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Abstract. The linear quadratic regulator (LQR) problem has reemerged as an important theoretical bench-

mark for reinforcement learning-based control of complex dynamical systems with continuous state and

action spaces. In contrast with nearly all recent work in this area, we consider multiplicative noise models,

which are increasingly relevant because they explicitly incorporate inherent uncertainty and variation in the

system dynamics and thereby improve robustness properties of the controller. Robustness is a critical and

poorly understood issue in reinforcement learning; existing methods which do not account for uncertainty

can converge to fragile policies or fail to converge at all. Additionally, intentional injection of multiplicative

noise into learning algorithms can enhance robustness of policies, as observed in ad hoc work on domain

randomization. Although policy gradient algorithms require optimization of a non-convex cost function, we

show that the multiplicative noise LQR cost has a special property called gradient domination, which is

exploited to prove global convergence of policy gradient algorithms to the globally optimum control policy

with polynomial dependence on problem parameters. Results are provided both in the model-known and

model-unknown settings where samples of system trajectories are used to estimate policy gradients.

1. Introduction

Reinforcement learning-based control has recently achieved impressive successes in games [47, 48] and

simulators [41]. But these successes are significantly more challenging to translate to complex physical systems

with continuous state and action spaces, safety constraints, and non-negligible operation and failure costs that

demand data efficiency. An intense and growing research effort is creating a large array of models, algorithms,

and heuristics for approaching the myriad of challenges arising from these systems. To complement a dominant

trend of more computationally focused work, the canonical linear quadratic regulator (LQR) problem in control

theory has reemerged as an important theoretical benchmark for learning-based control [45, 17]. Despite its

long history, there remain fundamental open questions for LQR with unknown models, and a foundational

understanding of learning in LQR problems can give insight into more challenging problems.

Almost all recent work on learning in LQR problems has utilized either deterministic or additive noise

models [45, 17, 19, 12, 20, 1, 35, 51, 2, 53, 38, 54], but here we consider multiplicative noise models. In control

theory, multiplicative noise models have been studied almost as long as their deterministic and additive noise

counterparts [56, 16], although this area is somewhat less developed and far less widely known. We believe the

study of learning in LQR problems with multiplicative noise is important for three reasons. First, this class of

models is much richer than deterministic or additive noise while still allowing exact solutions when models are

known, which makes it a compelling additional benchmark [55, 4, 8]. Second, they explicitly incorporate model

uncertainty and inherent stochasticity, thereby improving robustness properties of the controller. Robustness

is a critical and poorly understood issue in reinforcement learning; existing methods which do not account for

uncertainty can converge to fragile policies or fail to converge at all [4, 34, 9]. Additionally, intentional injection

of multiplicative noise into learning algorithms is known to enhance robustness of policies from ad hoc work
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on domain randomization [49]. Third, in emerging difficult-to-model complex systems where learning-based

control approaches are perhaps most promising, multiplicative noise models are increasingly relevant; examples

include networked systems with noisy communication channels [3, 25], modern power networks with large

penetration of intermittent renewables [15, 40], turbulent fluid flow [37], and neuronal brain networks [13].

1.1. Related literature

Multiplicative noise LQR problems have been studied in control theory since the 1960s [56]. Since then a line

of research parallel to deterministic and additive noise has developed, including basic stability and stabilizability

results [55], semidefinite programming formulations [18, 10, 36], robustness properties [16, 8, 27, 6, 24], and

numerical algorithms [7]. This line of research is less widely known perhaps because much of it studies

continuous time systems, where the heavy machinery required to formalize stochastic differential equations

is a barrier to entry for a broad audience. Multiplicative noise models are well-poised to offer data-driven

model uncertainty representations and enhanced robustness in learning-based control algorithms and complex

dynamical systems and processes. A related line of research which has seen recent activity is on learning

optimal control of Markovian jump linear systems with unknown dynamics and noise distributions [46, 29],

which under certain assumptions form a special case of the multiplicative noise system we analyze in this work.

In contrast to classical work on system identification and adaptive control, which has a strong focus

on asymptotic results, more recent work has focused on non-asymptotic analysis using newly developed

mathematical tools from statistics and machine learning. There remain fundamental open problems for

learning in LQR problems, with several addressed only recently, including non-asymptotic sample complexity

[17, 51], regret bounds [1, 2, 38], and algorithmic convergence [19]. Alternatives to reinforcement learning

include other data-driven model-free optimal control schemes [23, 5] and those leveraging the behavioral

framework [39, 42]. Subspace identification methods offer a model-based generalization to the output feedback

setting [30].

1.2. Our contributions

In §2 we establish the multiplicative noise LQR problem and motivate its study via a connection to robust

stability. We then give several fundamental results for policy gradient algorithms on linear quadratic problems

with multiplicative noise. Our main contributions are as follows, which can be viewed as a generalization of

the recent results of Fazel et al. [19] for deterministic LQR to multiplicative noise LQR:

• In §3 we show that although the multiplicative noise LQR cost is generally non-convex, it has a special

property called gradient domination, which facilitates its optimization (Lemmas 3.1 and 3.3).

• In particular, in §4 the gradient domination property is exploited to prove global convergence of three

policy gradient algorithm variants (namely, exact gradient descent, “natural” gradient descent, and

Gauss-Newton/policy iteration) to the globally optimum control policy with a rate that depends

polynomially on problem parameters (Theorems 4.1, 4.2, and 4.3).

• Furthermore, in §5 we show that a model-free policy gradient algorithm, where the gradient is

estimated from trajectory data (“rollouts”) rather than computed from model parameters, also

converges globally (with high probability) with an appropriate exploration scheme and sufficiently

many samples (polynomial in problem data) (Theorem 5.1).

In comparison with the deterministic dynamics studied by [19], we make the following novel technical

contributions:

• We quantify the increase in computational burden of policy gradient methods due to the presence of

multiplicative noise, which is evident from the bounds developed in Appendices B and C. The noise

acts to reduce the step size and thus convergence rate, and increases the required number of samples

and rollout length in the model-free setting.
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• A covariance dynamics operator FK is established for multiplicative noise systems with a more

complicated form than the deterministic case. This necessitated a more careful treatment and novel

proof by induction and term matching argument in the proof of Lemma B.4.

• Several restrictions on the algorithmic parameters (step size, number of rollouts, rollout length,

exploration radius) which are necessary for convergence are established and treated.

• An important restriction on the support of the multiplicative noise distribution, which is naturally

absent in [19], is established in the model-free setting.

• A matrix Bernstein concentration inequality is stated explicitly and used to give explicit bounds on

the algorithmic parameters in the model-free setting in terms of problem data.

• Discussion and numerical results on the use of backtracking line search is included.

• When the multiplicative variances αi, βj are all zero, the assertions of Theorems 4.1, 4.2, 4.3, 5.1

recover the same step sizes and convergence rates of the deterministic setting reported by [19].

Thus, policy gradient algorithms for the multiplicative noise LQR problem enjoy the same global convergence

properties as deterministic LQR, while significantly enhancing the resulting controller’s robustness to variations

and inherent stochasticity in the system dynamics, as demonstrated by our numerical experiments in §6.

To our best knowledge, the present paper is the first work to consider and obtain global convergence results

using reinforcement learning algorithms for the multiplicative noise LQR problem. Our approach allows the

explicit incorporation of a model uncertainty representation that significantly improves the robustness of the

controller compared to deterministic and additive noise approaches.

2. Optimal Control of Linear Systems with Multiplicative Noise and Quadratic Costs

We consider the infinite-horizon linear quadratic regulator problem with multiplicative noise (LQRm)

minimize
π∈Π

C(π) := E
x0,{δti},{γtj}

∞∑
t=0

(xᵀtQxt + uᵀtRut), (1)

subject to xt+1 = (A+

p∑
i=1

δtiAi)xt + (B +

q∑
j=1

γtjBj)ut,

where xt ∈ Rn is the system state, ut ∈ Rm is the control input, the initial state x0 is distributed according

to P0 with covariance Σ0 := Ex0
[x0x

ᵀ
0 ], Σ0 � 0, and Q � 0 and R � 0. The dynamics are described by a

dynamics matrix A ∈ Rn×n and input matrix B ∈ Rn×m and incorporate multiplicative noise terms modeled

by the i.i.d. (across time), zero-mean, mutually independent scalar random variables δti and γtj , which

have variances αi and βj , respectively. The matrices Ai ∈ Rn×n and Bi ∈ Rn×m specify how each scalar

noise term affects the system dynamics and input matrices. Alternatively, suppose Ā and B̄ are zero-mean

random matrices with a joint covariance structure1 over their entries governed by the covariance matrices

ΣA := E[vec(Ā)vec(Ā)ᵀ] ∈ Rn2×n2

and ΣB := E[vec(B̄)vec(B̄)ᵀ] ∈ Rnm×nm. Then it suffices to take the

variances αi and βj and matrices Ai and Bj as the eigenvalues and (reshaped) eigenvectors of ΣA and ΣB,

respectively, after a projection onto a set of orthogonal real-valued vectors [57]. The goal is to determine a

closed-loop state feedback policy π∗ with ut = π∗(xt) from a set Π of admissible policies which solves the

optimization in (1).

We assume that the problem data A, B, αi, Ai, βj , and Bj permit existence and finiteness of the

optimal value of the problem, in which case the system is called mean-square stabilizable and requires

mean-square stability of the closed-loop system [33, 55]. The system in (1) is called mean-square stable if

limt→∞ Ex0,δ,γ [xtx
ᵀ
t ] = 0 for any given initial covariance Σ0, where for brevity we notate expectation with

respect to the noises E{δti},{γtj} as Eδ,γ . Mean-square stability is a form of robust stability, implying stability

of the mean (i.e. limt→∞ Ext = 0 ∀ x0) as well as almost-sure stability (i.e. limt→∞ xt = 0 almost surely) [55].

1We assume Ā and B̄ are independent for simplicity, but it is straightforward to include correlations between the entries of Ā and

B̄ into the model.
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Mean-square stability requires stricter and more complicated conditions than stabilizability of the nominal

system (A,B) [55], which are discussed in the sequel. This essentially can limit the size of the multiplicative

noise covariance [4], which can be viewed as a representation of uncertainty in the nominal system model or as

inherent variation in the system dynamics.

2.1. Control Design with Known Models: Value Iteration

Dynamic programming can be used to show that the optimal policy π∗ is linear state feedback ut = π∗(xt) =

K∗xt, where K∗ ∈ Rm×n denotes the optimal gain matrix. When the control policy is linear state feedback

ut = π(xt) = Kxt, with a very slight abuse of notation the cost becomes

C(K) = Ex0,{δti},{γtj}

∞∑
t=0

xᵀt (Q+KᵀRK)xt

Dynamic programming further shows that the resulting optimal cost is quadratic in the initial state, i.e.

C(K∗) = Ex0
xᵀ0Px0 = Tr(PΣ0), where P ∈ Rn×n is a symmetric positive definite matrix [9]. Note that the

optimal controller does not need to directly observe the noise variables δti, γtj . When the model parameters

are known, there are several ways to compute the optimal feedback gains and corresponding optimal cost.

The optimal cost is given by the solution of the generalized algebraic Riccati equation (GARE)

P = Q+AᵀPA+

p∑
i=1

αiA
ᵀ
i PAi −A

ᵀPB(R+BᵀPB +

q∑
j=1

βjB
ᵀ
j PBj)

−1BᵀPA. (2)

This is a special case of the GARE for optimal static output feedback given in [8] and can be solved via the

value iteration

Pk+1 = Q+AᵀPkA+

p∑
i=1

αiA
ᵀ
i PkAi −A

ᵀPkB(R+BᵀPkB +

q∑
j=1

βjB
ᵀ
j PkBj)

−1BᵀPkA,

with P0 = Q, or via semidefinite programming formulations [10, 18, 36], or via more exotic iterations based on

the Smith method and Krylov subspaces [22, 28]. The associated optimal gain matrix is

K∗ = −
(
R+BᵀPB +

q∑
j=1

βjB
ᵀ
j PBj

)−1

BᵀPA.

It was verified in [55] that existence of a positive definite solution to the GARE (2) is equivalent to mean-square

stabilizability of the system, which depends on the problem data A, B, αi, Ai, βj , and Bj ; in particular,

mean-square stability generally imposes upper bounds on the variances αi and βj [4], but may be infinite

depending on the structure of A, B, Ai, and Bj [55]. At a minimum, uniqueness and existence of a solution to

the GARE (2) requires the standard conditions for uniqueness and existence of a solution to the standard

ARE, namely of (A,B) stabilizable and (A,Q1/2) detectable.

Although (approximate) value iteration can be implemented using sample trajectory data, policy gradient

methods have been shown to be more effective for approximately optimal control of high-dimensional stochastic

nonlinear systems e.g. those arising in robotics [43]. This motivates our following analysis of the simpler case

of stochastic linear systems wherein we show that policy gradient indeed facilitates a data-driven approach for

learning optimal and robust policies.

2.2. Control Design with Known Models: Policy Gradient

Consider a fixed linear state feedback policy ut = Kxt. Defining the stochastic system matrices

Ã = A+

p∑
i=1

δtiAi,
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B̃ = B +

q∑
j=1

γtjBj ,

the deterministic nominal and stochastic closed-loop system matrices

AK = A+BK, ÃK = Ã+ B̃K,

and the closed-loop state-cost matrix

QK = Q+KᵀRK,

the closed-loop dynamics become

xt+1 = ÃKxt =

(
(A+

p∑
i=1

δtiAi) + (B +

q∑
j=1

γtjBj)K

)
xt.

