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Abstract. This paper proposes a nonlinear estimator for the robust reconstruction of process and

sensor faults for a class of uncertain nonlinear systems. The proposed fault estimation method

augments the system dynamics with an ultra-local (in time) internal state-space representation (a

finite chain of integrators) of the fault vector. Next, a nonlinear state observer is designed based on

the known parts of the augmented dynamics. This nonlinear filter (observer) reconstructs the fault

signal as well as the states of the augmented system. We provide sufficient conditions that guarantee

stability of the estimation error dynamics: firstly, asymptotic stability (i.e., exact fault estimation)

in the absence of perturbations induced by the fault model mismatch (mismatch between internal

ultra-local model for the fault and the actual fault dynamics), uncertainty, external disturbances, and

measurement noise and, secondly, Input-to-State Stability (ISS) of the estimation error dynamics

is guaranteed in the presence of these perturbations. In addition, to support performance-based

estimator design, we provide Linear Matrix Inequality (LMI) conditions for L2-gain and L2 − L∞

induced norm and cast the synthesis of the estimator gains as a semi-definite program where the

effect of model mismatch and external disturbances on the fault estimation error is minimized in the

sense of L2-gain, for an acceptable L2 −L∞ induced norm with respect to measurement noise. The

latter result facilitates a design that explicitly addresses the performance trade-off between noise

sensitivity and robustness against model mismatch and external disturbances. Finally, numerical

results for a benchmark system illustrate the performance of the proposed methodologies.

1. Introduction

Process reliability is essential in many engineering systems, such as high-tech equipment, energy

systems, automotive technology and health applications. Predictive maintenance technology is a key

enabler for improving process reliability. A fundamental element for predictive maintenance is fault

estimation. That is, we do not only need to know the presence and source of the fault (fault detection

and isolation, see [1, 2, 3], and references therein) but also its nature/severity (fault estimation).

As an example, suppose the fault is small and/or slowly increasing in magnitude (slow compared to

the system time scale). In this case, if accurate estimates of fault-induced signals are available the

fault severity can be quantified and predictive maintenance can be scheduled accordingly. The latter

is only possible if we estimate fault signals (at least their magnitude) using available information

(inputs, measured outputs, and system models). Therefore, this paper focuses on the problem of

fault estimation for a class of uncertain nonlinear systems.

Existing Literature: Available methods for fault estimation can be divided into three categories:
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1) Linear Systems: Numerous fault estimation methods have been developed for linear dynamical

systems (see, e.g., [4, 5] for results on linear stochastic and switching systems). However, most

practical systems, such as those in robotics, transportation systems, power networks, manufacturing,

and water distribution, are nonlinear in nature.

2) Nonlinear Systems/Linear Filters: Methods for nonlinear systems are still under development,

see, e.g., [6, 7, 8, 9]. For fault estimation in nonlinear systems, linear or nonlinear filters can be

developed. Some of the existing literature on fault detection for nonlinear systems can be adapted

to address the fault estimation problem [10]. For instance, [11] provides a linear filter for fault

detection of nonlinear systems in which the linear filter is designed by minimizing the nonlinearity

effect on the filter output subject to a bound on the effects of fault on the filter output. In this result,

by constraining the mapping from the fault to the filter output, the fault signal can be estimated.

Similar results can be found in [12] where instead of minimizing the nonlinearity effect, the output

mismatch of the actual and simulation-based system is minimized to provide robustifcation against

model mismatch.

3) Nonlinear Systems/Nonlinear Filters: For fault estimation in nonlinear systems, also nonlinear

filters can be used [13, 14, 15, 16]. Most of the existing results construct nonlinear observers by

incorporating nonlinear dynamics of the system as nonlinear filters for fault estimation. Because

these results consider nonlinear dynamics in the filter structure, they can capture the behavior of

nonlinear systems accurately and as a consequence provide better fault estimation. However, to

provide such filters, due to nonlinearities, some assumptions on the class of systems and faults are

required. Below we discuss some of these results.

As discussed in [13], the authors address the fault estimation problem for nonlinear systems

with uniformly Lipschitz nonlinearities, process faults only (i.e., no sensor faults), and assume

the so-called matching condition (the rank of the fault distribution matrix is invariant under left

multiplication by the output matrix) is satisfied. An adaptive filter is provided that approximately

reconstructs the actuator fault vector in this configuration. Although the matching condition makes

the problem tractable, it significantly reduces the class of systems that can benefit from the results.

In [17], a fault estimation scheme is introduced for both sensor and process faults using Nonlinear

Unknown Input Observers (NUIO), adaptive Radial Basis Function Neural Networks (RBFNN),

and assuming the matching condition is satisfied. The authors prove that their scheme provides

boundedness of fault estimation errors.

