
Adaptive Composite Online Optimization:

Predictions in Static and Dynamic Environments

Pedro Zattoni Scroccaro, Arman Sharifi Kolarijani, and Peyman Mohajerin Esfahani

Abstract. In the past few years, Online Convex Optimization (OCO) has received notable at-

tention in the control literature thanks to its flexible real-time nature and powerful performance

guarantees. In this paper, we propose new step-size rules and OCO algorithms that simultaneously

exploit gradient predictions, function predictions and dynamics, features particularly pertinent to

control applications. The proposed algorithms enjoy static and dynamic regret bounds in terms

of the dynamics of the reference action sequence, gradient prediction error, and function prediction

error, which are generalizations of known regularity measures from the literature. We present results

for both convex and strongly convex costs. We validate the performance of the proposed algorithms

in a trajectory tracking case study, as well as portfolio optimization using real-world datasets.

1. Introduction

The standard framework of Online Convex Optimization (OCO) can be described as a game

between a Player and Nature, played over T rounds. Let A be the Player’s action space. Suppose

that X ⊆ A is a convex set representing the set of possible actions of the Player. Moreover, let F
denote a set of convex functions available to Nature. At each round t, the Player chooses an action

xt ∈ X . After the Player commits with an action, Nature reveals a convex cost ft : X → R where

ft ∈ F . The Player suffers the loss ft(xt). The goal of the Player is to perform as well as possible

against the costs chosen by Nature. (See [19], [11] and [45] for in-depth studies of fundamental

theories of OCO and its many applications.)

A common metric to evaluate the performance of the Player is the so-called static regret defined

as

RegsT :=
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x). (1)

Intuitively, this metric quantifies how well the Player performs against the best fixed action computed

in hindsight. Based on this notion of regret, OCO algorithms are designed such that the resulting

action sequence {xt}Tt=1 guarantees a sub-linear regret w.r.t. T , i.e., limT→∞(RegsT /T ) = 0. In

other words, such OCO strategies perform (on average) as well as the best fixed action in hindsight.

A standard algorithm to choose xt is called Online Mirror Descent (OMD) algorithm

xt+1 = arg min
x∈X

{
ηt〈∇ft(xt), x〉+ Bh(x, xt)

}
, (OMD)

Date: January 13, 2023.

The authors are with the Delft Center for Systems and Control, TU Delft, The Netherlands. (e-mails:

P.ZattoniScroccaro@tudelft.nl; A.SharifiKolarijani@tudelft.nl; P.MohajerinEsfahani@tudelft.nl.). This research is par-

tially supported by the ERC grant TRUST-949796.

1



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 2

where ηt denotes the step-size and Bh is the Bregman divergence functional [11]. By choosing ηt

appropriately, Algorithm OMD guarantees RegsT ≤ O(
√
T ) [8] or RegsT ≤ O(log(T )) [46], based on

the regularity of the cost set F . Moreover, Abernethy et al. [1] showed that these regret rates are

in fact optimal by the minimax formulation of OCO problems.

However, there are many OCO problems in which the Player and Nature do not exactly follow

the rules of the sequential game mentioned above. In this paper, we focus on the case of OCO

with predictions. In these scenarios, we assume access to predictions about the costs of the problem

being studied, and we use OCO algorithms combined with these predictions in order to achieve

improved regret guarantees. For instance, if our OCO problem is related to estimating the evolution

of dynamical parameters of a system, predictions could come from a dynamical model we have of

the system (see Section 4). This approach is inspired by the classical control theory literature,

in which dynamical and/or predictive models of the system being controlled are almost always

assumed to exist. Moreover, there has been recent interest from both the online learning and

controls communities in combining Online Convex Optimization techniques to control problems,

e.g., [2, 3, 21, 48]. Also, most of the results presented in this work apply to problems with composite

costs with nonsmooth components (e.g., ‖ · ‖1). These results open up even more possibilities of

connections with control applications, for instance, `1 optimization for sparse networked feedback

control [37, 36]. Therefore, we hope that this work lays a theoretical foundation and also inspires

new works in the intersection of OCO and control theory.

Next, we formally define important notions that will be used throughout the paper.

1.1. Gradient Predictions

The minimax regret bounds for OCO algorithms are derived assuming a worst-case (i.e. fully

adversarial) cost sequence {ft}Tt=1. The cost sequence is however not completely adversarial in

many practical OCO problems [41]. In such problems, the Player can (partially) predict the unseen

cost ft at round t, before deciding its action xt.
1 It is hence natural to expect that one can possibly

exploit the predictability of an OCO problem to achieve tighter regret bounds.

A generic notion of the predictability of Nature’s moves can be stated as follows [41]. At the

outset of each round t ∈ [T ], the Player has access to the value of a function

Mt : X t−1 ×F t−1 × It−1 → P,

where I denotes some information space provided to the Player via an exogenous source and P is the

space to which each predictable entity belongs. In particular, a certain class of OCO problems with

predictability is the class of OCO problems with gradient predictions. Observe that here P ⊆ A∗,
where A∗ is the dual space of the action space A. To exploit gradient predictions in OCO problems,

Rakhlin and Sridharan [41] proposed the Optimistic Mirror Descent (OptMD) algorithm

xt = arg min
x∈X

{
ηt〈Mt, x〉+ Bh(x, yt−1)

}
yt = arg min

y∈X

{
ηt〈∇ft(xt), y〉+ Bh(y, yt−1)

}
,

(OptMD)

1This assumption deviates from the standard OCO protocol, where Nature reveals ft only after the Player chooses

xt.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 3

where {Mt}Tt=1 is a generic gradient prediction sequence.2 In [42], the authors further provided an

adaptive step-size rule for Algorithm OptMD such that RegsT ≤ O(1 +
√
DT ), where

DT :=
T∑
t=1

‖∇ft(xt)−Mt‖2∗. (2)

When the Player has access to ∇ft(·) before choosing xt, we say that the Player has access to

perfect gradient predictions. In this scenario, Ho-Nguyen and Kılınc-Karzan [22] showed that by

setting Mt := ∇ft(yt−1), ηt ≤ 1/β and when F represents β-smooth functions, Algorithm OptMD

guarantees RegsT ≤ O(1).

1.2. The Problem with DT

In the following, we argue that regret bounds given in terms of DT are not suitable for exploiting

gradient predictions, mainly because xt is not available at the beginning of round t (see Algorithm

OptMD). In some works that prove regret bounds in terms of DT (e.g. [42, 23]) it is argued that for

“predictable sequences”, external knowledge of the gradient sequence can be used to achieve tighter

regret bounds. For example, in [23], the authors state that: “...one can get a tighter bound for

regret once the learner advances a sequence of conjectures {Mt}Tt=1 well-aligned with the gradients”.

However, consider the following scenario: at the beginning of round t, the Player has access to

a prediction of ∇ft(·), namely ∇f̂t(·). Now, based on those regret bounds given in terms of DT ,

how one would choose Mt when using Algorithm OptMD? Naturally, we want to choose Mt so

that DT is as small as possible (recall that DT =
∑T

t=1 ‖∇ft(xt) −Mt‖2∗). However, since xt is

not available at the beginning of round t, we cannot set Mt = ∇f̂t(xt). Thus, from these regret

bounds, it is not clear how one should choose Mt in order to exploit this type of gradient prediction.

Moreover, Ho-Nguyen and Kılınc-Karzan [22] showed that when perfect gradient predictions are

available (that is, ∇f̂t(·) = ∇ft(·)), constant static regret is achievable. Still, this constant regret

result is not recovered by the regret bound RegsT ≤ O(1 +
√
DT ) given in [42], even when perfect

gradient predictions are available. In fact, since smoothness of the cost is not assumed in [42], if it

was possible to choose Mt such that DT = 0 (i.e., such that RegsT ≤ O(1)), this would contradict

the lower bound for first-order optimization methods [38], [49, Remark 1]. Therefore, we conclude

that in order to effectively exploit gradient predictions, a different approach must be used.

1.3. Dynamic Environments and Regularity Measures

In the regret notion (1), the Player’s cumulative loss competes against the loss of the best fixed

action in hindsight. There are, on the other hand, many OCO problems where the best fixed action

is not accessible or does not exist [5]. Thus, in those cases, the use of the regret (1) is not convenient

anymore. The term OCO problems in dynamic environments is used in the literature for such

problems [18].

To generalize the standard regret notion in order to tackle these scenarios, Zinkevich [52] proposed

to compare the Player’s performance against a general dynamical reference sequence {ut}Tt=1 ∈ X T .

2Notice that Algorithm OptMD reduces to Algorithm OMD when Mt = 0.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 4

The resulting metric is called the dynamic regret, defined as

RegdT :=
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut). (3)

Unfortunately, it is impossible to achieve a sub-linear dynamic regret for an arbitrarily chosen

{ut}Tt=1 [35]. Thus, in order to achieve meaningful dynamic regret bounds, it is common to place

extra regularity assumptions on the costs and/or the reference sequence. For example, Hall and

Willett [17] consider the bounded variability of the reference sequence in terms of

CT :=
T∑
t=1

‖ut+1 − ut‖. (4)

For convex costs, the authors show that Algorithm OMD guarantees RegdT ≤ O(
√
T (1 + CT )). The

authors further consider that the Player has access to dynamical models Φt : X → X of the reference

sequence, that is, models that approximate the true dynamical models Φ?
t , i.e., ut+1 = Φ?

t (ut). They

employ Φt(xt) instead of xt in Algorithm OMD and prove RegdT ≤ O(
√
T (1 + C ′T )), where

C ′T :=

T∑
t=1

‖ut+1 − Φt(ut)‖. (5)

When Φt approximates the true dynamics well enough, we may have C ′T ≤ CT , which in turn

implies tighter dynamic regret bounds. Subsequently, Jadbabaie et al. [23] studied dynamical

environments to account for the cases with gradient predictions. The authors show that Algorithm

OptMD guarantees RegdT ≤ O
(√

1 +DT (1 + CT )
)

in such cases. Finally, using an expert-based

algorithm called Ader, Zhang et al. [51] showed that it guarantees the optimal bound RegdT ≤
O
(√

T (1 + C ′T )
)
.

Another important regularity measure popular in the literature is the temporal variability of the

cost sequence

VT :=
T∑
t=2

max
x∈X
|ft(x)− ft−1(x)|. (6)

In the setting of stochastic optimization with noisy gradients, Besbes et al. [5] show that a restarted

gradient descent algorithm incurs dynamic regret bounded by O(T 2/3(1+v)1/3), where v is an upper

bound of VT known in advance, and Jadbabaie et al. [23] provided an algorithm which guarantees a

dynamic regret bound of Õ(
√
DT + 1+min{

√
(DT + 1)CT , (DT +1)1/3T 1/3V

1/3
T }) 3, for the specific

case when the regret is defined w.r.t. the reference sequence ut = arg minx∈X ft(x), also known as

restricted dynamic regret [10].

