability Results for Empirical Nominal Distributions

Assume now that the Wasserstein ambiguity set is centered at the empirical distribution
defined in (3). In this case, under a mild convexity assumption, the worst-case risk (6) can
be exactly expressed as the optimal value of a finite convex optimization problem.

Theorem 8 (Piecewise concave loss I). Assume that E is conver and closed and that
£(§) = maxerg £5(§), where —L; is proper, conver and lower semicontinuous for all j € [J].
If I/F\’N 18 the empirical distribution and p,q > 1 with %—l— % =1, then the worst-case risk (6)
coincides with the optimal value of a finite convexr minimization problem, that is,

RE;P(I@N’K) =

1 N
inf 75P+N;3i
s.t. YERy, s; R, u; €R™, v;; €R™ Vi€ [N], jelJ] (11)

q
* > Ui j . .
(451" (uij — vig) +o=(vij) _u;rjfi +e(a)y H’Y] <s; Vie[N], jelJ

*

)

where [—{;]*(z) is the conjugate of —£;(&), o=(2) is the support function of Z, and |- || is
the dual of the norm || - || on R™, while ¢(q) = (¢ —1)971/q? for ¢ >1 and ¢(1) =1. For
v =0, the expression 0|lu;; /0|1 is interpreted as lim. o |lui; /7|4

The assumptions of Theorem 8 are unrestrictive because any continuous function ¢(¢) on a
compact set = can be uniformly approximated as closely as desired by a pointwise maximum
of finitely many concave functions. Note that the loss function ¢(£) and the support set =
enter problem (11) through the conjugates of the negative constituent functions —¢;(&),
J € [J], and the support function o=(z), all of which are convex. Moreover, the norm that
determines the transportation cost in the definition of the Wasserstein distance enters (11)
via the dual norm || - || . The term 7|lu;;/7||¥ can be identified with the perspective function
of |lui;||¥ and is thus jointly convex in v and u,;; [14, § 3.2.6]. Therefore, problem (11) is
manifestly convex. Tables 4-6 in Appendix B list common conjugates, support functions and
dual norms. By substituting (11) into (7), one can reformulate the distributionally robust
decision problem (7) as a single explicit minimization problem, which is convex whenever £ is
a convex set. To prove Theorem 8, one re-expresses the empirical expectation in the objective
function of the dual problem (7) as a finite sum and dualizes the maximization problems in
the Moreau-Yosida regularization terms. For further details see [61, Theorem 4.2] and [116].

Remark 1 (Limiting cases I). In the limit when p tends to 1 and ¢ to oo, the function
©(q) decays as 1/q, while [Ju;; /7v||? grows exponentially whenever |Ju;;||. > ~. Thus, we have

L0 fuglle <7,
oo if [Jugjllx >

’LLZ'j

lim ¢(q)y
() Y

qToo

For p=1, the constraints of the finite convex program (11) are thus equivalent to
(4] (wij — vig) + 0=(vij) —u& < si,  uglle <y Vie[N], jelJ].

In the opposite limit when p tends to co and ¢ to 1, the function ¢(q) converges to 1. One
can then show that v = 0 at optimality and that the constraints of problem (11) simplify to'

(=431 (i = vi3) + 05 (vig) —u& +elugg|l, < s Vi€ [N], jelJ].
We refer to [109, Appendix A.6] for a formal proof. O

1 Updated.
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As it expresses the worst-case risk Rsﬁp(f’ ~N,¢) as the optimal value of a minimization
problem, Theorem 8 primarily serves as a vehicle to solve the distributionally robust decision
problem (7). In order to construct an extremal distribution that solves problem (6), one
may dualize the finite convex program (11) to convert it back to a mazimization problem.

Theorem 9 (Piecewise concave loss II). Under the conditions of Theorem 8 we have

N J

Rep(Pn,l) = max Jb;;aijgﬂ'(ﬁiJrZZ)

w0 €Ry By €RT vie [N, Vi€ [J]

0,

Qi
J

> i =1 Vi€ [N]

1

=y
VXY
i=1j=1

£yt cs Vie [N], VjelJ] (12)

P
<gP

f— )

Oéij

where 04; (@ +0,;/0) is defined as the value that makes the function aijej(gj- +06,;/a;;) upper
semicontinuous at (0;5,a;;) = (0;5,0). Similarly, the constraint & +6,;/0 € = means that 0;;
belongs to the recession cone of E, and 0](0;;/0||P is interpreted as limy, ;1o cviz]|0i; /g ||P.

Problem (12) is the Lagrangian dual of (11) and thus convex by construction. Convex-
ity can also be verified directly. As the constituent functions ¢;(&), j € [J], are concave by
assumption, the objective of (12) represents a sum of concave perspective functions and is
thus concave [14, § 3.2.6]. Also, the support constraints &; +6;;/c;; € E require that (6,5, o;;)
belongs to the preimage of the convex set {El + & :£ € Z} under the perspective transfor-
mation, which is known to be convex [14, § 2.3.3]. The term «;||6;;/cvi;||P can be identified
with the perspective function of ||6;;||? and is thus jointly convex in «;; and 6,; [14, § 3.2.6].

For a proof of Theorem 9 we refer to [61, Theorem 4.4] and [116]. We emphasize that
problem (12) is always solvable because it has a compact feasible set and an upper semicon-
tinuous objective function, and thus the use of the maximization operator is justified.

Note that if J =1, then the loss function £(§) = ¢1(&) is globally concave, and the penul-
timate constraint group in (12) simplifies to the requirement that «;; =1 for every i € [N].
In this case, the convex program (12), which is equivalent to the worst-case risk evaluation
problem (6), reduces to the robust optimization problem (9), which maximizes only over
perturbed empirical distributions in the Wasserstein ball. Thus, the robust lower bound
portrayed in Theorem 6 is exact if the loss function ¢(£) is concave.

Remark 2 (Limiting cases IT). For p=1, the last constraint of (12) simplifies to

1 N J
N oD Nl <e.
i=1j=1

To analyze the limit when p tends to co, we divide the last constraint of (12) by &P
and observe that [|0;;/(ea;;)||” grows exponentially with p if ||6;;/csj] > €. Otherwise,
16i;/ (€ ai;)||P remains bounded by 1 for all p. For p = oo, the last constraint of (12) is
therefore equivalent to the requirement that ||6;;|| <ea;; for all i € [N] and j € [J].

An intimate connection between distributionally robust optimization with type-oo Wasser-
stein balls and classical robust optimization has first been discovered in [8]. g
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Even though problem (12) is guaranteed to have an optimal solution, the worst-case
risk (6) may not be attained by any distribution if p=1. An instance of problem (6) that
fails to be solvable is constructed in Example 4 below, which replicates [61, Example 2].

Example 4 (Non-existence of extremal dlstrlbutlons) Assume that p=1, Z=R,
N =1and fl 0 implying that the nominal distribution PP, reduces to the Dirac distribution
at 0. Set the norm on R to the absolute value |- |, and set £({) = max{0,{ —1}. As Lip(¢) =1,
Theorem 5 implies that R, 1(IP1,€) <e. Next, define Q,, = (1 —l/n) 30+ (1/n) bep, for n €N,
and note that the type-1 Wasserstein distance between Q,, and IP; amounts to &, which is the
cost of moving mass 1/n from en to 0. Thus, Q,, € B. 1 (IP1). Moreover, we have E®~[¢(¢)] =
max{0,e — 1/n}, which implies that @Q,, attains the upper bound ¢ on the worst-case risk
asymptotically as n tends to infinity. Thus, the sequence Q,,, n € N, is asymptotically optimal
in (6). Next, we argue that the worst-case risk ¢ is not attained. Suppose to the contrary that
there exists Q* € B, 1 (IP1) with EQ"[((¢)] = . Thus, e = EQ"[¢(¢)] < EQ"[|¢]] < ¢ where the
strict inequality follows from the observation that £(£) <[] for any £ # 0 and that Q* # do,
and the second inequality follows from Theorem 2 and the assumption that Q* € B, 1 (P1).
The contradiction implies that Q* cannot exist, and thus (6) is not solvable. O

Fix now any maximizer {aj;,05;};; of problem (12). This maximizer can be used to
construct an extremal distribution Q* that solves problem (6) (if such a Q* exists) or a
sequence of asymptotically optimal distributions {Q}nen (if such a Q* does not exist).
Before describing this construction, we remark that 07; is a recession direction of the support

set = whenever af; =0 (i.e. §, +10;; €E for every ¢ > 0). If Z is bounded, this implies that
07; = 0 whenever a 5 =0. Next deﬁne v as the set of pairs (i,j) with af; >0, 1 as the
set of pairs (i,7) with aj; =0 and 6;; =0, and v as the set of pairs (i, ) Wlth a;; =0 and
07; # 0. By construction, v, vg and v form a partition of [N] x [J].

If vso =0, one can show that

Z N 51*"%/“?]‘

(i,5)€vy

is an extremal distribution that solves (6). For p > 1, the last constraint in (12) ensures
that 6;; =0 whenever «;; =0 because otherwise «;;||6;;/cvi;||P evaluates to oco. This implies
that the set v is empty. Thus, for p > 1, the worst-case risk (6) of a piecewise concave loss
function is always attained by the discrete distribution Q* constructed above.