A gain K is mean-square stabilizing if the closed-loop system is mean-square stable. Denote the set of

mean-square stabilizing K as K. If K ∈ K, then the cost can be written as

C(K) = Ex0x
ᵀ
0PKx0 = Tr(PKΣ0),

where PK is the unique positive semidefinite solution to the generalized Lyapunov equation

PK = QK +Aᵀ
KPKAK +

p∑
i=1

αiA
ᵀ
i PKAi +

q∑
j=1

βjK
ᵀBᵀ

j PKBjK. (3)

We define the state covariance matrices and the infinite-horizon aggregate state covariance matrix as

Σt := Ex0,δ,γ [xtx
ᵀ
t ], ΣK :=

∞∑
t=0

Σt.

If K ∈ K then ΣK also satisfies a dual generalized Lyapunov equation

ΣK = Σ0 +AKΣKA
ᵀ
K +

p∑
i=1

αiAiΣKA
ᵀ
i +

q∑
j=1

βjBjKΣKK
ᵀBᵀ

j . (4)

Vectorization and Kronecker products can be used to convert (3) and (4) into systems of linear equations.

Alternatively, iterative methods have been suggested for their solution [22, 28]. The state covariance dynamics

are captured by two closed-loop finite-dimensional linear operators which operate on a symmetric matrix X:

TK(X) := E
δ,γ

∞∑
t=0

ÃtKXÃ
ᵀt

K ,

FK(X) := E
δ,γ
ÃKXÃ

ᵀ
K = AKXA

ᵀ
K +

p∑
i=1

αiAiXA
ᵀ
i +

q∑
j=1

βjBjKX(BjK)ᵀ.

Thus FK (without an argument) is a linear operator whose matrix representation is

FK := AK ⊗AK +

p∑
i=1

αiAi ⊗Ai +

q∑
j=1

βj(BjK)⊗ (BjK).

The Σt evolve according to the dynamics

Σt+1 = FK(Σt) ⇔ vec(Σt+1) = FK vec(Σt)

We define the t-stage of FK(X) as

F tK(X) := FK(F t−1
K (X)) with F0

K(X) = X,

which gives the natural characterization

TK(X) =

∞∑
t=0

F tK(X),
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and in particular

ΣK = TK(Σ0) =

∞∑
t=0

F tK(Σ0). (5)

We then have the following lemma:

Lemma 2.1 (Mean-square stability). A gain K is mean-square stabilizing if and only if the spectral radius

ρ(FK) < 1.

Proof. Mean-square stability implies lim
t→∞

E[xtx
ᵀ
t ] = 0, which for linear systems occurs only when ΣK is finite,

which by (5) is equivalent to ρ(FK) < 1. �

Recalling the definition of C(K) and (4), along with the basic observation that K /∈ K induces infinite cost,

gives the following characterization of the cost:

C(K) =

{
Tr(QKΣK) = Tr(PKΣ0) if K ∈ K
∞ otherwise.

The evident fact that C(K) is expressed as a closed-form function, up to a Lyapunov equation, of K leads to

the idea of performing gradient descent on C(K) (i.e., policy gradient) via the update K ← K − η∇C(K)

to find the optimal gain matrix. However, two properties of the LQR cost function C(K) complicate a

convergence analysis of gradient descent. First, C(K) is extended valued since not all gain matrices provide

closed-loop mean-square stability, so it does not have (global) Lipschitz gradients. Second, and even more

concerning, C(K) is generally non-convex in K (even for deterministic LQR problems, as observed by Fazel et

al. [19]), so it is unclear if and when gradient descent converges to the global optimum, or if it even converges

at all. Fortunately, as in the deterministic case, we show that the multiplicative LQR cost possesses further key

properties that enable proof of global convergence despite the lack of Lipschitz gradients and non-convexity.

2.3. From Stochastic to Robust Stability

Additional motivation for designing controllers which stabilize a stochastic system in mean-square is to

ensure robustness of stability of a nominal deterministic system to model parameter perturbations. Here we

state a condition which guarantees robust deterministic stability for a perturbed deterministic system given

mean-square stability of a stochastic single-state system with multiplicative noise where the noise variance

and parameter perturbation size are related.

Example 2.2 (Robust stability). Suppose the stochastic closed-loop system

xt+1 = (a+ δt)xt (6)

where a, xt, δt are scalars with E[δ2
t ] = α is mean-square stable. Then, the perturbed deterministic system

xt+1 = (a+ φ)xt (7)

is stable for any constant perturbation |φ| ≤
√
a2 + α− |a|.

Proof. By the bound on φ and triangle inequality we have ρ(a + φ) = |a + φ| ≤ |a|+ |φ| ≤
√
a2 + α. From

Lemma 2.1, mean-square stability of (6) implies
√
ρ(F) =

√
a2 + α < 1 and thus ρ(a + φ) < 1, proving

stability of (7). �

Although this is a simple example, it demonstrates that the robustness margin increases monotonically

with the multiplicative noise variance. We also see that when α = 0 the bound collapses so that no robustness

is guaranteed, i.e., when |a| → 1. This result can be extended to multiple states, inputs, and noise directions,

but the resulting conditions become considerably more complex [8, 24]. We now proceed with developing

methods for optimal control.
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3. Gradient Domination and Other Properties of the Multiplicative Noise LQR Cost

In this section, we demonstrate that the multiplicative noise LQR cost function is gradient dominated, which

facilitates optimization by gradient descent. Gradient dominated functions have been studied for many years

in the optimization literature [44] and have recently been discovered in deterministic LQR problems by [19].

3.1. Multiplicative Noise LQR Cost is Gradient Dominated

First, we give the expression for the policy gradient of the multiplicative noise LQR cost.2 Define

RK := R+BᵀPKB +

q∑
j=1

βjB
ᵀ
j PKBj

EK := RKK +BᵀPKA.

Lemma 3.1 (Policy Gradient Expression). The policy gradient is given by

∇KC(K) = 2EKΣK = 2(RKK +BᵀPKA)ΣK = 2

[(
R+BᵀPKB +

q∑
j=1

βjB
ᵀ
j PKBj

)
K +BᵀPKA

]
ΣK .

Proof. Substituting the RHS of the generalized Lyapunov equation (3) into the cost C(K) = Tr(PKΣ0) yields

C(K) = Tr(QKΣ0) + Tr(Aᵀ
KPKAKΣ0) + Tr

( p∑
i=1

αiA
ᵀ
i PKAiΣ0

)
+ Tr

( q∑
j=1

βjK
ᵀBᵀ

j PKBjKΣ0

)
Taking the gradient with respect to K and using the product rule and rules for matrix derivatives we obtain

∇KC(K) = ∇K Tr(PKΣ0)

= ∇K
[

Tr((Q+KTRK)Σ0) + Tr(A+BK)TPK(A+BK)Σ0) + Tr(

p∑
i=1

αiA
T
i PKAiΣ0)

+ Tr(

q∑
j=1

βjK
TBTj PKBjKΣ0)

]

= ∇K̃
[

Tr(QK̃Σ0) + Tr(Aᵀ
K̃
PKAK̃Σ0) + Tr

( p∑
i=1

αiA
ᵀ
i PKAiΣ0

)
+ Tr

( q∑
j=1

βjK̃
ᵀBᵀ

j PKBjK̃Σ0

)]
+∇K̄

[
Tr(Aᵀ

KPK̄AKΣ0) + Tr
( p∑
i=1

αiA
ᵀ
i PK̄AiΣ0

)
+ Tr

( q∑
j=1

βjK
ᵀBᵀ

j PK̄BjKΣ0

)]

= 2

R+BTPKB +

q∑
j=1

βjB
T
j PKBj

K +BTPKA

Σ0

+∇K̄ Tr

(A+BK)TPK̄(A+BK) +

p∑
i=1

αiA
T
i PK̄Ai +

q∑
j=1

βjK
TBTj PK̄BjK

Σ0


= 2

R+BTPKB +

q∑
j=1

βjB
T
j PKBj

K +BTPKA

Σ0

+∇K̄ Tr

PK̄
(A+BK)Σ0(A+BK)T +

p∑
i=1

αiAiΣ0A
T
i +

q∑
j=1

βjBjKΣ0K
TBTj


2We include a factor of 2 on the gradient expression that was erroneously dropped in [19]. This affects the step size restrictions

by a corresponding factor of 2.
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= 2

R+BTPKB +

q∑
j=1

βjB
T
j PKBj

K +BTPKA

Σ0 +∇K̄ Tr(PK̄Σ1)

where the tilde on K̃ and overbar on K are used to denote the terms being differentiated. Applying this

gradient formula recursively to the last term in the last line (namely ∇K̄ Tr(PK̄Σ1)), and recalling the definition

of ΣK we obtain

∇KC(K) = 2

R+BTPKB +

q∑
j=1

βjB
T
j PKBj

K +BTPKA

ΣK

which completes the proof. �

For brevity the gradient is implied to be with respect to the gains K in the rest of this work, i.e., ∇K denoted

by ∇. Now we must develop some auxiliary results before demonstrating gradient domination. Throughout

‖Z‖ and ‖Z‖F are the spectral and Frobenius norms respectively of a matrix Z, and σ(Z) and σ(Z) are the

minimum and maximum singular values of a matrix Z. The value function of VK(x) for x = x0 is defined as

VK(x) := Eδ,γ
∞∑
t=0

xᵀtQKxt.

which relates to the cost as C(K) = Ex0VK(x0). The advantage function is defined as

AK(x, u) := xᵀQx+ uᵀRu+ E
δ,γ
VK(Ãx+ B̃u)− VK(x),

where the expectation is with respect to Ã and B̃ inside the parentheses of VK(Ãx+ B̃u). The advantage

function can be thought of as the difference in cost (“advantage”) when starting in state x of taking an action

u for one step instead of the action generated by policy K. We also define the state, input, and cost sequences

{xt}K,x := {x, ÃKx, Ã2
Kx, ..., Ã

t
Kx, ...}

{ut}K,x := K{xt}K,x
{ct}K,x := {xt}ᵀK,xQK{xt}K,x.

Throughout the proofs we will consider pairs of gains K and K ′ and their difference ∆ := K ′ −K.

Lemma 3.2 (Value difference). Suppose K and K ′ generate the (stochastic) state, action, and cost sequences

{xt}K,x, {ut}K,x, {ct}K,x and {xt}K′,x, {ut}K′,x, {ct}K′,x. Then the value difference and advantage satisfy

VK′(x)− VK(x) = E
δ,γ

∞∑
t=0

AK
(
{xt}K′,x, {ut}K′,x

)
AK(x,K ′x) = 2xᵀ∆ᵀEKx+ xᵀ∆ᵀRK∆x.

Proof. The proof follows the “cost-difference” lemma in [19] exactly substituting versions of value and cost

functions, etc. which take expectation over the multiplicative noise. By definition we have

VK(x) = E
δ,γ

∞∑
t=0

{ct}K,x

so we can write the value difference as

VK′(x)− VK(x) = E
δ,γ

∞∑
t=0

[
{ct}K′,x

]
− VK(x)

= E
δ,γ

∞∑
t=0

[
{ct}K′,x − VK({xt}K′,x)

]
+ E
δ,γ

∞∑
t=0

[
VK({xt}K′,x)

]
− VK(x).
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We expand the following value function difference as

E
δ,γ

∞∑
t=0

[
VK({xt}K′,x)

]
− VK(x)

= E
δ,γ

∞∑
t=0

[
VK({xt+1}K′,x)

]
+ E
δ,γ
VK({x0}K′,x)− VK(x)

= E
δ,γ

∞∑
t=0

VK({xt+1}K′,x)

where the last equality is valid by noting that the first term in sequence {xt}K′,x is x. Continuing the value

difference expression we have

VK′(x)− VK(x) = E
δ,γ

∞∑
t=0

[
{ct}K′,x − VK({xt}K′,x)

]
+ E
δ,γ

∞∑
t=0

VK({xt+1}K′,x)

= E
δ,γ

∞∑
t=0

[
{ct}K′,x + VK({xt+1}K′,x)− VK({xt}K′,x)

]

= E
δ,γ

∞∑
t=0

[
{xt}ᵀK′,xQK′{xt}K′,x + VK({xt+1}K′,x)− VK({xt}K′,x)

]

= E
δ,γ

∞∑
t=0

[
{xt}ᵀK′,xQ{xt}K′,x + {ut}ᵀK′,xR{ut}K′,x + VK({xt+1}K′,x)− VK({xt}K′,x)

]

= E
δ,γ

∞∑
t=0

[
QK({xt}K′,x, {ut}K′,x)− VK({xt}K′,x)

]

= E
δ,γ

∞∑
t=0

AK
(
{xt}K′,x , {ut}K′,x

)
,

where the fifth equality holds since {xt+1}K′,x = A{xt}K′,x +B{ut}K′,x.

For the second part of the proof regarding the advantage expression, we expand and substitute in definitions:

AK(x,K ′x) = QK(x,K ′x)− VK(x)

= xᵀQx+ xᵀK ′
ᵀ
RK ′x+ E

δ,γ
VK(AK′x)− VK(x).

Now note that

E
δ,γ
VK(AK′x) = xᵀ E

δ,γ

[
Aᵀ
K′PKAK′

]
x

= xᵀ E
δ,γ

A+

p∑
i=1

δtiAi + (B +

q∑
j=1

γtjBj)K
′

ᵀ

PK

A+

p∑
i=1

δtiAi + (B +

q∑
j=1

γtjBj)K
′

x

= xᵀ

[
(A+BK ′)ᵀPK(A+BK ′) + Eδti

(
p∑
i=1

δtiAi

)ᵀ

PK

(
p∑
i=1

δtiAi

)

+Eγtj

 q∑
j=1

γtjBjK
′

ᵀ

PK

 q∑
j=1

γtjBjK
′

x
= xᵀ

Aᵀ
K′PKAK′ +

p∑
i=1

αiA
ᵀ
i PKAi +

q∑
j=1

βjK
′ᵀBᵀ

j PKBjK
′

x,
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where the third equality follows from all of the δti and γtj being zero-mean and mutually independent.

