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Abstract. We investigate the problem of practical output regulation, i.e., to design a controller that

brings the system output in the vicinity of a desired target value while keeping the other variables

bounded. We consider uncertain systems that are possibly nonlinear and the uncertainty of their

linear parts is modeled element-wise through a parametric family of matrix boxes. An optimization-

based design procedure is proposed that delivers a continuous-time control and estimates the maximal

regulation error. We also analyze an event-triggered emulation of this controller, which can be

implemented on a digital platform, along with an explicit estimates of the regulation error.

1. Introduction

Output regulation of uncertain dynamic systems is a fundamental problem in the control litera-

ture that finds a wide range of real-world applications [27]. The problem has been studied in various

settings depending on the system dynamics (e.g., linear [13] or nonlinear models [23]) and uncer-

tainty nature (e.g., characterization in time [22] or frequency domains [7]). In the light of recent

developments of digitalization, communication and computation limitations of the controllers’ ar-

chitecture have also become an important consideration, which also contributes to this variety of the

setting. In particular, one of the distinct features of the controllers is the time scale under which the

controller receives output measurements or updates the control efforts applied to the systems (e.g.,

continuous [13], periodic [9], or event-based interactions [37]).

From a literature point of view, the uncertainty aspect is often the focus of robust control while

the time-scale implementation of the controllers is the main theme of the event-triggered mechanism.

The control synthesis tools of output regulation were first developed in the robust control literature

for the setting in which the uncertainty is characterized in the frequency domain [7, 18]. The setting

of time-domain uncertainty, however, remains much less explored partly, due to the inherent provable

computational difficulty [28]. Considering the current existing works briefly mentioned above, we

set the following as our main objective in this study:

Given a nonlinear plant with element-wise time-domain uncertainty, we aim to develop a scalable

computational framework, along with rigorous and explicit performance guarantees, to synthesize a
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robust output regulator and an event-triggered mechanism enabling its implementation on a digital

platform.

Related literature on robust control. A natural way for modeling of the uncertainty in the

time domain is through the state-space representation of the dynamic systems. The stability of

such systems can be cast as an optimization program, which unfortunately is often computationally

intractable [10]. Conservative approximations in the form of linear matrix inequalities (LMIs) are

proposed for particular subclasses of uncertainty including single ellipsoid [34] or polytopic systems

with low number of vertices [13, 14, 1]. A richer modeling framework is element-wise or box un-

certainty that allows to conveniently incorporate different sources of uncertainties. One approach

to deal with this class of uncertainty is randomized algorithms [35]. Alternatively, one can leverage

the recent developments in the robust optimization literature [4] to address the computational bot-

tleneck. The optimization-based framework proposed in this paper exploits the latter result in the

context of output regulation.

Related literature on event-triggered control of uncertain systems. The second part of this

study is concerned with event-triggered control, as a powerful technique to address the potential

communication limitation on the measurement or actuation side. A recent approach towards event-

triggered control of uncertain systems builds on an adaptive control perspective [37, 36]. The

structure of an event triggering mechanism dictated by the necessity to maintain a positive dwell

time between consecutive events usually makes it impossible to ensure asymptotic convergence. As

such, the practical stability (i.e., convergence to a “tunable” invariant set) is aimed for. Such a

notion is also adopted in other contexts like quantized control [5], and has been investigated in the

presence of a common Lyapunov function [22, 23].

Focusing on uncertain linear systems, the work [34] considers norm-bounded uncertainties with

continuous measurements, while [24, 30] develop mechanism under the assumption that the system is

minimum-phase. Most recently, the work [21] studies the problem of output regulation together along

with an event-triggering mechanism in which the robustness is guaranteed for an unstructured open

uncertainty set. Concerning nonlinear systems, the recent work [16] proposes an event-triggered

mechanism under the assumption that the system is input-to-state stable. Unlike the existing

literature mentioned above, in this article we opt to introduce an event-triggering mechanism in

which both monitoring the output measurement and implementing the actuation values operate

on a discrete-time basis. To our best knowledge, none of the existing works considers this setting

in control of uncertain nonlinear systems. The closest work in this spirit is [39], in which the

class of single-input single-output system is considered and the performance is guaranteed only for

sufficiently large feedback gains and sufficiently small periodic sampled-times.

Our contributions. The particular emphasis of this study is on the computational aspect of the

control design and the corresponding event-triggering mechanism, along with explicit performance

guarantees. More specifically, the contributions of the article are summarized as follows:

(i) Dynamic structure and inherent hardness: We propose a class of dynamic output

controllers aiming to locate the closed-loop equilibrium in accordance with the desired reg-

ulation task (Section 3.1 and Lemma 3.1). We further show that from a computational

viewpoint stability analysis of the proposed controller is strongly NP-hard (Proposition 3.2).



EVENT-TRIGGERED ROBUST OUTPUT REGULATION 3

(ii) Robust control under element-wise (box) uncertainties: We provide a sufficient

condition along with an optimization framework to synthesize a dynamic output controller

that enjoys a provable practical stability (Theorem 3.3). As a byproduct, we also show

that given any fixed controller, the proposed optimization program reduces to a tractable

convex optimization that can be viewed as a computational certification tool for the practical

stability (Corollary 3.4).

(iii) Sampled-time event-triggered mechanism: We propose a unifying triggering mech-

anism together with easy-to-compute sufficient conditions under which the proposed out-

put controller can be implemented through aperiodic measurements and event-based actu-

ation (Theorem 4.2). The proposed mechanism offers explicit computable maximal inter-

sampling and regulation error bounds. The proposed result subsumes both the existing

approaches [33, 12] as a special case (Corollary 4.5 and Remark 4.3).

(iv) Numerical algorithm: Leveraging recent results from [20], we propose a numerical al-

gorithm to deal with nonlinearities of the proposed optimization program concerning the

control synthesis of the output regulation task (Algorithm 2).

In the rest of the article, we present a formal description of the problem along with some basic

assumptions in Section 2. The robust control method is developed in Section 3, and the sampled-

time event-triggered mechanism is presented in Section 4. Section 5 discusses an algorithm to tackle

the proposed optimization program, and further provides numerical example in order to validate

the theoretical results.

Notation. The set of n×n symmetric matrices and the set of n×n positive-definite (semi-definite)

symmetric ones are denoted by Sn and Sn�0 (Sn�0), respectively. For two symmetric matrices A and

B, we write A � B (respectively, A � B) if A − B ∈ Sn�0 (respectively, Sn�0). For a square matrix

A, we denote [A]† = A + A>. The symbol Diag {A1, A2, ..., An} denotes the block diagonal matrix

with blocks A1, A2, ..., An. For briefness in notations, the matrix
[
A B>
B C

]
is shown by

[
A ∗
B C

]
. We

use e1, . . . , em to denote the standard coordinate basis of Rm. Also, 1m ∈ Rm denotes the vector

whose elements are all equal to 1.