If vo # (), which is only possible in the special case p =1, the distributions

* |Voo|

- aij(n) - _ o (=) i (4)) € vy,
Qn - Z N 551 +9* /Oéu (71) Wlth al] (n) - { J ( ) if (Z j) cu

S

(4,4)Evy Ures

are feasible and asymptotically optimal in (6) as n > |v| tends to infinity. Intuitively,
these distributions send some atoms with decaying probabilities to infinity along specific
recession directions 67;, (1,7) € Voo, of the support set. Note that moving an atom to infinity
is possible even when only a finite (type-1) transportation budget is available provided that
the probability mass transported is inversely proportional to the transportation distance.

For p > 1, atoms can also migrate to infinity at a finite transportation cost provided that
their probabilities are inversely proportional to the pt* power of the transportation distance.
As piecewise concave loss functions grow at most linearly, however, the decay in probability
always outweighs the increase in loss. This reasoning provides an intuitive explanation for
our insight that vo, =) and that the supremum in (6) is always attained for p > 1.

Given the promising results for piecewise concave loss functions, it is natural to ask
whether the convex reformulations of Theorems 8 and 9 can be generalized. Indeed, it has
been discovered that similar results are available for convex (but not piecewise convex) loss
functions under the additional condition that there are no support constraints (£ =R™).
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Theorem 10 (Convex loss and p=1). Assume that==R"™ and that the loss function
£(&) is conver. If p=1 and Py is the empirical distribution, then the worst-case risk (6)
coincides with the Lipschitz-reqularized empirical loss, that is,

Re1(Py, ) = R(Py,€) + & Lip(£).

For a proof of this result we refer to [61, Theorem 6.3]. Theorem 10 shows that the simple
upper bound of Theorem 5 is exact if p=1, Z=R"™ and the loss function ¢ is convex.

Remark 3 (Computing the Lipschitz modulus). By Theorem 10, computing the
worst-case risk of a convex loss function £(§) requires computing the Lipschitz modulus
of £(§) with respect to the prescribed norm || - || on R™. One can show that

Lip(£) = sup {[|z[|. : £*(2) < oo}, (13)

that is, the Lipschitz modulus of ¢(£) coincides with the radius of the smallest dual norm
ball around 0 that encloses the domain of the conjugate loss function ¢*(z) [61, § 6.2].
Unfortunately, problem (13) maximizes a convex function over a convex set and is therefore
hard. More formally, assume that £(&) = "€+ ||Z%£||2 for an arbitrary 4 € R™ and ¥ € S7".
An elementary calculation shows that ¢*(z) =0 if z € £ and ¢*(z) = 00 if z ¢ £, where
E={u+X2u: ||lully <1} stands for the ellipsoid with center x and shape matrix ¥. Hence,
£ is the domain of £*(z). In order to compute the Lipschitz modulus of £(£) with respect to
the co-norm, for example, we thus need to solve an instance of problem (13) that maximizes
the 1-norm over £. As maximizing the 1-norm over an arbitrary ellipsoid is NP-hard [46,
Lemma 4.1], we conclude that the worst-case risk evaluation problem (6) is intractable even
for polyhedral norms and for simple classes of (convex) conic quadratic loss functions. O

One can show that the supremum of the worst-case risk evaluation problem (6) is never
attained under the conditions of Theorem 10, that is, any asymptotically optimal sequence of
distributions must push some (decreasing amount of) probability mass to infinity. As in the
case of a piecewise concave loss function, such a sequence can be constructed explicitly. To
do so, choose a maximizer z* of problem (13), which is generally intractable as pointed out
in Remark 3. Moreover, select ig € [N] and £* € arg max¢| <1 £72*. Then, the distributions

1 & n—1 1
Qn =570 + 757 %, T o 06, beave:
i#ig
can be shown to be feasible and asymptotically optimal in (6) as n > 1 tends to infinity.
Assume next that p =2, the loss function £(£) is quadratic and the transportation cost in
the definition of the Wasserstein distance is induced by the Euclidean norm. Then, the worst-
case risk (6) coincides with the optimal value of a tractable semidefinite program (SDP).

Theorem 11 (Indefinite quadratic loss and p=2 I). Assume that Z=R™ and that
(&) =€TQE+2q" € with Q €S™ and g € R™ is a (possibly indefinite) quadratic loss function.
Ifp=2,|-=I"2 is the Euclidean norm on R™ and Py is the empirical distribution,
then the worst-case risk (6) coincides with the optimal value of a tractable SDP, that is,>

N
_ _ 1
R572(IPN,€) = inf "}/52+NZIS¢
s.t. vyERy, s, €R Vi€ [N] (14)

=@ 4+l g vien).
a +&  sitls&l:

2 Updated.
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Note that substituting the SDP (14) into the distributionally robust decision problem (7)
yields a tractable SDP if the set £ of admissible loss functions is defined through SDP
constraints in ) and ¢. In order to construct an extremal distribution that solves problem (6)
for a fized convex quadratic loss function, it is useful to derive the dual of the SDP (14).

Theorem 12 (Indefinite quadratic loss and p =2 II). Suppose that all conditions
of Theorem 11 hold. If Mnax(Q) denotes the largest eigenvalue of @, then

N
Rea(Py,0) = max zlv;@-+ez->Tc2<é+ei>+2qT(é+9i>+aAm<Q>

s.t. a€eRy, 6;eR™ Vie[N] (15)
1 N
=Yl +ase
i=1

Problem (15) represents a quadratically constrained quadratic program (QCQP) with a
compact feasible set and is therefore solvable. As @) is not necessarily negative semidefinite,
problem (15) is generally nonconver. This is perhaps puzzling because (15) is obtained
by ‘massaging’ the dual of (14) and because dual optimization problems are convex by
construction. The apparent contradiction is resolved by noting that nonconvex QCQPs of the
form (15) with a single constraint are equivalent to convex SDPs by virtue of the celebrated
S-procedure [14, Appendix B.1].

Intuitively, problem (15) can be interpreted as a finite reduction of the worst-case risk
evaluation problem (6), which maximizes only over discrete distributions in the Wasserstein
ball. Denoting by vmax(Q) an eigenvector corresponding t0 Apax (@), any such discrete dis-
tribution assigns probability 1/N to the perturbed training samples & + 6;, i € [N], and a
‘vanishing’ probability to an atom located ‘infinitely’ far away in the direction of vyax(Q).
More precisely, the product of the squared transportation distance and the probability of
this last atom must converge to a finite value o € Ry (hence, the probability of this atom
must be asymptotically proportional to the inverse of the squared transportation distance).
In the same spirit one can show that if a* and {6} }; are optimal in (15) and ig € [N], then
the discrete distributions

1 & n—1 1
Qn= N ; 5a+e; + WN 5@0%:0 + nN 5@0+\/vax(q))
1#10
are feasible and asymptotically optimal in (6) as n > 1 tends to infinity.

The structure of the extremal distributions for the worst-case risk evaluation problem (6)
with general loss functions and nominal distributions as well as necessary and sufficient con-
ditions for their existence have been studied in [37, 75, 113]. The special case of a Wasserstein
ball centered at a discrete distribution with N atoms has undergone particular scrutiny.
Considerable effort was spent on proving the existence of discrete extremal distributions
with as few atoms as possible. A first breakthrough was marked by the insight that the
worst-case risk of any continuous bounded loss function is attained by a discrete distribution
with at most N + 3 atoms [113, Theorem 2.3]. As any (N + 3)-point distribution on R™ can
be encoded by (N +3) - (m+ 1) — 1 parameters (i.e., the coordinates and probabilities of
the N + 3 atoms), this result motivates a finite reduction: when searching for an extremal
distribution, one may restrict attention to discrete distributions supported on N + 3 points,
which amounts to searching a finite-dimensional parameter space. It was later shown that
one may actually focus on discrete distributions with N +2 atoms [75, Theorem 2.3] or even
only N +1 atoms [37, Corollary 1] without sacrificing optimality. These sharper results facil-
itate more parsimonious finite reductions that may be fruitfully used in algorithm design.
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Exact finite reductions involving fewer atoms are available only in special cases. For exam-
ple, the discussion after Theorem 9 shows that the worst-case risk of a concave loss function
is always attained by an N-point distribution. For more general loss functions, however,
every N-point distribution may be suboptimal even if the worst-case risk is attained.

