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Abstract. Estimating and detecting faults is crucial in ensuring safe and efficient automated sys-

tems. In the presence of disturbances, noise, or varying system dynamics, such estimation is even

more challenging. To address this challenge, this article proposes a novel filter to estimate multiple

fault signals for a class of discrete-time linear parameter-varying (LPV) systems. The design of

such a filter is formulated as an optimization problem and is solved recursively, while the system

dynamics may vary over time. Conditions for the existence and detectability of the fault are intro-

duced and the problem is formulated and solved using the quadratic programming framework. We

further propose an approximate scheme that can be arbitrarily precise while it enjoys an analytical

solution, which supports real-time implementation. The method is illustrated and validated on an

automated vehicle’s lateral dynamics, which is a practically relevant example for LPV systems. The

results show that the estimation filter can decouple unknown disturbances and known or measurable

parameter variations in the dynamics while estimating the unknown fault.

1. Introduction

The problem of fault diagnosis has been an extensively studied topic over the past decades. The

detection and estimation of a fault can support an action of the system mitigating the effect of the

fault, improving the safety of the system and potential users. In literature, various categories of

fault diagnosis methods are elaborated upon, see [1, 2] and the references therein. In the scope

of fault detection, i.e., detecting the presence of a fault and estimation, i.e., determining the exact

magnitude and shape of a fault, choosing between fault-sensitivity, attenuation, and decoupling of

disturbances and uncertainties is often the most challenging trade-off [3]. The task of isolation can

be seen as a special case of detection and estimation, where all faults can be decoupled from one

another using disturbance attenuation techniques, although the complexity of this problem highly

depends on the condition of fault isolability [4].

The class of linear parameter-varying (LPV) systems is often considered in the scope of fault

detection and estimation and is particularly suitable for treating non-linear systems with parameter

variations as linear systems with time-varying and potentially measurable parameters. A class of

solutions was defined in literature through the use of linear matrix inequalities (LMI) to robustly

formulate the sensitivity problem in an optimization framework using Lyapunov functions [5, 6,
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7, 8, 9, 10, 11]. Therein, parameter-independent Lyapunov functions [5] are used in a polytopic

framework, which due to their time-independent nature could result in conservative solutions [6].

Other works consider the use of parameter-dependent Lyapunov functions for filter synthesis in either

a polytopic framework [7] or in a linear fractional transformation framework [8]. These methods can

handle potentially uncertain LPV systems. However, their computational burden is often high and

may not guarantee the decoupling of disturbances, unless assumptions are made on the frequency

content through the use of a complementary disturbance observer [9] (i.e., a proportional integral

(PI) observer). In [10, 11] a sliding-mode observer is proposed for continuous-time systems, for

which the observer gains are synthesized through LMIs. Although these methods are well suited for

parameter-varying systems, they could suffer from chattering or singularities, requiring a relaxation

of the proposed solution.

A different solution to the LPV fault estimation problem is the use of a geometric approach.

By exploiting the known model, disturbance directions that are not of interest can be projected

in parameter-varying unobservable subspaces of the fault estimator [12]. A nullspace approach, an

application of the geometric approach, is proposed in [13], which has been extended by a robust for-

mulation for non-linear systems [14] and parameter-varying systems [15]. These approaches consider

a continuous-time model setting, whereas in this work, amongst other contributions to be mentioned

hereafter, we focus on a discrete-time model setting and a closed-form parameter-varying solution.

Our contributions: In summary, there exist many approaches to the problem of fault detection

and estimation for linear parameter-varying systems. Yet, there does not yet exist a solution that

could guarantee the decoupling of disturbances, while isolating and estimating the fault of interest

in real-time (i.e., having a practically implementable solution in the form of a discrete filter with low

computational burden). As such, we define our contributions as follows:

(i) Parameter-varying filter synthesis: We propose a novel parameter-varying polynomial

decomposition for LPV dynamical systems (Lemma 3.1), which paves the way for a convex

reformulation of the isolation/estimation filter at each time instance (Proposition 3.3).