2. Problem Statement

Consider the control system{
ẋ(t) = A?x(t) +B?u(t) + k?

(
x(t)

)
y(t) = Cx(t)

(1)

where the vector x(t) ∈ Rnx , u(t) ∈ Rnu , and y(t) ∈ Rny are the state, the control, and the output

vectors, respectively. The matrices A? and B? represent the linear part of the state dynamics,

and the function k? : Rnx → Rnx encapsulates the nonlinearity of the dynamics. Throughout this

article, we assume that system (1) admits a unique solution x(·) for any x(0). The controller to

be designed in the next section has access only to the output y(t). We allow the matrices A?, B?

and the nonlinearity k? : Rnx → Rnx in the system (1) to be partially uncertain. Our main control

objective is to stabilize (1) in the Lagrange sense (i.e., all solutions are bounded) and steer the

output trajectory of (1) to an ε-neighborhood of a target value yd ∈ Rny . Formally speaking, we
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aim to ensure that

sup
t≥0
‖x(t)‖ <∞, lim

t→∞
‖y(t)− yd‖ ≤ ε ∀x(0) ∈ Rnx . (2)

The special case of ε = 0 corresponds to asymptotic output regulation and the relaxed condition

with is known as “ε-practical output stability” [26].

Henceforth, the following assumptions are adopted.

Assumption 2.1. [Uncertainty characterization] System (1) and the desired value yd ∈ Rny satisfy

the following assumptions:

(i) (Box uncertainty) Matrices A? and B? obey inequalities

|A? −A| ≤ Ab, |B? −B| ≤ Bb, (3)

where A and B are known nominal matrices, the inequalities are understood element-wise,

and Ab =
[
abij

]
ij
, Bb =

[
bbij

]
ij

are the respective uncertainty bounds.

(ii) (Bounded nonlinearity) The function k? satisfies

‖k?(x1)− k?(x2)‖ ≤ kb, ∀x1, x2 ∈ Rnx (4)

where kb ≥ 0 is a known constant.

(iii) (Existence of an equilibrium) There exists a pair (xd, ud) ∈ Rnx × Rnu such that

yd = Cxd and A?xd + k?(xd) = −B?ud . (5)

Assumption 2.1(ii) holds if and only if the nonlinearity of the dynamics is globally bounded. If

‖k?(x)‖ ≤ C, then (4) holds with kb = 2C. However, this estimate of kb may be too conservative,

e.g., if k? is an uncertain constant, one can actually choose kb = 0. The “incremental” condition (4)

thus provides more flexbility. There are several classes of nonlinear dynamics for which the bound (4)

is available: (i) pendulum-like nonlinearity which represents periodicity of the dynamics, e.g., phase-

locked loops [38, 32], or swing equations in power systems [25]; (ii) nonlinearity presented due to an

underlying neural network architecture [8] or a lookup-table [11]. Such nonlinearities may or may

not be fully known, but regardless of this knowledge, it is often too complicated to be utilized in

control synthesis algorithms. Furthermore, we emphasize that the bound kb will not be required for

control design and is only used in the final performance bounds.

Assumption 2.1(iii) involves (ny + nx) algebraic constraints with (nx + nu) variables. Therefore,

we typically expect that such equations have a solution (xd, ud) when nu ≥ ny, i.e., the number of

control variables is not less than the number of outputs. When the dynamic system (1) is linear (i.e.,

k∗ is constant), these equations reduce to a set of linear constraints, and that a sufficient condition

for Assumption 2.1(iii) is the matrix
[
C 0
A? B?

]
of full column rank.

Problem 2.2. Consider the system (1) under Assumption 2.1, and let yd ∈ Rny and ε ≥ 0 be a

desired target and regulation precision, respectively.

(i) Control synthesis: Synthesize an output control y[0,t] 7→ u(t),1 t ≥ 0, in order to ensure

the ε-practical output regulation in the sense of (2).

1The notation y[0,t] is the restriction of the function y to the set [0, t], that is, {y(s) : s ∈ [0, t]}.
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(ii) Sampled-time event-based emulation: Given a prescribed series of measurement sampled-

times, design a triggering mechanism to update the control along with a guaranteed precision

of the desired output regulation (2).

We start with designing a continuous-time controller (Section 3) whose sampled-time redesign, or

emulation, is considered in Section 4. Note that the viability of the sampled-time emulation reflects

a certain robustness level of the continuous-time controller.

3. Continuous-Time Control Design

The main focus of this section is Problem 2.2(i). We first find a structure of the controller

ensuring that the closed-loop system has an equilibrium (xd, ud) such that yd = Cxd, and then

provide sufficient conditions guaranteeing that this equilibrium is globally asymptotically stable.

The existence of an equilibrium is natural, if one is interested in the ε-practical stability (2) with

an arbitrarily small ε.

A possible control architecture, and perhaps the simplest form, is the static controller u(t) =

Dcy(t) + η. Unfortunately, to provide the existence of an equilibrium from Assumption 2.1(iii), the

parameter η = ud−Dcy
d should depend on ud, which, in turn, depends on the uncertain matrices A?

and B? and function k?. For this reason, we propose a dynamic controller, being a multidimensional

counterpart of the classical proportional-integral control.

3.1. Dynamic control and equilibrium existence

Consider now a more general dynamic controller{
ẇ(t) = Acw(t) +Bcy(t) + ξ

u(t) = Ccw(t) +Dcy(t) + η,
(6)

where matrices Ac, Cc ∈ Rnu×nu , Bc, Dc ∈ Rnu×ny and ξ, η ∈ Rnu are the design parameters.

These additional parameters in (6) enable one to make the equilibrium (x∗, w∗) of the closed-loop

system (1) and (6) compatible with the target value yd in the face of the parametric uncertainty (3).

Lemma 3.1 (Closed-loop equilibrium). If Assumption 2.1(iii) holds, the matrix Cc has full column

rank, and the controller parameters are such that

Ac = 0 and ξ = −Bcyd, (7)

then the closed-loop system (1) and (6) has an equilibrium (xd, wd), where xd is introduced in

Assumption 2.1(iii).