Substituting and continuing,

AK(x,K ′x)

= xᵀQx+ xᵀK ′
ᵀ
RK ′x+ xᵀ

[
(A+BK ′)ᵀPK(A+BK ′) +

p∑
i=1

αiA
ᵀ
i PKAi +

q∑
j=1

βjK
′ᵀBᵀ

j PKBjK
′
]
x− VK(x)

= xᵀ
[
Q+K ′

ᵀ
RK ′ + (A+BK ′)ᵀPK(A+BK ′) +

p∑
i=1

αiA
ᵀ
i PKAi +

q∑
j=1

βjK
′ᵀBᵀ

j PKBjK
′
]
x− VK(x)

= xᵀ
[
Q+ (∆ +K)ᵀR(∆ +K) + (A+BK +B∆)ᵀPK(A+BK +B∆)

+

p∑
i=1

αiA
ᵀ
i PKAi +

q∑
j=1

βj(BjK +Bj∆)ᵀPK(BjK +Bj∆)

]
x− VK(x)

= xᵀ
[
∆ᵀR∆ + 2∆ᵀRK + (B∆)ᵀPK(B∆) + 2(B∆)ᵀPK(A+BK)

+

q∑
j=1

βj(Bj∆)ᵀPK(Bj∆) + 2

q∑
j=1

βj(Bj∆)ᵀPKBjK

]
x

+ xᵀ
[
Q+KᵀRK + (A+BK)ᵀPK(A+BK) +

p∑
i=1

αiA
ᵀ
i PKAi +

q∑
j=1

βjK
ᵀBᵀ

j PKBjK

]
x− VK(x).

We also have the following expression from the recursive relationship for PK

VK(x) = xᵀPKx = xᵀ
[
Q+KᵀRK + (A+BK)ᵀPK(A+BK) +

p∑
i=1

αiA
ᵀ
i PKAi +

q∑
j=1

βjK
ᵀBᵀ

j PKBjK

]
x.

Substituting, we cancel the VK(x) term which leads to the result after rearrangement:

AK(x,K ′x) = xᵀ
[
∆ᵀR∆ + 2∆ᵀRK + (B∆)ᵀPK(B∆) + 2(B∆)ᵀPK(A+BK)

+

q∑
j=1

βj(Bj∆)ᵀPK(Bj∆) + 2

q∑
j=1

βj(Bj∆)ᵀPKBjK

]
x

= 2xᵀ∆ᵀ

[
RK +BᵀPK(A+BK) +

q∑
j=1

βjB
ᵀ
j PKBjK

]
x

+ xᵀ∆ᵀ

(
R+BᵀPKB +

q∑
j=1

βjB
ᵀ
j PKBj

)
∆x

= 2xᵀ∆ᵀ

[(
R+BᵀPKB +

q∑
j=1

βjB
ᵀ
j PKBj

)
K +BᵀPKA

]
x

+ xᵀ∆ᵀ

(
R+BᵀPKB +

q∑
j=1

βjB
ᵀ
j PKBj

)
∆x

= 2xᵀ∆ᵀEKx+ xᵀ∆ᵀRK∆x,

which completes the proof. �

Next, we see that the multiplicative noise LQR cost is gradient dominated.
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Lemma 3.3 (Gradient domination). The LQR-with-multiplicative-noise cost C(K) satisfies the gradient

domination condition

C(K)− C(K∗) ≤ ‖ΣK∗‖
4σ(R)σ(Σ0)

2 ‖∇C(K)‖2F .

Proof. We start with the advantage expression

AK(x,K ′x) = 2xᵀ∆ᵀEKx+ xᵀ∆ᵀRK∆x

= 2 Tr[xxᵀ∆ᵀEK ] + Tr[xxᵀ∆ᵀRK∆].

Next we rearrange and complete the square:

AK(x,K ′x) = Tr
[
xxᵀ (∆ᵀRK∆ + 2∆ᵀEK)

]
= Tr

[
xxᵀ(∆ +R−1

K EK)ᵀRK(∆ +R−1
K EK)

]
− Tr

[
xxᵀEᵀ

KR
−1
K EK

]
.

Since RK � 0, we have

AK(x,K ′x) ≥ −Tr
[
xxᵀEᵀ

KR
−1
K EK

]
(8)

with equality only when ∆ = −R−1
K EK .

Let the state and control sequences associated with the optimal gain K∗ be {xt}K∗,x and {ut}K∗,x
respectively. We now obtain an upper bound for the cost difference by writing the cost difference in terms of

the value function as

C(K)− C(K∗) = E
x0

[
V (K,x0)

]
− E
x0

[
V (K∗, x0)

]
= E
x0

[
V (K,x0)− V (K∗, x0)

]
.

Using the first part of the value-difference Lemma 3.2 and negating we obtain

C(K)− C(K∗) = −E
x0

[ ∞∑
t=0

AK
(
{xt}K∗,x, {ut}K∗,x

)]

≤ E
x0

[ ∞∑
t=0

Tr

[
{xt}K∗,x{xt}ᵀK∗,xE

ᵀ
KR
−1
K EK

]]
= Tr

[
ΣK∗E

ᵀ
KR
−1
K EK

]
.

where the second step used the advantage inequality in (8). Now using |Tr(Y Z)| ≤ ‖Y ‖|Tr(Z)| we obtain

C(K)− C(K∗) ≤ ‖ΣK∗‖Tr

[
Eᵀ
KR
−1
K EK

]
(9)

≤ ‖ΣK∗‖‖R−1
K ‖Tr

[
Eᵀ
KEK

]
,

where the first and second inequalities will be used later in the Gauss-Newton and gradient descent convergence

proofs respectively. Combining ‖RK‖ ≥ ‖R‖ = σ(R) ≥ σ(R) with ‖Z−1‖ ≥ ‖Z‖−1 we obtain

C(K)− C(K∗) ≤ ‖ΣK
∗‖

σ(R)
Tr
[
Eᵀ
KEK

]
(10)

which will be used later in the natural policy gradient descent convergence proof. Now we rearrange and

substitute in the policy gradient expression 1
2∇C(K)(ΣK)−1 = EK

C(K)− C(K∗) ≤ ‖ΣK
∗‖

4σ(R)
Tr
[
(∇C(K)Σ−1

K )ᵀ(∇C(K)Σ−1
K )
]

≤ ‖ΣK
∗‖

4σ(R)
‖(Σ−1

K )ᵀΣ−1
K ‖Tr

[
∇C(K)ᵀ∇C(K)

]
≤ ‖ΣK∗‖

4σ(R)σ(ΣK)2
Tr
[
∇C(K)ᵀ∇C(K)

]
.
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where the last step used the definition and submultiplicativity of spectral norm. Using

ΣK = E
x0

[ ∞∑
t=0

xtx
ᵀ
t

]
� E
x0

[x0x
ᵀ
0 ] = Σ0 ⇒ σ(ΣK) < σ(Σ0)

completes the proof. �

The gradient domination property gives the following stationary point characterization.

Corollary 3.4. If ∇C(K) = 0 then either K = K∗ or rank (ΣK) < n.

In other words, so long as ΣK is full rank, stationarity is both necessary and sufficient for global optimality,

as for convex functions. Note that it is not sufficient to just have multiplicative noise in the dynamics with a

deterministic initial state x0 to ensure that ΣK is full rank. To see this, observe that if x0 = 0 and Σ0 = 0

then ΣK = 0, which is clearly rank deficient. By contrast, additive noise is sufficient to ensure that ΣK is full

rank with a deterministic initial state x0, although we will not consider this setting. Using a random initial

state with Σ0 � 0 ensures rank(ΣK) = n and thus ∇C(K) = 0 implies K = K∗.

Although the gradient of the multiplicative noise LQR cost is not globally Lipschitz continuous, it is locally

Lipschitz continuous over any subset of its domain (i.e., over any set of mean-square stabilizing gain matrices).

The gradient domination is then sufficient to show that policy gradient descent will converge to the optimal

gains at a linear rate (a short proof of this fact for globally Lipschitz functions is given in [32]). We prove

this convergence of policy gradient to the optimum feedback gain by bounding the local Lipschitz constant in

terms of the problem data, which bounds the maximum step size and the convergence rate.

3.2. Additional Setup Lemmas

Following [19] we refer to Lipschitz continuity of the gradient as (C1-)smoothness, and so this section

deals with showing that the LQR cost satisfies an expression that is almost of the exact form of a Lipschitz

continuous gradient.

Lemma 3.5 (Almost-smoothness). The LQR-with-multiplicative-noise cost C(K) satisfies the almost-smoothness

expression

C(K ′)− C(K) = 2 Tr
[
ΣK′∆

ᵀEK
]

+ Tr
[
ΣK′∆

ᵀRK∆
]
.

Proof. As in the gradient domination proof, we express the cost difference in terms of the advantage by taking

expectation over the initial states to obtain

C(K ′)− C(K) = E
x0

[ ∞∑
t=0

AK
(
{xt}K′,x , {ut}K′,x

)]
.

From the value difference lemma for the advantage we have

AK(x,K ′x) = 2xᵀ∆ᵀEKx+ xᵀ∆ᵀRK∆x.

Noting that {ut}K′,x = K ′x we substitute to obtain

C(K ′)− C(K) = E
x0

[ ∞∑
t=0

2{xt}ᵀK′,x∆ᵀEK{xt}K′,x + {xt}ᵀK′,x∆ᵀRK∆{xt}K′,x
)]
.

Using the definition of ΣK′ completes the proof. �

Remark 3.6. For small deviations K ′ −K the equation in the almost-smoothness lemma exactly describes a

Lipschitz continuous gradient. The naming should not be taken to imply that the LQRm cost is not smooth,

but rather that the equation as stated does not immediately yield a Lipschitz constant; indeed the Lipschitz

constant is what much of the later proofs go towards bounding (implicitly) i.e. by bounding higher-order terms

which must be accounted for when K ′ 6= K.
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To be specific, a Lipschitz continuous gradient to C(K) implies there exists a Lipschitz constant L such that

C(K ′)− C(K) ≤ Tr(∇C(K)ᵀ∆) +
L

2
Tr(∆ᵀ∆)

for all K ′, K. This is the quadratic upper bound which is used e.g. in Thm. 1 of [32] to prove convergence of

gradient descent on a gradient dominated objective function. The “almost”-smoothness condition is that

C(K ′)− C(K) = 2 Tr
[
ΣK′∆

ᵀEK
]

+ Tr
[
ΣK′∆

ᵀRK∆
]
.

For K ′ ≈ K we have ΣK′ ≈ ΣK so using ∇C(K) = 2EKΣK we have

C(K ′)− C(K) ≈ 2 Tr
[
ΣK∆ᵀEK

]
+ Tr

[
ΣK∆ᵀRK∆

]
= 2 Tr

[
∆ᵀEKΣK

]
+ Tr

[
ΣK∆ᵀRK∆

]
= Tr

[
∆ᵀ∇C(K)

]
+ Tr

[
ΣK∆ᵀRK∆

]
= Tr

[
∇C(K)ᵀ∆

]
+ Tr

[
ΣK∆ᵀRK∆

]
≤ Tr

[
∇C(K)ᵀ∆

]
+ ‖ΣK‖Tr

[
∆ᵀRK∆

]
= Tr

[
∇C(K)ᵀ∆

]
+ ‖ΣK‖Tr

[
RK∆∆ᵀ

]
≤ Tr

[
∇C(K)ᵀ∆

]
+ ‖ΣK‖‖RK‖Tr

[
∆∆ᵀ

]
= Tr

[
∇C(K)ᵀ∆

]
+ ‖ΣK‖‖RK‖Tr

[
∆ᵀ∆

]
which is exactly of the form of the Lipschitz gradient condition with Lipschitz constant 2‖ΣK‖‖RK‖. Note

this is not a global Lipschitz condition since 2‖ΣK‖‖RK‖ becomes unbounded as K becomes mean-square

destabilizing, but rather a local Lipschitz condition since 2‖ΣK‖‖RK‖ is bounded on any sublevel set of C(K).

Lemma 3.7 (Cost bounds). We always have

‖PK‖ ≤
C(K)

σ(Σ0)
and ‖ΣK‖ ≤

C(K)

σ(Q)
.

Proof. The proof follows that in [19] exactly. The cost is lower bounded as

C(K) = Tr [PKΣ0] ≥ ‖PK‖Tr(Σ0) ≥ ‖PK‖σ(Σ0),

which gives the first inequality. The cost is also lower bounded as

C(K) = Tr [QKΣK ] ≥ ‖ΣK‖Tr(QK) ≥ ‖ΣK‖σ(QK) ≥ ‖ΣK‖σ(Q),

which gives the second inequality. �

4. Global Convergence of Policy Gradient in the Model-Based Setting

In this section we show that the policy gradient algorithm and two important variants for multiplicative

noise LQR converge globally to the optimal policy. In contrast with [19], the policies we obtain are robust to

uncertainties and inherent stochastic variations in the system dynamics. We analyze three policy gradient

algorithm variants:

Gradient: Ks+1 = Ks − η∇C(Ks)

Natural Gradient: Ks+1 = Ks − η∇C(Ks)Σ
−1
Ks

Gauss-Newton: Ks+1 = Ks − ηR−1
Ks
∇C(Ks)Σ

−1
Ks

The more elaborate natural gradient and Gauss-Newton variants provide superior convergence rates and

simpler proofs. A development of the natural policy gradient is given in [19] building on ideas from [31]. The

Gauss-Newton step with step size 1
2 is in fact identical to the policy improvement step in policy iteration (a

short derivation is given shortly) and was first studied for deterministic LQR in [26]. This was extended to a

model-free setting using policy iteration and Q-learning in [12], proving asymptotic convergence of the gain

matrix to the optimal gain matrix. For multiplicative noise LQR, we have the following results.
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4.1. Derivation of the Gauss-Newton step from policy iteration

We start with the policy improvement expression for the LQR problem:

us+1 = argmin
u

[
xᵀQx+ uᵀRu+ E

δ,γ
VKs

(Ãx+ B̃u)

]
= argmin

u

[
QKs

(x, u)

]
.