In [6], the matching condition does not need to be satisfied. However, they do not consider

model uncertainty, external disturbances, and measurement noise. The authors consider Lipschitz

nonlinearities, simultaneous sensor and process faults, and adopt a standard fault observability

condition [18] on the linear part of the dynamics. Therein, the problem is tackled using the notion

of intermediate observers, consisting of two dedicated observers, one that estimates the fault and

the other the state. Their scheme guarantees bounded fault estimation errors. In [19], simultaneous

additive and multiplicative process faults are considered in the scope of discrete-time system models.

They address the fault estimation problem by decoupling process nonlinearities and perturbations

from the estimation filter dynamics and using regression techniques to approximately estimate fault

signals. Decoupling nonlinearities leads to linear filters for which linear methods can be used to
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reconstruct fault signals. However, decoupling conditions impose strong assumptions on the system

dynamics, which significantly limits the applicability of these results.

We remark that all the above-mentioned results for uncertain nonlinear systems guarantee ap-

proximate reconstruction of fault vector only, i.e., they ensure bounded estimation errors, which, if

small enough, still lead to a potentially good estimate of the true fault. Not having internal state-

space representations of fault vector makes it challenging to enforce zero error fault estimation. We

propose a fault estimation scheme for process and sensor faults that allows to guarantee zero error in

the absence of uncertainty, external disturbances, and measurement noise for some classes of faults

and ensures robust fault estimate in the presence of perturbations, all without requiring a matching

condition.

This scheme incorporates an internal representation of the fault vector, where we use the notion

of ultra-local models [20, 21] phenomenological models valid for short time intervals. We then extend

the system dynamics with the (internal) ultra-local state-space of the fault vector to construct an

augmented dynamics. Based on the known parts of the augmented dynamics, a nonlinear observer

is proposed to estimate the states of the original system and the ultra-local fault (internal) system.

We derive the error dynamics of the observer in which the fault model mismatch (mismatch between

actual internal system and its model), uncertainty mismatch (mismatch between actual uncertainty

and its model), external disturbances, and measurement noise enter as external perturbations. The

fault estimation problem is reformulated as a robust (against the mentioned perturbations) state

estimation problem in the error dynamics. The main contributions of this paper are as follows:

(a) Comprehensive Problem Setting: Existing research on fault estimation for Lipschitz

nonlinear systems has often skipped the comprehensive problem setting including time-

varying process and sensor faults, modeling uncertainties, disturbances, and measurement

noise [15, 13, 19]. Our contribution lies in presenting a fault estimation approach tailored to

address all these challenges for Lipschitz nonlinear systems.

(b) Exact Fault Estimation Guarantee: Existing studies for Lipschitz nonlinear systems

primarily focus on achieving an approximate reconstruction of the fault vector [13, 17, 6].

In contrast, our proposed method stands out by offering a fault estimation framework that

not only guarantees exact fault estimation for a class of time-varying faults (polynomial

in time) when uncertainty, external disturbances, and measurement noise are absent. In

addition, it ensures robust fault estimation with explicit, computable performance bounds

in the presence of perturbations.

(c) Optimization-Based Fault Estimation Scheme: Our approach introduces a computa-

tionally tractable algorithm to synthesize the fault estimator’s design parameters. This is

achieved through the solution of semi-definite programs, where we minimize the L2-gains

from perturbations induced by fault, uncertainty model mismatches, and external distur-

bances to the fault estimation error. Additionally, we uphold stability conditions while

simultaneously constraining desired upper bounds on the L2 − L∞ induced norms from

measurement noise perturbations to the fault estimation error (Theorem 1). These com-

putationally tractable design conditions provide a means to perform performance trade-off

analyses in terms of robustness with respect to different disturbances/perturbations.
3



This paper is a generalized version of the preliminary result published in the conference paper [22].

Compared to [22], here we address a more general problem setting by considering state-dependent

faults, external disturbances, model uncertainties and measurement noise. Furthermore, the fault

estimate is robustified against perturbations induced by fault and uncertainty model mismatches,

external disturbances, and measurement noise in the L2 sense for a desired worst-case noise ampli-

fication in the L2 − L∞ sense.

The remainder of this paper is organized as follows. In Section 2, problem formulation is presented,

first in a high level sense and then with precise mathematical details. The proposed method for the

fault estimator design is described in Section 3. In Section 4, the method is applied to a benchmark

example in simulation. Section 5 presents the conclusion and final remarks.