Proof. Since the matrix Cc has full column rank, there exists wd ∈ Rnu such that Ccw
d +Dcy

d +η =

ud, where ud is given by (5). In view of Assumption 2.1(iii) and (7), the point (xd, wd) ∈ Rnx+nu

obeys the algebraic equations{
A?xd +B?(Ccw

d +DcCx
d + η) + k?(xd) = 0,

Acw
d +BcCx

d + ξ = Bc(y
d − Cxd) = 0,

(8)

Hence, it is an equilibrium for the closed-loop system. �
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Notice that the controller’s parameters Bc, Dc, and η do not influence the existence of an equi-

librium compatible with the desired output yd. While Bc and Dc may influence the stability of

the transient behavior of the closed-loop system, the vector η does not affect stability and only

determines wd. Hence, without loss of generality, we set η = −Dcy
d. Combining this with (7) and

the controller (6) shapes into {
ẇ(t) = Bc

(
y(t)− yd

)
u(t) = Ccw(t) +Dc

(
y(t)− yd

)
.

(9)

Note that the dynamic controller (9) may be considered as a (multidimensional) extension of the

conventional PI controller.

3.2. Closed-loop stability of transient behavior

The goal of this section is to design the controller parameters Bc, Cc, and Dc such that the

equilibrium from Lemma 3.1 is (practically) stable. To this end, we introduce the augmented state

vector of the closed-loop system as

z(t) :=

[
x(t)− xd

w(t)− wd

]
. (10)

Based on the system dynamics in (1) together with the controller (9), it is obtained that

ż =
[
Ā+ J>∆AJ + (B̄ + J>∆BJ)FC̄

]
z + J>(k?(J>z)− k?(x?)), (11)

where ∆A = A? − A and ∆B = B? − B represent the uncertainty in the linear part of the system

dynamics, and matrices Ā, B̄, C̄, F , and J are defined as follows.

Ā :=

[
A 0

0 0

]
, B̄ :=

[
B 0

0 I

]
, C̄ :=

[
C 0

0 I

]
, J :=

[
Inx 0nx×nu

]
, F :=

[
Dc Cc

Bc 0

]
(12)

It should be noted that matrix F collects all the design variables of the controller. The goal of

the controller design is to guarantee the (practical) stability of the system (11) for all uncertainties

∆A,∆B, and k?(·) that meet Assumption 2.1. Unfortunately, it turns out that the exact charac-

terization of such an F is provably intractable. In fact, the special case of checking the stability of

the system (11) for a given F is also a difficult problem. This is formalized in the next proposition.

Proposition 3.2 (Intractability). Consider the system (1) under Assumption 2.1, and let the control

signal follow the dynamics (9). Then, for a given set of the control parameters (i.e., matrix F in

(12)), the problem of checking whether the output target stability (2) holds for some ε ≥ 0 is strongly

NP hard and equivalent to

∀∆A,∆B : |∆A| ≤ Ab, |∆B| ≤ Bb ∃P ∈ Snx+nu
�0 :[

P
(
Ā+ J>∆AJ +(B̄ + J>∆BJ)FC̄

)]† � 0.
(13)

Proof. Recall that the nonlinear term in the dynamics (11) is uniformly bounded due to Assump-

tion 2.1(ii). Therefore, thanks to the classical result of [15, Theorem 9.1], the stability of the

system (11) is equivalent to the stability of the linear part described as

ż =
[
Ā+ J>∆AJ + (B̄ + J>∆BJ)FC̄

]
z . (14)
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From the classical linear system theory, we know that the stability of (14) is equivalent to the

existence of a quadratic Lyapunov function V (z) = z>Pz, where the symmetric positive definite

matrix P may in general depend on the uncertainty in the dynamics. This assertion can be math-

ematically translated to checking whether the given controller parameter F satisfies (13). Note

that the order of the quantifies implies that the matrix P may depend on the uncertain parameter

∆A and ∆B. The assertion (13) is indeed a special case of the problem of an interval matrix’s

stability [28], which is proven to be strongly NP-hard [2, Corollary 2.6]. �

A useful technique to deal with the assertion similar to (13) is to choose a so-called common

Lyapunov function [29]. Namely, we aim to find a positive-definite matrix P for all possible model

parameters, i.e., the assertion (13) is replaced with a more conservative requirement as follows:

∃P ∈ Snx+nu
�0 ∀∆A,∆B : |∆A| ≤ Ab, |∆B| ≤ Bb[

P
(
Ā+ J>∆AJ +(B̄ + J>∆BJ)FC̄

)]† � 0.
(15)

Note that the only difference between (13) and the conservative assertion in (15) is the order of

quantifiers between the Lyapunov matrix P and the linear dynamics uncertainties ∆A and ∆B. The

argument (15) is a special subclass of problems known as the “matrix cube problems” [3]. While

this class of problems is also provably hard [3, Proposition 4.1], the state-of-the-art in the convex

optimization literature offers an attractive sufficient condition where the resulting conservatism is

bounded independently of the size of the problem [4]. Building on these developments, we will

provide an optimization framework to design the controller parameters along with a corresponding

common Lyapunov function.

Theorem 3.3 (Robust control & common Lyapunov function). Consider the system (1), satisfying

Assumption 2.1, and the controller (9). Also, consider the optimization program

max αζ−1

s.t. α ∈ R, ζ, κij , µik ∈ R>0, P ∈ Snx+nu
�0 , Cc ∈ Rnu×nu , Bc, Dc ∈ Rnu×ny

F =

[
Dc Cc

Bc 0

]
, M =

[
PĀ+ PB̄FC̄

]†
+ αI

G1 = Diag
{
−κija−2

bij

}
i,j
, G2 = Diag

{
−µikb−2

bik

}
i,k
, G3 = Diag

{
−µ−1

ik

}
i,k

H1 = PJ>(1nx ⊗ Inx), H2 = C̄>F>J>
[
1nu ⊗ e1 . . . 1nu ⊗ enx

]
M +

∑
i,j κijJ

>e>j ejJ ∗ ∗ ∗ ∗
H>1 G1 ∗ ∗ ∗
H>1 0 G2 ∗ ∗
H>2 0 0 G3 ∗
JP 0 0 0 −ζI,

 � 0

(16)

where α∗, ζ∗ and P∗ denote the optimal solutions of corresponding decision variables. If α∗ > 0, then

the controller provides εc-practical output regulation (2) where

εc = kb‖C̄‖

√
λmax(P∗)

α∗ζ
−1
∗ λmin(P∗)

. (17)
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In particular, if kb = 0 (i.e., the nonlinear term vanishes to a constant) and α∗ > 0, then the

closed-loop system is exponentially stable and limt→∞ y(t) = yd.