(ii) Isolability conditions: We offer the existence conditions of an isolation filter via a novel

polynomial time-varying matrix construction (Lemma 3.1). This allows for a tractable eval-

uation of isolability for the LPV systems.

(iii) Analytical solution: We further propose an arbitrarily accurate approximation for the

original program of the filter design whose solution is analytically available (Corollary 3.4).

This analytical solution allows for implementable real-time filter synthesis while using valu-

able practical considerations in the context of LPV systems.

The LPV estimation filter is demonstrated on the lateral dynamics of an automated vehicle, a

popular illustrative example for LPV fault detection/estimation techniques [16, 17]. Herein, the

estimation challenge is to detect an offset in the steering system, while the vehicle can have a

time-varying yet measurable longitudinal velocity.

The outline of this work is as follows. First, the problem formulation is provided in Section 2. In

Section 3, the design of the LPV estimation filter is provided. Moreover, the problem is considered

from a practical perspective, showing that the synthesis of such an estimation filter can be imple-

mented by the use of generic computational tools, e.g., matrix inversion. In Section 4, the estimation
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filter is demonstrated by application to an example of the lateral dynamics of an automated vehicle.

Finally, Section 5 draws conclusions and proposes future work.

2. Model description and preliminaries

In this section, a class of LPV systems is introduced along with some basic definitions. The model

is an LPV extension of the differential-algebraic equations (DAE) class of discrete-time models

introduced in [13] and is described as

H(wk, q)[x] + L(wk, q)[z] + F (wk, q)[f ] = 0, (1)

where q represents the shift operator (i.e., q[x(k)] = x(k + 1)), x, z, f, w represent discrete-time

signals indexed by the discrete time counter k, taking values in Rnx ,Rnz ,Rnf ,Rnw . The matrices

H(wk, q), L(wk, q), F (wk, q) are parameter-varying polynomial functions in the variable q, depending

on the parameter signal w with nr rows and nx, nz, nf columns, respectively. Finally, w represents

a scheduling parameter of which the explicit relationship with time is unknown a priori, but the

parameter is measurable in real-time and takes values from a compact set W ⊆ Rnw , ∀k. The signal

z is assumed to be known or measurable up to the current time k and consists of, e.g., the known

or measurable inputs and outputs to and from the system. The signals x and f are unknown and

represent the state of the system and the fault, where f is not restricted to any particular location

(e.g., sensor or actuator fault).

Remark 2.1 (Non-measurable scheduling parameters or model uncertainty). Several suggestions exist

in the literature, in the scope of geometric nullspace-based estimation filters, which can be used in

making these filters suitable for non-measurable scheduling parameters wk [15, Section 3.3]. Note,

that the proposed approximation methods for unknown parameters wk are directly applicable in the

results from this work.

The model (1) encompasses a large class of parameter-varying dynamical systems, an example of

which is a set of LPV state-space difference equations. This example will be used in the simulation

study and can be derived from (1) by starting from the following LPV difference equations:G(wk)X(k + 1) = A(wk)X(k) +Bu(wk)u(k) +Bd(wk)d(k) +Bf (wk)f(k),

y(k) = C(wk)X(k) +Du(wk)u(k) +Dd(wk)d(k) +Df (wk)f(k).
(2)

Herein, u(k) represents the input signal, d(k) the exogenous disturbance, X(k) the internal state,

y(k) the measured output and f(k) the fault. By defining z := [y;u], x := [X; d] and the parameter-

varying polynomial matrices

L(wk, q) :=

[
0 Bu(wk)

−I Du(wk)

]
, F (wk, q) :=

[
Bf (wk)

Df (wk)

]
, H(wk, q) :=

[
−G(wk)q +A(wk) Bd(wk)

C(wk) Dd(wk)

]
,

in (1), it can be observed that (2) is an example of the model description (1).