Notation: The symbol R+ denotes the set of nonnegative real numbers. The n × n identity

matrix is denoted by In or simply by I if n is clear from the context. Similarly, n × m matrices

composed of only zeros are denoted by 0n×m or simply by 0 when their dimensions are clear. For

positive definite (semi-definite) matrices, we use the notation P ≻ 0 (P ⪰ 0). For negative definite

(semi-definite) matrices, we use the notation P ≺ 0 (P ⪯ 0). The ℓ2 vector norm (Euclidean

norm) and the matrix norm induced by the ℓ2 vector norm are both denoted as || · || and the ℓ∞

vector norm is showed by || · ||∞. We use L2(0, T ) (or simply L2) to denote vector-valued functions

z : [0, T ] → Rk satisfying ∥z(t)∥2L2
:=

∫ T
0 ∥z(t)∥2dt < ∞. For a vector-valued signal f defined for

all t ≥ 0, ||f ||L∞ := supt≥0 ||f(t)|| and f (r) shows the entry-wise rth-time total derivative. For a

differentiable function W : Rn → R we denote by ∂W
∂e the row-vector of partial derivatives and by

Ẇ (e) the total derivative ofW (e) with respect to time (i.e., ∂W
∂e

de
dt ). We often omit time dependencies

for notation simplicity. The notation (f, d) stands for the column vector composed of the (vector or

scalar) elements f and d.

2. Problem Formulation

Consider the nonlinear system{
ẋ = Ax+Buu+ Sgg(Vgx, u, t) + Sηη(Vηx, u, t) +Bff(x, u, t) +Bωω,

y = Cx+Dff(x, u, t) +Dνν,
(1a)

where t ∈ R+, x ∈ Rn, y ∈ Rm, and u ∈ Rl are time, state, measured output and known in-

put vectors, respectively, and function g : Rnvg × Rl × R+ → Rng is a nonlinear known vec-

tor field. Function η : Rnvη × Rl × R+ → Rnη denotes unknown modeling uncertainty. Sig-

nals ω : R+ → Rnω and ν : R+ → Rmν are unknown bounded disturbances; the former with

unknown frequency range and the latter with high frequency content (e.g., related to measure-

ment noise). Function f : Rn × Rl × R+ → Rnf denotes the unknown fault vector, which con-

tains both process and sensor faults. Note that f can represent any types of additive or multi-

plicative faults. Matrices (A,Bu, Sg, Vg, Sη, Vη, Bf , Bω, C,Df , Dν) are of appropriate dimensions,

n,m, l, nvg , ng, nvη , nη, nω, nf ,mν ∈ N. Matrix Bf denotes the process fault distribution matrix

while matrix Df represents the contribution of the fault signal to sensor measurements. Matrices

Sg and Sη are used to indicate in which equation(s) the nonlinearity g and the uncertainty η ap-

pear explicitly, and matrices Vg and Vη to indicate which states play a role in the nonlinearity and

uncertainty, respectively.
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The objective of this paper is to estimate the fault vector f using the real time input, output data

and the available known models. In the system (1a), clearly the uncertainty η(·) is unknown, which
challenges fault estimation. We can either robustify the fault estimate error against the complete

uncertainty or use an approximated model of it (obtained, e.g., using data-based methods) and

robustify the fault estimate error agaisnt the remaining (smaller) uncertainty model mismatch.

Without loss of generality, we assume that we can write η(·) in (1a) as:

η(Vηx, u, t) = ηlx(Vηx, u, t) + δηlx(Vηx, u, t), (1b)

where δηlx(Vηx, u, t) := η(Vηx, u, t)−ηlx(Vηx, u, t) and ηlx(·) denotes any prior (possibly inaccurate)

approximation, we may have of η. If we do not have such an approximated model, we just take

ηlx = 0 an carry out further designs considering the complete η.

Let us state the assumptions on the system (1), which stand throughout this paper.

Regularity Assumptions: The following assumptions are required to ensure that the problem

is well-posed as is common in the existing literature [23, 24, 15, 13]:

Assumption 1. (State and Input Boundedness) The state variable x and the input u are

bounded over any finite time interval.

Assumption 2. (Cr Fault Vector) The fault vector f(x(t), u(t), t) in (1) is r times differ-

entiable with respect to time, i.e., the total time derivatives f (1)(x(t), u(t), t), f (2)(x(t), u(t), t),

..., f (r)(x(t), u(t), t) exist and are continuous.

Assumption 3. (Bounded Disturbances) The disturbance vectors ω and ν in (1) are

bounded on any finite time interval, and ν is differentiable, i.e., the derivative ν̇(t) with re-

spect to time exists, is continuous, and is bounded over any finite time interval.

We aim to robustify the fault estimate error against unknown bounded external disturbances (low

or high frequency) and (fault and uncertainty) model mismatches. For fault estimation, we consider

nonlinear filters with the following structure:{
ż =h(z, u, y; θ),

f̂ =ϕ(z, y; θ),
(2)

where z ∈ Rnz is the internal state of the filter with nz ∈ N. Functions h : Rnz × Rl × Rm → Rnz

and ϕ : Rnz × Rm → Rnf characterize the filer structure, θ denotes design parameters.

Define the fault estimate error as

ef := f̂ − f.

Later, it will be shown that, for the fault estimator design proposed in Section 2.3, the fault esti-

mation error dynamics, explicated in Equation (11) in Section 2.4, exhibits (δηlx , ω, f
(r), ν, ν̇) as a

perturbation input. Now, having that in mind, we can state the problem we aim to solve at a high

abstraction level.