Proof. Consider a quadratic Lyapunov function V (z) = z>Pz. The time-derivative of V along the

trajectories of (11) is

1

2

d

dt
V (z) = z>P

(
Ā+ B̄F C̄

)
z + z>P

(
J>∆AJ + J>∆BJFC̄

)
z + z>PJ>(k?(J>z)− k?(x?)),

where the last term involving the nonlinear term can be estimated by invoking the Young’s inequality

as follows.

2z>PJ>
(
k?(J>z)− k?(x?)

)
≤ ζ−1z>PJ>JPz + ζ

∥∥k?(J>z)− k?(x?))∥∥2 ≤ ζ−1z>PJ>JPz + ζk2
b .

Notice that the parameter ζ ∈ R>0 is a positive scalar, and the last inequality is an immediate

consequence of (4). In the light of the latter estimate, one can observe that if the inequality[
P (Ā+ B̄F C̄) + P (J>∆AJ + J>∆BJFC̄) +

ζ−1

2
PJ>JP

]†
� −αI, (18)

holds for some α ∈ R>0, then the dynamics of the Lyapunov function value along with system

trajectories satisfy

1

2

d

dt
V (z) ≤ −α‖z‖2 + ζk2

b ≤
−α

λmax(P∗)
V (z) + ζk2

b . (19)

The above observation implies that lim supt→∞ V
(
z(t)

)
≤ λmax(P∗)ζk

2
b/α, which together with the

simple bound λmin(P∗)‖z‖2 ≤ V (z), leads to

lim sup
t→∞

‖y(t)− yd‖ ≤ lim sup
t→∞

‖C̄‖‖z(t)‖ ≤ lim sup
t→∞

‖C̄‖

√
V
(
z(t)

)
λmin(P∗)

≤ εc ,

where εc is defined as in (17). Hence, the above observation indicates that under the requirement (18)

for some α > 0, the desired assertion holds. Next, we aim to replace the robust inequality (18) by

a more conservative criterion, which in turn can be verified efficiently. This procedure consists of

several steps. Introducing the variable M :=
[
PĀ+ PB̄FC̄

]†
+ αI, the inequality (18) is rewritten

as

−M − ζ−1PJ>JP +
[
PJ>

nx∑
i=1

( nx∑
j=1

(δaij)e
>
i ej

)
J + PJ>

nx∑
i=1

( nu∑
k=1

(δbik)e
>
i ek

)
JFC̄

]†
� 0, (20)

where the uncertainty parameters are described element-wise as ∆A = [δaij ] and ∆B = [δbij ].

Recall that the condition (20) has to hold for all uncertain parameters, i.e., it is a robust constraint.

Thanks to [4, Theorem 3.1], constraint (20) holds if there exist parameters Dij , Eik, λij , γik, where

i, j ∈ {1, . . . , nx} and k ∈ {1, . . . , nu}, such that[
Dij − λija2

bij
z>PJ>e>i eiJPz ∗
ejJz λijI

]
� 0,[

Eik − γikb2bikz
>PJ>e>i eiJPz ∗

ekJFC̄z γikI

]
� 0,

−z>
(
M + ζ−1PJ>JP

)
z ≥

∑
i,j Dij +

∑
i,k Eik.

(21)
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By deploying the standard Schur complement in the first two inequalities of (21), we arrive at

λij , γik > 0,

Dij − λija2
bij
z>PJ>e>i eiJPz − λ

−1
ij z
>J>e>j ejJz ≥ 0,

Eik − γikb2bijz
>PJ>e>i eiJPz − γ

−1
ik z

>C̄>F>J>e>k ekJFC̄z ≥ 0,

−z>
(
M + ζ−1PJ>JP

)
z ≥

∑
i,j Dij +

∑
i,k Eik.

(22)

Eliminating {Dij}i,j and {Eik}i,k and doing some straightforward computations, the above inequal-

ities reduces to

λij , γik > 0,

M + ζ−1PJ>JP +
∑

i,j κijJ
>e>j ejJ −H1G

−1
1 H>1 −H1G

−1
2 H>1 −H2G

−1
3 H>2 � 0,

(23)

where the matrices G1, G2, G3, H1, and H2 are defined as in (16). The proof is then concluded by

applying yet again the Schur complement to the inequality (23) and replace the variables κij = λ−1
ij

and µik = γ−1
ik . We note that since ζ > 0, then α ≥ 0 if and only the objective function αζ−1 ≥ 0.

Therefore, the explicit positivity constraint over the variable α can be discarded without any impact

on the assertion of the theorem. In fact, the elimination of this constraint allows the program (16)

being always feasible. Finally, we also note that the second part of the assertion is a straightforward

consequence of the bound (17) and the fact that asymptotic stability and exponential stability in

linear system coincide. �

The optimization program (16) in Theorem 3.3 is, in general, non-convex. We however highlight

two important features of this program: (i) It is a tool enabling co-design of a controller and

obtain a Lyapunov function for the closed-loop system, and (ii) when the control parameters are

fixed, the resulting program reduces to a linear matrix inequality (LMI), which is amenable to the

off-the-shelves convex optimization solvers. The latter argument is formalized as follows.

Corollary 3.4 (Controller certification via convex optimization). Consider system (1) satisfying

Assumption 2.1 that is closed through the feedback (9) with some fixed coefficients (12). Consider

the optimization program

max αζ−1

s.t. α ∈ R, ζ, κij , µik ∈ R>0, P ∈ Snx+nu
�0

M ′ = M +
∑

i,j κijJ
>e>j ejJ −H2G

−1
3 H>2

M ′ ∗ ∗ ∗
H>1 G1 ∗ ∗
H>1 0 G2 ∗
JP 0 0 −ζI

 � 0

(24)

where the matrices C,F,G1, G2, G3, H1, and H2 are defined on the basis of the system and control

parameters2. Let α∗, ζ∗, and P∗ denote an optimizer of the program (24). Then, if α∗ > 0, then the

2Formally speaking, the objective function in (24) is not convex. However, since the only source of nonconvexity is

the scalar variable ζ, a straightforward approach is to select this variable through a grid-search or bisection.
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output target control (2) is fulfilled for all ε ≥ εc as defined in (24). Moreover, if α∗ ≤ 0, then there

exist dynamics matrices A? and B? such that

|A? −A| ≤ π

2
Ab, |B? −B| ≤ π

2
Bb,

and the closed-loop system is unstable.

Proof. Considering the optimization program (16) with fixed matrix F , the matrix H2 is also fixed.