Example 5 (Non-existence of extremal distributions with N atoms). Suppose
that Z=(—00,2], N =1 and 51 =0, which implies that P, is the Dirac distribution at 0. Set
the norm on R to the absolute value |- |, select ¢ € (0,2) and set £(£) = max{0,& —1}. Next,
define Q* = (1—¢/2) 6o+ (¢/2) 62, and note that the type-1 Wasserstein distance between 1Py
and Q* amounts to &, which is the cost of moving mass /2 from 2 to 0. Thus, Q* € B, 1 (IP1).
Moreover, we have EQ"[¢(€)] = £/2, which provides a lower bound on the worst-case risk.
In fact, by solving problem (12) one can show that Q* is optimal in (6). Any one-point
distribution J, resides in the Wasserstein ball of radius € only if |z| < ¢, and therefore the
maximum risk that any one-point distribution can attain is max{0,e — 1}, which is strictly
smaller than £/2 for any ¢ € (0,2). Thus, no one-point distribution can be extremal. O

If the worst-case risk over a Wasserstein ball centered at the empirical distribution is
attained, then there always exists an extremal distribution with N + 1 atoms that can
be characterized in quasi-closed form [37, Corollary 2]. In practice, however, it is often
convenient to ignore this minimal representability and to search over candidate distributions
with more than N 4 1 atoms, e.g., by solving a finite convex optimization problem such
as (9). For generic nominal distributions, necessary and sufficient conditions for the existence
of an extremal distribution are detailed in [37, Corollary 1].

2.3. Tractability Results for Elliptical Nominal Distributions

We will now demonstrate that the worst-case risk evaluation problem (6) and the distri-
butionally robust decision problem (7) sometimes admit exact tractable reformulations or
conservative tractable approximations even if the nominal distribution P is continuous. To
show this, we assume throughout this section that Py has mean vector i € R™ and covari-
ance matrix 3 € S Thus, we implicitly assume that P ~ has finite second-order moments.

We first define an uncertainty set in the space of mean vectors and covariance matrices.

(%)= { (7)€ R ST -l T B4 3 -2 (BHe8H) | <22

This uncertainty set is of interest because it covers the projection of the type-2 Wasserstein
ball B, 2(IPx) onto the space of mean vectors and covariance matrices. Moreover, if the
nominal distribution is elliptical, U (&, X) is actually equal to the projection of B, o (P ).

Proposition 1 (Projection of B, » (Py) onto the mean-covariance space). If Py

has mean vector [i € R™ and covariance matriz X € S, then

~

{ (B2l EC1(¢ — E°le)(€ —E%kN ) : Q€ Bea(Pr) | U@ E).

The inclusion becomes an equality if = =R™ and Py = &, (1, i) s an elliptical distribution.

Proposition 1 follows immediately from Theorem 4. The condition == R™ ensures that
any elliptical distribution Q = &,(u, ¥) with the same density generator as the nominal distri-
bution and with W(Q, Py) < & belongs to B572(I/I.SN). One can show that U (i, ) is convex
and compact [99, Lemma A.6], which is expected as it is a projection of a (Wasserstein) ball.

The uncertainty set U.(ji,X) can conveniently be used in classical robust optimization.
Indeed, a robust constraint that requires a concave function h(u,X) to be nonpositive for
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all (u, %) eU:(, f)) can be reformulated as a convex constraint that involves the conjugate
of —h(u,X) and the support function of the uncertainty set U (i, X) [3, Theorem 2], that is,

JgeR™ QeS™:

W, 3) <0 V(1) €U (i, S
(1) <0 V(u2) eUe(,X) {(—h)*(—q,—Q)+Uu5<ﬁ,§)(q»Q)50'

This constraint is computationally tractable for many commonly used constraint functions
because the support function of U, (i, ) is SDP-representable [69].

Lemma 1 (Support function of Z/{E(ﬁ,f])). The support function ofl/{g(ﬁ,fl) coincides
with the optimal value of a tractable SDP, that is, for any ¢ € R™ and Q € S™ we have®

O (3,5 (0, Q) = inf (]T//Z+T+7<<€2—Tr[§]) +Tr[Z]
s.t. yeR,, TeRy, ZeST

VI-Q A3 q
T

AS: Z
Unlike the mean vector yu = E®[¢] and the second-order moment matrix M = ER[¢T],
both of which constitute linear functions of the underlying distribution Q, the covariance
matrix ¥ = M — up " is nonlinear in Q. The condition (u,Y) € U-(ji,%) thus appears to be
nonconvex in Q. To gain a clearer understanding, it is instructive to introduce the uncer-

~ ~

tainty set V. (i1, %) for (i, M) induced by the uncertainty set U.(fi, %) for (u,X), that is,

<7T+7.
2

— )

V(1,5 = {(u,M) ER™ X ST : (i, M — ") eue(ﬁ,i)}.

Maybe surprisingly, even though it is defined as the pre-image of a convex set under a
nonlinear transformation, one can prove that Ve (i, %) is convex. This implies, counterintu-
itively, that the condition (u,>) € U:(f1,X) is actually convex in Q because it is equivalent
to the requirement (u, M) € V-(fi, %) and because the moments (p1, M) are linear in Q.
Thanks to its convexity, the uncertainty set V:(f,>) can again conveniently be used in
classical robust optimization. Indeed, a robust constraint that requires a concave function
h(p, M) to be nonpositive for all (u, M) € Ve(1i,¥) can be reformulated as a simple con-
vex constraint involving the conjugate of —h(u, M) and the support function of Ve(f,X).
This constraint is computationally tractable for many commonly used constraint functions

~

because the support function of V. (fi, X) is SDP-representable [69].

Lemma 2 (Support function of Vs(ﬁ,i)). The support function ofvs(ﬁ,fl) coincides
with the optimal value of a tractable SDP, that is, for any ¢ € R™ and Q € S™, we have

oy, 2.5)(@Q) = inf  y(e2— [[fll3 - Tr[S]) + 2 + Tr 2]
s.t. 76R+,Z€R+,Z€ST

_ s _ naa
WIALQVEZ 0, g qQTw+2 = 0.
X2 Z (ve+1%) z

(16)

A useful ambiguity set in the space of probability distributions is the Gelbrich hull, which
is constructed as the pre-image of U.(fi, %) under the mean-covariance projection.

Definition 2 (Gelbrich hull). The Gelbrich hull is given by
G.(,8) = {Qe P(2) : (BYe), B2( — B2 (6 — B2 T]) € (%) }

3 Updated.
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By definition, G, (i, f)) contains all distributions supported on = whose mean vectors and
covariance matrices fall into the uncertainty set U (11, X). Equivalently, by the definition of
the induced uncertainty set Ve (ji, %), the Gelbrich hull can also be represented as

G=(1.9) = {QePE): (B EeeT]) € V(D)

Thus, the Gelbrich hull can be expressed as the pre-image of the convex set V. (fi, i) under a
linear transformation, which shows that is is actually convex. We emphasize that convexity
is not apparent from Definition 2, which introduces the Gelbrich hull as the pre-image of a
convex set under a monlinear transformation.

If we define P(Z, 4, X) as the Chebyshev ambiguity set that contains all distributions on =
with mean vector p and covariance matrix 3, then the Gelbrich hull can also be expressed as

C-mY= U PEY. (17)

(1 E)EU (1,5

From this representation it is evident that if Ge(ﬁ,i) contains a distribution Q, then it
contains all distributions on = that have the same mean vector and covariance matrix as Q. It
is easy to verify that the Gelbrich hull provides an outer approximation for any Wasserstein
ball B, ,(Pn) with p > 2. Indeed, if B, ,(IPx) contains a distribution @ with mean vector u
and covariance matrix X, then (u,Y) € U (ﬁ,i) by virtue of Proposition 1, which implies
via (17) that Q € G.(f1,X). These insights culminate in the following theorem.

Theorem 13 (Gelbrich hull). If the nominal distribution ]PN has mean vector i € R™
and covariance matriz 3 € ST, then we have B, p(IPN) CG(p, = ) for every p> 2.

Theorem 13 shows that the Gelbrich hull provides an outer approximation for all Wasser-
stein balls B, ,(Py) with p > 2 solely on the basis of mean and covariance information.
Discarding all information about P ~ beyond its first- and second-order moments can be seen
as a compression of the training dataset. This amounts to sacrificing higher-order moment
information and may improve the tractability of the risk evaluation problem (6) and the
distributionally robust decision problem (7). To show this, we define the Gelbrich risk as

R:(a,X,0)= sup R(Q,0) (18)
QEG. (1,5)

and the optimal Gelbrich risk as

ﬁg(ﬁﬁ,c):ggﬁ R(11,5,0). (19)
Theorem 13 immediately implies that the (optimal) Gelbrich risk provides an upper bound
on the (optimal) worst-case risk whenever p > 2.

Corollary 1 (Gelbrich risk). If the nominal distribution Py has mean vector Ji € R™
and covariance matriz ¥ € ST and if p > 2, then

Rep(Pn,O) <R.(1,5,0) Yel  and Rep(Pn,L) <R, L).

The representation (17) of the Gelbrich hull as a union of Chebyshev ambiguity sets
suggests that the Gelbrich risk of any fixed loss function £(£) can be expressed as the optimal
value of the following two-layer optimization problem [69].