Problem 1. (Fault Reconstruction - Abstract Level) Consider the uncertain nonlinear system

(1) with known input and output signals, u(t) and y(t), and the nonlinear fault estimator filter (2).

For given r, design the filter parameters θ such that:
5



1) Stability: The estimation error dynamics is input-to-state stable with respect to the perturbation

input (δηlx , ω, f
(r), ν, ν̇);

2) Disturbance Attenuation: For ν = 0, the L2-gain from (δηlx , ω, f
(r)) to ef is bounded by

some known c1 > 0, for t ≥ 0;

3) Noise Rejection: For (δηlx , ω, f
(r)) = 0, the L2−L∞ induced gain from (ν, ν̇) to ef is bounded

by some known c2 > 0, for t ≥ 0.

We can further state the above problem as optimal filter design in the sense of disturbance

attenuation or noise rejection. Now, we want to restate Problem 1, mathematically precisely. To

this end, in what follows first, we discuss the fault estimator filter architecture.

2.1. Ultra Local Fault Representation

Let us introduce some preliminaries which are required to present the fault estimator filter archi-

tecture. The fault f(x(t), u(t), t) in (1a) is an implicit function of time, for all x(t) and u(t). For

instance, the fault f = u(t)x(t)2, even though this f is an explicit function of (x(t), u(t)), it can be

considered to be an implicit function of time, given the fact that x(t) and u(t) are functions of time.

Given this observation, we can write an entry-wise r-th order Taylor time-polynomial approximation

at time t of f as f̄ = a0+a1t+ · · ·+ar−1t
r−1 with coefficients ai ∈ Rnf , i = 0, . . . , r−1. This model

can be written in state-space: 
˙̄ζj = ζ̄j+1, 0 < j < r,

˙̄ζr = 0,

f̄ = ζ̄1,

(3)

where ζ̄j ∈ Rnf . Clearly, in the above model we have f̄ (r) = 0, which might not be the case for

actual fault signal f . Under Assumption 2, the actual internal state-space representation of the

fault f is as follows: 
ζ̇j = ζj+1, 0 < j < r,

ζ̇r = f (r),

f = ζ1,

(4)

where ζj ∈ Rnf . As you see, the accuracy of the approximated model (3) increases as f (r) goes

to zero (entry-wise), and it is exact for f (r) = 0 (since we have ζ̇r = ζ̇
(r)
1 = f (r) = 0, see (4)).

Model (3) is used to construct a fault estimator filter that ultra-locally [20], [21] acts as a self-

updating polynomial spline approximating the actual value of the fault. To design such a filter, in

the following section, we extend the system state, x(t), with the states of the actual fault internal

state ζj(t), j ∈ {1, . . . , r}, and augment the system dynamics in (1) with (4). We then design

a nonlinear filter (observer) for the augmented system to simultaneously estimate x and ζj using

model (3). We remark that the number of the faults derivatives, r, added to the approximated model

(3) (and (4)) is problem-dependent, and an optimal selection of r would depend on the frequency

characteristics of the fault. Increasing r results in higher-dimensional augmented dynamics and thus

high-dimensional observers as well. However, having larger observers also provides more degrees of

freedom for optimal synthesis.
6



2.2. Augmented Dynamics

Based on the fault model introduced above, define the augmented state vector xa := (x, ζ1, ζ2, . . . , ζr)

and write the augmented dynamics using (1) and (4) as{
ẋa =Aaxa +Buaua + Sgaga(Vgaxa, ua, t) +Bωaωa,

y =Caxa +Dνν,
(5a)

where

Aa :=


A Bf 0 . . . 0

0 0 Inf
. . . 0

...
...

...
. . .

...

0 0 0 . . . Inf

0 0 0 . . . 0

 , Bua :=

[
Bu

0

]
, Sga :=

[
Sg Sη

0 0

]
,

Vga :=

[
Vg 0

Vη 0

]
, ga(·) :=

[
g(·)
ηlx(·)

]
, Bωa :=

 Sη Bω 0

0 0 0

0 0 Inf

 , ωa :=

 δηlx(·)
ω

f (r)(·)

 ,

Ca :=
[
C Df 0

]
, ua := u.

(5b)

Note that we have stacked the uncertainty model ηlx(·) with the known nonlinearity g(·); however,
if the uncertainty model is linear (see, e.g., the example in Section 4), it has to be stacked with the

linear part of the augmented system Aa. Here we consider a more generic case where the uncertainty

model is a globally Lipschitz nonlinear function.

Assumption 4. (Globally Lipschitz Nonlinearity) The function ga(Vgaxa, ua, t) in (5a) is

globally Lipschitz uniformly in ua(t) and t, i.e., there exists a known positive constant α satisfying

∥ga(Vga x̂a, ua, t)− ga(Vgaxa, ua, t)∥ ≤ α∥Vga(x̂a − xa)∥, (6)

for all xa, x̂a ∈ Rn+rnf , ua ∈ Rl, and t ∈ R+.