In the absence of a fault signal f , i.e., for f = 0, all possible z-trajectories of the system (1) can

be denoted as

M(w) := {z : Z→ Rnz | ∃x : Z→ Rnx : H(wk, q)[x] + L(wk, q)[z] = 0}, (3)
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which is called the healthy behavior of the system. For fault detection, the primary objective is to

identify whether the trajectory z belongs to this healthy behavior.

3. Design of parameter-varying estimation filter

In [13], an LTI system, also known as a residual generator, is proposed via the use of an irreducible

polynomial basis for the nullspace of H(wk, q), denoted by NH(w, q) 1. In this work, we take the

problem a step further by finding an irreducible polynomial basis NH(w, q) for the nullspace of

H(wk, q), i.e., the state dynamics of an LPV system. Such a polynomial fully characterizes the

healthy behavior of the system (1) as follows:

M(w)={z : Z→ Rnz |NH(w, q)L(wk, q)[z]=0}. (4)

For the design of an estimation filter, it suffices to introduce a linear combination N(wk, q) =

µNH(wk, q), such that the following objectives for fault detection can be achieved:

a−1(q)N(w, q)H(wk, q) =0, ∀wk ∈ W, (5a)

a−1(q)N(w, q)F (wk, q) 6=0, ∀wk ∈ W. (5b)

Here, the polynomial a(q) is intended to make the estimation filter proper. Moreover, it enables a

form of noise attenuation, which is highly recommended for experimental applications. The above

conditions allow us to find a filter to decouple the residual from the time-varying behavior of the

system. In fulfilling the requirements of (5), a proper LPV estimation filter of the following form

can be created:

r := a−1(q)N(w, q)L(wk, q)[z]. (6)

Note, that the degree of a(q) is not less than the degree of N(wk, q)L(wk, q) and is stable and

that the design of such polynomial is up to the user and can depend on various criteria (e.g., noise

sensitivity). In the following lemma, a method to transform the conditions (5) into non-complex,

scalar or vector equations is provided, forming a basis for the methodology proposed in the next

section.

Lemma 3.1. Let N(w, q) be a feasible solution to (5) where the matrices H(wk, q), F (wk, q), a(q)

are as in (1) and (5) and have a particular form of

H(wk, q) =

dH∑
i=0

Hi(wk)q
i, F (wk, q) =

dF∑
i=0

Fi(wk)q
i,

N(w, q) =

dN∑
i=0

Ni(w)qi, a(q) =

da∑
i=0

aiq
i,

where dH , dF , dN , da denote the degree of the respective polynomials. Given any parameter signal

w, the conditions in (5) can be equivalently rewritten as

N̄(w)H̄(w) =0, (7a)

N̄(w)F̄ (w) 6=0, (7b)

1In the remainder of this work, by not explicitly mentioning the time index “k” in w, we emphasize that the filter

coefficients may depend on the parameter signal w in multiple time instances.
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where N̄(w), H̄(w), F̄ (w) are defined as

N̄(w) :=
[
N0(w) N1(w) . . . NdN (w)

]
,

H̄(w) :=



H0(wk−da) . . . 0
...

. . .
...

HdH (wk−da) H0(wk−da+dN )
...

. . .
...

0 . . . HdH (wk−da+dN )



ᵀ

,

F̄ (w) :=



F0(wk−da) . . . 0
...

. . .
...

FdF (wk−da) F0(wk−da+dN )
...

. . .
...

0 . . . FdF (wk−da+dN )



ᵀ

.

Proof. For proving the results of this lemma, observe that (6) can be rewritten as (using (1) and (5)):

r = −a−1(q)N(w, q)F (wk, q)[f ], ⇒ −a(q)[r] = N(w, q)F (wk, q)[f ],

⇒−
da∑
h=0

ahq
h[r] =

dN∑
i=0

Ni(w)qi
dF∑
j=0

Fj(w)qj [f ] =

dN∑
i=0

dF∑
j=0

Ni(w)Fj(q
i[w])qi+j [f ].