Stationary points occur when the gradient is zero, so differentiating with respect to u we obtain

∂

∂u
QKs

(x, u) = 2

[
(BᵀPKs

A)x+ (R+BᵀPKs
B +

q∑
j=1

βjB
ᵀ
j PKs

Bj)u

]
. (11)

Setting (11) to zero and solving for u gives

us+1 = −(R+BᵀPKs
B +

q∑
j=1

βjB
ᵀ
j PKs

Bj)
−1(BᵀPKs

A)x.

Differentiating (11) with respect to u we obtain

∂2

∂u2QKs
(x, u) = 2

[
R+BᵀPKs

B +

q∑
j=1

βjB
ᵀ
j PKs

Bj

]
� 0 ∀ u,

confirming that the stationary point is indeed a global minimum.

Thus the policy iteration gain matrix update is

Ks+1 = −(R+BᵀPKs
B +

q∑
j=1

βjB
ᵀ
j PKs

Bj)
−1(BᵀPKs

A).

This can be re-written in terms of the gradient as so:

Ks+1 = Ks −Ks − (R+BᵀPKs
B +

q∑
j=1

βjB
ᵀ
j PKs

Bj)
−1(BᵀPKs

A)

= Ks −Ks −R−1
Ks
BᵀPKsA = Ks −R−1

Ks

[
RKsKs +BᵀPKsA

]
= Ks −R−1

Ks

[
RKs

Ks +BᵀPKs
A

]
ΣKs

Σ−1
Ks

= Ks −R−1
Ks

[
(RKs

Ks +BᵀPKs
A)ΣKs

]
Σ−1
Ks

= Ks −
1

2
R−1
Ks
∇C(Ks)Σ

−1
Ks
.

Parameterizing with a step size gives the Gauss-Newton step

Ks+1 = Ks − ηR−1
Ks
∇C(Ks)Σ

−1
Ks
.

4.2. Gauss-Newton Descent

Theorem 4.1 (Gauss-Newton convergence). Using the Gauss-Newton step

Ks+1 = Ks − ηR−1
Ks
∇C(Ks)Σ

−1
Ks

with step size 0 < η ≤ 1
2 gives global convergence to the optimal gain matrix K∗ at a linear rate described by

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(Σ0)

‖ΣK∗‖
.

Proof. The next-step gain matrix difference is

∆ = Ks+1 −Ks = −ηR−1
Ks
∇C(Ks)Σ

−1
Ks

= −2ηR−1
Ks
EKs

.

Using the almost-smoothness Lemma 3.5 and substituting in the next-step gain matrix difference we obtain

C(Ks+1)− C(Ks) = 2 Tr
[
ΣKs+1

∆ᵀEKs

]
+ Tr

[
ΣKs+1

∆ᵀRKs
∆
]



LEARNING ROBUST CONTROLLERS FOR LQR SYSTEMS 15

= 2 Tr
[
ΣKs+1

(−2ηR−1
Ks
EKs

)ᵀEKs

]
+ Tr

[
ΣKs+1

(−2ηR−1
Ks
EKs

)ᵀRKs
(−2ηR−1

Ks
EKs

)
]

= 4(−η + η2) Tr
[
ΣKs+1

Eᵀ
Ks
R−1
Ks
EKs

]
.

By hypothesis we require 0 ≤ η ≤ 1
2 so we have

C(Ks+1)− C(Ks) ≤ −2ηTr
[
ΣKs+1

Eᵀ
Ks
R−1
Ks
EKs

]
≤ −2ησ(ΣKs+1

) Tr
[
Eᵀ
Ks
R−1
Ks
EKs

]
≤ −2ησ(Σ0) Tr

[
Eᵀ
Ks
R−1
Ks
EKs

]
.

Recalling and substituting in (9) we obtain

C(Ks+1)− C(Ks) ≤ −2η
σ(Σ0)

‖ΣK∗‖
(
C(Ks)− C(K∗)

)
.

Adding C(Ks)− C(K∗) to both sides and rearranging completes the proof. �

4.3. Natural Policy Gradient Descent

Theorem 4.2 (Natural policy gradient convergence). Using the natural policy gradient step

Ks+1 = Ks − η∇C(Ks)Σ
−1
Ks

(12)

with step size 0 < η ≤ cnpg where

cnpg :=
1

2

(
‖R‖+

(
‖B‖2 +

q∑
j=1

βj‖Bj‖2
)C(K0)

σ(Σ0)

)−1

gives global convergence to the optimal gain matrix K∗ at a linear rate described by

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(R)σ(Σ0)

‖ΣK∗‖
.

Proof. First we bound the one-step progress, where the step size depends explicitly on the current gain Ks.

Using the update (12), the next-step gain matrix difference is

∆ = Ks+1 −Ks = −η∇C(Ks)Σ
−1
Ks

= −2ηEKs .

Using Lemma 3.5 and substituting we obtain

C(Ks+1)− C(Ks)

= 2 Tr
[
ΣKs+1

∆ᵀEKs

]
+ Tr

[
ΣKs+1

∆ᵀRKs
∆
]

= 2 Tr
[
ΣKs+1(−2ηEKs)ᵀEKs

]
+ Tr

[
ΣKs+1(−2ηEKs)ᵀRKs(−2ηEKs)

]
= −4ηTr

[
ΣKs+1

Eᵀ
Ks
EKs

]
+ 4η2 Tr

[
ΣKs+1

Eᵀ
Ks
RKs

EKs

]
≤ 4(−η + η2‖RKs

‖) Tr
[
ΣKs+1

Eᵀ
Ks
EKs

]
.

If we choose step size 0 < η ≤ 1
2‖RKs‖

, then

C(Ks+1)− C(Ks) ≤ −2ηTr
[
ΣKs+1E

ᵀ
Ks
EKs

]
≤ −2ησ(ΣKs+1) Tr

[
Eᵀ
Ks
EKs

]
≤ −2ησ(Σ0) Tr

[
Eᵀ
Ks
EKs

]
.

Recalling and substituting (10) we obtain

C(Ks+1)− C(Ks) ≤ −2ησ(Σ0)
σ(R)

‖ΣK∗‖
(
C(Ks)− C(K∗)

)
.

Adding C(Ks)− C(K∗) to both sides and rearranging gives the one step progress bound

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(R)σ(Σ0)

‖ΣK∗‖
. (13)
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Next, using the cost bound in Lemma 3.7, the triangle inequality, and submultiplicativity of spectral norm we

have

1

‖RK‖
=

1

‖R+BᵀPKB +
∑q
j=1 βjB

ᵀ
j PKBj‖

≥ 1

‖R‖+ (‖B‖2 +
∑q
j=1 βj‖Bj‖2)‖PK‖

≥ 1

‖R‖+ (‖B‖2 +
∑q
j=1 βj‖Bj‖2) C(K)

σ(Σ0)

.

Accordingly, choosing the step size as 0 < η ≤ cnpg ensures (13) holds at the first step. This ensures that

C(K1) ≤ C(K0) which in turn ensures

η ≤ 1

‖R‖+ (‖B‖2 +
∑q
j=1 βj‖Bj‖2)C(K0)

σ(Σ0)

≤ 1

‖R‖+ (‖B‖2 +
∑q
j=1 βj‖Bj‖2)C(K1)

σ(Σ0)

≤ 1

‖RK1
‖

which allows (13) to be applied at the next step as well. Proceeding inductively by applying (13) at each

successive step completes the proof. �

4.4. Policy Gradient Descent

Theorem 4.3 (Policy gradient convergence). Using the policy gradient step

Ks+1 = Ks − η∇C(Ks)

with step size 0 < η ≤ cpg gives global convergence to the optimal gain matrix K∗ at a linear rate described by

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(R)σ(Σ0)
2

‖ΣK∗‖
where cpg is a polynomial in the problem data A, B, αi, βj, Ai, Bj, Q, R, Σ0, K0 given in the proof in

Appendix B.

Proof. The proof is developed in Appendix B. �

The proofs for these results explicitly incorporate the effects of the multiplicative noise terms δti and γtj
in the dynamics. For the policy gradient and natural policy gradient algorithms, we show explicitly how

the maximum allowable step size depends on problem data and in particular on the multiplicative noise

terms. Compared to deterministic LQR, the multiplicative noise terms decrease the allowable step size and

thereby decrease the convergence rate; specifically, the state-multiplicative noise increases the initial cost

C(K0) and the norms of the covariance ΣK∗ and cost PK , and the input-multiplicative noise also increases the

denominator term ‖B‖2 +
∑q
j=1 βj‖Bj‖2. This means that the algorithm parameters for deterministic LQR in

[19] may cause failure to converge on problems with multiplicative noise. Moreover, even the optimal policies

for deterministic LQR may actually destabilize systems in the presence of small amounts of multiplicative

noise uncertainty, indicating the possibility for a catastrophic lack of robustness; observe the results of the

example in Section 6.1. The results and proofs also differ from that of [19] because the more complicated

mean-square stability must be accounted for, and because generalized Lyapunov equations must be solved to

compute the gradient steps, which requires specialized solvers.

5. Global Convergence of Policy Gradient in the Model-Free Setting

The results in the previous section are model-based; the policy gradient steps are computed exactly based

on knowledge of the model parameters. In the model-free setting, the policy gradient is estimated to arbitrary

accuracy from sample trajectories with a sufficient number of sample trajectories nsample of sufficiently long

horizon length ` using gain matrices randomly selected from a Frobenius-norm ball around the current gain

of sufficiently small exploration radius r. We show for multiplicative noise LQR that with a finite number

of samples polynomial in the problem data, the model-free policy gradient algorithm still converges to the

globally optimal policy, despite small perturbations on the gradient.
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In the model-free setting, the policy gradient method proceeds as before except that at each iteration

Algorithm 1 is called to generate an estimate of the gradient via the zeroth-order optimization procedure

described by Fazel et al. [19].

Algorithm 1 Model-Free policy gradient estimation

Input: Gain matrix K, number of samples nsample, rollout length `, exploration radius r
1: for i = 1, . . . , nsample do

2: Generate a sample gain matrix K̂i = K + Ui, where Ui is drawn uniformly at random over matrices
with Frobenius norm r

3: Generate a sample initial state x
(i)
0 ∼ P0

4: Simulate the closed-loop system for ` steps according to the stochastic dynamics in (1) starting from

x
(i)
0 with u

(i)
t = K̂ix

(i)
t , yielding the state sequence {x(i)

t }t=`t=0

5: Collect the empirical finite-horizon cost estimate Ĉi :=
∑`
t=0 x

(i)
t

ᵀ
(Q+ K̂ᵀ

i RK̂i)x
(i)
t

6: end for
Output: Gradient estimate ∇̂C(K) := 1

nsample

∑nsample

i=1
mn
r2 ĈiUi

Theorem 5.1 (Model-free policy gradient convergence). Let ε and µ be a given small tolerance and probability

respectively and N be the number of gradient descent steps taken. Suppose that the distribution of the initial

states is bounded such that x0 ∼ P0 implies ‖xi0‖ ≤ L0 almost surely for any given realization xi0 of x0. Suppose

additionally that the distribution of the multiplicative noises is bounded such that the following inequality is

satisfied almost surely for any given realized sequence xit of xt with a positive scalar z ≥ 1:

`−1∑
t=0

(
xit

ᵀ
Qxit + uit

ᵀ
Ruit

)
≤ z E

δ,γ

[
`−1∑
t=0

(
xᵀtQxt + uᵀtRut

)]
under the closed-loop dynamics with any gain such that C(K) ≤ 2C(K0). Suppose the step size η is chosen

according to the restriction in Theorem 4.3 and at every iteration the gradient is estimated according to the

finite-horizon procedure in Algorithm 1 where the number of samples nsample, rollout length `, and exploration

radius r are chosen according to the fixed polynomials of the problem data A, B, αi, βj, Ai, Bj, Q, R, Σ0,

K0, L0 and z which are all defined in the proofs in Appendix C. Then, with high probability of at least 1− µ,

performing gradient descent results in convergence to the global optimum over all N steps: at each step, either

progress is made at the linear rate

C(Ks+1)− C(K∗)

C(Ks)− C (K∗)
≤ 1− ησ(R)σ(Σ0)2

‖ΣK∗‖
.

or convergence has been attained with C(Ks)− C(K∗) ≤ ε.

Proof. The proof is developed in Appendix C. �

From a sample complexity standpoint, it is notable that the number of samples nsample, rollout length `,

and exploration radius r in Theorem 5.1 are polynomial in the problem data A, B, αi, βj , Ai, Bj , Q, R, Σ0,

C(K0). The constant z imposes a bound on the multiplicative noise, which is naturally absent in [19]. Note

that z ≥ 1 since any upper bound of a scalar distribution with finite support must be equal to or greater than

the mean. In general, this implicitly requires the noises to have bounded support. Such an assumption is

qualitatively the same as the condition imposed on the initial states. These assumptions are reasonable; in a

practical setting with a physical system the initial state and noise distributions will have finite support. There

is no restriction on how large the support is, only that it not be unbounded. Also note that the rate is halved

compared with the model-based case of Theorem 4.3; this is because the “other half” is consumed by the error

between the estimated and true gradient.
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6. Numerical Experiments

In this section we present results for three systems:

A. Shows that “optimal” control that ignores actual multiplicative noise can lead to loss of mean-square

stability,

B. Shows the efficacy of the policy gradient algorithms on a networked system,

C. Shows the increased difficulty of estimating the gradient from sample data in the presence of multi-

plicative noise.