The first statement is obtained by applying the standard Schur complement as in (23). The second

statement follows from [4, Theorem 3.1] stating that the convex characterization of (15) (i.e., the

step from (20) to (21)) is tight up to multiplier π/2. �

We close this section by a remark on the different sources of conservatism concerning the approach

proposed in this section. It is needless to say that any numerical progress at the frontier of each of

these sources will lead to an improvement of the solution method in this article.

Remark 3.5 (Conservatism of the proposed approach). The path from the output target control (2)

to the numerical solution of the optimization program (16) constitutes three steps that are only

sufficient conditions and may contribute to the level of conservatism: (i) to restrict to a common

Lyapunov function, i.e., the transition from (13) to (ii) to apply the state-of-the-art matrix cube

problem from (20) to (21), and (iii) to numerically solve the finite, but possibly nonconvex, opti-

mization program (16). As detailed in Corollary 3.4, the conservatism introduced by step (ii) is

actually tight up to a constant independently of the dimension of the problem. With regards to the

nonconvexity issue raised in step (iii), we will examine a recent approximation technique proposed

by [20] that is particularly tailored to deal with bilinearity of a similar kind in Theorem 3.3; this will

be reported in Section 5.

4. Aperiodic event-triggered robust control

In this section, we address Problem 2.2(ii) aiming to synthesize a sampled-time counterpart of

the controller, which can access the system output y(·) only at sampled instants {ts}s∈N. The

sequence ts is predefined by, for instance, an external message scheduler. Throughout this study we

require that ts < ts+1 and ts tends to infinity when s increases. The latter is a sufficient condition

to ensure a “Zeno-free” control design, a necessary requirement to avoid possible infinite switches

in a finite-time period. We note that the inter-sampling intervals ts+1 − ts need not be constant,

i.e., we allow an arbitrary aperiodic time sampling. Continuous-time controller (9) is then naturally

replaced by its sampled-time emulation where the output signal y(t) fed to (9) within each interval

[ts, ts+1) is replaced by its latest measurement y(ts):

w(t) = w(ts) + (t− ts)Bc(y(ts)− yd), t ∈ [ts, ts+1) (25)

On the actuation side, the simplest scenario is to compute the new control input upon receiving

measurement y(ts), which remains constant till the next measurement y(ts+1) arrives:

u(t) = Ccw(ts) +Dc

(
y(ts)− yd

)
, t ∈ [ts, ts+1). (26)

Note that u(t) takes a constant value within the time interval t ∈ [ts, ts+1). More generally, one may

consider an event-triggered strategy: Upon arrival of the new measurement y(ts), the control input
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is updated only if a triggering condition is fulfilled. This criteria may reflect how far the plant’s

output or the controller’s state have visibly changed since the last time that the control signal was

updated.

Formally, assume that the control input has been updated for the last time at t = tj . Upon

the arrival of the new measurement y(ts), where ts > tj , the triggering condition is validated that

involves the vector v(tj , ts) :=
[
w(tj)

>, y(tj)
>, w(ts)

>, y(ts)
>]>.

Inspired by [12], we consider a triggering condition as follows[
v(tj , ts)

1

]>
Q

[
v(tj , ts)

1

]
≥ 0. (27)

The condition (27) is slightly more generalized than the one proposed in [12] in a way that it also

supports constant thresholds. Note that the information vector v(tj , ts) is augmented by a constant

1. If (27) holds, the control input is updated: we set j = s and find u(tj) = u(ts) from (26). In

the case that (27) does not hold, the control input remains unchanged till at least time ts+1. This

procedure is summarized in Algorithm 1.

Algorithm 1 Aperiodic Event-Triggered Control (AETC)

1: Initialization: Consider sample instants {ts}s∈N, initial measurement y0, and initial control

state w0 = 0. Set j = 0, compute u0 from (26), and send it to the system (1).

2: Upon receiving y(ts), find w(ts) from (25).

• If (27) holds, then set j ← s, compute u(tj) = u(ts) from (26) and send it to the system (1);

• otherwise, keep u(ts) = u(tj) for t ∈ [ts, ts+1), i.e., nothing is required to be communicated

to (1).

3: Set s← s+ 1 and go to step 2.

Remark 4.1 (Special triggering mechanisms). If in (27) Q = 0, the control strategy reduces to the

usual aperiodic sampled-time (or digital) control. As pointed out in [12], the quadratic form (27)

subsumes the relative event-triggered mechanism [33]. The mechanism (27) includes the absolute

event-triggered mechanism [40] and mixed event-triggered mechanism [6] as its special cases. More

specifically, when

Q = Q̃(q0, q1) :=


I ∗ ∗ ∗ ∗
0 I ∗ ∗ ∗
−I 0 I − q1I ∗ ∗
0 −I 0 I − q1I ∗
0 0 0 0 −q0

 , (28)

the triggering mechanism (27) is translated into the condition∥∥∥∥∥
[
w(ts)− w(tj)

y(ts)− y(tj)

]∥∥∥∥∥
2

≥ q0 + q1

∥∥∥∥∥
[
w(ts)

y(ts)

]∥∥∥∥∥
2

. (29)

In summary, the aperiodic event-triggered control (AETC) mechanism introduced above entails

two key components: the time instants {ts}s∈N, and the triggering mechanism (27) characterized
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by the matrix Q. By definition, we know that ts →∞, and as such, all solutions of the closed-loop

system are forward complete, i.e., no Zeno trajectories may exist. In the rest of this section, we

analyze the sampled-time event-triggered emulation of the dynamic controller from Section 3 and

provide sufficient conditions ensuring (2).

Let us fix the controller parameters to a feasible solution (Bc∗, Cc∗, Dc∗) of the optimization

program (16) along with the Lyapunov matrix P∗. For the brevity of the exposition, we also

introduce the following notation:

F̂∗ :=

[
Dc∗ Cc∗

0 0

]
, β := ‖P∗‖‖Bc∗C̄‖, %B :=

(
‖B̄‖+ ‖Bb‖

)2 ‖F̂∗‖2,
%AB := %B‖C̄‖2 +

(
‖Ā‖+ ‖Ab‖

)2
, ϑB := max

|∆B|≤Bb

‖P∗(B̄ + J>∆BJ)F̂∗‖,

ϑAB := max
|∆A|≤Ab, |∆B|≤Bb

‖Ā+ J>∆AJ + (B̄ + J>∆BJ − I)(F∗ − F̂∗)‖,

e(h) := ϑ−1
AB(eϑABh − 1)

(30)

Now we want to proceed with the main result of this section.