Note that in the above assumption, due to structure of Vga , ga(·) is function x (not xa) and there-

fore the assumption is equivalent to g(Vgx, u, t) and ηlx(Vηx, u, t) being globally Lipschitz uniformly

in u(t) and t for all x, x̂ ∈ Rn, u ∈ Rl, and t ∈ R+.

2.3. Fault Estimator

In this section, considering the fault estimator general structure in (2), inspired from observer-

based approaches, we propose h(·) and ϕ(·) as{
h(z, u, y; θ) =Nz +Gua + Ly +MSgaga(Vga x̂a + J(y − Cax̂a), ua)

ϕ(z, y; θ) =C̄(z − Ey)
(7a)

with x̂a = z − Ey,

C̄ :=
[
0nf×n Inf

0nf×nf (r−1)

]
, (7b)

7



and matrices {N,G,L,M} defined as

N := MAa −KCa, G := MBua ,

L := K(I + CaE)−MAaE, M := I + ECa.
(7c)

The algebraic relations in (7c) are critical to nullify the effect of some signals on the fault estimation

error. (see (10)). Furthermore, filter dimension nz equals to n + rnf and matrices E, K, and J

are filter gains to be designed which can be collected as θ = {E,K, J}. In the following section, we

analyze the fault estimator error dynamics.

2.4. Fault Estimator Error Dynamics

Consider the augmented state estimate x̂a and define estimation error as

e :=x̂a − xa = z − xa − Ey = z −Mxa − EDνν,

ef =f̂ − f = C̄e.
(8)

The related estimation error dynamics can then be written as follows:

ė = Ne+ (NM + LCa −MAa)xa + (G−MBua)ua

+MSga

(
ga(Vga x̂a + J(y − Cax̂a), ua)− ga(Vgaxa, ua)

)
−MBωaωa + (NE + L)Dνν − EDν ν̇.

(9)

Given the algebraic relations in (7c), it can be verified that G−MBua = 0, NM+LCa−MAa = 0,

and NE + L = K. Therefore, (9) can be written as

ė =Ne+MSgaδga −MBωaωa +Bνaνa (10a)

with
δga := ga(Vga x̂a + J(y − Cax̂a), u)− ga(Vgaxa, u),

Bνa :=
[
KDν , −EDν

]
, νa :=

[
νT , ν̇T

]T
.

(10b)

By collecting all perturbations, error dynamics (10a) can be written as

ė = Ne+MSgaδga + B̄ωaω̄a, (11a)

where

B̄ωa :=
[
−MBωa Bνa

]
, ω̄a :=

[
ωT
a νTa

]T
=

[
δηTlx ωT f (r)T νT ν̇T

]T
. (11b)

Recall from Problem 1 that we require the estimation error dynamics to have a certain Input-to

State Stability (ISS) property. In the following definition, we define ISS for the estimation error

dynamics (11).

Definition 1. (Input-to-State Stability) The error dynamics (11) is said to be ISS if there exist

a class KL function β(·) and a class K function µ(·) such that for any initial estimation error e(t0)

and any bounded input ω̄a, the solution e(t) of (11) exists for all finite t ≥ t0 and satisfies

∥e(t)∥ ≤ β (∥e (t0)∥ , t− t0) + µ( sup
t0≤τ≤t

∥ω̄a(τ)∥). (12)

Now, we have all the machinery required to restate Problem 1 in a mathematically precise manner

for the uncertain nonlinear system in (1).
8



Problem 2. (Fault Reconstruction) Consider the uncertain nonlinear system (1) with known

input and output signals, u(t) and y(t). Furthermore, consider the internal fault dynamics (4),

its Taylor approximation (3), the augmented dynamics (5), the nonlinear fault estimator filter (2)

with functions defined in (7), and let Assumption 4 be satisfied. Design the filter gain matrices

θ = {E,K, J} such that we have:

1) Stability: The estimation error dynamics (11) is ISS with respect to input ω̄a = (ωa, νa);

2) Disturbance Attenuation: for ν = ν̇ = 0, it holds that

J1(θ) := sup
(δηlx ,ω,f)

∥ef∥L2

∥(δηlx , ω, f (r))∥L2

(13)

is bounded by some known c1 > 0;

3) Noise Rejection: for δηlx = ω = f (r) = 0, it holds that

J2(θ) := sup
ν

∥ef∥L2

∥(ν, ν̇)∥L∞
(14)

is bounded by some known c2 > 0.