All systems considered permitted a solution to the GARE (2). The bounds on the step size, number of

rollouts, and rollout length given by the theoretical analysis can be rather conservative. For practicality,

we selected the constant step size, number of rollouts, rollout length, and exploration radius according to

a grid search over reasonable values. Additionally, we investigated the use of backtracking line search to

adaptively select the step size; see e.g. [11]. Throughout the simulations, we computed the baseline optimal

cost C(K∗) by solving the GARE (2) to high precision via value iteration. Python code which implements

the algorithms and generates the figures reported in this work can be found in the GitHub repository at

https://github.com/TSummersLab/polgrad-multinoise/. The code was run on a desktop PC with a

quad-core Intel i7 6700K 4.0GHz CPU, 16GB RAM; no GPU computing was utilized.

6.1. Importance of Accounting for Multiplicative Noise

We first considered an open-loop mean-square unstable system with four states and one input representing an

active two-mass suspension converted from continuous to discrete time using a standard bilinear transformation,

with parameters:

A =


+0.261 +0.315 +0.093 −0.008

−2.955 +0.261 +0.373 −0.033

+1.019 +0.255 −0.853 +0.011

−3.170 −0.793 −4.902 −0.146

 , B =


0.133

0.532

0.161

2.165

 , Q = I4, R = I1,

[Ai]y,z =

{
1 if z = i,

0 otherwise,
B1 = 14×1, {αi} = {0.017, 0.017, 0.017, 0.017}, β1 = 0.035.

We performed model-based policy gradient descent; at each iteration gradients were calculated by solving

generalized Lyapunov equations (3) and (4) using the problem data. The gains Km and K` represent iterates

during optimization of (“training” on) the LQRm and LQR cost (with the multiplicative noise variances set

to zero), respectively. We performed the optimization starting from the same feasible initial gain, which was

generated by perturbing the exact solution of the generalized algebraic Riccati equation such that the LQRm

cost under the initial control was approximately 10 times that of the optimal control. The step size was chosen

via backtracking line search. The optimization stopped once the Frobenius norm of the gradient fell below a

small threshold. The plot in Fig. 1 shows the “testing” cost of the gains at each iteration evaluated on the

LQRm cost (with multiplicative noise). From this figure, it is clear that Km minimized the LQRm as desired.

When there was high multiplicative noise, the noise-ignorant controller K` actually destabilized the system in

the mean-square sense; this can be seen as the LQRm cost exploded upwards to infinity after iteration 10. In

this sense, the multiplicative noise-aware optimization is generally safer and more robust than noise-ignorant

optimization, and in examples like this is actually necessary for mean-square stabilization.

6.2. Policy Gradient Methods Applied to a Network

Many practical networked systems can be approximated by diffusion dynamics with losses and stochastic

diffusion constants (edge weights) between nodes; examples include heat flow through uninsulated pipes,

hydraulic flow through leaky pipes, information flow between processors with packet loss, electrical power flow

between generators with resistant electrical power lines, etc. A derivation of the discrete-time dynamics of this

https://github.com/TSummersLab/polgrad-multinoise/
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(a) LQRm cost. (b) LQR cost.

Figure 1. Relative cost error C(K)−C(K∗)
C(K∗) vs. iteration during policy gradient descent on

the 4-state, 1-input suspension example system.

system is given in [57]. We considered a particular 4-state, 4-input system and open-loop mean-square stable

with the following parameters:

A =


0.795 0.050 0.100 0.050

0.050 0.845 0.050 0.050

0.100 0.050 0.695 0.150

0.050 0.050 0.150 0.745

 , B = Q = R = Σ0 = I4,

{αi} = {0.005, 0.015, 0.010, 0.015, 0.005, 0.020}, {βj} = {0.050, 0.150, 0.050, 0.100},

[Ai]y,z =


+1 if {ci=y & di=y} or {ci=z & di=z},
−1 if {ci=z & di=y} or {ci=y & di=z},
0 otherwise,

[Bj ]y,z =

{
+1 if j = y = z,

0 otherwise.

{(ci, di)} = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.

This system is open-loop mean-square stable, so we initialized the gains to all zeros for each trial. We performed

policy optimization using the model-free gradient, and the model-based gradient, model-based natural gradient,

and model-based Gauss-Newton step directions on 20 unique problem instances using two step size schemes:

Backtracking line search: Step sizes η were chosen adaptively at each iteration by backtracking line search

with parameters α = 0.01, β = 0.5 (see [11] for a description), except for Gauss-Newton which used the

optimal constant step-size of 1/2. Model-free gradients and costs were estimated with 100,000 rollouts per

iteration. We ran a fixed number, 20, of iterations chosen such that the final cost using model-free gradient

descent was no more than 5% worse than optimal.

Constant step size: Step sizes were set to constants chosen as large as possible without observing infeasibility

or divergence, which on this problem instance was η = 5× 10−5 for gradient, η = 2× 10−4 for natural gradient,

and η = 1/2 for Gauss-Newton step directions. Model-free gradients were estimated with 1,000 rollouts per

iteration. We ran a fixed number, 20,000, of iterations chosen such that convergence was achieved with all

step directions.

In both cases sample gains were chosen for model-free gradient estimation with exploration radius r=0.1

and the rollout length was set to `=20. The plots in Fig. 2 show the relative cost over the iterations; for the

model-free gradient descent, the bold centerline is the mean of all trials and the shaded region is between the

10th and 90th percentile of all trials. Using backtracking line search, it is evident that in terms of convergence

the Gauss-Newton step was extremely fast, and both the natural gradient and model-based gradient were

slightly slower, but still quite fast. The model-free policy gradient converged to a reasonable neighborhood

of the minimum cost quickly, but stagnated with further iterations; this is a consequence of the inherent

gradient and cost estimation errors that arise due to random sampling and the multiplicative noise. Using

constant stepsizes, we were forced to take small steps due to the steepness of the cost function near the initial

gains, slowing overall convergence using the gradient and natural gradient methods. Here we observed that
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Gauss-Newton again converged most quickly, followed by natural gradient and lastly the gradient methods.

The smaller step size also allowed us to use far fewer samples in the model-free setting, where we observed

somewhat faster initial cost decrease with eventual stagnation around 10−2, or 1%, relative error, which

represents excellent control performance. All algorithms exhibited convergence to the optimum, confirming

the asserted theoretical claims.

(a) Backtracking line search. (b) Constant step sizes.

Figure 2. Relative cost error C(K)−C(K∗)
C(K∗) vs. iteration during policy gradient methods on a

4-state, 4-input lossy diffusion network with multiplicative noise using a) backtracking line
search and b) constant step sizes.

6.3. Gradient Estimation

Multiplicative noise can significantly increase the variance and sample complexity of cost gradient estimates

relative to the noiseless case, which is novelly reflected in the theoretical analysis for the number of rollouts

and rollout length. To demonstrate this empirically, we evaluated the relative gradient estimation error vs.

number of rollouts for the system

xt+1 =

([
0.8 0.1

0.1 0.8

]
+ δt

[
0 1

1 0

]
+

[
1

0

]
K

)
xt (14)

with K = 0, Q = Σ0 = I2, R = 1, δt ∼ N (0, 0.1), rollout length l = 40, exploration radius r = 0.2, averaged

over 10 gradient estimates. The results are plotted in Figure 3. To achieve the same gradient estimate error of

10%, the system with multiplicative noise required 200× the number of rollout samples (108) as when there

was no noise (5× 105).

Figure 3. Relative gradient estimation error vs. number of rollouts for (14).
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7. Conclusions

We have shown that policy gradient methods in both model-based and model-free settings give global

convergence to the globally optimal policy for LQR systems with multiplicative noise. These techniques are

directly applicable for the design of robust controllers of uncertain systems and serve as a benchmark for

data-driven control design. Our ongoing work is exploring ways of mitigating the relative sample inefficiency

of model-free policy gradient methods by leveraging the special structure of LQR models and Nesterov-type

acceleration, and exploring alternative system identification and adaptive control approaches. We are also

investigating other methods of building robustness through H∞ and dynamic game approaches. Another

extension relevant to networked control systems is enforcing sparse structure constraints on the gain matrix

via projected policy gradient as suggested in [14].

Appendix A. Standard matrix expressions

Before proceeding with the proof of the main results of this study, we first review several basic expressions

that will be used later throughout the section. In this section we let A, B, C, Mi be generic matrices ∈ Rn×m,

a, b be generic vectors, and s be a generic scalar.

Spectral norm:

We denote the matrix spectral norm as ‖A‖ = σmax(A) which clearly satisfies

‖A‖ = σmax(A) ≥ σmin(A).

Frobenius norm:

We denote the matrix Frobenius norm as ‖A‖F whose square satisfies

‖A‖2F = Tr(ATA).

Frobenius norm ≥ spectral norm:

For any matrix A the Frobenius norm is greater than or equal to the spectral norm:

‖A‖F ≥ ‖A‖.

Inverse of spectral norm inequality:

‖A−1‖ ≥ ‖A‖−1.

Invariance of trace under cyclic permutation:

Tr

(
n∏
i=1

Mi

)
= Tr

(
Mn

n−1∏
i=1

Mi

)
.

Invariance of trace under arbitrary permutation for a product of three matrices:

Tr(ABC) = Tr(BCA) = Tr(CAB) = Tr(ACB) = Tr(BAC) = Tr(CBA).

Scalar trace equivalence:

s = Tr(s).

Trace-spectral norm inequalities:

|Tr(ATB)| ≤ ‖AT ‖|Tr(B)| = ‖A‖|Tr(B)|.
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If A ∈ Rn×n
|Tr(A)| ≤ n‖A‖

and if A � 0

Tr(A) ≥ ‖A‖.

Sub-multiplicativity of spectral norm:

‖AB‖ ≤ ‖A‖‖B‖.

Positive semidefinite matrix inequality:

Suppose A � 0 and B � 0. Then

A+B � A and A+B � B.

Vector self outer product positive semidefiniteness:

aaT � 0

since bTaaT b = (aT b)T (aT b) ≥ 0 for any b.

Singular value inequality for positive semidefinite matrices:

Suppose A � 0 and B � 0 and A � B. Then

σmin(A) ≥ σmin(B).

Weyl’s Inequality for singular values:

Suppose B = A+ C. Let singular values of A, B, and C be

σ1(A) ≥ σ2(A) ≥ . . . ≥ σr(A) ≥ 0

σ1(B) ≥ σ2(B) ≥ . . . ≥ σr(B) ≥ 0

σ1(C) ≥ σ2(C) ≥ . . . ≥ σr(C) ≥ 0

where r = min{m,n}. Then we have

σi+j−1(B) ≤ σi(A) + σj(C) ∀ i ∈ {1, 2, . . . r}, j ∈ {1, 2, . . . r}, i+ j − 1 ∈ {1, 2, . . . r}.

Consequently, we have

‖B‖ ≤ ‖A‖+ ‖C‖ (15)

and

σmin(B) ≥ σmin(A)− ‖C‖.

Vector Bernstein inequality:

Suppose â =
∑
i âi, where âi are independent random vectors of dimension n. Let E[â] = a , and the

variance σ2 = E
[∑

i ‖âi‖
2
]
. If every âi has norm ‖âi‖ ≤ s then with high probability we have

‖â− a‖ ≤ O
(
s log n+

√
σ2 log n

)
.

This is the same inequality given in [19]. See [50] for the exact scale constants and a proof.

Appendix B. Model-based policy gradient descent

The proof of convergence using gradient descent proceeds by establishing several technical lemmas, bounding

the infinite-horizon covariance ΣK , then using that bound to limit the step size, and finally obtaining a
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one-step bound on gradient descent progress and applying it inductively at each successive step. We begin

with a bound on the induced operator norm of TK :

Lemma B.1. (TK norm bound) The following bound holds for any mean-square stabilizing K:

‖TK‖ := sup
X

‖TK(X)‖
‖X‖

≤ C(K)

σ(Σ0)σ(Q)
.

Proof. The proof follows that given in [19] using our definition of TK . �

Lemma B.2. (FK perturbation) Consider a pair of mean-square stabilizing gain matrices K and K ′. The

following FK perturbation bound holds:

‖FK′ −FK‖ ≤ 2‖A+BK‖‖B‖‖∆‖+ hB‖B‖‖∆‖2

where hB := ‖B‖−1(‖B‖2 +

q∑
j=1

βj‖Bj‖2
)
.

Proof. Let ∆′ = −∆. For any matrix X we have

(FK −FK′)(X) = E
δ,γ

[
ÃKXÃ

ᵀ
K − ÃK′XÃ

ᵀ
K′

]
= E
δ,γ

[
ÃKX(B̃∆′)ᵀ + (B̃∆′)XÃᵀ

K − (B̃∆′)X(B̃∆′)ᵀ
]

= AKX(B∆′)ᵀ + (B∆′)XAᵀ
K − E

γtj

[
(B̃∆′)X(B̃∆′)ᵀ

]
= AKX(B∆′)ᵀ + (B∆′)XAᵀ

K − (B∆′)X(B∆′)ᵀ −
q∑
j=1

βj(Bj∆
′)X(Bj∆

′)ᵀ. (16)

The operator norm ‖FK′ −FK‖ is

‖FK′ −FK‖ = ‖FK −FK′‖ = sup
X

‖(FK −FK′)(X)‖
‖X‖

Applying submultiplicativity of spectral norm to (16) and noting that ‖∆′‖ = ‖∆‖ completes the proof. �

Lemma B.3 (TK perturbation). If K and K ′ are mean-square stabilizing and ‖TK‖‖FK′ −FK‖ ≤ 1
2 then

‖(TK′ − TK)(Σ)‖ ≤ 2‖TK‖‖FK′ −FK‖‖TK(Σ)‖

≤ 2‖TK‖2‖FK′ −FK‖‖Σ‖.