Re(f, 5,0 = sup sup  R(Q,¢) (20a)
(WE)EU(B,E)  QEP(EnD)
= sup sup R(Q,2) (20Db)

(1, M)EVe (11,5) QEP(E,p, M—ppT)
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Note that (20b) follows immediately from the definition of the uncertainty set V. (g, f)) and
the formula for the covariance matrix in terms of the mean vector and the second-order
moment matrix. The inner problems in (20a) and (20b) both represent the same distribu-
tionally robust optimization problem over a Chebyshev ambiguity set but with different
parameterizations. This problem can be viewed as an infinite-dimensional linear program
over all probability distributions @ that satisfy the linear equality constraints E®[¢] =y and
EQ[£¢T) = M. Therefore, the optimal value of the inner maximization problem is concave
in the right hand side parameters pu and M but generally nonconcave in the alternative
parameters p and 3. The outer problem in (20a) hedges against ambiguity in the mean
vector and the covariance matrix, while the one in (20b) hedges against ambiguity in the
first- and second-order moments. The formulation (20a) is conceptually appealing because
of its connection to the Wasserstein distance and because it is more natural to characterize
a distribution in terms of its mean vector and covariance matrix. The formulation (20b), on
the other hand, is computationally attractive because it expresses the outer problem as a
convex program that maximizes a manifestly concave function over the convex set V. (i, i)

Remark 4 (Second layer of robustness). Distributionally robust optimization prob-
lems akin to (20a) and (20b) that accommodate a second layer of robustness to account for
moment ambiguity have been investigated in [28, 41, 46, 67, 92, 118], among others. As the
optimal value of the inner maximization problem is always concave in (i, M) but typically
nonconcave in (u, ), moment ambiguity has mostly been modeled through convex uncer-
tainty sets for (u, M), thereby ensuring convexity of the outer maximization problem. For
example, uncertainty sets that force u to lie in an ellipsoid and M in the intersection of two
positive semi-definite cones were studied in [28], while box-type uncertainty sets for (u, M)
were proposed in [67] and refined in [46, 118]. Convex uncertainty sets for (i, %) were shown
to render the outer maximization problems convex only in special cases, e.g., when evalu-
ating a worst-case value-at-risk of a linear or quadratic loss function [41, 92]. The convex
uncertainty set U (1, %) for (u,X) is remarkable because it leads to a second-layer maxi-
mization problem in (20a) that admits a convex reformulation for all loss functions £(§). O

The decomposition (20b) of the Gelbrich risk evaluation problem into two consecutive
maximization problems offers a systematic approach to derive convex reformulations for (18).
A tractable SDP reformulation is available, for example, when the loss function £(¢) is a
pointwise maximum of finitely many (possibly indefinite) quadratic functions.

Theorem 14 (Piecewise quadratic loss I). Assume that Z=R" and ¢ >0 and that
0(¢) = max;e 1 {€T Q& + Zq;'—g—l—q?} with Q; € S™, q; e R™, and q;-) €R for any j € [J] is
a piecewise quadratic loss function. If i € R™ and & € ST, then the Gelbrich risk (18) is
equal to the optimal value of a tractable SDP, that is,

~

Re(,,0) = inf yo+ (&2 = |ll} ~ TH[E]) + 2+ Tr [2]

s.t.yeERy, »poeR, yeR™, Y S, zcR,, Z€8ST

=1
_ i _ 3 21
ll {Terw -0, ’YIALYVZ"’ - 0 (21)
y' ' oz S Z
Y -Q); y—qgl .
=0 Vjel|J].
L/T—quo—q? ]

In order to construct an extremal distribution for the Gelbrich risk evaluation prob-
lem (18), it is again expedient to derive the dual of the SDP (21).
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Theorem 15 (Piecewise quadratic loss II). If all conditions of Theorem 14 hold,
then we have

R.(1i, 5, ¢) = max ZTr Q;9; —|—2qj 0, —l—qjozj

Jj=1
s.t. peR™ XeST, o eRy, 0, €eR™, 0; €ST Vje[J]
CF 22
27 =0 Vel 2
93‘ Oéj

J

J J
Sai=1 3 0=p > 0;=S+uu, (%) €U(,S).
j=1 j=1 j=1

Note that problem (22) has a continuous objective function as well as a compact feasible
set and is therefore solvable. Any optimal solution (u*, %%, {a},07,07};) can in principle be
used to construct an extremal distribution Q* that attains the supremum in the Gelbrich

risk evaluation problem (18).* Define the index sets
vi={j€elJ]:a; >0} and v, ={j€lJ]:a]=0, O] #0}.

If voo =0, it is easy to show that a mixture of Gaussian distributions is optimal in (18).
Specifically, define the distribution Q; = (9* /a}, 05 /aj) for every j € vy. We next show
that the mixture distribution Q* = Z jev, @) Q* is optlmal in (18). By construction, Q*
has mean vector u* and covariance matrix E* Thus, we may conclude that Q* € G (i1, Z)
Furthermore, the definition of Q* as a mixture distribution and the definition of ¢ as a
pointwise maximum of quadratic component functions implies that

EQ[0&)] > Y c,, d BY[ETQi€+2) § 400 =3 010 Tr [Q;0F] + 24 05 + ¢Op3.

Specifically, the inequality holds because £(§) > ¢ Tng + 2q;'—§ + q? for every j € [J], and the
equality holds because v, = and 0% = 0 whenever o = 0. This ensures that Q* solves the
worst-case expectation problem (18). If ¥°° # (), one can also show that the distributions

* _M PP
Qu=" Y () N(;/a;(n),0}/a;(n)) with %(n)—{aﬂ' (1-1) ijen
JEVL Ur }L if j €Eve

are feasible and asymptotically optimal in (6) as n > |vs| tends to infinity.

While exactly computable in polynomial time, the Gelbrich risk of a piecewise quadratic
loss function may only provide a loose upper bound on the worst-case risk under the Wasser-
stein ambiguity set, which is often the actual quantity of interest. One can prove, however,
that the Gelbrich risk (18) coincides with the worst-case risk (6) with respect to a type-2
Wasserstein ball if the loss function is quadratic and the nominal distribution is elliptical.

Theorem 16 (Indefinite quadratic loss I). Assume that == R™ and that ((§) =
£TQE+2¢"¢ with Q €S™ and g € R™ is a quadratic loss function. If i € R™ and ¥ € ST,
then the Gelbrich risk (18) is equal to the optimal value of a tractable SDP, that is,

Re(f5,0) = inf (2= |3~ Tx[S]) + 2+ T [2]
s.t.yeERy, z€Ry, Z€8ST

vl Q g+ 0, 7 - Q722
q"+ypt oz S Z

(23)

4 Updated.
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Moreover, if Py = Sg(ﬁ,i) is an elliptical distribution with mean vector i and covariance
matric X, p=2 and ||-|| = |- |2 is the Euclidean norm on R™, then the worst-case risk (6),

the Gelbrich risk (18) and the optimal value of the SDP (23) are all equal.

The SDP (23) is easily obtained from (21) by setting J =1 and noting that Y =Q1, y=q1
and yo = 0 at optimality. As usual, a discrete extremal distribution Q* for the Gelbrich risk
evaluation problem (18) can be derived from the dual of the SDP (23). In the following
we denote the mean vector and the covariance matrix of Q* by p* and X, respectively.
As Q* € G.(,X), and as the Gelbrich hull is constructed solely on the basis of first- and
second-order moment information, any distribution with mean vector * and covariance
matrix X* belongs to G (i, X2), too. Moreover, as £(£) is quadratic, the risk R(Q*, ) depends
on Q* only through its first- and second-order moments. This implies that any distribution
with mean vector p* and covariance matrix 3* is optimal in (18).

Consider now the problem of evaluating the worst-case risk (6) of the quadratic loss
ﬁmction e(gl over a type-2 Wasserstein ball centered at an elliptical nominal distribution
Py =&4(1i,X). Theorem 4 ensures that all elliptical distributions in the Gelbrich hull with
the same density generator as Py belong to the Wasserstein ball B, o (I?’ ~)- This implies
that the special elliptical distribution Q* = &,(u*,¥*) is feasible in (6). Moreover, we have

R-(7,5,0) = R(Q*,0) < Re p(Py, ) <R.(1, 5, 0),

where the equality holds because Q* is optimal in the Gelbrich risk evaluation problem (18),
while the two inequalities follow from the feasibility of Q* in the worst-case risk evaluation
problem (6) and Corollary 1, respectively. Thus, all inequalities in the above expression are
exact, which implies that Q* is actually optimal in (6).

Next, we show how Q* can be constructed from the optimality conditions of the SDP (23).

__ Theorem 17 (Indefinite quadratic loss II). If all conditions of Theorem 16 hold,
3 >0 and there exists v* > 0 with v*I > @ that solves the nonlinear algebraic equation

7= (7T = Q) a+ @3 + T [S (T =21 = @) 71)*| =<2, (24)

then the Gelbrich risk (18) is attained by any distribution with mean vector

w=0"1-Q) (vh+a) (25a)

and covariance matric
S =)= QTS0 - Q) (25b)
Moreover, if Py = Eq (1, i) is elliptical, p=2 and || - || = - ||2 s the Euclidean norm, then

the elliptical distribution Q* = E,(n*,X*) attains the worst-case risk in (6).