Under Assumptions 1-4, Problem 2 amounts to finding fault estimator gains that guarantee a

bounded estimation error e(t) in (11); for ω̄a = 0, e(t) goes to zero asymptotically (internal stability);

when ν = 0 the L2-gain of the mapping from (δηlx , ω, f
(r)) to ef (the fault estimation error) is upper

bounded by some c1 > 0; and when (δηlx , ω, f
(r)) = 0, the L2−L∞ induced gain (or energy to peak

norm [25, pp. 78]) from (ν, ν̇) to ef is upper bounded by some c2 > 0.

In what follows, we provide the solution to Problem 2.

3. Fault Estimator Design

The solution to Problem 2 is given in the following three subsections with the same order of the

problem parts (i.e., 1. stability, 2. disturbance attenuation, and 3. noise rejection).

3.1. ISS Estimation Error Dynamics

In this section, we derive Linear Matrix Inequality (LMI) conditions for designing the matrices θ

of the filter functions in (7). As a stepping stone, we present a sufficient condition for asymptotic

stability of the origin of the estimation error dynamics (11) when the perturbation vector ω̄a =

(ωa, νa) equals zero (internal stability). Moreover, we prove the boundedness of the estimation error

in the presence of the perturbation using the input-to-state stability concept [23].

We remark that ω̄a is a function of x(t), u(t) and t, so it is an implicit function of time. Further-

more, note that ω̄a is bounded over any finite time interval due to Assumptions 1 - 3 (see Remark 1

for further details). The boundedness of ω̄a, together with the ISS of the estimation error dynamics

in (11), implies boundedness of the estimation error over any finite time interval and the asymptotic

stability of the origin of (11) when ω̄a = 0. Moreover, if ω̄a is bounded uniformly in t; ISS guarantees

the existence of an ultimate bound on the estimation error.

Remark 1 (Boundedness Assumptions). We have ω̄a = (δηlx , ω, f
(r), ν, ν̇). Note that, by the

extreme value theorem [26, Thm. 3.12], the uncertainty model mismatch δηlx(x(t), u(t), t) and the
9



fault model mismatch f (r)(x(t), u(t), t) are bounded over any finite time interval due to continuity

and bounded driving terms (Assumptions 1 and 2). Moreover, the other terms in ω̄a (i.e., ω(t),

ν(t), and ν̇(t)) are also bounded by Assumption 3. Therefore, ω̄a is bounded over any bounded time

interval under the required assumptions.

The next proposition formalizes an LMI condition that guarantees an ISS estimation error dy-

namics (11) with respect to input ω̄a.

Proposition 1. (ISS Estimation Error Dynamics) Consider the error dynamics (11) and let

Assumption 4 holds with Lipschitz constant α. Suppose there exist matrices P ∈ Rnz×nz , with

P ≻ 0, R ∈ Rnz×m, Q ∈ Rnz×m, and J ∈ Rnvg×m satisfying the matrix inequality[
X11 X12

∗ −I

]
≺ 0, (15a)

where, matrices X and X12 defined as

X11 :=S11 + α(V T
gaVga − V T

gaJCa − CT
a J

TVga)

X12 :=

[ √
2α

(
(P +RCa)Sga

)T
√
α(JCa)

T

]T (15b)

with

S11 :=A⊤
a P +A⊤

a C
⊤
a R⊤ − CT

a Q
T + PAa +RCaAa −QCa, (15c)

α from (6), and the remaining matrices in (5b). Then, the estimation error dynamics in (11) is ISS

with respect to input ω̄a. Moreover, when α = 0 (no nonlinearity) the condition in (15a) transforms

to

S11 ≺ 0, (15d)

that is a necessary and sufficient condition for ISS with respect to input ω̄a.

Proof : The proof can be found in Appendix A. ■

Remark 2 (LMI Feasibility). If Df in (1a) is full row rank (i.e., there are as many sensor faults,

fy, as sensors), the LMI in (15a) is always infeasible (observability is lost) [27, 28, 29]. The standard

practice to circumvent this issue is to assume rank[Df ] < m [27, 28, 29]. Note that this is only a

necessary condition and it does not guarantee the LMI in (15a) to be feasible (this has to be checked

on a case-by-case basis).

In what follows, we shift our attention from the error dynamics (11) to its equivalent (10),

to characterize fault estimation robustness against disturbances with unknown frequency range

(δηlx , ω, f
(r)) (external disturbances, and fault and uncertainty model mismatches) and disturbances

with high frequency content (ν, ν̇) (measurement noise and its derivative). Because (δηlx , ω, f
(r)) and

(ν, ν̇) have different frequency characteristics, robustness strategies for each of these perturbations

are different.
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3.2. L2 Performance Criterion

To maximize the performance of the reconstruction scheme, we seek to minimize the effect of

(δηlx , ω, f
(r)) (treated as an arbitrary energy bounded external disturbance) on the fault estimation

error ef . We assume ν is zero (consequently νa = 0) in the error dynamics (10) since we apriori

know that the measurement noise has high frequency content and thus we consider the effect of νa

in the next section. To this end, we seek to minimize the L2-gain from (δηlx , ω, f
(r)) to the fault

estimation error ef . We could use the ISS formulation in Proposition 1 to cast an optimization

problem where we minimize the ISS gain and treat the LMI in (15a) as an optimization constraint.