Proof. The proof follows [19] using our modified definitions of TK and FK . �

Lemma B.4 (ΣK trace bound). If ρ(FK) < 1 then

Tr (ΣK) ≥ σ(Σ0)

1− ρ(FK)
.

Proof. We have by (5) that

Tr(ΣK) = Tr(TK(Σ0)) =

∞∑
t=0

Tr(F tK(Σ0)).

Since Σ0 � σ(Σ0)I we know the tth term satisfies the inequality F tK(Σ0) ≥ σ(Σ0)F tK(I), so we have

Tr(ΣK) ≥ σ(Σ0)

∞∑
t=0

Tr(F tK(I)). (17)

We have a generic inequality for a sum of n matrices Mi:

Tr

[
n∑
i

MiM
ᵀ
i

]
=

n∑
i

Tr [MiM
ᵀ
i ] =

n∑
i

‖Mi‖2F =

n∑
i

‖Mi ⊗Mi‖F ≥

∥∥∥∥∥
n∑
i

Mi ⊗Mi

∥∥∥∥∥
F
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where the last step is due to the triangle inequality. Recalling the definitions of F tK(I) and F tK we see they are

of the form of the LHS and RHS in (18) with all terms matched between F tK(I) and F tK so that the inequality

in (18) holds; this can be seen by starting with t = 1 and incrementing t up by 1 which will give (1 + p+ q)t

terms which are all matched. Thus,

Tr[F tK(I)] ≥ ‖F tK‖F ≥ ρ(FK)t. (18)

Continuing from (17) we have

Tr(ΣK) ≥ σ(Σ0)

∞∑
t=0

ρ(FK)t.

By hypothesis ρ(FK) < 1, and taking the sum of the geometric series completes the proof. �

Lemma B.5 (ΣK perturbation). If K is mean-square stabilizing and ‖∆‖ ≤ h∆(K) where h∆(K) is the

polynomial

h∆(K) :=
σ(Q)σ(Σ0)

4hBC(K) (‖AK‖+ 1)
,

then the associated state covariance matrices satisfy

‖ΣK′−ΣK‖ ≤ 4

(
C(K)

σ(Q)

)2 ‖B‖(‖AK‖+ 1)

σ(Σ0)
‖∆‖ ≤ C(K)

σ(Q)
.

Proof. First we show that K is mean-square stabilizing and ‖∆‖ ≤ h∆(K) then K ′ is also mean-square

stabilizing. This follows from an analogous argument in [19] by characterizing mean-square stability in terms

of ρ(FK) rather than ρ(AK) and using Lemma B.4. Let K ′′ be distinct from K with ρ(FK′′) < 1 and

‖K ′′ −K‖ ≤ h∆. We have

|Tr(ΣK′′ − ΣK)| ≤ n‖ΣK′′ − ΣK‖.

Since K and K ′′ are mean-square stabilizing Lemma B.5 holds so we have

|Tr(ΣK′′ − ΣK)| ≤ n C(K)

σmin(Q)
⇒ Tr(ΣK′′) ≤ Γ,

where we define

Γ := Tr(ΣK) + n
C(K)

σmin(Q)
, ε =

σmin(Σ0)

2Γ
.

Using Lemma B.4 we have

Tr (ΣK) ≥ σmin(Σ0)

1− ρ(FK)
=

2εΓ

1− ρ(FK)

Rearranging and substituting for Γ,

ρ(FK) ≤ 1− 2εΓ

Tr(ΣK)
= 1−

2ε
(

Tr(ΣK) + n C(K)
σmin(Q)

)
Tr(ΣK)

= 1− 2ε

(
1 +

nC(K)

σmin(Q) Tr(ΣK)

)
< 1− 2ε < 1− ε.

Now we construct the proof by contradiction. Suppose there is a K ′ with ρ(FK′) > 1 satisfying the perturbation

restriction

‖K ′ −K‖ ≤ h∆.
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Since spectral radius is a continuous function (see [52]) there must be a point K ′′′ on the path between K and

K ′ such that ρ(FK′′′) = 1− ε < 1. Since K and K ′′′ are mean-square stabilizing Lemma B.5 holds so we have

|Tr(ΣK′′′ − ΣK)| ≤ n C(K)

σmin(Q)
,

and rearranging

Tr(ΣK′′′) ≤ Tr(ΣK) + n
C(K)

σmin(Q)
= Γ.

However since K ′′′ is mean-square stabilizing Lemma B.4 holds so we have

Tr (ΣK′′′) ≥
σmin(Σ0)

1− ρ(FK′′′)
=

2εΓ

1− (1− ε)
= 2Γ

which is a contradiction. Therefore no such mean-square unstable K ′ satisfying the hypothesized perturbation

restriction can exist, completing the first part of the proof.

The rest of the proof follows [19] by using the condition on ‖∆‖, ‖ΣK‖ ≥ σ(Σ0), and Lemmas 3.7, B.1, and

B.3. The condition on ‖∆‖ directly implies

hB‖∆‖ ≤
σ(Q)σ(Σ0)

4C(K) (‖AK‖+ 1)
≤ σ(Q)σ(Σ0)

4C(K)
≤ 1

4
.

where the last step is due to the combination of Lemma 3.7 with ‖ΣK‖ ≥ σ(Σ0). By Lemma B.2 we have

‖FK′ −FK‖ ≤ 2‖B‖‖∆‖
(
‖A+BK‖+ ‖∆‖hB/2

)
≤ 2‖B‖‖∆‖

(
‖A+BK‖+ 1/8

)
≤ 2‖B‖‖∆‖

(
‖A+BK‖+ 1

)
.

Combining this with Lemma B.1 we have

‖TK‖‖FK′ −FK‖ ≤
(

C(K)

σ(Σ0)σ(Q)

)
(2‖B‖‖∆‖ (‖AK‖+ 1)) . (19)

By the condition on ‖∆‖ we have

‖∆‖ ≤ σ(Q)σ(Σ0)

4C(K)‖B‖ (‖AK‖+ 1)
,

so

‖TK‖‖FK′ −FK‖ ≤
1

2

which allows us to use Lemma B.3 by which we have

‖(TK − TK)(Σ0)‖ ≤ 2‖TK‖‖FK′ −FK‖‖TK(Σ0)‖ ≤
(

2C(K)

σ(Σ0)σ(Q)

)
(2‖B‖‖∆‖ (‖AK‖+ 1)) ‖TK(Σ0)‖

where the last step used (19). Using TK(Σ0) = ΣK gives

‖ΣK′ − ΣK‖ ≤
(

2C(K)

σ(Σ0)σ(Q)

)
(2‖B‖‖∆‖ (‖AK‖+ 1)) ‖(ΣK)‖.

Using Lemma 3.7 completes the proof. �

Now we bound the one step progress of policy gradient where we allow the step size to depend explicitly on

the current gain matrix iterate Ks.

Lemma B.6 (Gradient descent, one-step). Using the policy gradient step update Ks+1 = Ks− η∇C(Ks) with

step size

0 < η ≤ 1

16
min

{ (
σ(Q)σ(Σ0)
C(K)

)2

hB‖∇C(K)‖(‖AK‖+ 1)
,

σ(Q)

C(K)‖RK‖

}
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gives the one step progress bound

C(Ks+1)− C(K∗)

C(Ks)− C(K∗)
≤ 1− 2η

σ(R)σ(Σ0)
2

‖ΣK∗‖
.

Proof. The gradient update yields ∆ = −2ηEKs
ΣKs

. Putting this into Lemma 3.5 gives

C(Ks+1)− C(Ks)

= 2 Tr
[
ΣKs+1

∆ᵀEKs

]
+ Tr

[
ΣKs+1

∆ᵀRKs
∆
]

= −4ηTr
[
ΣKs+1ΣKsE

ᵀ
Ks
EKs

]
+ 4η2 Tr

[
ΣKsΣKs+1ΣKsE

ᵀ
Ks
RKsEKs

]
= −4ηTr

[
ΣKsΣKsE

ᵀ
Ks
EKs

]
+ 4ηTr

[
(−ΣKs+1 + ΣKs)ΣKsE

ᵀ
Ks
EKs

]
+ 4η2 Tr

[
ΣKs

ΣKs+1
ΣKs

Eᵀ
Ks
RKs

EKs

]
≤ −4ηTr

[
ΣKs

ΣKs
Eᵀ
Ks
EKs

]
+ 4η‖ΣKs+1

− ΣKs
‖Tr

[
ΣKs

Eᵀ
Ks
EKs

]
+ 4η2‖ΣKs+1

‖‖RKs
‖Tr

[
ΣKs

ΣKs
Eᵀ
Ks
EKs

]
≤ −4ηTr

[
ΣKs

ΣKs
Eᵀ
Ks
EKs

]
+ 4η

‖ΣKs+1 − ΣKs‖
σ(ΣKs)

Tr
[
Σᵀ
Ks
Eᵀ
Ks
EKsΣKs

]
+ 4η2‖ΣKs+1‖‖RKs‖Tr

[
ΣKsΣKsE

ᵀ
Ks
EKs

]
= −4η

(
1−
‖ΣKs+1 − ΣKs‖

σ(ΣKs)
− η‖ΣKs+1‖‖RKs‖

)
× Tr

[
Σᵀ
Ks
Eᵀ
Ks
EKsΣKs

]
= −η

(
1−
‖ΣKs+1

− ΣKs
‖

σ(ΣKs
)

− η‖ΣKs+1
‖‖RKs

‖
)
× Tr

[
∇C(Ks)

ᵀ∇C(Ks)
]

≤ −η
(

1−
‖ΣKs+1 − ΣKs‖

σ(Σ0)
− η‖ΣKs+1‖‖RKs‖

)
× Tr

[
∇C(Ks)

ᵀ∇C(Ks)
]

≤ −η
(

1−
‖ΣKs+1

− ΣKs
‖

σ(Σ0)
− η‖ΣKs+1

‖‖RKs
‖
)
× 4

σ(R)σ(Σ0)
2

‖ΣK∗‖
(C(Ks)− C(K∗)).

where the last step is due to σ(Σ0) ≤ σ(ΣKs) and Lemma 3.3. Note that the assumed condition on the step

size ensures the gain matrix difference satisfies the condition for Lemma B.5 as follows:

‖∆‖ = η‖∇C(Ks)‖ ≤
1

16

(
σ(Q)σ(Σ0)

C(Ks)

)2 ‖∇C(Ks)‖
hB‖∇C(Ks)‖(‖AKs‖+ 1)

≤ 1

4

(
σ(Q)σ(Σ0)

C(Ks)

)2
1

hB(‖AKs
‖+ 1)

≤ h∆(K)

where the last inequality is due to Lemma 3.7. Thus we can indeed apply Lemma B.5, by which we have

‖ΣKs+1
− ΣKs

‖
σ(Σ0)

≤ 4C(Ks)
2

σ(Q)2σ(Σ0)2
‖B‖(‖AKs

‖+ 1)‖∆‖ ≤ 1

4

where the last inequality is due to using the substitution ‖∆‖ = η‖∇C(Ks)‖ and the hypothesized condition

on η. Using this and Lemma 3.7 we have

‖ΣKs+1‖ ≤ ‖ΣKs+1 − ΣKs‖+ ‖ΣKs‖ ≤
σ(Σ0)

4
+
C(Ks)

σ(Q)
≤
‖ΣKs+1

‖
4

+
C(Ks)

σ(Q)
.

Solving for ‖ΣKs+1
‖ gives ‖ΣKs+1

‖ ≤ 4
3
C(Ks)
σ(Q) , so

1−
‖ΣKs+1

− ΣKs
‖

σ(Σ0)
− η‖ΣKs+1‖‖RKs‖ ≥ 1− 1

4
− η 4

3

C(Ks)

σ(Q)
‖RKs‖ ≥ 1− 1

4
− 4

3
· 1

16
=

2

3
≥ 1

2

where the second-to-last inequality used the hypothesized condition on η. Therefore

C(Ks+1)− C(Ks)

C(Ks)− C(K∗)
≤ −2η

σ(R)σ(Σ0)
2

‖ΣK∗‖
.

Adding 1 to both sides completes the proof. �
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Lemma B.7 (Cost difference lower bound). The following cost difference inequality holds:

C(K)− C(K∗) ≥ σ(Σ0)

‖RK‖
Tr(Eᵀ

KEK).

Proof. The proof follows that for an analogous condition located in the gradient domination lemma in [19].

Let K and K ′ generate the (stochastic) state and action sequences {xt}K,x , {ut}K,x and {xt}K′,x , {ut}K′,x
respectively. By definition of the optimal gains we have C(K∗) ≤ C(K ′). Then by Lemma 3.2 we have

C(K)− C(K∗) ≥ C(K)− C(K ′)

= −E
x0

[ ∞∑
t=0

AK
(
{xt}K′,x, {ut}K′,x

)]
.

Choose K ′ such that ∆ = K ′ −K = −R−1
K EK so that (8) from Lemma 3.3 holds with equality as

AK(x,K ′x) = −Tr
[
xxᵀEᵀ

KR
−1
K EK

]
.