Theorem 4.2 (Certified robust regulation under AETC). Consider the system (1) obeying As-

sumption 2.1. Let the matrices (Bc∗, Cc∗, Dc∗, P∗, α∗, ζ∗) be a feasible solution to optimization prob-

lem (16) where α∗ > 0. Consider the AETC in Algorithm 1, where the sequence {ts}s∈N and matrix

Q are such that

h̄ := sup
s∈N

(ts+1 − ts) ≤ hmax and Q � Q̃(q0, q1).

Here Q̃(q0, q1) is given by (28) with some constants q0, q1 ≥ 0 and

hmax := ϑ−1
AB ln

(
1 + ϑAB

√
α2
∗
√
q1λmin(P∗)[(1 + 2

√
q1)2λmax(P∗)]

−1 − 2ϑ2
Bq1‖C̄‖2

6ϑ2
B(q1%B‖C̄‖4 + 6%AB‖C̄‖2) + 3β2(%Bq1‖C̄‖2 + %AB)2

)
. (31)

Then, the closed-loop system under AETC is εd-practical output stable in the sense of (2) where

ε2
d = f1(h̄, q1)q0 + f2(h̄, q1)k2

b , (32)

in which the constants f1 and f2 can be explicitly expressed in form (33), depending only on h̄, q1, P?, C̄,
and parameters (30).

f1
(
h̄, q1

)
:=

ϑ2B
(
2 + 6%B‖C̄‖2e2(h̄)

)
‖C̄‖4 + 3β2%B‖C̄‖4e2(h̄)

−ϑ2B
(
2q1‖C̄‖2 + 6q1%B‖C̄‖4e2(h̄) + 6%AB‖C̄‖2e2(h̄)

)
− 3β2(%Bq1‖C̄‖2 + %AB)2e2(h̄) + α2

∗

√
q1λmin(P∗)

(1 + 2
√
q1)2λmax(P∗)

,

(33a)

f2(h̄, q1) :=
6ϑ2B‖C̄‖

6e2(h̄) + 3β2‖C̄‖4e2(h̄) + α∗ζ∗‖C̄‖2
√
q1(1 + 2

√
q1)−1

−ϑ2B
(
2q1‖C̄‖2 + 6q1%B‖C̄‖4e2(h̄) + 6%AB‖C̄‖2e2(h̄)

)
− 3β2(%Bq1‖C̄‖2 + %AB)2e2(h̄) + α2

∗

√
q1λmin(P∗)

(1 + 2
√
q1)2λmax(P∗)

.

(33b)

Proof. Suppose t ∈ [ts, ts+1) and let tj ≤ ts be the last time instant when the control input was

computed. Let z(t) be the state of the closed system defined in (10), and denote

e(t) :=

[
y(tj)− y(t)

w(tj)− w(t)

]
= C̄(z(tj)− z(t)), z̄(t) := z(t)− z(ts).
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where the matrix C̄ is defined in (12). Since (25) holds and u(t) ≡ u(tj) for t ∈ [ts, ts+1], the

closed-loop system’s state evolves as

ż(t) =
[
Ā+ J>∆AJ + (B̄ + J>∆BJ)F∗C̄

]
z(t) (34)

+ J>
(
k?
(
J>z(t)

)
− k?(xd)

)
+ (F̂∗ − F∗)C̄z̄(t) + (B̄ + J>∆BJ)F̂∗e(t), t ∈ [ts, ts+1),

where the matrices Ā, B̄, J are defined in (12). Consider the same Lyapunov function as in the

continuous-time case V (z) = z>P∗z whose time derivative along a trajectory of (34) can be computed

by

1

2

d

dt
V (z) = z>(t)P∗

(
(B̄ + J>∆BJ)F̂∗e(t) (35)

+
(
Ā+ J>∆AJ + (B̄ + J>∆BJ)F∗C̄

)
z(t) + (F̂∗ − F∗)C̄z̄(t) + J>

(
k?(J>z)− k?(xd)

))
.

By assumption, we know that the objective function of the program (16) is positive, i.e., α∗ζ
−1
∗ > 0.

Due to Young’s inequality,

2z>(t)P∗

(
B̄ + J>∆BJ

)
F̂∗e(t) ≤ ψ1ϑ

2
B‖z(t)‖2 + ψ−1

1 ‖e(t)‖
2,

2z>(t)P∗
(
F̂∗ − F∗

)
C̄z̄(t) ≤ ψ2β

2‖z(t)‖2 + ψ−1
2 ‖z̄(t)‖

2,

where ψ1, ψ2 are two positive scalars to be specified later. Thus, the derivative V̇ from (35) can be

estimated by

d

dt
V (z(t)) ≤ −(α∗ − ψ1ϑ

2
B − ψ2β

2)‖z(t)‖2 + ζ∗k
2
b + ψ1

−1‖e(t)‖2 + ψ2
−1‖z̄(t)‖2. (36)

One may also notice that since ˙̄z(t) = ż(t) and e(t) = C̄(z(tj)− z(ts))− C̄z̄(t), the equation (34) is

rewritten as

˙̄z(t) =
[
Ā+ J>∆AJ + (B̄ + J>∆BJ)F∗C̄

]
z(ts) + J>(k?(J>z)− k?(xd)) (37)

+ (B̄ + J>∆BJ)F̂∗C̄(z(tj)− z(ts)) +
[
Ā+ J>∆AJ + (B̄ + J>∆BJ − I)(F∗ − F̂∗)

]
C̄z̄(t).

Recall that we have assumed h̄ ≤ hmax. Leveraging similar techniques as in [17, Lemma 3], the

solution of (37) is estimated as

‖z̄(t)‖ ≤
[ (
‖B̄‖+ ‖Bb‖

)
‖F̂∗‖ ‖e(ts)‖+ kb +

(
‖Ā‖+ ‖Ab‖+ (‖B̄‖+ ‖Bb‖)‖F∗C̄‖

)
‖z(ts)‖

]
e(h̄)

(38)

where the constant e(h) is defined in (30). Notice now that if Q � Q̃(q0, q1), we can conclude that

‖e(ts)‖2 ≤ q0 + q1‖C̄‖2‖z(ts)‖2. This inequality automatically holds if ts = tj (and e(ts) = 0).