Multiplication of both sides with q−da , in order to time-shift the relation to result in a present time

residual r(k) as a function of previous faults f and residuals r, yields

−
da∑
h=0

ahq
h−da [r] =

dN∑
i=0

dF∑
j=0

Ni(w)Fj(q
i−da [w])qi−da+j [f ],

for which the right-hand side can be rewritten as

N̄(w)F̄ (w)
( [

q−daI q1−daI . . . qdN+dF−daI
]

[f ]
)
.

This proves the equivalence of (7b) and (5b). The same line of reasoning applies for proving the

equivalence of (7a) and (5a). �

It is worth noting that the matrices N̄(w), H̄(w), and F̄ (w) defined in Lemma 3.1 depend on the

parameter signal w through da+1 consecutive values. That is, at time instant k the filter coefficient

N̄(w) depends on {wk−da , . . . , wk} ∈ Wda+1. We, however, refrain from explicitly denoting this

dependency and simply use the notation of the entire trajectory w, say N̄(w). In this light and

using the result from Lemma 3.1, the conditions for fault detectability can be defined as follows.

Fact 3.2 (Conditions of isolability). Given the parameter signal w, there exists a feasible solution

N̄(w) to the conditions (7) if and only if

Rank
([
H̄(w) F̄ (w)

])
> Rank

(
H̄(w)

)
. (8)

The proof is omitted as it is a straightforward adaption from [14, Fact 4.4]. Using the results

from Lemma 3.1, the main theorem for the LPV fault detection filter can be proposed.
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Proposition 3.3 (Parameter-varying filter synthesis). Let the matrices H̄(w) and F̄ (w) be matrices

as defined in Lemma 3.1. Then an LPV fault detection filter of the form (6) can be found at every

time instance k, depending on wk, that fulfills (5), by solving the following convex quadratic program

(QP):

N̄∗(w) := arg min
N̄
−‖N̄ F̄ (w)‖∞ + ‖N̄ᵀ‖22, (9a)

s.t. N̄H̄(w) = 0, (9b)

where ‖·‖∞ denotes the supremum norm.

Proof. The term in (9a), related to the fault polynomial F̄ (w) ensures a maximised sensitivity

for the fault, analogous to (5a), whereas the quadratic (regularization) term related to the filter

polynomial N̄(w) ensures that the solution to the problem is bounded. The constraint (9b) ensures

that the effect of unknown disturbances is decoupled from the residual, analogous to the desired

filter requirement in (5b). �

Proposition 3.3 lays the groundwork for creating an estimation filter for an LPV model with

measurable scheduling parameters w. At first glance, it can appear to be an unattractive solution to

solve an optimization problem at each time-step, to obtain filter coefficients for the estimation filter.

However, we show in the following corollary that a tractable analytical solution can be derived for

this problem.

Corollary 3.4 (Analytical solution). Consider the convex QP optimization problem in (9). The

solution to this optimization problem has an analytical solution given by the following polynomial:

N̄∗γ (w) =
1

2γ
F̄ ᵀj∗(w)(γ−1I + H̄(w)H̄ᵀ(w))−1, (10)

where j∗ = arg max
j≤dN
|N̄∗γ (w)F̄j(w)|,

where j denotes the j-th column of the matrix F̄ (w). Moreover, the solution N̄∗γ (w) in (10) converges

to the optimal filter coefficient (9) as the parameter γ tends to ∞. For bounded values of γ, (10)

provides an approximate solution.

Proof. A dual program of (9) can be obtained by penalizing the equality constraint (9b) through a

quadratic function as

sup
γ≥0

g(γ,w) = lim
γ→∞

g(γ,w), (11)

where γ ∈ R+ represents the Lagrange multiplier and g(γ) represents the dual function defined as

g(γ,w) := inf
N̄
γ‖N̄H̄(w)‖22 + ‖N̄ᵀ‖22 − ‖N̄ F̄ (w)‖∞.