Thus we have

C(K)− C(K∗) ≥ E
x0

[ ∞∑
t=0

Tr

(
{xt}K′,x{xt}ᵀK′,xE

ᵀ
KR
−1
K EK

)]
= Tr(ΣK′E

ᵀ
KR
−1
K EK)

≥ σ(Σ0)

‖RK‖
Tr(Eᵀ

KEK).

�

Lemma B.8. The following inequalities hold:

‖∇C(K)‖ ≤ ‖∇C(K)‖F ≤ h1(K) and ‖K‖ ≤ h2(K).

where h0(K), h1(K), h2(K) are the polynomials

h0(K) :=

√
‖RK‖(C(K)− C(K∗))

σ(Σ0)
,

h1(K) := 2
C(K)h0(K)

σ(Q)
, h2(K) :=

h0(K) + ‖BᵀPKA‖
σ(R)

.

Proof. The proof follows [19] with RK defined here. From the policy gradient expression we have

‖∇C(K)‖2F = ‖2EKΣK‖2F = 4 Tr(Σᵀ
KE

ᵀ
KEKΣK)

≤ 4‖ΣK‖2 Tr(Eᵀ
KEK).

Using Lemma 3.7 we have

‖∇C(K)‖2 ≤ 4

(
C(K)

σ(Q)

)2

Tr(Eᵀ
KEK),

and using Lemma B.7 we have

Tr(Eᵀ
KEK) ≤ ‖RK‖(C(K)− C(K∗))

σ(Σ0)
,

so

‖∇C(K)‖2F ≤ 4

(
C(K)

σ(Q)

)2 ‖RK‖(C(K)− C(K∗))

σ(Σ0)

Taking square roots completes the proof of the first part of the lemma.

For the second part of the lemma, we have

‖K‖ ≤ ‖R−1
K ‖‖RKK‖ ≤

1

σ(R)
‖RKK‖
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≤ 1

σ(R)
(‖RKK +BᵀPKA‖+ ‖BᵀPKA‖)

≤ 1

σ(R)

(√
Tr(Eᵀ

KEK) + ‖BᵀPKA‖
)

where the second line is due to Weyl’s inequality for singular values [19]. Using Lemma B.7 again on the

Tr(Eᵀ
KEK) term completes the proof. �

We now give the parameter and proof of global convergence of policy gradient descent in Theorem 4.3.

Theorem B.9 (Policy gradient convergence). Consider the assumptions and notations of Theorem 4.3 and

define

cpg :=
1

16
min

{ (
σ(Q)σ(Σ0)
C(K0)

)2

hBh1(‖A‖+h2‖B‖+1)
,

σ(Q)

C(K0)‖RK‖

}
h1 := maxK h1(K) subject to C(K) ≤ C(K0),

h2 := maxK h2(K) subject to C(K) ≤ C(K0),

‖RK‖ := maxK ‖RK‖ subject to C(K) ≤ C(K0).

Then the claim of Theorem 4.3 holds.

Proof. We have by Weyl’s inequality for singular values (15), submultiplicativity of spectral norm, and Lemma

B.8 that

‖B‖‖∇C(K)‖(‖A+BK‖+ 1) ≤ ‖B‖‖∇C(K)‖(‖A‖+ ‖B‖‖K‖+ 1)

≤ ‖B‖h1(K)(‖A‖+ ‖B‖h2(K) + 1)

Thus by choosing 0 < η ≤ cpg we satisfy the requirements for Lemma B.6 at s = 1, which implies that progress

is made at s = 1, i.e., that C(K1) ≤ C(K0) according to the rate in Lemma B.6. Proceeding inductively and

applying Lemma B.6 at each step completes the proof. �

Remark B.10. The quantities h1, h2, and ‖RK‖ may be upper bounded by quantities that depend only on

problem data and C(K0) e.g. using the cost bounds in Lemma 3.7, which we omit for brevity, so a conservative

minimum step size η may be computed exactly.

Appendix C. Model-free policy gradient descent

The overall proof technique of showing high probability convergence of model-free policy gradient proceeds

by showing that the difference between estimated gradient and true gradient is bounded by a sufficiently small

value that the iterative descent progress remains sufficiently large to maintain a linear rate. We use a matrix

Bernstein inequality to ensure that enough sample trajectories are collected to estimate the gradient to high

enough accuracy.

We begin with a lemma shows that C(K) and ΣK can be estimated with arbitrarily high accuracy as the

rollout length ` increases.

Lemma C.1 (Approximating C(K) and ΣK with infinitely many finite horizon rollouts). Let ε be an arbitrary

small constant. Suppose K gives finite C(K). Define the finite-horizon estimates

Σ
(`)
K := E

[
`−1∑
i=0

xix
ᵀ
i

]
, C(`)(K) := E

[
`−1∑
i=0

xᵀiQxi + uᵀiRui

]
where expectation is with respect to x0, {δti}, {γtj}. Then the following hold:

` ≥ h`(ε) :=
n ·C2(K)

εσ(Σ0)σ2(Q)
⇒ ‖Σ(`)

K − ΣK‖ ≤ ε
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` ≥ h`(ε) := h`(ε)‖QK‖ ⇒ |C(`)(K)− C(K)| ≤ ε.

Proof. The proof follows [19] exactly using suitably modified definitions of C(K), TK , FK . �

Next we bound cost and gradient perturbations in terms of gain matrix perturbations and problem data.

Using the same restriction as in Lemma B.5 we have Lemmas C.2 and C.3.

Lemma C.2 (C(K) perturbation). If ‖∆‖ ≤ h∆(K), then the cost difference is bounded as

|C(K ′)− C(K)| ≤ hcost(K)C(K)‖∆‖

where hcost(K) is the polynomial

hcost(K) :=
4 Tr(Σ0)‖R‖
σ(Σ0)σ(Q)

(
‖K‖+

h∆(K)

2
+ ‖B‖‖K‖2(‖AK‖+ 1)

C(K)

σ(Σ0)σ(Q)

)
Proof. The proof follows [19] using suitably modified definitions of C(K), TK , FK , however compared with

[19] we terminate the proof bound earlier so as to avoid a degenerate bound in the case of K = 0, and we also

correct typographical errors. Note that ‖∆‖ has a more restrictive upper bound due to the multiplicative

noise. �

Lemma C.3 (∇C(K) perturbation). If ‖∆‖ ≤ h∆(K), then the policy gradient difference is bounded as

‖∇C(K ′)−∇C(K)‖ ≤ hgrad(K)‖∆‖,
and ‖∇C(K ′)−∇C(K)‖F ≤ hgrad(K)‖∆‖F ,

where

hgrad(K) := 4

(
C(K)

σ(Q)

)[
‖R‖+ ‖B‖ (‖A‖+ hB(‖K‖+ h∆(K)))

(
hcost(K)C(K)

Tr(Σ0)

)
+ hB‖B‖

(
C(K)

σ(Σ0)

)]
+ 8

(
C(K)

σ(Q)

)2(‖B‖(‖AK‖+ 1)

σ(Σ0)

)
h0(K).

Proof. The proof generally follows [19] using Lemmas B.5, C.2, and B.7 with RK and EK modified appropriately.

Recalling ∇C(K) = 2EKΣK , and using the triangle inequality,

‖∇C (K ′)−∇C(K)‖ = ‖2EK′ΣK′ − 2EKΣK‖
≤ 2‖ (EK′ − EK) ΣK′‖+ 2‖EK (ΣK′ − ΣK) ‖. (20)

First we bound the second term of (20). By Lemma B.7

‖EK‖ ≤ ‖EK‖F =
√

Tr(Eᵀ
KEK) ≤ h0(K).

Since ‖∆‖ ≤ h∆(K) Lemma B.5 holds and we have

‖ΣK′ − ΣK‖ ≤ 4

(
C(K)

σ(Q)

)2 ‖B‖(‖AK‖+ 1)

σ(Σ0)
‖∆‖.

Therefore the second term is bounded as

2‖EK (ΣK′ − ΣK) ‖ ≤ 2‖EK‖‖ΣK′ − ΣK‖

≤ 8

(
C(K)

σ(Q)

)2(‖B‖(‖AK‖+ 1)

σ(Σ0)

)
h0(K)‖∆‖.

Now we bound the first term of (20). Since ‖∆‖ ≤ h∆(K) Lemma B.5 holds and by the reverse triangle

inequality

‖ΣK′‖ − ‖ΣK‖ ≤ ‖ΣK′ − ΣK‖ ≤
C(K)

σ(Q)
.
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Rearranging and using Lemma 3.7 gives

‖ΣK′‖ ≤ ‖ΣK‖+
C(K)

σ(Q)
≤ 2C(K)

σ(Q)
.

By an intermediate step in the proof of Lemma C.2 we have

‖PK′ − PK‖ ≤
hcost(K)C(K)

Tr(Σ0)
‖∆‖. (21)

Expanding the difference EK′ − EK gives

EK′ − EK = R (K ′ −K) +Bᵀ (PK′ − PK)A

+Bᵀ (PK′ − PK)BK ′ +

q∑
j=1

βjB
ᵀ
j (PK′ − PK)BjK

′

+BᵀPKB (K ′ −K) +

q∑
j=1

βjB
ᵀ
j PKBj (K ′ −K) .

Using the reverse triangle inequality with the ∆ bound yields

‖K ′‖ − ‖K‖ ≤ ‖∆‖ ≤ h∆(K)→ ‖K ′‖ ≤ ‖K‖+ h∆(K)

so

‖EK′ − EK‖ ≤ ‖R‖‖K ′ −K‖+ ‖A‖‖B‖‖PK′ − PK‖

+

(
‖B‖2 +

q∑
j=1

βj‖Bj‖2
)

(‖K‖+ h∆(K))‖PK′ − PK‖

+

(
‖B‖2 +

q∑
j=1

βj‖Bj‖2
)
‖PK‖‖K ′ −K‖.

Substituting in (21) and ‖PK‖ ≤ C(K)
σ(Σ0) from Lemma 3.7:

‖EK′−EK‖ ≤
[
‖R‖+ (‖A‖‖B‖+ hB‖B‖(‖K‖+h∆(K)))

(
hcost(K)C(K)

Tr(Σ0)

)
+ hB‖B‖

(
C(K)

σ(Σ0)

)]
‖∆‖.

Using ‖ (EK′ − EK) ΣK′‖ ≤ ‖EK′ − EK‖‖ΣK′‖ and adding the two terms of (20) completes the proof. �

We now discuss smoothing of the cost in the context of model-free gradient descent. As in [19], in the

model-free setting we apply Frobenius-norm ball smoothing to the cost. Let Sr be the uniform distribution

over all matrices with Frobenius norm r (the boundary of the ball), and Br be the uniform distribution over

all matrices with Frobenius norm at most r (the entire ball). The smoothed cost is

Cr(K) = EU∼Br
[C(K + U)]

where U is a random matrix with the same dimensions as K and Frobenius norm r. The following lemma

shows that the gradient of the smoothed function can be estimated just with an oracle of the function value.

Lemma C.4 (Zeroth-order gradient estimation). The gradient of the smoothed cost is related to the unsmoothed

cost by

∇Cr(K) =
mn

r2
EU∼Sr [C(K + U)U ].

Proof. The result is proved in Lemma 2.1 in [21]. For completeness, we prove it here. By Stokes’ Theorem we

have

∇
∫
Br

C(K + U)dU =

∫
Sr
C(K + U)

(
U

‖U‖F

)
dU =

∫
Sr
C(K + U)

(
U

r

)
dU.
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By definition we have

Cr(K) =

∫
Br
C(K + U)dU

vold (Br)
.

We also have

EU∼Sr [C(K + U)U ] = rEU∼Sr
[
C(K + U)

(
U

r

)]
= r

∫
δSr C(K + U)

(
U
r

)
dU

vold−1 (Sr)
and the ratio of ball surface area to volume

vold−1 (Sr)
vold (Br)

=
d

r
.

Combining, we have

∇Cr(K) =
∇
∫
Br
C(K + U)dU

vold (Br)
=

∫
Sr C(K + U)

(
U
r

)
dU

vold−1 (Sr)
=

d

r2
EU∼Sr [C(K + U)U ].

�

Lemma C.4 shows that the gradient of the smoothed cost can be found exactly with infinitely many

infinite-horizon rollouts. Much of the remaining proofs goes towards showing that the error between the

gradient of the smoothed cost and the unsmoothed cost, the error due to using finite-horizon rollouts, and

the error due to using finitely many rollouts can all be bounded by polynomials of the problem data. As

noted by [19] the reason for smoothing in a Frobenius norm ball rather than over a Gaussian distribution is to

ensure stability and finiteness of the cost of every gain within the smoothing domain, although now in the

multiplicative noise case we must be even more restrictive about our choice of perturbation on K because we

require not only mean stability, but also mean-square stability.

We now give a Bernstein inequality for random matrices and some simple variants; this allows us to bound

the difference between the sample average of a random matrix and its expectation.

Lemma C.5 (Matrix Bernstein inequality [50]). Let {Zi}Ni=1 be a set of N independent random matrices

of dimension d1 × d2 with d+ = d1 + d2, E[Zi] = 0, ‖Zi‖ ≤ R almost surely, and maximum variance

σ2 := max
(∥∥∥∑N

i=1 E(ZiZ
ᵀ
i )
∥∥∥ ,∥∥∥∑N

i=1 E(Zᵀ
i Zi)

∥∥∥). Then for all ε ≥ 0

P

[∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥ ≥ ε
]
≤ d+ exp

(
−3

2
· ε2

3σ2 +Rε

)

Proof. The lemma and proof follow [50] exactly. �

Lemma C.6 (Matrix Bernstein inequality, sample mean variant). Let {Zi}Ni=1 be a set of N independent

random matrices of dimension d1 × d2 with d+ = d1 + d2, E[Zi] = Z, ‖Zi − Z‖ ≤ R almost surely, and

maximum variance σ2 := max (‖E(ZiZ
ᵀ
i )− ZZᵀ‖ , ‖E(Zᵀ

i Zi)− ZᵀZ‖), and sample average Ẑ := 1
N

∑N
i=1 Zi.