By doing so, we would be reducing the effect of (δηlx , ω, f
(r)) on the complete vector of estimation

errors e (state, and fault and fault derivatives estimation errors). Note, however, that the filter’s

purpose is to reconstruct fault vector only, so the performance in state estimation and the error of

higher-order fault derivatives is not relevant.

Definition 2. (L2-gain [30]) We say that the estimation error dynamics (10), assuming ν = 0

with input ωa(t) = (δηlx , ω, f
(r)) and output ef (t) (fault estimation error as in (8)) has a L2-gain

less than or equal to λ if the following inequality is satisfied

||ef (t)||L2 :=

∫ T

0
∥ef (t)∥2dt ≤ λ2

∫ T

0
∥ωa(t)∥2dt,

for all T ≥ 0 and ωa(t) ∈ L2(0, T ).

The following proposition formalizes an LMI-based condition guaranteeing that (10) has the finite

L2-gain property from (δηlx , ω, f
(r)) to the fault estimation error ef (see Definition 2).

Proposition 2 (L2-gain LMI). Consider the error dynamics (10) and let Assumption 4 holds with

Lipschitz constant α. Suppose there exist matrices P ≻ 0, R, Q, J , and scalar ρ ≥ 0 satisfying X11 + aC̄T C̄ −(P +RCa)Bωa X12

∗ −ρaI 0

∗ ∗ −I

 ⪯ 0, (16a)

for some given a > 0, X11, X12 as defined in (15b), C̄ in (7b), and the remaining matrices in (5b).

Then, J1(·) in (13) is upper bounded by
√
ρ, i.e., the L2-gain of (10) with ν = 0 from (δηlx , ω, f

(r))

to the fault estimation error ef is upper bounded by
√
ρ. Moreover, when α = 0 (no nonlinearity)

the condition in (16a) transforms to[
S11 + C̄T C̄ (P +RCa)Bd1

∗ −ρI

]
⪯ 0, (16b)

that is a necessary and sufficient condition for
√
ρ to be the upper bound for the L2-gain from

(δηlx , ω, f
(r)) to the fault estimation error ef .

Proof: The proof can be found in Appendix B. ■

3.3. L2 − L∞ Induced Norm Performance Criterion

The other terms affecting the fault reconstruction are measurement noise and its derivative with

high frequency content (ν, ν̇). Therefore, we assume disturbances with unknown frequency range
11



(δηlx , ω, f
(r)) = 0 in the error dynamics (10) and seek to minimize the effect of disturbances with

high frequency content (ν, ν̇) on the fault estimate error ef . Here, we should select an appropriate

performance criterion to characterize the effect of (ν, ν̇) on the estimation error dynamics (10).

Because (ν, ν̇) consists of disturbances with bounded energy, we consider L2-norm for that and

since it leads to abrupt changes in fault estimates ef , we use L∞-norm for fault estimation error

ef to have a filtering effect. In other words, we minimize the effect of abrupt changes and push

the maximum amplitude in the fault estimate error signal down to have a smooth fault estimate.

Therefore, we seek to minimize the L2 −L∞ induced norm from (ν, ν̇) to fault estimation error ef .

Moreover, one can note that the L2 −L∞ induced norm is widely used in the literature for filtering

(See [31, 32, 33, 34, 35]).

Definition 3. (L2−L∞ Induced Norm) We say that the estimation error dynamics (10) assuming

(δηlx , ω, f
(r)) = 0 with input νa(t) = (ν, ν̇) and output ef (t) (fault estimation error as in (8)) has a

L2 − L∞ induced norm less than or equal to γ if the following inequality is satisfied

||ef ||L∞ := sup
t≥0

∥ef (t)∥2 ≤ γ2
∫ ∞

0
∥νa(t)∥2dt,

for all νa(t) ∈ L2(0,∞).

In the following proposition, we give a Lyapunov-based sufficient LMI condition for having a

bounded L2 − L∞ induced norm of the mapping from (ν, ν̇) to the fault estimation error ef .

Proposition 3 (L2 − L∞ Induced Norm LMI). Consider the error dynamics (10) and let As-

sumption 4 holds with Lipschitz constant α. Suppose there exist matrices P ≻ 0, R, Q, J , and scalar

σ ≥ 0 satisfying 
X11 H12 0 X12

∗ −b2I T T
ν JT 0

∗ ∗ −I 0

∗ ∗ ∗ −I

 ⪯ 0, (17a)

[
P C̄T

∗ σI

]
⪰ 0, (17b)

H12 := [ QDν , −RDν ], (17c)

Tν = [ Dν 0 ], (17d)

for some given scalar b, X11, X12 as defined in (15b), C̄ in (7b), and the remaining matrices in

(5b). Then, J2(·) in (14) is upper bounded by
√
bσ, i.e., the L2 − L∞ induced norm of (10) with

ωa = 0 from (ν, ν̇) to the fault estimation error ef is upper bounded by
√
bσ. Moreover, when α = 0

(no nonlinearity) the condition in (17a) reduces to[
S11 H12

∗ −I

]
⪯ 0, (17e)

that is a necessary and sufficient condition for
√
σ to be the upper bound for the L2 − L∞ induced

gain from (ν, ν̇) to the fault estimation error ef .