Otherwise, the triggering condition (27) is violated, whence

‖e(t)‖2 ≤ (‖e(ts)‖+ ‖e(t)− e(ts)‖)2 ≤ 2q0 + 2q1‖C̄‖2‖z(ts)‖2 + 2‖C̄‖2‖z̄(t)‖2 (39)

for t ∈ [ts, ts+1]. Denote

ψ1 := σϑ−2
B α∗, ψ2 := σβ−2α∗, σ :=

√
q1(1 + 2

√
q1)−1. (40)

Equations (36) together with (38)-(40) lead to

V̇ (z(t)) ≤ −α∗(1− 2σ)‖z‖2 + g1‖z(ts)‖2 + g2, (41)
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where the constants g1, g2 are defined as

g1 = σ−1
1 ϑ2

Bα
−1
∗

(
2q1‖C̄‖2 + 6q1%B‖C̄‖4e2(h̄) + 6%AB‖C̄‖2e2(h̄)

)
(42a)

+ 3σ−1
2 β2α−1

∗ (%Bq1‖C̄‖2 + %AB)2e2(h̄),

g2 = σ−1
1 ϑ2

Bα
−1
∗

(
2q0 + 6q0%B‖C̄‖2e2(h̄) + 6‖C̄‖2e2(h̄)k2

b

)
(42b)

+ 3σ−1
2 β2α−1

∗
(
%Bq0 + k2

b

)
e2(h̄) + ζ∗k

2
b .

Recalling that V (z) ≤ ‖z‖2λmax(P∗) and denoting hs := ts+1 − ts and g3 := −α∗(1 − 2σ), the

inequality (41) entails that

V (ts+1) ≤
(
eg3λ

−1
max(P∗)hs − 1

)
g−1

3 g2 +

[
eg3λ

−1
max(P∗)hs +

(
eg3λ

−1
max(P∗)hs − 1

)
g−1

3 g1
λmax(P∗)

λmin(P∗)

]
V (ts) .

It can be shown that the expression in brackets [...] is less than 1 if hs ≤ h̄ < hmax. Furthermore, if

h̄ < hmax, then

lim
t→∞
‖y(t)‖2 ≤ ‖C̄‖2 lim

t→∞
‖z(t)‖2 ≤ ‖C̄‖2λ−1

min(P∗) lim
t→∞

V (t) ≤ ‖C̄‖2 g2λmax(P∗)

−g1λmax(P∗)− g3λmin(P∗)
= ε2

d.

This implies that the system (1) is εd-practical stable and also y(t) converges to a ball with center

yd and radius εd. �

Remark 4.3 (Explicit inter-sampling bound). Theorem 4.2 offers an AETC with a more general

framework including absolute and relative thresholds whose maximal inter-sampling time hmax can

be found from (31) (cf., [12, Assumption III.1]).

The setting in Theorem 4.2 is clearly more stringent than the continuous measurements and ac-

tuation framework in Theorem 3.3. Therefore, it is no longer surprising that the corresponding

practical stability levels in (17) and (32) satisfy εc ≤ εd. The latter is essentially quantified based

on three parameters: maximum inter-sampling bound hmax, and the absolute and relative triggering

thresholds q0 and q1 (cf. Remark 4.1). When hmax tends to 0, our setting effectively moves from

the aperiodic sampled measurement framework to the continuous domain, and when the thresh-

olds q0 and q1 tend to 0, the event-triggered control mechanism transfers to the continuous-time

implementation. It can be shown that the gap between εc and εd in this case vanishes.

Remark 4.4 (From discrete to continuous implementation). Let εc be defined as in (17) and

εd(h̄, q0, q1) in (32) as a function of the relevant parameters h̄, q0, and q1. With a straightforward

computation, one can inspect that

lim
q0,q1→0

lim
h̄→0

εd(h̄, q0, q1) = εc.

We note that the practical stability certificate εd of the proposed AETC in (32) may take 0 values

when kb = q0 = 0. This implies that even if the system is uncertain and we have an AETC in place,

we may still be able to steer the output of the system to the desired target yd. This interesting

outcome, however, comes at the price of a bound on the absolute threshold q1. We close this section

with the following result in this regard.
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Corollary 4.5 (Relative AETC threshold for perfect tracking). Suppose that the system (1) is

linear (i.e., kb = 0 in Assumption 2.1(ii)), the program (16) is feasible with α∗ > 0, and the

absolute threshold in Theorem 4.2 is q0 = 0. If

√
q1(2
√
q1 + 1)2 <

α2
∗λmin(P∗)

2‖L̄‖2ϑ2
Bλmax(P∗)

,

then the regulation performance in (32) is εd = 0, i.e., the controller (9) implemented via the AETC

scheme in Algorithm 1 steers the output of the system to the desired target yd.

Proof. The proof is an immediate consequence of Theorem 4.2. It only suffices to check for which

values of q1 the maximal inter-sampling hmax in (31) is still well-defined. �

5. Numerical Method and Examples

Since optimization problem (16) is non-convex, special numerical techniques are introduced in

the first part of this section and then utilized in the following to validate the main results of this

study.

5.1. Numerical Method

There are two types of nonlinearities in the optimization problem (16). The first type of these

nonlinearities comes from cross products of decision variables and the second one comes from the

appearance of inverse of some of decision variables. Since no general-purpose scheme is available

to deal with bilinear matrix inequalities, one needs to resort to approximation approaches. The

paper [31, Section 4] has well reviewed several methods that can be used to deal with the bilinearities.

Methods such as “D-K iteration”, “Path-following”, “Linearized convex-concave decomposition”,

“Riccati related approach” and “Dual iteration approach” are examples of the methods mentioned in

this article. In this paper, we will examine a recent powerful technique called “sequential parametric

convex approximation” from [20], that is particularly tailored to deal with bilinearity of a similar kind

in Theorem 3.3. The main advantage of the sequential parametric convex approximation method is

that it offers a simultaneous method for dealing with bilinearities and appearnce of inverse of some

parameters, and also, it allows during iterations to optimize simultaneously over the control gain

and the Lyapunov matrices. In addition, it offers better convergence speeds than algorithms such

as linearized convex-concave decomposition. We first provide two preparatory lemmas.

Lemma 5.1. Let Y and Z be two matrices with appropriate dimensions. The inequality
[
Y>Z

]† � 0

holds if 
[
(Y − Yk)>Zk + Y>k (Z − Zk) + Y>k Zk

]† ∗ ∗
(Y − Yk)> −U ∗
(Z − Zk)> 0 −U−1

 � 0 (43)

where Yk and Zk are given matrices with the same size as Y and Z, respectively, and U ∈ S�0 is an

arbitrary matrix.

Lemma 5.1 is essentially a combination of standard Young’s inequality and Schur complement.

It is worth noting that applying Young’s inequality to the term
[
Y>Z

]† � 0 yields an alternative
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approximation in the form of Z>U−1Z + Y>UY � 0. However, if the constant matrices Yk and Zk
are close estimates of the variables Y and Z, respectively, then the proposed approximation in (43)

is more efficient. We also note that in a context of optimization problem, the matrix U is a degree

of freedom, and that can be viewed as an additional decision variable.