Then for all ε ≥ 0

P
[∥∥∥Ẑ − Z∥∥∥ ≥ ε] ≤ d+ exp

(
−3

2
· ε2N

3σ2 +Rε

)

Proof. The lemma follows readily from the matrix Bernstein inequality in Lemma C.5 by variable substitutions.

Notice that the bound in the RHS of this variant depends on the number of samples N . �

Lemma C.7 (Matrix Bernstein inequality, rephrased).

Let {Zi}Ni=1 be a set of N independent random matrices of dimension d1 × d2 with E[Zi] = Z, ‖Zi − Z‖ ≤ RZ
almost surely, and maximum variance max (‖E(ZiZ

ᵀ
i )− ZZᵀ‖ , ‖E(Zᵀ

i Zi)− ZᵀZ‖) ≤ σ2
Z , and sample average
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Ẑ := 1
N

∑N
i=1 Zi. Let a small tolerance ε ≥ 0 and small probability 0 ≤ µ ≤ 1 be given. If

N ≥ 2 min(d1, d2)

ε2

(
σ2
Z +

RZε

3
√

min(d1, d2)

)
log

[
d1 + d2

µ

]
then

P
[∥∥∥Ẑ − Z∥∥∥

F
≤ ε
]
≥ 1− µ.

Proof. The lemma follows readily from the matrix Bernstein inequality in Lemma C.6 by rearrangement and

the bound ‖M‖F ≤
√

min(d1, d2)‖M‖. �

Lemma C.8 (Estimating ∇C(K) with finitely many infinite-horizon rollouts). Given an arbitrary tolerance ε

and probability µ suppose the exploration radius r is chosen as

r ≤ hr
( ε

2

)
:= min

{
h∆(K),

1

hcost(K)
,

ε

2hgrad(K)

}
and the number of samples nsample of Ui ∼ Sr is chosen as

nsample ≥ hsample

( ε
2
, µ
)

:=
8 min(m,n)

ε2

(
σ2
∇̂ +

R∇̂ε

6
√

min(m,n)

)
log

[
m+ n

µ

]
,

R∇̂ :=
2mnC(K)

r
+
ε

2
+ h1(K),

σ2
∇̂ :=

(
2mnC(K)

r

)2

+
( ε

2
+ h1(K)

)2

.

Then with high probability of at least 1− µ the estimate

∇̂C(K) =
1

nsample

nsample∑
i=1

mn

r2
C (K + Ui)Ui

satisfies the error bound

‖∇̂C(K)−∇C(K)‖F ≤ ε.

Proof. First note that ‖K ′ −K‖F = ‖∆‖F = ‖U‖F = r. We break the difference between estimated and true

gradient ∇̂C(K)−∇C(K) into two terms as(
∇Cr(K)−∇C(K)

)
+
(
∇̂C(K)−∇Cr(K)

)
. (22)

Since r ≤ h∆(K) we see that Lemmas C.2 and C.3 hold. By enforcing the bound r ≤ 1
hcost(K) , by Lemma C.2

and noting that ‖∆‖ ≤ ‖∆‖F we have

|C(K+U)− C(K)| ≤ C(K)→ C(K+U) ≤ 2C(K). (23)

This ensures stability of the system under the perturbed gains so that C(K + U) is well-defined. For the first

term ∇Cr(K)−∇C(K), by enforcing r ≤ ε
2hgrad(K) , by Lemma C.3 we have

‖∇C(K + U)−∇C(K)‖F ≤
ε

2
.

Since ∇Cr(K) is the expectation of ∇C(K + U), by the triangle inequality we have

‖∇Cr(K)−∇C(K)‖F ≤
ε

2
. (24)

For the second term ∇̂C(K)−∇Cr(K), we work towards using the matrix Bernstein inequality and adopt

the notation of the associated lemma. First note that by Lemma C.4 we have Z := ∇Cr(K) = E[∇̂C(K)].

Each individual sample Zi :=
(
mn
r2

)
C(K + Ui)Ui has the bounded Frobenius norm

‖Zi‖F =
∥∥∥(mn

r2

)
C(K + Ui)Ui

∥∥∥
F

=
mnC(K + Ui)‖Ui‖F

r2
=
mnC(K + Ui)r

r2
=
mnC(K + Ui)

r
≤ 2mnC(K)

r
.
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Next, from (24) and Lemma B.8 we have

‖Z‖F = ‖∇Cr(K)‖F ≤
ε

2
+ ‖∇C(K)‖F

≤ ε

2
+ h1(K)

so by the triangle inequality each sample difference has the bounded Frobenius norm

‖Zi − Z‖F ≤ ‖Zi‖F + ‖Z‖F

≤ 2mnC(K)

r
+
ε

2
+ h1(K).

Using (23) and ‖Ui‖F ≤ r, the variance of the differences is likewise bounded as

‖E(ZiZ
ᵀ
i )− ZZᵀ‖ ≤ ‖E(ZiZ

ᵀ
i )‖F + ‖ZZᵀ‖F

≤ max
Zi

(‖Zi‖F )
2

+ ‖Z‖2F

≤
(

2mnC(K)

r

)2

+
( ε

2
+ h1(K)

)2

An identical argument holds for ‖E(Zᵀ
i Zi)− ZᵀZ‖ so the assumed choice of σ2

∇̂
is valid. Thus, using the

assumed number of samples nsample ≥ hsample satisfies the condition of the matrix Bernstein inequality, and

thus with high probability of at least 1− µ we have

‖∇̂C(K)− E[∇̂C(K)]‖F = ‖∇̂C(K)−∇Cr(K)‖F ≤
ε

2
.

Adding the bounds on the two terms in (22) and using the triangle inequality completes the proof. �

Lemma C.9 (Estimating ∇KC(K) with finitely many finite-horizon rollouts). Given an arbitrary tolerance ε

and probability µ, suppose the exploration radius r is chosen as

r ≤ hr
( ε

4

)
= min

{
h∆(K),

1

hcost(K)
,

ε

4hgrad(K)

}
and the rollout length ` is chosen as

` ≥ h`
( rε

4mn

)
=

4mn2C2(K)
(
‖Q‖+ ‖R‖‖K‖2

)
rεσ(Σ0)σ2(Q)

.

Suppose that the distribution of the initial states is such that x0 ∼ P0 implies ‖xi0‖ ≤ L0 almost surely for

any given realization xi0 of x0. Suppose additionally that the multiplicative noises are distributed such that the

following bound is satisfied almost surely under the closed-loop dynamics with any gain K +Ui where ‖Ui‖ ≤ r
for any given realized sequence xit of xt with a positive scalar z ≥ 1

`−1∑
t=0

(
xit

ᵀ
Qxit + uit

ᵀ
Ruit

)
≤ z E

δ,γ

[
`−1∑
t=0

(
xᵀtQxt + uᵀtRut

)]
.

Suppose the number nsample of Ui ∼ Sr is chosen as

nsample ≥ hsample,trunc

(
ε

4
, µ,

L2
0

σ(Σ0)
, z

)
:=

32 min(m,n)

ε2

(
σ2
∇ +

R∇̂ε

12
√

min(m,n)

)
log

[
m+ n

µ

]
where R∇̃ :=

2mnzL2
0C(K)

rσ(Σ0)
+
ε

2
+ h1(K)

σ2
∇̃ :=

(
2mnzL2

0C(K)

rσ(Σ0)

)2

+
( ε

2
+ h1(K)

)2

The finite-horizon estimate of the cost is defined as

Ĉ (K + Ui) :=

`−1∑
t=0

(
xit

ᵀ
Qxit + uit

ᵀ
Ruit

)
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under the closed loop dynamics with gain K + Ui. Then with high probability of at least 1− µ the estimated

gradient

∇̃C(K) :=
1

nsample

nsample∑
i=1

mn

r2
Ĉ (K + Ui)Ui

satisfies the error bound

‖∇̃C(K)−∇C(K)‖F ≤ ε.

Proof. Similar to before, we break the difference between estimated and true gradient into three terms as

∇̃C(K)−∇C(K) = (∇̃ − ∇′) + (∇′ − ∇̂) + (∇̂ − ∇)

where ∇′C(K) =
1

nsample

nsample∑
i=1

mn

r2
C(`) (K + Ui)Ui

and ∇̂C(K) is defined as in Lemma C.8. The third term is handled by Lemma C.8. Notice that since

‖xi0‖ ≤ L0 we have σ(Σ0) ≤ σ(Σ0) ≤ L2
0 so

L2
0

σ(Σ0) ≥ 1. Similarly z ≥ 1, and thus

hsample,trunc

(
ε

4
, µ,

L2
0

σ(Σ0)
, z

)
≥ hsample

( ε
4
, µ
)
.

Thus the choice of r and nsample satisfy the conditions of Lemma C.8, so with high probability of at least 1−µ

‖∇̂C(K)−∇C(K)‖F ≤
ε

4
. (25)

For the second term, by using the choices ` ≥ h`
(
rε

4mn

)
and C(K + Ui) ≤ 2C(K), Lemma C.1 holds and

implies that ∥∥∥C(`) (K + Ui)− C (K + Ui)
∥∥∥
F
≤ rε

4mn
.

By the triangle inequality, submultiplicativity, and ‖Ui‖F ≤ r∥∥∥∥∥ 1

nsample

nsample∑
i=1

mn

r2

[
C(`) (K + Ui)− C (K + Ui)

]
Ui

∥∥∥∥∥
F

= ‖∇′KC(K)− ∇̂C(K)‖F ≤
ε

4
. (26)

For the first term, ‖xi0‖ ≤ L0 implies

L2
0

σ(Σ0)
Σ0 � xi0xi0

ᵀ
.

Applying this to the cost, summing over time and using the assumed restriction on the multiplicative noise we

have

2zL2
0C(K)

σ(Σ0)
≥ zL2

0

σ(Σ0)
C(K + Ui)

≥ z E
δ,γ

[ ∞∑
t=0

(
xit

ᵀ
Qxit + uit

ᵀ
Ruit

)]

≥
`−1∑
t=0

(
xit

ᵀ
Qxit + uit

ᵀ
Ruit

)
.

Using this and an argument identical to Lemma C.8, each sample Zi :=
(
mn
r2

)
Ĉ(K + Ui)Ui has bounded

Frobenius norm

‖Zi‖F =
∥∥∥(mn

r2

)
Ĉ(K + Ui)Ui

∥∥∥
F
≤ 2mnzL2

0C(K)

rσ(Σ0)
.
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By (25) and (26) we have for Z := E[∇̃C(K)] = ∇′KC(K)

‖Z‖F = ‖∇′KC(K)‖F ≤
ε

4
+ ‖∇̂C(K)‖F

≤ ε

4
+
ε

4
+ ‖∇KC(K)‖F

≤ ε

2
+ h1(K)

Using arguments identical to Lemma C.8 we obtain the bounds on the sample difference R∇̃ = ‖Zi − Z‖F
and variance σ2

∇̃
given in the assumption. Thus the polynomial hsample,trunc is large enough so the matrix

Bernstein inequality implies

‖∇̃C(K)−∇′KC(K)‖F ≤
ε

4

with high probability 1− µ. Adding the three terms together and using the triangle inequality completes the

proof. �

We now give the parameters and proof of high-probability global convergence in Theorem 5.1.

Theorem C.10 (Model-free policy gradient convergence). Consider the assumptions and notations of Theorem

5.1 where the number of samples nsample, rollout length `, and exploration radius r are chosen according to the

fixed quantities

r ≥ hr,GD := hr

(
ε′

4

)
,

` ≥ h`,GD := h`

(
rε′

4mn

)
,

nsample ≥ hsample,GD := hsample,trunc

(
ε′

4
,
µ

N
,
L2

0

σ(Σ0)
, z

)
,

where ε′ := min

{
σ(Σ0)2σ(R)

‖ΣK∗‖C(K0)hcost
· ε, h∆

η

}
,

hcost := max
K

hcost(K) subject to C(K) ≤ 2C(K0)

h∆ := min
K

h∆(K) subject to C(K) ≤ 2C(K0)

Then the claim of Theorem 5.1 holds.

Proof. The proof follows [19] using the polynomials defined in our theorem. The last part of the proof is the

same as in Theorem 4.3. As noted by [19], the monotonic decrease in the function value during gradient descent

and the choice of exploration radius r are sufficient to ensure that all cost values encountered throughout

the entire algorithm are bounded by 2C(K0), ensuring that all polynomial quantities used are bounded as

well. We also require ε′ ≤ h∆

η in order for ‖∆‖ = η‖∇̃C(K)−∇KC(K))‖ to satisfy the condition of Lemma

C.2. �

Remark C.11. As in Remark B.10, the quantities hcost and h∆ may be upper (lower) bounded by quantities

that depend on problem data and C(K0), so a conservative minimum exploration radius r, number of rollouts

nsample, and rollout length ` can be computed exactly in terms of problem data. Looking back across the terms

that feed into the step size, number of rollouts, rollout length, and exploration radius, we see C(K), ‖ΣK‖,
‖PK‖, and ‖B‖2 +

∑q
j=1 βj‖Bj‖2 are necessarily greater with state- and/or input-dependent multiplicative

noise, and thus the algorithmic parameters are worsened by the noise.
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