1.4. Composite Cost, Implicit Updates and Function Predictions

A cost function ft is called composite if it can be decomposed as ft(·) = st(·)+rt(·). For example,

Duchi et al. [16] consider the case when rt(·) = r(·) for all t, and proposes the Composite Objective

Mirror Descent (COMID) algorithm

xt+1 = arg min
x∈X

{
ηt〈∇st(xt), x〉+ ηtr(x) + Bh(x, xt)

}
, (COMID)

3The Õ notation hides poly-logarithmic terms.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 5

where differently from OMD, the fixed part r(·) is not linearized. This can be advantageous when,

for example, r(·) = ‖ · ‖1. In this case, using COMID would lead to sparse updates, whereas OMD

would not [16]. In the offline optimization literature (i.e., ft(·) = f(·) for all t), algorithms that

partially linearize the cost function are called proximal gradient methods [40, 4]. These algorithms

are usually used when s is smooth, but r is not. Then, by linearizing only the smooth component

of f , a proximal gradient method can lead to convergence rates that match the one of OMD for

smooth costs (e.g. O(1/T ) rate instead of O(1/
√
T )). Intuitively, when smoothness is necessary

to prove a convergence rate for some first-order algorithms, one can usually deal with nonsmooth

components by not linearizing them in the proximal updates.

Somewhat related to proximal gradient methods are the so-called implicit updates, also known

as Implicit Online Mirror Descent (IOMD) [24, 25, 9]

xt+1 = arg min
x∈X

{
ηtft(x) + Bh(x, xt)

}
. (IOMD)

Kulis and Bartlett [25] proved regret bounds for IOMD that match the ones from OMD. McMahan

[33] and Song et al. [47] quantify the advantage of implicit updates through non-negative, data-

dependent quantities. Recently, Campolongo and Orabona [9] showed that an adaptive version of

IOMD guaranteesO(min{VT ,
√
T}). Moreover, in dynamic environments, Campolongo and Orabona

[10] show that a version of IOMD guarantees O(min{VT ,
√
T (1 + τ)}), where τ is a known upper

bound of CT . When τ is not known, a similar bound Õ(min{VT ,
√
T (1 + CT )}) can be achieved by

combining implicit updates with experts and strongly-adaptive algorithms [10].

When a linearized version of the cost ft is used in our OCO strategy, e.g., OMD algorithm, it is

natural to expect that we only need gradient predictions to exploit information of unseen costs, as

it is done in the OptMD algorithm. However, when using strategies that partially linearize the cost

ft (or do not linearize it at all), one should not hope that gradient predictions of the cost can be

effectively used. Therefore, in order to exploit predictive information about cost functions, we will

require gradient predictions of its linearized component and function predictions of its non-linearized

component. For example, for the composite cost ft(x) = st(x) + rt(x), if we decide to linearize st(x)

and not linearize rt(x), we will require gradient predictions of st and function predictions of rt,

denoted as r̂t.

1.5. Problem Description and Related Works

In this paper, we consider OCO problems with composite costs of the form

ft(·) = st(·) + rt(·),

in both static and dynamic environments. Recall that Ho-Nguyen and Kılınç-Karzan [22] observed

that perfect gradient predictability in the form of Mt = ∇ft(yt−1) implies that Algorithm OptMD

guarantees constant static regret. Motivated by this observation and the discussion presented in

Subsection 1.2, we extend this idea to the case of an “imperfect” gradient predictability. To do so,

we introduce the gradient prediction error measure

D′t :=
t∑

τ=1

‖∇sτ (yτ−1)−∇ŝτ (yτ−1)‖2∗, (7)



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 6

where {yτ−1}tτ=1 are points generated by an online algorithm. Notice that we changed the notation

from Mt to ∇ŝτ (yτ−1). We do it so that the connection between the gradient of st and the gradient

predictions is clearer. Also, notice that this measure refers to gradient predictions only for the st

component of ft. Thus, we also introduce the function prediction error measure

V ′t :=
t∑

τ=1

|rτ (xτ )− r̂τ (xτ ) + r̂τ (yτ )− rτ (yτ )|, (8)

where {xτ}tτ=1 and {yτ}tτ=1 are points generated by an online algorithm. When st = 0, V ′T can be

interpreted as a generalization of VT for the case when function predictions are available. Namely,

when function predictions are not available, by setting r̂t = rt−1, we get V ′T ≤ 2VT . Moreover, in

dynamic environments, we further suppose that the Player has access to a (possibly approximate)

dynamical model Φt of the reference sequence {ut}Tt=1. This is a useful assumption, which has been

used in practical applications of OCO algorithms [44, 48]. We are now set to state the problem

considered in this paper.

Problem: Design and analyze OCO algorithms such that the corresponding regret bounds exploit

• (possibly imperfect) gradient and/or function predictions of the components of the cost

sequence {ft}Tt=1;

• (possibly approximated) dynamical models Φt of the reference sequence {ut}Tt=1.

Other than the works already mentioned in Section 1, several studies in the literature propose

algorithms that take advantage of the predictability of the cost sequence. Several works exploit

predictions in OCO problems with switching costs. In this scenario, at round t, the Player suffers

the loss ft(xt, xt−1) = ct(xt) + γ‖xt − xt−1‖, where ct is a convex function and γ‖xt − xt−1‖ is the

switching cost. In order to exploit predictions in these problems, it is usually necessary to have a

window of future cost predictions [13, 14, 32, 30, 31]. Another application where predictions have

been used is the so-called online control problem. For this class of problems, due to the dynamics

of the system, the cost ft may depend on the whole history of previous actions, and a window

of predictions is again necessary [29, 50, 28]. Thus, since in this work, the cost at time t only

depends on xt and we only use predictions about the very next cost, results on OCO with switching

costs and online control are not directly comparable to this paper’s results. Dekel et al. [15] study

Online Linear Optimization. The authors suppose that at the outset of each round, the Player has

access to a vector (or hint) that is correlated with the cost to be incurred to the Player. If all

hints are sufficiently good and the action set possesses certain geometrical properties, the authors

show RegsT ≤ O(log(T )). Recently, Bhaskara et al. [6] extended this result to the case when

not all hints are correlated with the true cost vector. In dynamic environments, Lesage-Landry

et al. [26] showed that tighter dynamic regret bounds can be achieved by only using predictions

that meet certain conditions. In [43], the authors employ gradient predictions in order to obtain

possibly tighter dynamic regret bounds. However, the proposed approach yields regret bounds that

lack worst-case guarantees. In [12], the authors propose an online optimistic Newton method that

exploits gradient and hessian predictions and prove dynamic regret bounds for this algorithm.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 7

1.6. Contributions and Organization

A summary of the main results is now given.

(i) Static regret for convex costs: In static environments, we propose a novel algorithm

that uses step-sizes that adapt to the quality of gradient and function predictions, guaran-

teeing RegsT ≤ O
(

1 +
√
D′T + min

{
V ′T ,
√
T
})

for convex costs (Theorem 2.5). This result

generalizes the best-case RegsT ≤ O(1) [22] and worst-case RegsT ≤ O(
√
T ) [52] regret rates.

(ii) Static regret for strongly convex costs: When the costs are strongly convex and we

have access to the rt components, we propose an adaptive step-size ηt which improves the

regret to RegsT ≤ O(1 + log(1 + D′T )) (Theorem 2.9). This result generalizes the best-case

RegsT ≤ O(1) [22] and worst-case RegsT ≤ O(log(T ) [20] regret rates.

(iii) Dynamic regret for convex costs: For dynamic environments, we introduce a new variant

of Algorithm OptMD that simultaneously exploits gradient predictions, function predictions,

and the dynamics of the reference sequence. We show that it guarantees the dynamic

regret bound RegdT ≤ O
(

(1 +C ′T )
(

1 +
√
D′T + min

{
V ′T ,

√
(1 + C ′T )T

}))
for convex costs

(Theorem 2.15).

(iv) Dynamic regret for implicit updates: Using fully implicit updates, we show that the pro-

posed algorithm guarantees the dynamic regret bound RegdT ≤ O
(

min
{
V ′T ,

√
(1 + τ)T

})
,

where τ is a known upper bound to C ′T (Theorem 2.17). This result generalizes the dynamic

regret bounds of [10], for the case of function predictions.

(v) Dynamic regret for fully adaptive step-size: Finally, when we have access to the rt

component of the costs, we propose a step-size ηt which adapts to gradient predictions and

C ′t on the fly. The resulting algorithm guarantees RegdT ≤ O
(√

(θT +D′T )(1 + C ′T )
)
, where

θT is a parameter used to control the size of the step-size. (Theorem 2.18).

For the ease of the readers, we also provide Tables 1-3 in Appendix A presenting the above contribu-

tions within the existing OCO literature reviewed earlier, with a particular focus on the predictions

and composite features in the context of static regret bounds.

The organization of the paper is as follows. The main results of this study are provided in Section

2. To improve the flow of the paper, we moved the proofs of our main results to Section 3. Numerical

experiments are presented in Section 4. Finally, in Appendix A, we present tables that position our

work with respect to a body of the OCO literature.

2. Main Results

We start with some definitions and assumptions that will be used throughout the paper.

2.1. Mathematical Preliminaries

Let the action set X ⊂ Rn. We denote by ‖ · ‖∗ the dual norm of ‖ · ‖. Also, we define [T ] :=

{1, 2, . . . , T}.

Definition 2.1 (Bregman divergence). Let h : X → R be a differentiable convex function. The

Bregman divergence of x, y ∈ X , w.r.t. the function h is Bh(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 8

Definition 2.2 (α-Strong convexity). A function f : X → R is α-strongly convex w.r.t. a norm

‖ · ‖ if f(x)− f(y) ≤ 〈∇f(x), x− y〉 − α
2 ‖x− y‖

2, for all x, y ∈ X .

Definition 2.3 (β-Smoothness). A function f : X → R is β-smooth w.r.t. a norm ‖ · ‖ if it is

differentiable and ‖∇f(x)−∇f(y)‖∗ ≤ β‖x− y‖, for all x, y ∈ X .

Next, we collect several assumptions which we will employ in the results to follow.

Assumption 2.4 (Regularity assumptions). Let A be a Banach space equipped with the norm ‖ · ‖.
Suppose that

• The set X is a convex subset of A;

• The map h : A → R is differentiable and 1-strongly convex on X ;

• Each member of the cost sequence {st}Tt=1 is convex and β-smooth. Each member of the cost

sequence {rt}Tt=1 is convex;

• Bh(x, y) ≤ R2 for all x, y ∈ X , where R > 0;

• For all t ∈ [T ], the gradient prediction ∇ŝt satisfies ‖∇st(x) − ∇ŝt(x)‖∗ ≤ σ < ∞ for any

x ∈ X ;

• For all t ∈ [T ], the function prediction r̂t is convex and |rt(x)− r̂t(x)| <∞ for any x ∈ X .

In particular, the last two points of Assumption 2.4 simply state that the gradient and function

predictions cannot be arbitrarily bad, which would naturally prevent the use of such predictive

information. Next, we provide static and dynamic regret bounds that exploit gradient/function

predictability and/or dynamical models of the reference sequence.

2.2. Static Environments

Our first result concerns convex costs in static environments. In order to exploit predictive

information of composite costs of the form ft(·) = st(·)+rt(·), we propose the Optimistic Composite

Mirror Descent (OptCMD) algorithm

xt = arg min
x∈X

{
ηt〈∇ŝt(yt−1), x〉+ ηtr̂t(x) + Bh(x, yt−1)

}
yt = arg min

y∈X

{
ηt〈∇st(xt), y〉+ ηtrt(y) + Bh(y, yt−1)

}
,

(OptCMD)

where ∇ŝt is a gradient prediction of ∇ŝt and r̂t is the function prediction of rt. Notice that unlike

algorithms COMID and IOMD, Algorithm OptCMD makes use of an auxiliary variable yt. However,

xt is still the decision variable of all OCO algorithms discussed in this paper. Algorithm OptCMD

can be interpreted as an extension of OptMD for composite costs with smooth and nonsmooth

components. As hinted in 1.2, one needs smooth functions to properly exploit gradient predictions

of costs. Therefore, the intuition behind Algorithm OptCMD is similar to the one from proximal

gradient algorithms: we handle nonsmooth components by not linearizing them in the proximal

updates while linearizing the smooth ones. This leads to using function predictions of the nonsmooth

component rt, instead of gradient predictions.