~

One can show that if @ > 0, then v* exists and ¥* = Apin(X)I. To give an intuition for
Theorem 17, note that the SDP (23) can be converted to an equivalent nonlinear program
(NLP) in the single decision variable v by using Schur complements to show that

2= (q+70) (W[ - Q) Hg+7A) and Z=~285(y]-Q)7'E?

at optimality. The resulting NLP minimizes a strictly convex objective function that
explodes as v drops to Amax(Q) or as v tends to infinity. Equation (24) represents its first-
order optimality condition, whose unique solution v* can be computed efficiently to any
precision via bisection or the Newton-Raphson method. Using (24), one can then show that
any distribution with mean vector p* and covariance matrix ¥* as defined in (25a) and (25b),
respectively, is indeed feasible and optimal in (18).



22 Wasserstein Distributionally Robust Optimization

It is instructive to contrast Theorem 16 with Theorem 11, both of which provide exact
tractable SDP reformulations for the problem of evaluating the worst-case risk of a quadratic
loss function with respect to a type-2 Wasserstein ball. We highlight that the SDP (23)
derived in Theorem 16 for elliptical nominal distributions accommodates only two linear
matrix inequalities, while the SDP (14) derived in Theorem 11 for empirical nominal distri-
butions involves N linear matrix inequalities and may thus be considerably harder to solve.

3. Performance Guarantees

We now argue that for judiciously calibrated Wasserstein ambiguity sets, the worst-case
risk (6) associated with a finite sample size N provides an upper confidence bound on the
true risk (1) for all admissible loss functions (finite sample guarantee) and that the worst-case
optimal risk (7) converges almost surely to the true optimal risk (2) as N tends to infinity
(asymptotic guarantee). Intuitively, the finite sample guarantee ensures that the out-of-
sample risk will fall short of the worst-case risk with high confidence when we implement an
optimizer of the distributionally robust decision probelm (7), while the asymptotic guarantee
formalizes the simple intuition that more data enables us to make better decisions.
Concentration inequalities for the nominal distribution P and its moments can be used
to derive finite sample and asymptotic guarantees. If Py is the empirical distribution, for
instance, one can prove that Py converges exponentially fast to the data-generating distri-
bution IP, in probability with respect to the Wasserstein distance, as IV tends to infinity.

Theorem 18 (Concentration inequalities I). Suppose that IAPN is the empirical dis-
tribution, while p # m/2, and the unknown true distribution P is light-tailed in the sense that
there exist o> p and A > 0 such that EF [exp(||¢]|*)] < A. Then, there are constants c1,ca >0
that depend on P only through o, A, and m such that for any n€ (0,1] the concentration
inequality PN[P € B, ,(Pxn)] > 1—1n holds whenever ¢ exceeds®

(bg(q/n))mi““/m*”?} v > lostea/n)

C2N Co
enln) = e (26)
log(c1/n) . log(c1/n)
<62N > if N< 702 .

Theorem 18 generalizes [61, Theorem 3.5] to arbitrary p > 1 and is a direct consequence
of [35, Theorem 2]. The result remains valid for p = m/2 but with a more complicated
formula for £ (n) [35, Theorem 2]. Intuitively, Theorem 18 asserts that any Wasserstein ball
B. ,(Px) with radius € > en(n) represents a (1 —n)-confidence set for the unknown data-
generating distribution P. For dimensions m > 2, the critical radius e (n) of this confidence
set decays as O(N ’%). To reduce the critical radius by 50%, the sample size must increase
by 2™. Unfortunately, this curse of dimensionality is fundamental, and the decay rate of
en(n) is essentially optimal; see [35, § 1.3] or [111].

The concentration inequality portrayed in Theorem 18 gives rise to the following finite
sample guarantees [61, Theorem 3.5].

Theorem 19 (Finite sample guarantees I). Assume that all conditions of Theo-
rem 18 hold and en(n) is defined as in (26). Then, for alln€ (0,1) and £ > en(n) we have

IPN{R(IP,E) <R, (Py,0) Ve c} >1-1. (272)

Moreover, if £* is an optimizer of the distributionally robust decision problem (7), which is
a function of the training samples, then for all n € (0,1) and € > en(n) we have

IPN{R(JP, ") < RW(IAPN,E*)} >1-1. (27b)

5 Updated.
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Theorem (19) asserts that the worst-case risk (6) provides an upper confidence bound on
the true risk (1) under the unknown data-generating distribution uniformly across all loss
functions ¢ € L. Moreover, it also asserts that the optimal value of the distributionally robust
decision problem (7) (i.e., the worst-case optimal risk) provides an upper confidence bound
on the out-of-sample performance of its optimizers. Note that the probabilities in (27a)
and (27b) are evaluated under the distribution PV of the N independent training samples.

Remark 5 (Improved finite sample guarantees). Requiring the Wasserstein ball to
cover P with high confidence is only a sufficient but not a necessary condition for the finite
sample guarantees (27a) and (27b). Indeed, these guarantees can be sustained even if the
Wasserstein radius is reduced below ey (n), which is essentially the smallest radius for which
the Wasserstein ball represents a (1 — n)-confidence set for P. The minimal Wasserstein
radius that preserves the finite sample guarantees (27a) and (27b) often decays significantly
faster than O(N ’%) without suffering from a curse of dimensionality. If p =1, the data-
generating distribution is absolutely continuous with respect to the Lebesgue measure and
the set £ of admissible loss functions admits a smooth parameterization, for example, one
can show that a Wasserstein radius of the order O(y/logm/N) maintains finite sample
guarantees akin to (27a) and (27b), which is consistent with recent findings in the compressed
sensing and high-dimensional statistics literature [10, Theorem 1]. O

As the number N of training samples grows, one can simultaneously reduce the Wasser-
stein radius € and the significance level n without sacrificing the finite sample guaran-
tees (27a) and (27b), which allows us to prove asymptotic consistency [61, Theorem 3.6].

Theorem 20 (Asymptotic consistency I). Assume that all conditions of Theorem 18
hold. Select ny € (0,1] and set ex =en(nn) as in (26), N €N, such that > x_; N < 0
and limy oo ex = 0.9 If there exists C >0 with [((€)] < C(1+ ||€||[P) for all L€ L and £ € E,
then we have P> -almost surely that Rey »(Pn, L) L R(P, L) as N tends to infinity.

Next, we describe a concentration inequality for the sample mean and the sample covari-
ance matrix that has ramifications for the Gelbrich risk minimization problem (19).

Theorem 21 (Concentration inequalities II). Suppose that the unknown true distri-
bution P has mean vector p and covariance matrix 3 and that there are a > 2 and A >0
such that EF [exp(||¢]|3)] < A. Then, there is ¢ > 1 that depends on P only through p, ¥, a,
A, and m such that for any n € (0,1] the sample mean E and the sample covariance matriz X
satisfy the concentration inequality PN [(u, %) € U (i, ¥)] > 1 —n whenever ¢ exceeds

() = 2B (29)

N

Theorem 21 asserts that the uncertainty set Ms(ﬁ,i) with radius € > en(n) represents
a (1 —n)-confidence set for the mean vector and covariance matrix of the unknown data-
generating distribution PP. The critical radius £y (1)) of this confidence set decays as O(N~2)
and is therefore—unlike the critical radius (26)—not subject to a curse of dimensionality.

Theorem 21 strengthens [86, Theorem 2.3, which leverages a generalized central limit
theorem to show that the type-2 Wasserstein distance between two normal distributions
with true and empirical moments, respectively, decays asymptotically as O(N *%). A gener-
alization of this result to elliptical distributions is discussed in [86, Remark 2.4].

Theorem 22 (Finite sample guarantees II). Assume that all conditions of Theo-
rem 21 hold and en(n) is defined as in (28). Then, for alln€ (0,1) and € > en(n) we have

PN{R(]P,e) <R.(1,5,0) Weﬁ} >1-1. (29a)

6 A possible choice is 7y = exp(—v/N).
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Moreover, if £* is an optimizer of the Gelbrich risk optimization problem (19), which is a
function of the training samples, then for all n € (0,1) and € > en(n) we have

IPN{R(IP,K*) gﬁg(ﬁ,i,m} >1-1. (29b)

Theorem 22 asserts that the Gelbrich risk (18) offers an upper confidence bound on the
true risk (1) under the unknown data-generating distribution uniformly across all loss func-
tions. It also asserts that the optimal value of the Gelbrich risk optimization problem (19)
provides an upper confidence bound on the out-of-sample performance of its optimizers.

Asymptotic consistency of the Gelbrich risk optimization problem can only be established
if the unknown true distribution is elliptical, Z = R™ and all admissible loss functions are
quadratic. By Theorem 16, these conditions imply that the Gelbrich risk optimization prob-
lem (19) is equivalent to the Wasserstein distributionally robust optimization problem (7)
equipped with a type-2 Wasserstein ball centered at an elliptical nominal distribution, where
the Wasserstein distance is induced by the Euclidean norm.

Theorem 23 (Asymptotic consistency II). Assume that all conditions of Theo-
rem 21 hold. Select ny € (0,1] and set ey =en(nn) asin (28), N €N, such that > ny_; v <
o0 and imy o0 en = 0. If P is an elliptical distribution, E=R™ and £(§) is quadratic for all
(€ L, then we have P*°-almost surely that R (11,2, L) L R(P,L) as N tends to infinity.