The next lemma suggests an idea to deal with the inverse of a decision variable in an optimization

problem by introducing a linear over-approximation for the inverse of a matrix.

Lemma 5.2. [19, Lemma 2] If U ,Uk ∈ Sn�0, then

−U−1 � −2Uk + U−1
k UU

−1
k .

By some straightforward computations and using the results of Lemmas 5.1 and 5.2, one can

observe that
Mk +

∑
i,j κijJ

>e>j ejJ ∗ ∗ ∗
H>1
H>1
X>k

Gk

 � 0⇒


M +

∑
i,j κijJ

>e>j ejJ ∗ ∗ ∗ ∗
H>1 G1 ∗ ∗ ∗
H>1 0 G2 ∗ ∗
H>2 0 0 G3 ∗
JP 0 0 0 −ζI

 � 0

where,

Mk := [PĀ+ PkB̄(F − Fk)C̄ + PB̄FkC̄]† + αI G3k := Diag {(−2µijk + µij)}i,j
Gk := Diag {G1, G2, G3k ,−2Uk + U,−U,−ζI} H2k := Diag {µijk}H2

Xk :=
[
H2k (P − Pk)U>k B̄(F − Fk)C̄ PJ>

]
Building on the above definitions, Algorithm 2, as a sequential approximate algorithm, can be

proposed to find a stationary point for the optimization problem (16) (From [20, Proposition 3], it

can be proved that Algorithm 2 converges to a stationary point of (16)).

5.2. Examples

In this section,we illustrate the main results of Theorems 3.3 and 4.2.

Example 1 (Synthetic setting). Consider system (1) with the nominal matrices3

A =


1.40 −0.21 6.71 −5.68

−0.58 −4.29 0 0.67

1.07 4.27 −6.65 5.89

0.05 4.27 1.34 −2.10

 , B =


0 0

5.68 0

1.14 −3.15

1.14 0

 , C =


1 0

0 1

1 0

−1 0


>

.

The uncertainty bounds are Ab = 0.1(1>4 ⊗14) and Bb = 0.1(1>2 ⊗14). Matrices Bc, Cc, and Dc are

found from (16) by means of the aforementioned technique. In this example, we consider the desired

output value as yd =
[
9 10

]
. We first examine the result of Theorem 3.3. For this purpose, we

consider a nonlinear term in the form k?(x) = kb/2
[
sin(x1(t)) . . . sin(x4(t))

]
in the dynamic (1)

and inspect the influence of amplitude kb on the desired regulation performance. Figure 1 compares

the actual regulation error (i.e., deviation between the output and its desired value) in solid black

line, and the predicted error by (17) in dashed red line.

3These nominal matrices are chosen from Compleib library of MATLAB (http://www.complib.de/).

http://www.complib.de/
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Algorithm 2 Sequential Parametric Convex Approximation

1: Set k = 0, Fk = 0, µijk = 1.

2: Solve



(αk, ζk) = argmax (lnα− ln ζ)

Subject to

λij ∈ R>0,Wij ∈ R(nx+nu)×(nx+nu)[
Wij − λija2

bij
J>e>i eiJ ∗

ejJ λij

]
� 0

0 � αI + Ā+ Ā> +
∑

i,jWij + ζJ>J

.

3: Solve

{
Pk ∈ Snx+nu

�0

PkĀ+ Ā>Pk + ζ−1
k PJ>JP � −αkI

.

4: Set k = 1.

5: while
∣∣αkζ−1

k − αk−1ζ
−1
k−1

∣∣ > ε do

6: Solve



(Pk, Fk, µijk , αk, ζk) = argmax (lnα− ln ζ)

s.t. κij , µij ∈ R>0, P, U ∈ Snx+nu
�0 ,

Cc ∈ Rnu×nu , Bc, Dc ∈ Rnu×ny

Mk := [PĀ+ PkB̄(F − Fk)C̄ + PB̄FkC̄]† + αI

G3k := Diag {(−2µijk + µij)}i,j
Gk := Diag {G1, G2, G3k ,−2Uk + U,−U,−ζI}
H2k := Diag {µijk}H2

Xk :=
[
H2k (P − Pk)U>k B̄(F − Fk)C̄ PJ>

]

Mk +

∑
i,j κijJ

>e>j ejJ ∗ ∗ ∗
H>1
H>1
X>k

Gk

 � 0

7: Set k + 1← k.

Next, we introduce a simulation setting to validate the theoretical bound (31) in Theorem 4.2.

While (31) anticipates that h̄ ≤ 0.0286 ensures the stability of the system under AETC, the nu-

merical investigation shows that in this example the stability is guaranteed for higher values up to

h̄ ≤ 0.105. It is, however, worth mentioning that the regulation error is not much influenced by h̄ as

long as h̄ ≤ 0.105. This observation is also qualitatively aligned with the assertion of Theorem 4.2

(cf. (32) and its dependency on h̄ as defined in (33)).

With regards to the triggering mechanism and its impact on the regulation error in Theorem 4.2,

we vary the threshold level in the inequality (29) in the form q0 = q1 = ξ. The solid black line in

Figure 2 shows the impact of this variation of the pair (q0, q1) through the variable ξ on the actual

the regulation error. As anticipated by Theorem 4.2, the degradation of the regulation performance

is dominated by the theoretical bound (32) (red dashed line). Besides these error bounds, we also

inspect the relation between the relative frequency of triggered events (in proportion to the total

number of sampling instants) and the threshold level. This observation is depicted in blue dotted

curve with the axis on the right-hand side of Figure 2. As expected, the increase of the threshold

monotonically reduces the frequency of the triggering events.
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Figure 1. Impact of the non-

linearity amplitude on theoretical

bound (17) in Theorem 3.3 and the

actual numerical error.

Figure 2. Impact of threshold (29)

on theoretical bound (32) in Theo-

rem 4.2, the actual numerical error,

and the triggered events rate.

6. Conclusion

In this article, we introduced an optimization-based framework to synthesize robust dynamic con-

trollers in order to ensure the output regularization task for systems with uncertain and potentially

nonlinear dynamics. To numerically solve such an optimization problem, a sequential paramet-

ric convex approximate algorithm was proposed. We further introduced a general sampling-based

event-triggered technique that paves the way to implement the proposed controller in case of sam-

pled measurements and discontinuous actuation updates. It is remarkable that the procedure of

the triggering law is decoupled from control synthesis and the key parameters such as maximal

inter-sampling time is explicitly computationally available.
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