Theorem 2.5 (Static regret: convex costs). Suppose that Assumption 2.4 holds. Using the adaptive

step-size

η1 =
1

2β
, ηt =

(
4β2 +

(
V ′t−1

)2
+D′t−1

)− 1
2



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 9

for all t > 1, Algorithm OptCMD guarantees

RegsT ≤ O
(

1 +
√
D′T + min

{
V ′T ,
√
T
})

. (9)

Remark 2.6 (Intuition on adaptive step-size ηt). In Theorem 2.5, for simplicity, consider the case

when rt(x) = 0 ∀x ∈ X , i.e., V ′T = 0. For this scenario, we want to guarantee O(
√
T ) regret in

the worst-case, and in order to do so, it is known we need ηt = O(1/
√
t). On the other hand, with

perfect gradient predictions (i.e., D′T = 0), we want to guarantee O(1) regret, and in order to do so,

we need ηt ≤ O(1/β) [22]. Now, if we want to guarantee a regret bound that generalizes these two

extreme cases, it is natural that our step size should also generalize ηt = O(1/
√
t) and ηt ≤ O(1/β),

which is precisely the behavior of the ηt we designed. Similar intuitions can be derived from the other

scenarios and results presented in this paper.

The result of Theorem 2.5 is also related to [34, Theorem 3], where the authors prove regret bounds

for the so-called Composite Adaptive Optimistic Follow-the-Regularized-Leader (CAO-FTRL) algo-

rithm. The key differences between these results are: the CAO-FTRL algorithm uses FTRL update

steps, which can be computationally more expensive than the mirror descent steps of Algorithm

OptCMD; the CAO-FTRL algorithm assumes knowledge of rt at the beginning of round t, thus, is

less general than Algorithm OptCMD; and finally, the regret bound of [34, Theorem 3] is presented

in terms of DT . Here we re-emphasize that we present regret bounds in terms of D′T instead of

DT , which solves the issues raised in Subsection 1.2. Key points to achieve this result are our pro-

posed adaptive step-size (see remark above), and the extra assumption that the costs are β-smooth.

In particular, since smooth costs have Lipschitz continuous gradients, we are able to control the

difference between, possibly approximate, gradient predictions.

Next, we discuss how the bound of Theorem 2.5 generalizes several regret bounds from the

literature.

Remark 2.7 (Generality of regret bound). First, let us consider the case when rt(x) = 0 ∀x ∈ X ,

i.e., V ′T = 0. In this case, ft is β-smooth convex, and Algorithm OptCMD reduces to Algorithm

OptMD. In this scenario, when perfect predictions are available, setting ∇ŝt = ∇st implies that

D′T = 0, and the regret inequality (9) reduces to RegsT ≤ O(1), recovering the result of Ho-Nguyen

and Kılınç-Karzan [22]. On the other hand, in view of Assumption 2.4, the regret inequality (9) also

recovers the minimax static regret RegsT ≤ O(
√
T ) in the worst case, that is, even if the gradient

predictions are completely uncorrelated with the true gradients and we end up with D′T = O(T ).

Next, consider the case when st(x) = 0 ∀x ∈ X , i.e., D′T = 0. In this case, ft is a general convex

function and (9) reduces to O
(

1 + min
{
V ′T ,
√
T
})

. Again, when perfect predictions are available

we recover the optimal constant regret bound, by simply setting r̂t = rt. This bound generalizes the

O
(

1 + min
{
VT ,
√
T
})

bound of Campolongo and Orabona [9], which is known to be optimal [9,

Theorem 6.3]. In this case, if our function predictions are good, V ′T may be small and we guarantee

small regret. On the other hand, we still guarantee the standard O(
√
T ) regret in the worst-case.

Next, we state a static regret result for strongly convex costs. This stronger assumption on the

costs allows us to achieve tighter bounds. For this result, we need the following assumption.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 10

Assumption 2.8 (Extra regularity assumptions). Suppose that the action space A is an Euclidean

space equipped with the 2-norm ‖·‖2 and h(x) = 1
2‖x‖

2
2. Moreover, suppose we have access to perfect

function prediction of rt. That is, we are able to set r̂t = rt for all t.

Notice that under Assumption 2.8, the Bregman divergence Bh(x, y) = 1
2‖x − y‖

2
2. Concerning

the perfect prediction of rt, this is the case, for example, when this term corresponds to a fixed

known regularizer, e.g., rt(x) = ‖x‖, or naturally when rt(x) = 0 for all t.

Theorem 2.9 (Static regret: strongly convex costs). Suppose that assumptions 2.4 and 2.8 hold

and that the costs {st}Tt=1 are α-strongly convex. Using the adaptive step-size

η1 =
1

2β
, ηt =

(
2β +

α

2σ2
D′t−1

)−1
for all t > 1, Algorithm OptCMD with r̂t = rt guarantees

RegsT ≤ O
(
1 + log(1 +D′T )

)
. (10)

Remark 2.10 (Generality of bound for strongly convex costs). Employing a similar line of argument

as in Remark 2.7, we state two observations. With perfect gradient predictions, inequality (10)

becomes RegsT ≤ O(1), again recovering the result of Ho-Nguyen and Kılınç-Karzan [22]. Moreover,

the optimal regret bound RegsT ≤ O(log(T )) is also recovered in the worst-case.

2.3. Dynamic Environments

As previously mentioned, when working in dynamic environments, we would like to exploit gradi-

ent predictions, function predictions, and knowledge of reference sequence dynamics. Thus, in this

scenario, we propose the Optimistic Dynamic Composite Mirror Descent (OptDCMD) algorithm

xt = arg min
x∈X

{
ηt〈∇ŝt(yt−1), x〉+ ηtr̂t(x) + Bh(x, yt−1)

}
ỹt = arg min

y∈X

{
ηt〈∇st(xt), y〉+ ηtrt(y) + Bh(y, yt−1)

}
yt = Φt(ỹt).

(OptDCMD)

This algorithm can be viewed as a combination of Algorithm OptCMD and the DMD algorithm of

Hall and Willett [17]. To the best of our knowledge, no result in the literature has presented a regret

analysis of an algorithm that combines gradient predictions, function predictions, and knowledge

about the dynamics of the reference sequence. In what follows, we assume that the Player has access

to dynamical models Φt of {ut}Tt=1. Let us further make the following assumptions.

Assumption 2.11 (Lipschitz-likeness of Bh). For all x, y, z ∈ X , there exist a scalar γ > 0 such

that the Bregman divergence satisfies the Lipschitz-like condition Bh(x, z)− Bh(y, z) ≤ γ‖x− y‖.

Remark 2.12 (Mildness of Assumption 2.11). It follows that Assumption 2.11 holds when the

mapping h is Lipschitz on X [23], which is a mild assumption once X is usually a compact set.

Some examples are h(x) = 1
2‖x‖

2
2 (i.e., the euclidean case), or the “KL divergence case” [18].

Assumption 2.13 (Non-expansiveness of Φt). For all x, y ∈ X and Bh, the mapping Φt is non-

expansive, that is, Bh(Φt(x),Φt(y))− Bh(x, y) ≤ 0.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 11

Remark 2.14 (Necessity of Assumption 2.13). Observe that Assumption 2.13 is a restriction on

the class of dynamical models Φt. The reason behind this assumption is to control the impact of a

possibly unreliable prediction (made by the use of Φt), as the online game progresses [18, 44].

We now present a dynamic regret bound for the Algorithm OptDCMD. In the results that follow,

by abuse of notation, we use V ′t :=
∑t

τ=1 |rτ (xτ )− r̂τ (xτ ) + r̂τ (ỹτ )− rτ (ỹτ )|.

Theorem 2.15 (Dynamic regret: convex costs). Suppose that assumptions 2.4, 2.11 and 2.13 hold.

Define the adaptive step-size

η1 =
1

2β
, ηt =

(
4β2 +

(
V ′t−1

)2
+D′t−1

)− 1
2

for all t > 1. Then, Algorithm (OptDCMD) guarantees

RegdT ≤ O
(

(1 + C ′T )
(

1 +
√
D′T + min

{
V ′T ,

√
(1 + C ′T )T

}))
. (11)

Remark 2.16 (Comparison with literature). Lets consider the case when rt(x) = 0 ∀x ∈ X , i.e.,

V ′T = 0. Observe that when Φt approximates the true dynamics of the comparator sequence {ut}Tt=1,

we may have C ′T ≤ CT . Moreover, we also recover C ′T = CT if we choose Φt as the identity map.

Therefore, compared to the bound RegdT ≤ O((CT + 1)
√
DT + 1) of Jadbabaie et al. [23], our result

improves it in the sense that it is given in terms of C ′T and D′T , instead of CT and DT (recall

the discussion of Subsection 1.2). Moreover, recall that we have ‖∇st(yt−1) − ∇ŝt(yt−1)‖∗ ≤ σ by

Assumption 2.4. Hence, it follows that O(
√

1 +D′T (1 + C ′T )) = O(
√
T (1 + C ′T )) in the worst-case,

and we recover the bound of Hall and Willett [17]. However, Zhang et al. [51] proposed an algorithm

called Ader, which achieves the optimal bound RegdT ≤ O
(√

T (1 + C ′T )
)
. Thus, in the worst-case,

our regret bound does not recover the optimal one. Comparing (11) with the O(min{VT ,
√
T (1 + τ)})

dynamic regret bound of Campolongo and Orabona [10], where τ is a known upper bound of CT , we

see that (11) has worst dependence of C ′T . This is mainly due to the fact that, in order to exploit

gradient prediction, we need to have ηt ≤ 1/(2β). Since in [10] a fully implicit algorithm is used

(see Algorithm IOMD), the step size can depend linearly on τ , in other words, it can be as large as

necessary.

In the next theorem, we show that if the component st = 0, that is, ft = rt, we achieve a bound

that generalizes the one from [10] using function predictions, i.e., using V ′T instead of VT . Notice that

in this case, the updates of Algorithm OptDCMD are fully implicit updates, just like in Algorithm

IOMD.

Theorem 2.17 (Dynamic regret: implicit updates). Suppose that assumptions 2.4, 2.11 and 2.13

hold. Furthermore, let st = 0 for all t, and τ be an upper bound of C ′T . Define the adaptive step-size

ηt =
τ

V ′t−1
.

for all t > 1. Then, Algorithm (OptDCMD) guarantees

RegdT ≤ O
(

min
{
V ′T ,

√
(1 + τ)T

})
. (12)



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 12

As mentioned in Remark 2.16, the Ader algorithm of Zhang et al. [51] guarantees the optimal

worst-case dynamic regret bound of RegdT ≤ O
(√

T (1 + C ′T )
)
, without prior knowledge of C ′T or

an upper bound on it. In order to achieve this bound, an expert-tracking algorithm based on Online

Gradient Descent (OGD) updates is used. In our final result, we show that by using a step-size that

adapts to C ′t, a similar regret bound can be achieved while also exploiting gradient predictions.