Note, that the ∞-norm related to the fault sensitivity can temporarily be dropped by viewing the

problem (9) and its dual problem (11) as a set of dN different QPs; note that the matrix F̄ has dN

columns. Hence, the set of dual functions is denoted as

g̃(γ,w) = inf
N̄
γ‖N̄H̄(w)‖22 + ‖N̄ᵀ‖22 − N̄ F̄ (w)︸ ︷︷ ︸

L(N̄,γ)

. (12)
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The solution to the convex quadratic dual problem can be found by first finding the partial derivative

of the above Langrangian as follows:

∂L(N̄∗γ (w), γ)

∂N̄
=2γN̄∗γ (w)H̄(w)H̄

ᵀ
(w)+2N̄∗γ (w)−F̄ ᵀ

(w).

Setting this partial derivative to zero, we arrive at

N̄∗γ (w) =
1

2γ
F̄ ᵀ(w)(γ−1I + H̄(w)H̄ᵀ(w))−1, (13)

which provides dN admissible solutions to the problem with dual functions g̃(γ,w) (12). The optimal

solution is found by choosing the column of F̄ , such that the fault sensitivity of the filter is maximal,

i.e.,

N̄∗γ (w) =
1

2γ
F̄ ᵀj∗(w)(γ−1I + H̄(w)H̄ᵀ(w))−1,

where j∗ = arg max
j≤dN
|N̄∗γ (w)F̄j(w)|,

which proves equation (10). Substituting this solution back into the dual program (11) yieldsmax
γ

− 1
4γ F̄

ᵀ
j∗(w)(γ−1I + H̄(w)H̄ᵀ(w))−1F̄j∗(w),

s.t. γ ≥ 0.

This quadratic negative (semi-)definite problem reaches its maximum when γ tends to infinity,

concluding the proof. �

Considerations for choosing γ are elaborated further on inside the algorithmic implementation.

For the purpose of estimation, we are particularly interested in a unity zero-frequency gain. In the

following corollary, it is shown how to incorporate this condition in the filter.

Corollary 3.5 (Zero steady-state). Given a filter in the form of in (6), where the numerator

coefficient N̄∗γ (w) is a solution to the program (9) given analytically in (10). The steady-state

relation of the mapping (d, f) 7→ r, for any disturbance signal d and a constant fault f , is given by

r = −
N̄∗γ (w)F̄ (w)1dN×dF∑da

h=0 ah
f,

where 1dN×dF denotes a matrix of ones of the dimensions dN × dF .

Proof. The model equation (1), multiplied with a filter a−1(q)N(w, q), satisfying the conditions (5),

can be denoted as

a−1(q)N(wk, q)L(wk, q)[z] =− a−1(q)N(wk, q)F (wk, q)[f ],

⇒ r =− a−1(q)N(wk, q)F (wk, q)[f ],

where the last line is induced by (6). The steady-state behavior of this filter can be found by setting

q = 1, resulting in

r =− a−1(1)N(wk, 1)F (wk, 1)[f ] = −N̄(w)F̄ (w)1dN×dF∑da
h=0 ah

f,

which provides the desired result, hence concluding the proof. �
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Notice, that when the considered system is time-invariant (i.e., w is constant for all k), the

conclusion from Corollary 3.5 coincides with [4, Lemma 3.1, Eq. (10)]. This condition, together

with the stability of a(q), ensures convergence of the estimation error for piecewise constant fault

signals. Let us note that when there is additive unbiased noise on, e.g., the output measurements,

the average behavior of the resulting residual will still follow the residual from the deterministic case.

In the next section, we elaborate on the algorithmic implementation of the proposed estimation filter

to, e.g., an LPV minimal state-space realization, a non-trivial problem given the potential effects of

dynamic dependence [18].