4. Distributionally Robust Optimization in Machine Learning

We now demonstrate that the theory of data-driven distributionally robust optimization
with Wasserstein ambiguity sets has interesting ramifications for statistical learning and
motivates new approaches for addressing fundamental learning tasks such as classification
(Section 4.1), regression (Section 4.2), maximum likelihood estimation (Section 4.3) or min-
imum mean square error estimation (Section 4.4). We conclude with an overview of other
applications of distributionally robust optimization in machine learning (Section 4.5).

4.1. Distributionally Robust Classification

In binary classification problems the central object of study is a random vector £ = (z,y),
where x € R™ is termed the input, and y € {—1,+41} is referred to as the output. The distri-
bution P of £ is unknown but indirectly observable through finitely many training samples
& = (Z4,79:), i € [N]. The goal of binary classification is to predict the output y correspond-
ing to a given input z. The classifier with the lowest possible misclassification probability
is the one that predicts y =1 if Ply =1|x] > 0.5 and y = —1 otherwise. Unfortunately, this
classifier is not implementable when P is unknown.

Statistical learning aims to construct classifiers solely on the basis of the training data.
One of the most popular approaches in practice is to construct a linear scoring functionw 'z,
encoded by a weight vector w € R™, and to predict y as the sign of w " z. In hindsight, the
prediction was correct if the actual output y coincides with the predicted output sign(w ' z)
or, equivalently, if the product y-w 'z is positive. The realized prediction error can thus be
quantified by L(y-w '), where L(z) is some nonnegative and non-increasing univariate loss
function that is large for negative and small for positive values of z. Examples of popular
loss functions are listed in Table 1. The best scoring function for a given choice of L(z)
is the one whose weight vector w minimizes the expected prediction error EF[L(y - w'z)].
Unfortunately, the expectation is evaluated under the unknown distribution P, and thus the
optimal scoring function cannot be computed. Promising near-optimal scoring functions can
be found, however, by solving a distributionally robust classification model that minimizes
the worst-case expected prediction error with respect to a type-1 Wasserstein ball, that is,

; X Q cw T
wlgﬂgn sup B [Ly-w'z)], (30)
Q€B.,1(Pn)
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where P ~ is the empirical distribution on the training samples. We assume here that all
distributions in the Wasserstein ball are supported on == X x Y, where X C R" is convex and
closed, while Y ={—1,+1}. We also assume that the norm on the input-output space used
in the definition of the Wasserstein distance is additively separable, that is, ||£]| = ||z]| + &yl
where—by slight abuse of notation—||z|| stands for an arbitrary norm on the input space,
while x > 0 quantifies the relative importance of outputs versus inputs.

TABLE 1. Commonly used loss functions for binary classification.

name L(2) learning model

hinge loss max{0,1—z} support vector machine
% —z if 2<0

smooth hinge loss % (1- 2)2 ifo<z<1 smooth support vector machine
0 if z>1

logloss log(1+ exp(—=z)) logistic regression

The classification model (30) is easily recognized as an instance of the distributionally
robust decision problem (7) that optimizes over all (multivariate) loss functions of the form
0(&) = L(y-w " z) parameterized by w € R™. By leveraging Theorem 8, problem (30) can be
recast as a finite convex program if L(z) is convex and piecewise linear, while X is convex
and closed. An alternative convex reformulation can be obtained from Theorem 10 if L(z) is
convex (but not necessarily piecewise linear), while X = R™. For all univariate loss functions
listed in Table 1, the convex reformulations of problem (30) are equivalent to tractable conic
programs. Explicit formulations of these conic programs are reported in [97, § 3.2].

The distributionally robust classification problem (30) encapsulates two interesting special
cases. First, if the Wasserstein radius is set to e =0, then (30) collapses to the standard
empirical risk minimization problem that minimizes the average prediction error across the
training samples. Moreover, if the parameter x appearing in the definition of the norm tends
to infinity, then (30) reduces to a classical regularized empirical risk minimization problem.

Proposition 2 (Regularization by robustification). If L(z) is any of the loss func-
tions of Table 1, X=R" and k = 00, then problem (30) is equivalent to

N
o Jb;L@ cw'Z;) +e- fJwl..

Recall that the norm [|£]| = [|z|| + §|y| on the input-output space encodes the transporta-
tion cost in the definition of the Wasserstein distance. Thus, x can be viewed as the cost
of switching an output from +1 to —1 or vice versa. If kK = oo, then all distributions in
the Wasserstein ball are obtained by perturbing the empirical distribution along the input
space because perturbations along the output space would be infinitely expensive. By setting
K = 00, one thus postulates that there is only input uncertainty but no output uncertainty.

Proposition 2 gives commonly used regularization techniques a robustness interpretation,
which applies under the premise that there is no output uncertainty. It identifies the reg-
ularization weight with the Wasserstein radius € and the regularization function with the
dual of the norm that determines the transportation cost along the input space.

Proposition 2 can be deduced from Theorem 8 by observing that the Lipschitz modulus of
the multivariate loss function £(¢) = L(y-w " z) is given by Lip(L)- ||w||« and that Lip(L) =1
for all univariate loss functions of Table 1. Distributionally robust classification models
with Wasserstein ambiguity sets were first studied in the context of logistic regression [98].
Extensions to other classification models are discussed in [10, 36, 97].
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4.2. Distributionally Robust Regression

The goal of regression is a to predict a real (as opposed to a categorical) output y € R
corresponding to a given input x € R™. The regressor that attains the lowest possible mean
squared error is the one that predicts the output as EF[y|z]. Unfortunately, this regressor
is not implementable when the distribution IP of the random vector £ = (z,y) is unknown.

In practice it is often convenient to construct a linear regressor that predicts the output by
a linear function w "z encoded by a weight vector w € R™. The realized prediction error can
thus be quantified by L(w'x —y), where L(z) is some nonnegative univariate loss function
that is large when z deviates from 0. Examples of popular loss functions for regression are
listed in Table 2. The best linear regressor that minimizes the expected prediction error
EF[L(w "z —y)] cannot be computed when PP is unknown, but promising near-optimal linear
regressors can be found by solving the distributionally robust regression model

i Q Te_
wlélﬂgn sup I [L(w'z—y)], (31)
QEBE,p(IPN)

which minimizes the worst-case expected prediction error in view of all distributions on a
convex closed set Z=XxY C R” x R within a type-p Wasserstein ball around the empirical
distribution on N training samples. By Theorem 8, problem (31) can be reformulated as
a finite convex program if p =1, L(z) is convex and piecewise linear, and X and Y are
convex and closed. A convex reformulation can also be obtained from Theorem 8 if p=1,
L(z) is convex (but not necessarily piecewise linear), while X =R"™ and Y = R. Moreover,
problem (31) can be reformulated as a finite convex program by using Theorem 11 if p =2,
L(z) is convex quadratic, X =R" and Y =R. For details see [97, § 3.1] and [10, § 3].

TABLE 2. Commonly used loss functions for regression

name L(2) parameter learning model
squared error 22 n/a ordinary least squares
12 .
& if [z| <6 .
2
Huber loss {5(‘2‘ . %5) otherwise deR, Huber regression
d-insensitive loss max{0,|z| — d} Ry support vector regression
pinball loss max{—dz, (1 —9)z} 6 €10,1] quantile regression
Assume now that the norm on the input-output space satisfies ||£[| = ||z| + §|y|, where

lz|| is an arbitrary norm on the input space, while k > 0 quantifies the relative importance
of outputs versus inputs. In the absence of output uncertainty (that is, for K = 00), there is
again an intimate relation between robustification and regularization.

Proposition 3 (Regularization by robustification). Assume that X =R" and xk =
oo. If L(2) is convex and Lipschitz continuous and p=1, then problem (31) is equivalent to

N
. 1 o~ o~ .
o % ; L(w"®; — i) +e - Lip(L) - [w]]...

Moreover, if L(z) is the square error and p =2, then problem (31) reduces to
N

NGB ABET)

i=1

Nl

2
e Juwll.]
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Proposition 3 asserts that if there is no output uncertainty, then the distributionally robust
regression problem (31) reduces to a regularized empirical risk minimization problem, where
the regularization function is given by the dual of the norm on the input space. For Lipschitz
continuous univariate loss functions L(z) and for p = 1, one simply minimizes the sum of the
empirical risk and the regularization term weighted by the product of Wasserstein radius and
the Lipschitz modulus of L(z). Note that the Huber loss, the d-insensitive loss and the pinball
loss are all Lipschitz continuous with Lipschitz moduli §, 1 and max{d,1 — 0}, respectively.
For the squared loss we need to set p =2 because the type-2 Wasserstein ball is the largest
Wasserstein ball for which the worst-case expected loss is finite. In this case, one minimizes
a combination of the square root of the empirical loss and the regularization term. If one
measures distances in the input space using the co-norm, then this convex program reduces
to the so-called generalized LASSO (Least Absolute Shrinkage and Selection Operator)
estimation problem. For further details on distributionally robust regression see [10, 36, 97].