Theorem 2.18 (Dynamic regret: fully adaptive step-size). Suppose that assumptions 2.4, 2.11 and

2.13 hold. Furthermore, assume have access to rt, thus, we can choose r̂t = rt. Set the adaptive

step-size to η1 = η2 = 1/(2β) and

ηt =

√
C ′t−2 + 1

D′t−1 + θt

for t > 2, where θt is chosen such that ηt ≤ ηt−1 ≤ 1
2β and θt ≥ θt−1 for all t. In this scenario,

Algorithm OptDCMD guarantees

RegdT ≤ O
(√

(θT +D′T )(1 + C ′T )

)
. (13)

Remark 2.19 (Comments on θt). From the definition of the step-size used in Theorem 2.18, we

notice that the more the reference sequence {ut}Tt=1 varies (i.e. the bigger C ′t is), the larger ηt should

be. Intuitively, we need larger step-sizes to “track” a reference sequence that changes a lot. On

the other hand, in order to exploit gradient prediction, we also need ηt ≤ 1/(2β). Thus, θt can be

interpreted as a trade-off parameter, which must be big enough so that ηt ≤ 1/(2β), but also not

too big so that the algorithm is not able to “track” {ut}Tt=1. Also notice that, in the case of perfect

gradient predictions (i.e. D′T = 0), the regret bound of Theorem 2.18 becomes RegdT ≤ O (1 + C ′T ),

since in this scenario we need θt = O (1 + C ′t) in order to guarantee that ηt ≤ 1/(2β). This dynamic

regret bound is similar to the one presented in [35], where the authors do not use any kind of

gradient predictions, but assume strongly convex costs and a specific reference sequence defined as

ut = arg minx∈X ft(x).

In Theorem 2.18, notice that feedback about ‖ut − Φt−1(ut−1)‖ after round t is necessary to

implement the proposed step-size ηt. Although this information may not be available in the most

general case of arbitrary costs ft and reference sequence ut, it is reasonable to assume this type

of feedback in many applications. For example, in the case where the reference sequence is a

fixed point (and the dynamic regret reduces to static regret), the feedback assumption trivially

holds since in this case ‖ut − ut−1‖ = 0. Another example is the case of quadratic costs (see

experimental results in [44, 35]), which is ubiquitous in control applications. In this case, the

gradient feedback ∇ft constrains the information about ut, thus, our step-sizes can be implemented.

Finally, another common case is when ut = arg minx∈X ft(x). When the cost ft is revealed after

round t, its optimizer can be computed, and again our step-sizes ηt can be implemented, although

it may be computationally expensive to do so.

Differently from the approach proposed in Theorem 2.18, algorithms based on the doubling-trick

or experts have been proposed as a way to adapt to C ′T without knowing it in advance [23, 51, 10].

We leave it as an open question whether or not these tools can be used to prove tighter dynamic

regret bounds when using gradient and/or function predictions. Moreover, our regret bounds can

serve as the basis for the design and analyses of algorithms that learn gradient/function predictors



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 13

and minimize regret simultaneously. For instance, in order to learn good predictors, it may be

necessary to explore the action space by playing actions perturbed by some noise. This strategy

may lead to regret bounds that depend on the prediction error (i.e, D′T and/or V ′T ) and terms that

depend on the perturbation noise. Studying the trade-off between exploration (playing perturbed

action to learn good predictors and minimize D′T and/or V ′T ) and exploitation (playing actions with

low noise) is an interesting future work direction.

3. Technical Proofs

We start this section with some auxiliary lemmas which will be useful in the proofs of our main

results.

3.1. Auxiliary Lemmas

The following lemma is a straightforward generalization of the standard mirror descent inequality

and is stated without proof.

Lemma 3.1. Suppose that X is a closed convex set. Let ϕ : X → R be a convex function and η > 0.

Define

u := arg min
x∈X
{ηϕ(x) + Bh(x, v)} .

It follows that, for all z ∈ X and g(u) ∈ ∂ϕ(u),

η〈g(u), u− z〉 ≤ Bh(z, v)− Bh(z, u)− Bh(u, v).

The next lemma relates the proximal gradient updates (e.g. as in Algorithm OptCMD) with the

gradients of the linearized components.

Lemma 3.2. Suppose that X is a closed convex set in a Banach space S equipped with a norm ‖ · ‖.
Let h be 1-strongly convex w.r.t. ‖ · ‖. Let w1, w2 ∈ S∗, v ∈ X , r : X → R is a convex function and

η > 0. Define

u1 := arg min
x1∈X

{
〈w1, x1〉+ r(x1) +

1

η
Bh(x1, v)

}
,

u2 := arg min
x2∈X

{
〈w2, x2〉+ r(x2) +

1

η
Bh(x2, v)

}
.

Then, it holds that

‖u1 − u2‖ ≤ η‖w1 − w2‖∗.

Proof. From the optimality of u1 and u2 [39, Theorem 3.1.24], we have

η〈w1 + g(u1), u2 − u1〉 ≥ 〈∇h(u1)−∇h(v), u1 − u2〉,

and

η〈−w2 − g(u2), u2 − u1〉 ≥ 〈∇h(v)−∇h(u2), u1 − u2〉.

where g(u) ∈ ∂r(u) ∀u ∈ X . Adding these two inequalities up, we get

η〈w1 − w2 + g(u1)− g(u2), u2 − u1〉 ≥ 〈∇h(u1)−∇h(u2), u1 − u2〉. (14)



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 14

Since h is 1-strongly convex, it follows that

〈∇h(u1)−∇h(u2), u1 − u2〉 ≥ ‖u1 − u2‖2. (15)

Combining (14) and (15), using the Cauchy-Schwarz inequality and the monotonicity of the subgra-

dient 〈g(u1)− g(u2), u2 − u1〉 ≤ 0, we have

‖u1 − u2‖2 ≤ η‖w1 − w2‖∗‖u2 − u1‖.

As a result, the claim follows. �

The next lemma is useful for upper bounding quantities arising from the use of adaptive step-sizes

in OCO algorithms.

Lemma 3.3. Let {ak}Tk=1, {bk}T+1
k=1 , {ck}Tk=1, be nonnegative sequences, with bt+1 ≥ bt and ct+1 ≥ ct.

Then, for T ≥ 1,

T∑
t=1

at

√
bt

ct +
∑t

k=1 ak
≤ 2

√√√√bT

(
cT +

T∑
t=1

at

)
.

Proof. The proof is by induction. For T = 1, one can show analytically that the inequality holds.

Suppose that the inequality holds for some T − 1 > 2. Thus, it follows that

T∑
t=1

at

√
bt

ct +
∑t

k=1 ak
=

T−1∑
t=1

at

√
bt

ct +
∑t

k=1 ak
+ aT

√
bT

cT +
∑T

k=1 ak

≤ 2

√√√√bT−1

(
cT−1 +

T−1∑
t=1

at

)
+ aT

√
bT

cT +
∑T

k=1 ak

≤ 2

√√√√bT

(
cT − aT +

T∑
t=1

at

)
+ aT

√
bT

cT +
∑T

k=1 ak

=
√
bT

(
2
√
A− aT +

aT√
A

)
,

where A := cT +
∑T

t=1 at. As a function of aT ≥ 0, one can show that the R.H.S of the previous

inequality is maximized when aT = 0. Thus,√
bT

(
2
√
A− aT +

aT√
A

)
≤ 2
√
bTA.

This concludes the proof. �

The next lemma is useful for upper bounding quantities arising from the use of adaptive step-sizes

in OCO algorithms, especially when the costs are strongly convex.

Lemma 3.4. Given two positive reals a and b, it holds that

b

(
1

b
− 1

a

)
≤ log

(
b−1

a−1

)
.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 15

Proof. Let us first recall the identity log(ξ) ≤ ξ − 1, for any ξ > 0. Set ξ = a−1/b−1. Notice that

− log

(
b−1

a−1

)
= log

(
a−1

b−1

)
≤ a−1

b−1
− 1 = b

(
1

a
− 1

b

)
.

Thus, the claim is an immediate consequence of the above relation. �

3.2. Main Proofs

Next, we continue with the proofs of our main results.

3.2.1. Proof of Theorem 2.5

Define x∗ := arg minx∈X
∑T

t=1 ft(x). From the definition of ft,

ft(xt)− ft(x∗) = st(xt) + rt(xt)− st(x∗)− rt(x∗)

= st(xt)− st(x∗) + rt(xt)− r̂t(xt) + r̂t(xt)− rt(yt) + rt(yt)− rt(x∗)

≤ ∆t + 〈∇st(xt), xt − x∗〉+ 〈ĝt(xt), xt − yt〉+ 〈gt(yt), yt − x∗〉

= ∆t + 〈∇st(xt)−∇ŝt(yt−1), xt − yt〉+ 〈∇ŝt(yt−1) + ĝt(xt), xt − yt〉

+ 〈∇st(xt) + gt(yt), yt − x∗〉,

where gt(yt) ∈ ∂rt(yt), ĝt(xt) ∈ ∂r̂t(xt), ∆t := rt(xt) − r̂t(xt) + r̂t(yt) − rt(yt) and the inequality

follows from the convexity of st, rt and r̂t. Using Lemma 3.1, we get

ft(xt)− ft(x∗) ≤ ∆t + 〈∇st(xt)−∇ŝt(yt−1), xt − yt〉+
1

ηt

(
Bh(x∗, yt−1)− Bh(x∗, yt)

− Bh(xt, yt−1)− Bh(yt, xt)
)

≤ ∆t + ‖∇st(xt)−∇ŝt(yt−1)‖∗‖xt − yt‖+
1

ηt

(
Bh(x∗, yt−1)− Bh(x∗, yt)

− Bh(xt, yt−1)− Bh(yt, xt)
)

= At +Bt + Ct,

where At, Bt and Ct are defined as

At := ‖∇st(xt)−∇ŝt(yt−1)‖∗‖xt − yt‖ −
1

2ηt
Bh(yt, xt)−

1

ηt
Bh(xt, yt−1),

Bt :=
1

ηt

(
Bh(x∗, yt−1)− Bh(x∗, yt)

)
and Ct := ∆t −

1

2ηt
Bh(yt, xt).

We will proceed by upper bounding
∑T

t=1At and
∑T

t=1Bt separately.

(Upper bounding
∑T

t=1At)

Starting from the fact that −Bh(x, y) ≤ −1
2‖x − y‖

2 and that ab ≤ ρa2 + b2

4ρ for any ρ > 0, we

have

At = ‖∇st(xt)−∇ŝt(yt−1)‖∗‖xt − yt‖ −
1

2ηt
Bh(yt, xt)−

1

ηt
Bh(xt, yt−1)

≤ ‖∇st(xt)−∇ŝt(yt−1)‖∗‖xt − yt‖ −
1

4ηt
‖yt − xt‖2 −

1

2ηt
‖xt − yt−1‖2

≤ ηt+1‖∇st(xt)−∇ŝt(yt−1)‖2∗ +

(
1

4ηt+1
− 1

4ηt

)
‖xt − yt‖2 −

1

2ηt
‖xt − yt−1‖2



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 16

≤ 2ηt+1‖∇st(xt)−∇st(yt−1)‖2∗ −
1

2ηt
‖xt − yt−1‖2 + 2ηt+1‖∇st(yt−1)−∇ŝt(yt−1)‖2∗ +

R2

2ηt+1
− R2

2ηt

≤
(

2β2ηt+1 −
1

2ηt

)
‖xt − yt−1‖2 +

R2

2ηt+1
− R2

2ηt
+ 2ηt+1‖∇st(yt−1)−∇ŝt(yt−1)‖2∗

≤ 2ηt+1‖∇st(yt−1)−∇ŝt(yt−1)‖2∗ +
R2

2ηt+1
− R2

2ηt
, (16)

where used the facts that ηt is nonincreasing, Assumption 2.4 and the fact that ηt ≤ 1
2β , which

implies 2β2ηt+1− 1
2ηt
≤ 0. Next, we will bound the two terms of (16) separately. Summing the first

term over t = 1, . . . , T , we get

2
T∑
t=1

ηt+1‖∇st(yt−1)−∇ŝt(yt−1)‖2∗ = 2
T∑
t=1

‖∇st(yt−1)−∇ŝt(yt−1)‖2∗√
4β2 + (V ′t )2 +D′t

≤ 4

√
4β2 +

(
V ′T
)2

+D′T

≤ 4V ′T + 4
√

4β2 +D′T ,

where the inequalities follow from the definition of D′t, Lemma 3.3 and
√
a+ b ≤

√
a+
√
b. Summing

the second and third terms of (16) over t = 1, . . . , T and telescoping the sum, we get

R2

2

T∑
t=1

(
1

ηt+1
− 1

ηt

)
≤ R2

2ηT+1
.