Algorithmic Implementation

For the estimation filter to function according to the objectives (5) (including unity DC gain

for estimation), hence preventing any effects from dynamic dependencies [18], the filter can be

implemented as an LPV Input-Output representation as follows:

r(k) = a−1
0 ā1daE(w)

[
z(k − da) . . . z(k − da + dN )

]ᵀ
= −a−1

0

da∑
i=1

air(k − i)

E(w) =
N̄(w)L̄(w)

N̄(w)F̄ (w)1dN×dF
, (14)

where the matrix L̄(w) is defined as

L̄(w) :=



L0(wk−da) . . . 0
...

. . .
...

LdL(wk−da) L0(wk−da+dN )
...

. . .
...

0 . . . LdL(wk−da+dN )



ᵀ

.

The matrix operation E(w) in (14) ensures the isolation and estimation of the fault, while the filter

coefficients in ā ensure causality of the operation and reduced sensitivity to noise. By substitution

of the results from (10), (14) can be rewritten as:

E(w) =
F̄ ᵀj∗(γ

−1I + H̄(w)H̄ᵀ(w)))−1L̄

F̄ ᵀj∗(γ
−1I + H̄(w)H̄ᵀ(w)))−1F̄1dN×dF

,

from which it can be deduced that the term γ−1I solely ensures well-posedness of the involved

inversion operations since, based on Proposition 3.4, ideally γ−1I tends to a zero matrix. The filter

is well-posed and exact if and only if H̄(w) is of full rank. If this condition is not fulfilled, the

analytical solution from Proposition 3.4 provides a conservative solution (i.e., the filter could inherit

a bias), where the Lagrangian operator γ needs to be chosen large enough to ensure well-posedness,

while being numerically bounded for practical considerations.

4. Case study: automated driving

In this section, the proposed method for designing an LPV estimation filter is illustrated based

on a fault estimation problem coming from the lateral dynamics of an automated passenger vehicle.

A linear bicycle vehicle model is used as a benchmark model [19, Equation (1)] which is controlled
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Figure 1. Visual representation of the bicycle model.

in closed-loop by the same PD control-law as proposed in [19]. Within an automotive context it is

undesirable to mitigate a fault in closed-loop without being aware of its magnitude. In fact, in the

presence of substantial faults, the vehicle is expected to transition to a safe state. This need for

estimating the fault shows the applicability of our proposed problem statement in this application

context. First, the model as depicted in Fig. 1 can formulated as a set of continuous-time linear

state-space equations as follows

Ẋ(t)=


Cf+Cr

vx(t)m
lfCf−lrCr

vx(t)m 0 0

lfCf−lrCr

vx(t)I

l2fCf+l2rCr

vx(t)I 0 0

−1 0 0 vx(t)

0 −1 0 0


︸ ︷︷ ︸

Ã(vx)

X(t)−


Cf

m
lfCf

I

0

0


︸ ︷︷ ︸

B̃u

u(t)−


Cf

m
lfCf

I

0

0


︸ ︷︷ ︸

B̃f

f(t)+


g 0

0 0

0 0

0 vx(t)


︸ ︷︷ ︸

B̃d(vx)

[
sin (φ(t))

κ(t)

]
,

y(t) =
[
0 I

]
X(t),

where the state X(t) =
[
ψ̈(t) v̇y(t) ẏe(t) ψ̇e(t)