4.3. Distributionally Robust Maximum Likelihood Estimation

Consider now the problem of estimating the mean vector u € R™ and the covariance matrix
¥ € ST of a random vector £ € R™ from independent training samples &;, i € [N]. The
simplest estimators for 4 and ¥ are the sample mean 1 and the sample covariance matriz i,
which we define as the actual mean and covariance matrix of the empirical distribution, i.e.,

JRREARPY o I\~ -
/A‘:NZ& and ZZNZ(Si—ﬁ)(&—ﬁ)T-
i=1 i=1

While ¥ serves as an input for many problems in engineering, science or economics, it is often
the precision matrix X! that appears in their solutions. For example, in mean-variance
portfolio analysis the portfolio variance to be minimized depends on the covariance matrix
of the asset returns, while the optimal portfolio weights depend on the precision matrix.
Similarly, linear discriminant analysis uses the covariance matrix of the features as an input
and outputs a maximum likelihood classifier that depends on the precision matrix. Moreover,
the optimal fingerprint method for climate change detection requires the covariance matrix
of the internal climate variability as an input and outputs a climate change signal depending
on the precision matrix. Thus, it is often more important to know the precision matrix than
the covariance matrix. To ensure that the precision matrix is well defined, we will henceforth
assume that 3 > 0. Unfortunately, the sample covariance matrix is rank-deficient in the
big-data regime when the dimension of £ exceeds the sample size (m > N) even if ¥ has full
rank. In this case, one cannot invert % to obtain a meaningful precision matrix estimator.
From now on we will assume that the unknown true distribution P of £ is normal. Thus,
the problem of maximizing the log-likelihood of the training samples reduces to the following
convex program over all candidate mean vectors p and precision matrices X [14, § 7.1].

N
: Ien 1o~
ueR%fl;fcesz {logdetX+ N > (G- X(& #)} (32)

=1

Unfortunately, this maximum likelihood estimation (MLE) problem is unbounded for N <m
and (almost surely) solved by p* =i and X* =X ~! for N >m. Thus, we fail again to find
an estimator in the big-data regime and simply recover the sample mean and the sample
covariance matrix in the small-data regime. To overcome this deficiency, we robustify the
MLE problem against all distributions within a type-2 Wasserstein ball centered at the
normal nominal distribution Py = N (f1,X), that is, we solve the robust MLE problem

inf —logdet X+ sup EQ[((—p)TX(E—p)] . (33)
peR™, X s { QCB. »(Bx)
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If £ =0, then the robust MLE problem (33) reduces to the nominal MLE problem (32)
because—by the definition of the sample mean and the sample covariance matrix—the
(normal) nominal distribution has the same first- and second-order moments as the (discrete)
empirical distribution and because the loss function in the expectation is quadratic in £. One
can show via Theorem 16 that (33) is equivalent to a convex SDP with a determinant term in
the objective function. Provided that the Wasserstein radius ¢ is strictly positive, this SDP
is solvable even in the big-data regime when m > N. Thus, it yields a valid precision matrix
estimator even if the sample covariance matrix is rank-deficient. Moreover, as SDPs are
tractable, the optimal estimator can be computed in polynomial time. In fact, the SDP at
hand is highly symmetric and can therefore even be solved in closed form [68, Theorem 3.1].

Theorem 24 (Wasserstein shrinkage estimator). If ¢ > 0 and Se ST admits the
spectral decomposition T = Z;’;l i - viv,  with eigenvalues \; > 0 and corresponding
orthonormal eigenvectors v;, i € [m], then the unique minimizer of the robust MLE prob-
lem (33) is given by p* =1 and X*=3"1" x¥ v, where

[

1
si=r [1-3 (Voo )] viep (342)

and ~v* > 0 is the unique positive solution of the algebraic equation

1 m 1 m
2_Z )y — - 2.2 oy —
<€ 5 i:EI )\z>’y m+ 5 ;:1 A/ AFYE 44Ny =0. (34b)

Theorem 24 asserts that the robust MLE estimator u* for the mean vector coincides with the
sample mean /1. More interestingly, it further asserts that the robust MLE estimator X* for
the precision matrix has the same eigenvectors v; as the sample covariance matrix 3, while
its eigenvalues 7} are obtained by applying the nonlinear transformation (34a) to the corre-
sponding eigenvalues \; of . This transformation involves a single unknown parameter v*,
which is the unique positive solution of the algebraic equation (34b). As X™* is obtained
by transforming the eigenvalues of the sample covariance matrix, it can be interpreted as a
nonlinear shrinkage estimator. We thus refer to it as the Wasserstein shrinkage estimator.

As X* and X share the same eigenvectors, X* is rotation-equivariant, that is, the estimator
applied to the rotated data R¢&;, i € [IN], coincides with the rotated estimator RX*R of the
original data for every possible rotation matrix R. Moreover, as all eigenvalues of X* are
strictly positive, the estimator is always invertible. Finally, Theorem 24 indicates that X*
can be computed highly efficiently by computing the spectral decomposition of ¥ and by
solving the scalar algebraic equation (34b), which can be accomplished by bisection.

One can show that the Wasserstein shrinkage estimator displays numerous desirable prop-
erties [68, Proposition 3.5]. First, its eigenvalues z} decrease with £ and eventually converge
to 0. This makes intuitive sense as for large values of € nothing is known about £, and thus
the safest bet is that all of its components have high variance and low precision. Moreover,
one can show that the order of the eigenvalues 27 matches the order of the inverse sample
eigenvalues 1/)\; irrespective of & > 0, which is expected in the absence of any structural
information. Finally, one can show that the condition number of X* decreases monotonically
to 1 as € grows. Thus, the condition number of X* improves with the level of ambiguity.

A statistical theory that shows how to optimally choose ¢ is developed in [13]. Surprisingly,
the Wasserstein radius that attains the lowest possible out-of-sample loss scales as € x 1/N
instead of the canonical inverse square-root scaling, which may be expected for this problem.

So far we have assumed that there is no structural information about the distribution
of ¢ besides normality. In some practical situation, however, the precision matrix X may
have a known sparsity pattern. Indeed, one can show that an element X;; of the precision
matrix vanishes if and only if the random variables §; and ¢; are conditionally independent
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given all other components of . Conditional independencies of this type naturally arise, for
example, in the analysis of spatio-temporal data. In the presence of sparsity information, the
robust MLE problem is still equivalent to a tractable SDP. Even though it loses its analytical
solvability, one can devise a tailored sequential quadratic approximation algorithm with
rigorous convergence guarantees to solve the problem numerically, see [68, § 4].

4.4. Distributionally Robust Minimum Mean Square Error Estimation

Consider next the problem of estimating a signal x € R™= from a noisy observation y € R™v
under the premise that the distribution of the random vector ¢ = [zT,y"]T € R™, m =
Mg -+ my, is ambiguous and only known to belong to a type-2 Wasserstein ball centered at
an elliptical nominal distribution Py= Eq (1, f]) with nominal mean vector i € R™, nominal
covariance matrix ¥ € S and density generator g. This elementary problem is fundamental
for numerous applications in engineering (e.g., linear systems theory [43, 72]), econometrics
(e.g., linear regression [104, 112], time series analysis [19, 45]), machine learning and signal
processing (e.g., Kalman filtering [53, 65, 74]) or information theory (e.g., multiple-input
multiple-output systems [25, 59]), etc. To formalize the estimation problem, we define an
estimator as a measurable function ¢(y) that maps the observation y to a prediction of the
signal z, and we denote by ¥ the family of all possible estimators. Moreover, we define the
distributionally robust minimum mean square error (MMSE) estimator as an optimizer of

inf  sup B2 [lo— o)), (3)
we‘PQGBs,Q(IAPN)

Note that (35) constitutes an infinite-dimensional functional optimization problem and thus
appears to be hard. However, by establishing a minimax theorem for (35) and exploiting
the properties of elliptical distributions, one can show that the outer infimum in (35) is
attained by an affine estimator. Combining this structural insight with Theorem 16 allows
us to prove that the estimation problem (35) is in fact equivalent to a convex program [99)].

Theorem 25 (Distributionally robust MMSE estimator). If g 0, then the esti-
mation problem (35) is equivalent to the nonlinear conver SDP

max  f(S)="Tr [Spw — SuySy; Sya]

Smm Smy
yx Syy

s.t. Sz[ }GST, Sze €ST=, Sy €SV, Spy=S,, ER™ >

(36)
Tr [S+§ —2 (E%SE%) 2} <& S Amin(D)],

which is always solvable. If S*, Sy, Sy, and S}, are optimal in (36), while fi, € R™ and

Ly € R™v are the (known) mean vectors of x and y under I?’N, respectively, then the affine
function *(y) = Sk, (Sg,) " (y — iy) + fa is a distributionally robust MMSE estimator.