Putting these bounds together, we arrive at

T∑
t=1

At ≤ 4V ′T +
R2

2ηT+1
+ 4
√

4β2 +D′T =

(
4 +

R2

2

)(
V ′T +

√
4β2 +D′T

)
. (17)

(Upper bounding
∑T

t=1Bt)

Rearranging and telescoping the sum, we have

T∑
t=1

Bt ≤
T∑
t=1

1

ηt

(
Bh(x∗, yt−1)− Bh(x∗, yt)

)
≤ Bh(x∗, y0)

η1
+

T−1∑
t=1

(
1

ηt+1
− 1

ηt

)
Bh(x∗, yt) ≤

R2

ηT
, (18)

where we used Assumption 2.4. Putting (17) and (18) together, we arrive at

RegsT ≤
T∑
t=1

(At +Bt + Ct)

≤
(

4 +
R2

2

)(
V ′T +

√
4β2 +D′T

)
+
R2

ηT
+

T∑
t=1

(
∆t −

1

2ηt
Bh(yt, xt)

)

≤
(

4 +
3R2

2

)(
V ′T +

√
4β2 +D′T

)
+

T∑
t=1

(
∆t −

1

2ηt
Bh(yt, xt)

)
(19)

≤
(

5 +
3R2

2

)(
V ′T +

√
4β2 +D′T

)
, (20)

where we used the definition of ηT+1 and the fact that V ′T =
∑T

t=1 |∆t| by definition. Similar to [9,

Theorem 6.2], we will proceed to bound the regret in a second way, which in turn will imply the



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 17

regret is upper bounded by the minimum of (20) and the second bound. In particular, we will focus

on the following part of (19)(
5 +

3R2

4

)
V ′T −

T∑
t=1

1

2ηt
Bh(yt, xt) =

(
5 +

3R2

4

) T∑
t=1

|∆t| −
T∑
t=1

1

4ηt
‖xt − yt‖2 = cλT ,

where λT :=
∑T

t=1

(
|∆t| − 1

4cηt
‖xt − yt‖2

)
and c := 5 + 3R2

4 . Thus,

RegsT ≤ cλT +

(
4 +

3R2

4

)√
4β2 +D′T . (21)

Next, we will proceed to prove an upper bound to λ2T , which will naturally imply an upper bound

to cλT . To do so, we will first prove an upper bound to the term |∆t| − 1
4cηt
‖xt − yt‖2.

(Upper bounding |∆t| − 1
4cηt
‖xt − yt‖2)

From the definition of ∆t and convexity of rt and r̂t, we have that

∆t ≤ 〈gt(xt)− ĝt(yt), xt − yt〉 ≤
√

2R‖gt(xt)− ĝt(yt)‖∗ +
‖xt − yt‖2

4cηt
(22)

and

∆t ≤ ‖gt(xt)− ĝt(yt)‖∗‖xt − yt‖ ≤ cηt‖gt(xt)− ĝt(yt)‖2∗ +
‖xt − yt‖2

4cηt
(23)

for any gt(xt) ∈ ∂rt(xt) and ĝt(yt) ∈ ∂r̂t(yt), where we used the facts that ‖xt−yt‖
2

4cηt
≥ 0 and

ab ≤ ρa2 + b2

4ρ for any ρ > 0. Similarly, we also have that

−∆t ≤
√

2R‖gt(yt)− ĝt(xt)‖∗ +
‖xt − yt‖2

4cηt
(24)

and

−∆t ≤ cηt‖gt(yt)− ĝt(xt)‖2∗ +
‖xt − yt‖2

4cηt
, (25)

Combining (22), (23), (24) and (25), we get that

|∆t| −
‖xt − yt‖2

4cηt
≤ min

{√
2RGt, cηtG

2
t

}
, (26)

where Gt := max {‖gt(xt)− ĝt(yt)‖∗, ‖gt(yt)− ĝt(xt)‖∗}.
(Upper bounding λ2T )

Notice that

λt − λt−1 = |∆t| −
‖xt − yt‖2

4cηt
≤ min

{√
2RGt, cηtG

2
t

}
. (27)

Defining λ20 := 0, we have that

λ2T =

T∑
t=1

(
λ2t − λ2t−1

)
=

T∑
t=1

(
(λt − λt−1)2 + 2 (λt − λt−1)λt−1

)
≤

T∑
t=1

(
2R2G2

t + 2cηtλt−1G
2
t

)
,

where the last inequality follows from (27). Next, notice that by definition

ηtλt−1 =

∑t−1
k=1

(
|∆k| − ‖xk−yk‖

2

2cηk

)
√

4β2 +
(∑t−1

k=1 |∆k|
)2

+D′t−1

≤
∑t−1

k=1 |∆k|∑t−1
k=1 |∆k|

= 1.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 18

Thus, we have that

λ2T ≤
T∑
t=1

(
2R2G2

t + 2cG2
t

)
= (2R2 + 2c)

T∑
t=1

G2
t .

Taking the square root and substituting it into (21), we get the second regret bound

RegsT ≤ c
√

2R2 + 2c

√√√√ T∑
t=1

G2
t +

(
5 +

3R2

4

)√
4β2 +D′T . (28)

Finally, combining (20) and (28), arrive at

RegsT ≤ min


(

5 +
3R2

4

)
V ′T , c

√
2R2 + 2c

√√√√ T∑
t=1

G2
t

+

(
5 +

3R2

4

)√
4β2 +D′T

= O

(
1 +

√
D′T + min

{
V ′T ,
√
T
})

.

This completes the proof. �

3.2.2. Proof of Theorem 2.9

In order to prove Theorem 2.9, first we will prove a version of this theorem for general Bregman

divergences and a general notion of strong convexity (Lemma 3.8). This result is achieved by ex-

ploiting a certain technical assumption (Assumption 3.6). Then, we will show that for the euclidean

case (i.e. Bh(x, y) = 1
2‖x− y‖

2
2), this technical assumption always holds and Theorem 2.9 follows.

Definition 3.5 (α-Strong convexity w.r.t. Bh). A function f : X → R is α-strongly convex w.r.t.

Bh if f(x)− f(y) ≤ 〈∇f(x), x− y〉 − αBh(y, x), for all x, y ∈ X .

Assumption 3.6 (Technical assumption). For 1/η > α > 0, there exists a constant λ > 0 such

that λBh(x, y)− 1
ηBh(y, z)− αBh(x, z) ≤ 0, for all x, y, z ∈ X .

Before stating the general version of Theorem 2.9, we make a short remark on Assumption 3.6.

Remark 3.7 (Mildness of Assumption 3.6). Notice that η, α and Bh(x, y) are all non-negative.

Thus, for a general choice of h, one should expect to be able to choose a small enough λ to ensure

that the inequality in Assumption 3.6 holds. In particular, when Bh(x, y) = 1
2‖x− y‖

2
2, we will show

that Assumption 3.6 holds for λ = α/2.

Lemma 3.8 (Strongly convex case with general divergence). Suppose that Assumptions 2.4 and 3.6

hold and that the costs {ft}Tt=1 are α-strongly convex w.r.t. Bh. Using the adaptive step-size

η1 =
1

2β
, ηt =

(
λ

σ2
D′t−1 + 2β

)−1
for all t > 1, Algorithm OptCMD with r̂t = rt guarantees

RegsT ≤ O
(
1 + log(1 +D′T )

)
.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 19

Proof. Let x∗ := arg minx∈X
∑T

t=1 ft(x). Since st is α-strongly convex w.r.t. Bh, we have

st(xt)− st(x∗) ≤ 〈∇st(xt), xt − x∗〉 − αBh(x∗, xt).

Thus,

ft(xt)− ft(x∗) = st(xt) + rt(xt)− st(x∗)− rt(x∗)

= st(xt)− st(x∗) + rt(xt)− rt(xt) + rt(xt)− rt(yt) + rt(yt)− rt(x∗)

≤ 〈∇st(xt), xt − x∗〉 − αBh(x∗, xt) + 〈gt(xt), xt − yt〉+ 〈gt(yt), yt − x∗〉

= 〈∇st(xt)−∇ŝt(yt−1), xt − yt〉+ 〈∇ŝt(yt−1) + gt(xt), xt − yt〉

+ 〈∇st(xt) + gt(yt), yt − x∗〉 − αBh(x∗, xt),

where gt(yt) ∈ ∂rt(yt), gt(xt) ∈ ∂rt(xt) and the inequality follows from the convexity of st and rt.

Using Lemma 3.1, we get

ft(xt)− ft(x∗) ≤ 〈∇st(xt)−∇ŝt(yt−1), xt − yt〉 − αBh(x∗, xt) +
1

ηt

(
Bh(x∗, yt−1)

− Bh(x∗, yt)− Bh(xt, yt−1)− Bh(yt, xt)
)

≤ ‖∇st(xt)−∇ŝt(yt−1)‖∗‖xt − yt‖ − αBh(x∗, xt) +
1

ηt

(
Bh(x∗, yt−1)

− Bh(x∗, yt)− Bh(xt, yt−1)− Bh(yt, xt)
)

= At +Bt,

where At and Bt are defined as

At :=
1

ηt

(
Bh(x∗, yt−1)− Bh(x∗, yt)− Bh(yt, xt)

)
− αBh(x∗, xt)

and

Bt := ‖∇st(xt)−∇ŝt(yt−1)‖∗‖xt − yt‖ −
1

ηt
Bh(xt, yt−1).

With the above notations at hand, it follows that

RegsT =
T∑
t=1

(ft(xt)− ft(x∗)) ≤
T∑
t=1

At +
T∑
t=1

Bt. (29)

We proceed by bounding
∑T

t=1At and
∑T

t=1Bt separately.

(Upper bounding
∑T

t=1At) Observe that

T∑
t=1

At =

T∑
t=1

1

ηt

(
Bh(x∗, yt−1)− Bh(x∗, yt)

)
−

T∑
t=1

(
1

ηt
Bh(yt, xt) + αBh(x∗, xt)

)

≤ Bh(x∗, y0)

η1
+

T∑
t=1

(
1

ηt+1
− 1

ηt

)
Bh(x∗, yt)−

T∑
t=1

(
1

ηt
Bh(yt, xt) + αBh(x∗, xt)

)
.