]
for which ψ̇ denotes the yaw-rate of the vehicle,

vy the lateral velocity of the vehicle, ye the lateral deviation from the lane center, and, ψe the heading

deviation from the lane center. The assumed fault, f , acts as an additive fault on the input steering

angle, u. Two disturbances are considered, where κ denotes the curvature of the road and φ denotes

the banking angle of the road. The parameters Cf = 1.50 ·105 N · rad−1 and Cr = 1.10 ·105 N · rad−1

represent the lateral cornering stiffness of the front and rear tyres, respectively, lf = 1.3 m and

lr = 1.7 m represent the distances from the front and rear axle to the center of gravity. It is

furthermore assumed that m = 1500 kg represents the total mass of the vehicle, I = 2600 kg · m2

represents the moment of inertia around the vertical axis of the vehicle and g = 9.81m·s−2 represents

the gravitational acceleration. The parameter vx represents the longitudinal velocity of the vehicle

and acts as the scheduling parameter wk from (1). The discrete-time system matrices, used for filter

synthesis, are found using exact discretization with a sampling time of h = 0.01s, i.e., A(vx) = eÃ(vx)h

and B(vx) = Ã−1(vx)(A(vx)− I)B̃(vx) (for all matrices B̃u, B̃f and B̃d(vx)). The relation from the

state to the output remains unchanged through discretization.

In traffic scenarios it is realistic to assume perturbation in the longitudinal velocity. To capture

this, the scheduling parameter is chosen as vx(t) = 19 + 5 sin(0.1πt). The simulation results are
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Figure 2. Performance of the time-invariant and the proposed parameter-varying

filter in the absence and presence of measurement noise.

generated through Simulink on an Intel Core i7-10850H 2.7 GHz platform. The average computa-

tional time needed for evaluating the filter and its output is 8.2 · 10−5s, i.e., a factor 100 lower than

the sampling time. Fig. 2 depicts the simulation results of a 500 sample long scenario. With this

simulation, the effectiveness of the LPV estimation filter, using two different sets of filtering coeffi-

cients, is shown and compared to an LTI estimation filter (as used in [4], generated for a velocity

vx = 19m/s). Here, the fault to be estimated is simulated as a realistic abrupt steering wheel offset

f = 0.1 π
180 radians starting at time sample k = 150. Finally, in Fig. 2 the simulation results in

two cases, with and without measurement noise are shown. We introduce realistic additive white

sensor noises with standard deviations of σψ̇ = 8 · 10−4rad/s, σye = 5 · 10−2m, σψe = 3 · 10−3 rad.

Note, that for the noisy simulations, two different filters are created and depicted. One of which

with denominator a(q) = (q+0.95)3. For the other filter (denoted in Fig. 2 as ”increased filtering”),

a(q) = (q + 0.98)3 is selected. Note, that the design of a(q) could highly depend on domain-specific

knowledge of the application. For example, a(q) can be designed to attenuate unmodeled noise or

disturbances while respecting the frequency-content of the fault to be estimated.

The results in Fig. 2 show that the baseline LTI filter is not robust against the time-varying lon-

gitudinal velocity. Once the fault increases, the residual responds but does not converge to the true

fault. This is explained by the fact that the estimation filter is only designed to decouple unmea-

sured disturbances from the residual at a constant velocity. Therefore, small effects of disturbances

and unmeasured states appear in the residual. In the absence of measurement noise, the LPV filter

estimates exactly the injected fault. In the presence of noise, the LPV filter still outperforms the LTI
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filter, and the estimation accuracy is improved further by placing the poles of numerator a(q) further

towards the exterior of the unit circle. By placing the poles of the numerator a(q) further towards

the origin of the unit-circle, the convergence rate will increase at the cost of increased sensitivity for

the measurement noise.

5. Conclusion and future work

In this paper, a novel synthesis method for a fault estimation filter, applicable a class of discrete-

time LPV systems is introduced. The synthesis of such a filter is formulated by an optimization

problem as a function of the measurable scheduling parameters, for which a solution exists given a

set of (easy-to-check) conditions. We further propose an approximate scheme that can be arbitrarily

precise while it enjoys an analytical solution, which supports real-time implementation. The pro-

posed method has been demonstrated on the lateral dynamics of an automated vehicle, showing that

in several distinct cases the fault can be estimated. Future work includes the extension to uncertain

dynamics, decoupling of non-linearities in the system dynamics and experimental validation of the

proposed algorithm.
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