It is possible to eliminate all nonlinearities in (36) by using Schur complements and to
reformulate the nonlinear convex SDP as a standard linear SDP, which is formally tractable.
However, larger problem instances quickly exceed the capabilities of general-purpose solvers.
Instead, there is merit in addressing the nonlinear SDP (36) directly with a customized
first-order Frank-Wolfe algorithm, which starts at S(®) =% and constructs iterates

SEFD — 4, D®) 4 (1 — ) S®  VE=0,1,2,...
with stepsize ay, where D) € S™ is the unique solution of the direction-finding subproblem

nax Tr [D Vf(S(k))]
) N (37

} <e?, D> (D)1

Nl
Nl=

s.t. Tr [D+f)—2(i DE%)
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The Frank-Wolfe algorithm is highly efficient because the direction-finding subproblem (37),
which linearizes the objective function f(S) of (36) around the current iterate S*), can be
solved in closed form. Indeed, using Theorem 17 one can show that (37) is solved by

D = (4 (1= V5(89)) " S (1 -V(sW))

where 7* is the unique solution with v*I = V f(S®)) of the algebraic equation
~ 2
Tr [2 (1=~ 1=V (59~ } =¢?,

which can be solved via bisection [99, Theorem 3.2]. For a judiciously chosen step-size rule,
the Frank-Wolfe algorithm also offers rigorous convergence guarantees [99, Theorem 3.3].

Theorem 26 (Convergence analysis). If S - 0, e>0 and oy, = ,%2 for every k €
N, then the k™ iterate S*) of the Frank-Wolfe algorithm is feasible in (36) and satisfies

f(8*) = f(S®) < kLH, where C' depends only on ¥ and e, and S* is a mazimizer of (36).

In some applications one has additional structural information about the relation between
the signal x and the observation y (e.g., the measurement noise may be known to be indepen-
dent of the signal, or the observation may be governed by a linear measurement model, etc.).
Such structural information can be used to restrict the Wasserstein ambiguity set in (35),
thereby reducing the conservativeness of the distributionally robust MMSE estimator [70].

4.5. Other Applications in Machine Learning

Ideas from distributionally robust optimization also permeate several other areas of statistics
and machine learning. For example, a distributionally robust optimization model involving
two Wasserstein balls centered at two distinct empirical distributions can be used to develop
a computationally tractable convex approximation for the minimax robust hypothesis testing
problem that aims to minimize the maximum of the worst-case type-I and type-II errors of a
prescribed hypothesis test [38]. Another example is data-driven inverse optimization, where
one observes random signals as well as optimal solutions of an optimization problem param-
eterized by these signals. The aim is to predict the solution corresponding to a new unseen
signal from N independent historical observations without any knowledge of the optimiza-
tion problem’s objective function. This problem can be framed as a structural regression
problem that minimizes the worst-case expected prediction loss with respect to a Wasser-
stein ambiguity set over a space of candidate objective functions [62]. Data-driven inverse
optimization lends itself, for example, to learning the purchasing behavior of consumers,
the production costs of electricity generators, the route choice preferences of passengers in a
multimodal transportation system or the hidden optimality principles governing a biological
system. As a third example, distributionally robust optimization models with Wasserstein
ambiguity sets can be used to efficiently compute the worst-case misclassification probability
of a given classifier, which amounts to evaluating the worst-case expectation of the (non-
convex) zero-one loss [97, 98]. Using similar techniques, one can also efficiently compute the
worst-case probability of an undesirable event described by the conjunction or disjunction
of several linear inequalities for the random vector & [47, 61]. If the undesirable event can
be influenced so as drive its worst-case probability below a prescribed tolerance, we face a
distributionally robust chance constraint. Even though distributionally robust chance con-
strained programs with Wasserstein ambiguity sets around the empirical distribution are
intractable in general, they are sometimes equivalent to mixed-integer linear programs that
can be solved with off-the-shelf software [20, 114]. In contrast, distributionally robust chance
constrained programs with moment ambiguity sets can often be reformulated as (or tightly
approximated by) tractable conic programs [16, 21, 47, 117].
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To conclude, we highlight two opportunities for tailoring a distributionally robust deci-
sion problem with a Wasserstein ambiguity set around the empirical distribution to a given
training dataset. Recall first that finite sample guarantees hold whenever ¢ is large enough
for the Wasserstein ball to contain the unknown data-generating distribution with high con-
fidence 1 — 3. Recall also that the distributionally robust decision problem can often be
reformulated as a tractable convex program whose size scales with the sample size N. If
the computational burden is unmanageable for the given sample size, we can select K < N,
approximate Py with the closest K-point distribution Q% in Wasserstein distance and
replace the original Wasserstein ball of radius £ around Py with a new inflated Wasserstein
ball of radius € + W,(Py, Q%) around Q},. By construction, the inflated Wasserstein ball
contains the data-generating distribution with the same confidence 1 — 8. But the size of
the corresponding decision problem is only proportional to K. This approach provides a
systematic method for reducing the computational burden without sacrificing robustness
guarantees (but at the expense of increasing the model’s level of conservatism). The approx-
imation of a rich N-point distribution with a sparse K-point distribution is referred to as
scenarto reduction in the stochastic programming literature. While the exact computation
of Qj is hard, there exist efficient approximation algorithms for scenario reduction [93].

An important input for any distributionally robust optimization model with a Wasserstein
ambiguity set is the norm that determines the transportation cost in the definition of the
Wasserstein distance. The flexibility to choose this norm could be exploited to improve
the out-of-sample performance of the model’s optimizers. A method for learning the best
Mahalanobis norm from the training data is described in [11]. It is shown that this metric
learning framework encompasses adaptive reqularization as a special case.
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Appendix
A. Elliptical Distributions
We say that Q = E4(u,X) is an elliptical probability distribution if it has a density function of

the form f(¢) = C'det(Z) ™' g((¢ — w)S 71 (€ — ) with density generator g(u) >0 for all u > 0,
normalization constant C'> 0, mean vector x4 € R™ and covariance matrix ¥ € ST, .

TABLE 3. Examples of elliptical distributions.

distribution family density generator g(u) normalization constant C'
Gaussian distribution — exp(—u/2) (2m)~™/?
R exp(—u) /2 /°° y™2 " exp(—y)
Logistic distribution —_— dy
(1+exp(—u))? I'(m/2) Jo  (1+exp(-y))?
mtv m/21 2
t-distribution (1+u/(v—2)""7 v T((m +v)/2)

72T (1)2) (v — 2)™

Note. v > 2 denotes the degrees of freedom of the t-distribution, and I" is the gamma function.

B. Conjugates, Support Functions and Dual Norms

The conjugate of an extended real-valued function ¢(§) on R™ is a function £*(z) on R™ defined
through £7(2) = sup; 2TE—L(€). If £(¢) is proper, convex and lower semicontinuous, then the con-
jugate of the conjugate coincides with the initial function, that is, £**(£) = £(§) [87, § 12].
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TABLE 4. Examples of conjugates.

() dom(¥) 0 (z) dom(£*)
a"é+b RrR™ Say(z) —b {a}
LETAE+aTE+D R™ Lz—a)TAN(z—a)—b {a} +range(A)
log(1 4+ exp(—¢)) R zlogz+ (1 —z)log(l —2) [0,1]

exp(§) R zlogz —z Ry

Slelr R™ Sl R™

€]l R™ 51 (0) () Bi(0)

Note. Assume that A € ST, a € R™, b€R and p,q > 1 with L1 1 _1 Moreover, denote by

q
B;(0) = {z € R™ :||z||« <1} the standard ball with respect to the dual norm on R™.

The indicator function of a set 2 C R™ is a function 0=(§) on R™ defined through d=(£) =0 if
£ €E and 6=(§) = oo if £ ¢ Z. The support function of 2 C R™ is a function o=(z) on R™ defined
through o=(2) = SUD¢es 2" €. The support function of E coincides with the conjugate of the indicator
function of Z, that is, 6Z(z) = o=(z). If = is convex and closed, then the conjugate of the support
function of E coincides with the indicator function of =, that is, oZ(§) = 0=() [87, § 13].

TABLE 5. Examples of support functions.

= o=(2) dom(oz)

{€: sl <o} bl=|« R™

{e:ce<d} inf{A\Td:\eRY,CT A=z} {CTA:NeRY}
{€: 7(6) <0} if{Af*(2/A): A€ R } — rece(f)"

{£: £€EL VR € K]} inf{>" 5 o=, (21): Son, 2 = 2} — Niejx recc(Ee)”

Note. Assume that b€ Ry, C € R**™ and d € RL. Let £(€) be a closed, proper and convex function,
and let i, k € [K], be convex closed sets with nonempty intersection. Denote by recc(f)* and
recc(Eg)* the cones dual to the recession cones of the function f(£) and the set Zj, respectively.

If || -]| is a norm on R™, then its dual norm || - ||« on R™ is defined through ||z« = sup¢<; 2TE.
The dual norm of the dual norm coincides with the original norm, that is, || - |[.. = || || [87, § 15].

TABLE 6. Examples of dual norms.

€Ml 12|« comment

lI€]» 1z] 4 standard p-norms

1€]12 12| 0o limiting case when p |1 and ¢ 1 oo

alléllp Lzlq scaled p-norms

Il AS | A= 2], scaled p-norms

Zke[K] l1€x Il maxXpe(x] || 2k ||q additively separable norms

Note. Assume that p,q > 1 with %Jr % =1,a>0, AeST,, and pg,qx > 1 with i + i =1 for all

k € [K]. Moreover, & = (£1,...,€k) and z = (21,..., 2K ), where &,z € R™k and Z,i(:l my =m.
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