Assumption 2.4 and η1 = 1
2β imply that

Bh(x∗, y0)

η1
≤ 2βR2. (30a)



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 20

From the definition of ηt, we have that

1

ηt+1
− 1

ηt
=

λ

σ2
‖∇st(yt−1)−∇ŝt(yt−1)‖2∗. (30b)

Hence, we obtain

T∑
t=1

(
1

ηt+1
− 1

ηt

)
Bh(x∗, yt) = λ

T∑
t=1

‖∇st(yt−1)−∇ŝt(yt−1)‖2∗
σ2

Bh(x∗, yt) ≤ λ
T∑
t=1

Bh(x∗, yt), (30c)

where the inequality follows from the fifth item in Assumption 2.4. In light of the upper bounds

derived in equation (30), we then infer that

T∑
t=1

At ≤ 2βR2 +

T∑
t=1

(
λBh(x∗, yt)−

1

ηt
Bh(yt, xt)− αBh(x∗, xt)

)
≤ 2βR2, (31)

where the second inequality follows from Assumption 3.6.

(Upper bounding
∑T

t=1Bt) Invoking Lemma 3.2, we conclude that

‖yt − xt‖ ≤ ηt‖∇st(xt)−∇ŝt(yt−1)‖∗,

and as a result,

Bt ≤ ηt‖∇st(xt)−∇ŝt(yt−1)‖2∗ −
1

ηt
Bh(xt, yt−1).

Notice that

Bt ≤ 2ηt‖∇st(xt)−∇st(yt−1)‖2∗ + 2ηt‖∇st(yt−1)−∇ŝt(yt−1)‖2∗ −
1

ηt
Bh(xt, yt−1)

≤ 2ηtβ
2‖xt − yt−1‖2 + 2ηt‖∇st(yt−1)−∇ŝt(yt−1)‖2∗ −

1

ηt
Bh(xt, yt−1).

where we made use of the identity ‖a − b‖2 ≤ 2‖a − c‖2 + 2‖c − b‖2 and the β-smoothness of st.

Using Lemma −Bh(x, y) ≤ −1
2‖x− y‖

2, we arrive at

Bt ≤
(

2ηtβ
2 − 1

2ηt

)
‖xt − yt−1‖2 + 2ηt‖∇st(yt−1)−∇ŝt(yt−1)‖2∗.

From the definition of ηt, we have that 2ηtβ
2 − 1

2ηt
≤ 0 ∀t ≥ 1, and summing Bt over t = 1, . . . , T

yields

T∑
t=1

Bt ≤ 2

T∑
t=1

ηt‖∇st(yt−1)−∇ŝt(yt−1)‖2∗

≤ 2

T∑
t=1

ηt+1‖∇st(yt−1)−∇ŝt(yt−1)‖2∗ + 2
T∑
t=1

(ηt − ηt+1)‖∇st(yt−1)−∇ŝt(yt−1)‖2∗.

By virtue of the fifth item in Assumption 2.4, it follows that

T∑
t=1

(ηt − ηt+1)‖∇st(yt−1)−∇ŝt(yt−1)‖2∗ ≤ σ2
T∑
t=1

(ηt − ηt+1) = σ2 (η1 − ηT+1) ≤ σ2η1 =
σ2

2β
.

Based on the above analyses, it is straightforward to see that

T∑
t=1

Bt ≤
σ2

β
+ 2

T∑
t=1

ηt+1‖∇st(yt−1)−∇ŝt(yt−1)‖2∗. (32)



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 21

Notice that by the definition ηt, we have

‖∇st(yt−1)−∇ŝt(yt−1)‖2∗ =
σ2

λ

(
1

ηt+1
− 1

ηt

)
,

and as a result,

T∑
t=1

Bt ≤
σ2

β
+

2σ2

λ

T∑
t=1

ηt+1

(
1

ηt+1
− 1

ηt

)
.

Using Lemma 3.4 to upper bound the RHS of the inequality above, we have that

T∑
t=1

Bt ≤
σ2

β
+

2σ2

λ

T∑
t=1

log

(
η−1t+1

η−1t

)
=
σ2

β
+

2σ2

λ

(
log

(
1

ηT+1

)
− log

(
1

η1

))
=
σ2

β
+

2σ2

λ
log

(
η1
ηT+1

)
,

which immediately yields

T∑
t=1

Bt ≤
σ2

β
+

2σ2

λ
log

(
1 +

λ

2βσ2
D′T

)
. (33)

(Regret upper bound) In light of (31) and (33), we arrive at

RegsT ≤ 2βR2 +
σ2

β
+

2σ2

λ
log

(
1 +

λ

2βσ2
D′T

)
.

The lemma immediately follows. �

Finally, for the euclidean case (i.e. Bh(x, y) = 1
2‖x− y‖

2
2) and choosing λ = α/2, we have

λBh(x∗, yt)−
1

ηt
Bh(yt, xt)− αBh(x∗, xt) =

α

4
‖x∗ − yt‖22 −

1

2ηt
‖yt − xt‖22 −

α

2
‖x∗ − xt‖

≤ α

2
‖xt − yt‖22 −

1

2ηt
‖yt − xt‖22 ≤ 0,

where the second inequality follows from ‖a− b‖2 ≤ 2‖a− c‖2 + 2‖c− b‖2 and the third inequality

follows from η−1t ≥ β ≥ α. Thus, we have shown that Assumption 3.6 holds for all t, and Theorem

2.9 follows from Lemma 3.8. �

3.2.3. Proof of Theorem 2.15

Let ut ∈ X . Following similar steps to the ones from the proof of Theorem 2.5, one can show that

ft(xt)− ft(ut) ≤ At +Bt + Ct,

where At, Bt and Ct are defined as

At := ‖∇st(xt)−∇ŝt(yt−1)‖∗‖xt − ỹt‖ −
1

2ηt
Bh(ỹt, xt)−

1

ηt
Bh(xt, yt−1),

Bt :=
1

ηt

(
Bh(ut, yt−1)− Bh(ut, ỹt)

)
and Ct := ∆t −

1

2ηt
Bh(ỹt, xt).

Moreover, still following steps similar to the proof of Theorem 2.5, we can show that

T∑
t=1

At ≤
(

4 +
R2

2

)(
V ′T +

√
4β2 +D′T

)
. (34)



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 22

(Upper bounding
∑T

t=1Bt)

Adding ± 1
ηt
Bh(ut+1, yt) and ± 1

ηt
Bh(Φt(ut), yt) to Bt and summing the result over t = 1, . . . , T ,

we get

T∑
t=1

Bt =

T∑
t=1

1

ηt

(
Bh(ut, yt−1)− Bh(ut+1, yt) + Bh(ut+1, yt)

− Bh(Φt(ut), yt) + Bh(Φt(ut),Φt(ỹt))− Bh(ut, ỹt)
)
,

where we made use of yt = Φt(ỹt). By Assumption 2.11, it holds that for some positive real γ

Bh(ut+1, yt)− Bh(Φt(ut), yt) ≤ γ‖ut+1 − Φt(ut)‖.

By Assumption 2.13, it further holds that

Bh(Φt(ut),Φt(ỹt))− Bh(ut, ỹt) ≤ 0.

By virtue of the last two inequalities, we arrive at

T∑
t=1

Bt ≤
T∑
t=1

1

ηt

(
Bh(ut, yt−1)− Bh(ut+1, yt) + γ‖ut+1 − Φt(ut)‖

)
. (35)

Next, observe that

T∑
t=1

1

ηt

(
Bh(ut, yt−1)− Bh(ut+1, yt)

)
≤ 1

η1
Bh(u1, y0) +

T∑
t=2

(
1

ηt
− 1

ηt−1

)
Bh(ut, yt−1)

≤ R2

η1
+R2

T∑
t=2

(
1

ηt
− 1

ηt−1

)
≤ R2

ηT
,

where we made use Assumption 2.4. Considering inequality (35), one can conclude based on the

above arguments that

T∑
t=1

Bt ≤
R2

ηT
+

T∑
t=1

(
γ

ηt
‖ut+1 − Φt(ut)‖

)
≤ R2

ηT
+

γ

ηT

T∑
t=1

‖ut+1 − Φt(ut)‖ =
1

ηT
(R2 + γC ′T ), (36)

where the second inequality follows from ηt ≥ ηt+1. Putting (34) and (36) together, we arrive at

RegsT ≤
T∑
t=1

(At +Bt + Ct)

≤
(

4 +
R2

2

)(
V ′T +

√
4β2 +D′T

)
+ (R2 + γC ′T )

1

ηT
+

T∑
t=1

(
∆t −

1

2ηt
Bh(yt, xt)

)

≤
(

4 +
3R2

2
+ γC ′T

)(
V ′T +

√
4β2 +D′T

)
+

T∑
t=1

(
∆t −

1

2ηt
Bh(yt, xt)

)
(37)

≤
(

5 +
3R2

2
+ γC ′T

)(
V ′T +

√
4β2 +D′T

)
, (38)

where we used the definition of ηT+1 and the fact that V ′T =
∑T

t=1 |∆t|. Define c := 5 + 3R2

4 + γC ′T

and λT :=
∑T

t=1

(
|∆t| − 1

4cηt
‖xt − yt‖2

)
. By following the same steps of the last part of the proof



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 23

of Theorem 2.5, one can show that

RegsT ≤ c
√

2R2 + 2c

√√√√ T∑
t=1

G2
t +

(
4 +

3R2

4
+ γC ′T

)√
4β2 +D′T . (39)

Finally, combining (38) and (39), arrive at

RegsT ≤ min


(

5 +
3R2

4
+ γC ′T

)
V ′T , c

√
2R2 + 2c

√√√√ T∑
t=1

G2
t

+

(
4 +

3R2

4
+ γC ′T

)√
4β2 +D′T

= O

((
1 + C ′T

)(
1 +

√
D′T + min

{
V ′T ,

√
(1 + C ′T )T

}))
.

This concludes the proof. �

3.3. Proof of Theorem 2.17

Similarly to the beginning of the proof of Theorem 2.15, one can show that

ft(xt)− ft(ut) ≤ Bt + Ct,

where Bt and Ct are defined as

Bt :=
1

ηt

(
Bh(ut, yt−1)− Bh(ut, ỹt)

)
and Ct := ∆t −

1

ηt
Bh(ỹt, xt).

Next, continuing following the proof of Theorem 2.15, we have that

T∑
t=1

Bt ≤
R2

ηT
+

T∑
t=1

γ

ηt
‖ut+1 − Φt(ut)‖ ≤

1

ηT

(
R2 + γτ

)
.

Thus, we have that

RegsT ≤
T∑
t=1

(Bt + Ct) ≤
1

ηT

(
R2 + γτ

)
+

T∑
t=1

(
∆t −

1

ηt
Bh(yt, xt)

)

≤
(
R2

τ
+ γ + 1

)
V ′T −

T∑
t=1

1

ηt
Bh(yt, xt).

Again following the steps of the proof of Theorem 2.15, we can alternatively bound the regret by

RegsT ≤ c
√

2R2 + 2τc

√√√√ T∑
t=1

G2
t ≤ O(

√
(1 + τ)T ),

where c = R2

τ + γ + 1. Combining the two regret bounds, we have

RegsT ≤ O
(

min
{
V ′T ,

√
(1 + τ)T

})
.

This concludes the proof. �



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 24

3.3.1. Proof of Theorem 2.18

We start the proof by following similar steps to the ones taken in the proof of Theorem 2.9. By

doing so, we arrive at

RegdT =
T∑
t=1

(ft(xt)− ft(ut)) ≤
T∑
t=1

At +
T∑
t=1

Bt, (40)

where

At := ‖∇st(xt)−∇ŝt(yt−1)‖∗‖xt − ỹt‖ −
1

ηt
Bh(ỹt, xt)−

1

ηt
Bh(xt, yt−1),

and

Bt :=
1

ηt
(Bh(ut, yt−1)− Bh(ut, ỹt)).

(Upper bounding
∑T

t=1At) We proceed by bounding
∑T

t=1At in the sequel. Recall that by

definition, ηt ≤ 1/(2β) for all t. Thus, by following similar steps as taken in the proof of Theorem

2.5, we get
T∑
t=1

At ≤
R2

2ηT+1
+ 2

T∑
t=1

ηt+1‖∇st(yt−1)−∇ŝt(yt−1)‖2∗.

Recall the definition of ηt. Invoking lemma Lemma 3.3, we arrive at

T∑
t=1

At ≤
R2

2ηT+1
+ 4
√

(θT +D′T )(1 + C ′T ). (41)

(Upper bounding
∑T

t=1Bt) Following similar steps as taken in the proof of Theorem 2.15, we

can bound
T∑
t=1

Bt ≤
R2

ηT
+

T∑
t=1

γ

ηt
‖ut+1 − Φt(ut)‖.

Next, notice that

T∑
t=1

γ

ηt
‖ut+1 − Φt(ut)‖ = γ

T∑
t=1

(
1

ηt
− 1

ηt+1
+

1

ηt+1

)
‖ut+1 − Φt(ut)‖

= γ

T∑
t=1

(
1

ηt
− 1

ηt+1

)
‖ut+1 − Φt(ut)‖+ γ

T∑
t=1

1

ηt+1
‖ut+1 − Φt(ut)‖

≤ γR2

η1
+ γ

T∑
t=1

1

ηt+1
‖ut+1 − Φt(ut)‖,

where for the last inequality, we assumed without loss of generality that ‖ut+1 − Φt(ut)‖ ≤ R2.

Following these same steps again, and using the fact that η1 = η2, we get

T∑
t=1

γ

ηt
‖ut+1 − Φt(ut)‖ ≤

2γR2

η1
+ γ

T∑
t=1

1

ηt+2
‖ut+1 − Φt(ut)‖.

Recall the definition of ηt in Theorem 2.18. Invoking Lemma 3.3, we get

γ

T∑
t=1

1

ηt+2
‖ut+1 − Φt(ut)‖ ≤ 2γ

√
(θT+2 +D′T+1)(1 + C ′T )



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 25

Back to our upper bound on At, we now have

T∑
t=1

Bt ≤
2γR2

η1
+
R2

ηT
+ 2γ

√
(θT+2 +D′T+1)(1 + C ′T ). (42)

(Regret upper bound) Considering equations (40), (42) and (41), it holds that

RegdT ≤
2σ2R2

η1
+

3R2

2ηT
+ (4 + 2γ)

√
(θT+2 +D′T+1)(1 + C ′T ).

This concludes the proof. �

4. Numerical Experiments

4.1. Tracking Dynamical Parameters

In this section, we employ a strategy based on Algorithm OptDCMD in a parameter tracking

problem. The scenario presented in this section is based on the numerical experiment of [44].

Denote the parameters to be tracked by ut ∈ R4. These parameters have dynamics described by

the linear model ut+1 = Aut + vt. Similarly to [44], we emphasize that our online learning results

hold even when the noise is adversarial with an unknown structure. For this experiment, we use

A =


1 0.1 0 0

0 1 0.1 0

0 0 1 0.1

0 0 0 1

 and vt =

2 if ṽt > 0

−1 if ṽt ≤ 0

where ṽt is Gaussian noise with a random covariance matrix, and the inequalities in the definition

of vt are component-wise. The cost at time t is defined as ft(xt) = 1
2‖xt − ut‖

2
2 + ‖xt‖1, where

st(xt) := 1
2‖xt − ut‖

2
2, rt(xt) := ‖xt‖1 and xt is the output of our tracking algorithm. We assume

the Player has access to Φt(x) = Ax, which is an approximate model of the dynamics of ut.

To choose its action sequence {xt}Tt=1, the Player employs a variation of Algorithm OptDCMD

with h(x) = 1
2‖x‖

2
2 (i.e., the euclidean setup), with the difference that in the update rule of ỹt, we

use a constant step-size ηt = 1. This change was inspired by [35], and the fact that 1
2‖xt − ut‖

2
2 is

smooth and strongly convex. For the update rule of xt, we use the step-size defined in Theorem 2.15

(notice that since the nonsmooth component of the cost ft is fixed, V ′t = 0 for all t). We consider

the following gradient prediction models:

(1) perfect: a perfect model ∇ŝt(yt−1) := ∇st(yt−1);
(2) noisy: a noisy model ∇ŝt(yt−1) := ∇st(yt−1) + wt;

(3) noisy+bias: a noisy prediction model plus a bias term ∇ŝt(yt−1) := ∇st(yt−1) + wt − 1;

(4) previous: a prediction model that uses the previous cost gradient∇ŝt(yt−1) := ∇st−1(yt−1);
(5) random: a random prediction model ∇ŝt(yt−1) := wt,

where wt ∼ N (0, 0.5I). As a benchmark, we use the Dynamic Mirror Descent (DMD) algorithm of

Hall and Willett [17] with a constant step-size η = 1 and a dynamic version of Algorithm OptMD,

which also uses the dynamical model Φt to update the yt variable. We refer to this algorithm as

dynamic OptMD.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 26

(a) OptDCMD versus DMD. (b) OptDCMD versus dynamic OptMD.

Figure 1. Regret difference between the DMD algorithm, the dynamic version of

Algorithm OptMD and Algorithm OptDCMD, for different gradient prediction mod-

els.

Denote the regrets of Algorithm OptDCMD, the DMD algorithm and the dynamic OptMD by

Regdt (OptDCMD), Regdt (DMD) and Regdt (d-OptMD), respectively. The experiments are repeated

100 times, and for each experiment, a new trajectory {ut}Tt=1 was generated. The shaded areas

correspond to one standard deviation for Figure 1a and 0.1 times one standard deviation for Figure

1b. Figure 1a depicts the difference Regdt (OptDCMD)-Regdt (DMD). One can observe that all the

models that use some kind of information about future gradients (perfect, noisy, noisy+bias)

were able to perform better than the benchmark. This shows that indeed Algorithm OptDCMD

was able to exploit predictive information about the problem. Moreover, model previous and

random also perform better than the benchmark on average, showing the robustness of our algo-

rithm against inaccurate gradient predictions. Figure 1a depicts the difference Regdt (OptDCMD)-

Regdt (d-OptMD). As can be seen, Algorithm OptDCMD performs better than the benchmark for

all predictions models, illustrating the advantage of the composite updates Algorithm OptDCMD

compared with Algorithm OptMD.

4.2. Portfolio Selection

In this section, we apply the result of Theorem 2.5 in a portfolio selection problem. Suppose

that an investor (or the Player) has n assets in a Market (or Nature). Let the Player’s action

x be a probability distribution over n assets. The action set X is thus ∆n := {x ∈ Rn : x(i) ≥
0,
∑n

i=1 x(i) = 1}. Let the return of an asset at round t be the ratio of the value of the asset between

rounds t and t+ 1. At round t, Nature chooses a strictly positive return vector rt ∈ Rn>0 such that

each entry of rt corresponds to the return of an asset. The Player’s wealth ratio between rounds t

and t+1 is 〈rt, xt〉. Let the Player’s gain at round t be log(〈rt, xt〉). In a game of T rounds, the goal

of the Player is to maximize
∑T

t=1 log(〈rt, xt〉) or, equivalently, to minimize
∑T

t=1− log(〈rt, xt〉).



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 27

Hence, we have ft(x) = − log(〈rt, x〉) and ∇ft(x) = −rt/〈rt, x〉, for all x ∈ X 4. Notice that in

this scenario, there is no nonsmooth component in the cost ft, and Algorithm OptCMD reduces to

Algorithm OptMD.

We assume that the Player has prediction models of the return vector rt, denoted by r̂t. Thus,

in light of the approaches proposed in this paper, we define

∇f̂t(yt−1) := − r̂t
〈r̂t, yt−1〉

. (43)

In what follows, we show how the Player can employ Algorithm OptMD to decide its action sequence

{xt}Tt=1 considering the static regret (1). Since the costs are convex, the Player uses the step-size

rule of Theorem 2.5 in Algorithm OptMD (with Vt = 0). We assume the return of each asset at each

time t is bounded as rmin ≤ rt ≤ rmax (component-wise). By assuming rmin = 0.5 and rmax = 1.5,

we can set the smoothness parameter β = 9. Since ∆n is the n-dimensional simplex, we let h(x) be

the negative entropy function
∑n

i=1 x(i) log(x(i)). Observe that h is 1-strongly convex w.r.t. ‖ · ‖1
[7]. We consider the following prediction models for the returns vector:

(1) MA(k): a Moving Average prediction model model r̃t := 1
k

∑k
i=1 rt−i;

(2) previous: a model that uses the previous return vector as its prediction r̃t := rt−1;

(3) noisy: a noisy, unbiased predictor model of the true returns vector r̃t := rt + vt, where

vt ∼ N (0, 0.3);

(4) random: a random predictor, where the entries of r̃t are chosen uniformly between rmin

and rmax.

(5) recursiveLS(k): for each stock, we have a prediction model of the form r̃t = w1rt−1 +

w2rt−2 + · · · + wkrt−k + wk+1, where the weights w1, . . . , wk+1 are updated online, using a

recursive least squares algorithm.

However, instead of using the output of these models directly into Equation (43), we will use

r̂t = g(r̃t). The function g(r) is defined as

g(r) :=


rmax if r > 1

1 if r = 1

rmin if r < 1

and is applied component-wise for vector inputs. The interpretation behind passing the predictions

r̃t through g is that, instead of using the exact predictions given by our models, we use r̃t only as

an indication if a given stock is predicted to increase or decrease its value in the next round.

To simulate a stock market, we use six real-world datasets: NYSE(O), NYSE(N), DJIA, TSE,

SP500, and MSCI. A detailed description of these datasets can be found in [27]. Let the number of

assets of each dataset be N . As a benchmark of each experiment, we employ the Constant Uniform

Portfolio (CUP) strategy, that is, a Player that chooses xt = [1/N, . . . , 1/N ], for all t ∈ [T ]. For

the datasets considered in this experiment, the CUP strategy performed better than the Algorithm

OMD, for any ηt > 0 and x0 = [1/N, . . . , 1/N ].

Denote the regrets of Algorithm OptMD and CUP strategies by RegsT (OptMD) and RegsT (CUP),

respectively. Figure 2 depicts the difference Regst (OptMD)−Regst (CUP) for each considered dataset.

4See [19] for a more detailed description of this problem.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 28

(a) NYSE(N). (b) NYSE(O). (c) DJIA.

(d) MSCI. (e) SP500. (f) TSE.

Figure 2. Algorithm OptMD applied to the Portfolio Selection problem.

The experiment was repeated 10 times and the shaded areas correspond to one standard deviation.

As expected, for all datasets, the noisy model achieved the best performance, since it uses informa-

tion of rt in the prediction r̂t. More interestingly, we notice that for all datasets except DJIA, the

recursiveLS(6) prediction model performed better than all other models. Moreover, this model

also performed better than the CUP benchmark strategy. In other words, at time t, we were able to

generate and exploit the predictive information about the return of each stock, using only informa-

tion available up to time t − 1. Another interesting conclusion we can draw from Figure 2 is that,

in general, using either the previous return or a simple moving average as predictions lead to poor

performance for the algorithm. Finally, when using the random models (i.e., gradient predictions

uncorrelated with the true gradients), Algorithm OptMD performed generally similarly to the CUP

benchmark strategy. This indicates that our approach can also be robust to bad gradient predictions

(see Remark 2.7).

Appendix A. Literature Landscape and Summary of Results

In Table 1, we present our work in the OCO literature with respect to computational (i.e., not

composite costs vs. composite costs) and information (i.e., no predictions vs. with predictions)

features of OCO problems. For a more detailed discussion of the literature, see Section 1.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 29

No predictions

∇ŝt = 0, r̂t = 0

With predictions

∇ŝt 6= 0 (and r̂t 6= 0)

Not composite

rt = 0
[52, 20] [41, 42, 22, 23, 12]

Composite

rt 6= 0
[16, 25, 9, 10] this work

Table 1. Examples of OCO literature considering composite and prediction features.

Tables 2 and 3 summarize the contributions of this work concerning the static regret bounds,

presenting a comparison for different cases of gradient predictions. In particular, Table 2 concerns

the case of perfect function predictions, whereas Table 3 concerns the case of general function

prediction. For a more detailed discussion of these results, see Remarks 2.7 and 2.10.

Perfect function prediction

r̂t = rt

General case

(this work)
Worst-case Perfect prediction

Gradient prediction ∇ŝt ∇ŝt = any ∇ŝt = ∇st

Convex costs
ηt 1/

√
D′t−1 + 4β2 O(1/

√
t) 1/(2β)

Regret
O(1 +

√
D′T )

(Thm. 2.5)
O(
√
T ) [52] O(1) [22]

Strongly convex

costs

ηt O(1/(D′t−1 + 2β)) O(1/t) 1/(2β)

Regret
O(1 + log(1 +D′T ))

(Thm. 2.9)
O(log(T )) [20] O(1) [22]

Table 2. Generality of the static regret bounds in the case of perfect function pre-

dictions (i.e., r̂t = rt).

General function prediction
General case

(this work)
Worst-case Perfect prediction

Gradient prediction ∇ŝt ∇ŝt = any ∇ŝt = ∇st

ηt 1/
√

4β2 + (V ′t−1)2 +D′t−1 O(1/
√
t) 1/

√
4β2 + (V ′t−1)2

Regret
O
(

1 +
√
D′T + min

{
V ′T ,
√
T
})

(Thm. 2.5)
O(
√
T ) [52] O

(
1 + min

{
V ′T ,
√
T
})

[9]

Table 3. Generality of the static regret bounds in the case of general function

predictions.

References

[1] Jacob Abernethy, Peter Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strategies and minimax lower

bounds for online convex games. In Conference on Learning Theory (COLT 2008), pages 415–423, 2008.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 30

[2] Naman Agarwal, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh. Online control with adversarial

disturbances. In Proceedings of the 36th International Conference on Machine Learning, pages 111–119, 2019.

[3] Naman Agarwal, Elad Hazan, and Karan Singh. Logarithmic regret for online control. Advances in Neural Infor-

mation Processing Systems, 2019.

[4] Amir Beck. First-order methods in optimization. SIAM, 2017.

[5] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. Operations research,

63(5):1227–1244, 2015.

[6] Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Online learning with imperfect hints. In

Proceedings of the 37th International Conference on Machine Learning (ICML 2020), 2020.

[7] S. Bubeck. Convex Optimization: Algorithms and Complexity. Foundations and Trends in Machine Learning. Now

Publishers, 2015.

[8] Sébastien Bubeck. Introduction to online optimization. Lecture notes, 2011.

[9] Nicolò Campolongo and Francesco Orabona. Temporal variability in implicit online learning. Advances in neural

information processing systems, 2020.

[10] Nicolo Campolongo and Francesco Orabona. A closer look at temporal variability in dynamic online learning.

preprint arXiv:2102.07666, 2021.

[11] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.

[12] Ting-Jui Chang and Shahin Shahrampour. On online optimization: Dynamic regret analysis of strongly convex

and smooth problems. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

[13] Niangjun Chen, Anish Agarwal, Adam Wierman, Siddharth Barman, and Lachlan LH Andrew. Online convex

optimization using predictions. In Proceedings of the 2015 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems, pages 191–204, 2015.

[14] Niangjun Chen, Joshua Comden, Zhenhua Liu, Anshul Gandhi, and Adam Wierman. Using predictions in online

optimization: Looking forward with an eye on the past. ACM SIGMETRICS Performance Evaluation Review,

2016.

[15] Ofer Dekel, Arthur Flajolet, Nika Haghtalab, and Patrick Jaillet. Online learning with a hint. In Advances in

Neural Information Processing Systems (NIPS 2017), pages 5299–5308, 2017.

[16] John C Duchi, Shai Shalev-Shwartz, Yoram Singer, and Ambuj Tewari. Composite objective mirror descent. In

COLT, volume 10, pages 14–26. Citeseer, 2010.

[17] Eric Hall and Rebecca Willett. Dynamical models and tracking regret in online convex programming. In Proceed-

ings of the 30th International Conference on Machine Learning (ICML 2013), pages 579–587, 2013.

[18] Eric C Hall and Rebecca M Willett. Online convex optimization in dynamic environments. IEEE Journal of

Selected Topics in Signal Processing, 9(4):647–662, 2015.

[19] Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization, 2(3-4):157–325,

2016.

[20] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization.

Machine Learning, 2007.

[21] Elad Hazan, Sham Kakade, and Karan Singh. The nonstochastic control problem. In Proceedings of the 31st

International Conference on Algorithmic Learning Theory, pages 408–421, 2020.

[22] Nam Ho-Nguyen and Fatma Kılınç-Karzan. Exploiting problem structure in optimization under uncertainty via

online convex optimization. Mathematical Programming, 177(1-2):113–147, 2019.

[23] Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridharan. Online optimization: Competing

with dynamic comparators. In Proceedings of the 18th International Conference on Artificial Intelligence and

Statistics (AISTATS 2015), pages 398–406, 2015.

[24] Jyrki Kivinen and Manfred K Warmuth. Exponentiated gradient versus gradient descent for linear predictors.

Information and Computation, 1997.

[25] Brian Kulis and Peter L Bartlett. Implicit online learning. In Proceedings of the 27th International Conference

on Machine Learning (ICML), 2010.

[26] Antoine Lesage-Landry, Iman Shames, and Joshua A Taylor. Predictive online convex optimization. Automatica,

113:108771, 2020.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 31

[27] Bin Li, Steven CH Hoi, Doyen Sahoo, and Zhi-Yong Liu. Moving average reversion strategy for on-line portfolio

selection. Artificial Intelligence, 2015.

[28] Tongxin Li, Ruixiao Yang, Guannan Qu, Guanya Shi, Chenkai Yu, Adam Wierman, and Steven Low. Robustness

and consistency in linear quadratic control with untrusted predictions. Proceedings of the ACM on Measurement

and Analysis of Computing Systems, 6(1):1–35, 2022.

[29] Yingying Li, Xin Chen, and Na Li. Online optimal control with linear dynamics and predictions: Algorithms and

regret analysis. Advances in Neural Information Processing Systems, 32, 2019.

[30] Yingying Li and Na Li. Leveraging predictions in smoothed online convex optimization via gradient-based algo-

rithms. Advances in Neural Information Processing Systems, 33:14520–14531, 2020.

[31] Yingying Li, Guannan Qu, and Na Li. Online optimization with predictions and switching costs: Fast algorithms

and the fundamental limit. IEEE Transactions on Automatic Control, 2020.

[32] Yiheng Lin, Gautam Goel, and Adam Wierman. Online optimization with predictions and non-convex losses.

Proc. ACM Meas. Anal. Comput. Syst., 2020.

[33] H Brendan McMahan. A unified view of regularized dual averaging and mirror descent with implicit updates.

preprint arXiv:1009.3240, 2010.

[34] Mehryar Mohri and Scott Yang. Accelerating online convex optimization via adaptive prediction. In AISTATS,

2016.

[35] Aryan Mokhtari, Shahin Shahrampour, Ali Jadbabaie, and Alejandro Ribeiro. Online optimization in dynamic

environments: Improved regret rates for strongly convex problems. In 55th IEEE Conference on Decision and

Control (CDC 2016), pages 7195–7201, 2016.

[36] Masaaki Nagahara, Daniel E Quevedo, and Dragan Nešić. Maximum hands-off control: a paradigm of control

effort minimization. IEEE Transactions on Automatic Control, 61(3):735–747, 2015.

[37] Masaaki Nagahara, Daniel E Quevedo, and Jan Østergaard. Sparse packetized predictive control for networked

control over erasure channels. IEEE Transactions on Automatic Control, 59(7):1899–1905, 2013.

[38] Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Springer, 2004.

[39] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[40] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in optimization, 1(3):127–239,

2014.

[41] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In Conference on Learning

Theory (COLT), 2013.

[42] Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable sequences. In Advances

in Neural Information Processing Systems (NIPS 2013), pages 3066–3074, 2013.

[43] R. J. Ravier, A. R. Calderbank, and V. Tarokh. Prediction in online convex optimization for parametrizable

objective functions. In 58th IEEE Conference on Decision and Control, pages 2455–2460, 2019.

[44] Shahin Shahrampour and Ali Jadbabaie. Distributed online optimization in dynamic environments using mirror

descent. IEEE Transactions on Automatic Control, 63(3):714–725, 2017.

[45] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in Machine Learn-

ing, 2012.

[46] Shai Shalev-Shwartz and Yoram Singer. Logarithmic regret algorithms for strongly convex repeated games. The

Hebrew University, 2007.

[47] Chaobing Song, Ji Liu, Han Liu, Yong Jiang, and Tong Zhang. Fully implicit online learning. preprint

arXiv:1809.09350, 2018.

[48] Nolan Wagener, Ching-An Cheng, Jacob Sacks, and Byron Boots. An online learning approach to model predictive

control. Proceedings of Robotics: Science and Systems (RSS), 2019.

[49] Tianbao Yang, Mehrdad Mahdavi, Rong Jin, and Shenghuo Zhu. Regret bounded by gradual variation for online

convex optimization. Machine learning, 95(2):183–223, 2014.

[50] Chenkai Yu, Guanya Shi, Soon-Jo Chung, Yisong Yue, and Adam Wierman. The power of predictions in online

control. Advances in Neural Information Processing Systems, 33:1994–2004, 2020.

[51] Lijun Zhang, Shiyin Lu, and Zhi-Hua Zhou. Adaptive online learning in dynamic environments. In Advances in

Neural Information Processing Systems (NIPS 2018), pages 1323–1333, 2018.



ADAPTIVE COMPOSITE ONLINE OPTIMIZATION 32

[52] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of

the 20th International Conference on Machine Learning (ICML 2003), pages 928–936, 2003.


	1. Introduction
	1.1. Gradient Predictions
	1.2. The Problem with DT
	1.3. Dynamic Environments and Regularity Measures
	1.4. Composite Cost, Implicit Updates and Function Predictions
	1.5. Problem Description and Related Works
	1.6. Contributions and Organization

	2. Main Results
	2.1. Mathematical Preliminaries
	2.2. Static Environments
	2.3. Dynamic Environments

	3. Technical Proofs
	3.1. Auxiliary Lemmas
	3.2. Main Proofs
	3.3. Proof of Theorem 2.17

	4. Numerical Experiments
	4.1. Tracking Dynamical Parameters
	4.2. Portfolio Selection

	Appendix A. Literature Landscape and Summary of Results
	References