Proof: The proof can be found in Appendix C. ■
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Remark 3 (Extension). Although due to the nature of signals unknown frequency range (δηlx , ω, f
(r))

and high frequency content (ν, ν̇), we have proposed L2-gain and L2 −L∞ induced gain results, re-

spectively, we can apply L2 − L∞ induced norm norm to (δηlx , ω, f
(r)), or the other way around.

For example, applying L2 − L∞ induced norm to (δηlx , ω, f
(r)) can be useful when an uncertainty

with high-frequency content appears in δηlx . This case is, however, not considered here.

Remark 4 (Exact Estimation). The developed methodology can guarantee zero estimation error

for zero ω̄a = (δηlx , ω, f
(r), ν, ν̇), i.e., when the rth-time derivative of the fault vector vanishes

(i.e., time polynomial signals with a degree less than r), and the disturbances (the uncertainty

model mismatch δηlx , the external disturbance ω, and the measurement noise ν) are zero. This

follows directly from the ISS property that the origin of the estimation error dynamics in (11) is

asymptotically stable if ω̄a = 0. See simulation results in [22].

Remark 5 (Fault Internal Model). It is worth highlighting that the fault internal model intro-

duced in (3), with r as a design parameter, allowing the addition of as many terms as needed from

the Taylor series, can be generalized for a wide class of fault signals. However, if there exists prior

knowledge about the fault signal, such as a specific known frequency, the internal fault model can be

adapted accordingly [36]. By doing so, the proposed method can guarantee exact fault estimation

for the class of faults for which the model is exact.

Propositions 1-3 provide sufficient conditions that we exploit to solve Problem 2 (filter synthesis)

in what follows. So far, we have presented analysis tools to characterize the performance of a given

filter of the form (2) with functions in (7). In the following section, we provide a tool to design the

filter matrices θ = {E,K, J} in (7), in an optimal way in the sense of achieving a desired trade-off

between the L2-gain and L2 − L∞ induced-gain introduced above.

3.4. Optimal Fault Estimator Design

Using Proposition 2, we can formulate a semi-definite program where we seek to minimize the

L2-gain from unknown frequency range disturbances ωa = (δηlx , ω, f
(r)) to fault estimation error ef .

Similarly, using Proposition 3, we can formulate another semi-definite program where we seek to

minimize the L2 − L∞ induced norm from disturbances with high frequency content νa = (ν, ν̇) to

ef . However, in the presence of both unknown perturbations (ωa and νa), the L2-gain and L2−L∞

can not be minimized simultaneously due to conflicting objectives. To attenuate the effect of high-

frequency disturbances on the estimation error, a relatively slow (low-gain) filter is required, which

does not react to every small and fast change in the measured output. On the other hand, to reduce

the effect of ωa on the estimation error, a high-gain filter is preferred, which tries to estimate the

fault as accurately as possible. It follows that there is a trade-off between estimation performance

the noise sensitivity. To address this trade-off, a convex program can be proposed where we seek to

minimize the L2-gain and constrain the L2−L∞ induced gain. The same tools allow minimizing the

L2−L∞ norm for a constrained L2-gain (as a dual problem). Moreover, we add the ISS LMI in (15a)

as a constraint to these programs to enforce that the resulting filter also guarantees boundedness for

bounded perturbations and asymptotic stability for vanishing ωa and νa (as having bounded signal

norms does not guarantee having bounded filter trajectories [37]).
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Theorem 3.1. (Optimal Fault Estimator) Consider the augmented dynamics (5), the fault esti-

mator filter (2) with h(·) and ϕ(·) as defined in (7), and the corresponding estimation error dynamics

(10)-(11). Let Assumptions 1-4 be satisfied. To design the parameters of the fault estimator, solve

the following convex program

min
P,R,Q,J,ρ,σ

ρ

s.t.

[
X11 X12

∗ −I

]
≺ 0, X11 + aC̄T C̄ −(P +RCa)Bωa X12

∗ −ρaI 0

∗ ∗ −I

 ⪯ 0,


X11 H12 0 X12

∗ −b2I T T
ν JT 0

∗ ∗ −I 0

∗ ∗ ∗ −I

 ⪯ 0,

[
P C̄T

∗ σI

]
⪰ 0,

P ≻ 0, ρ, σ ≥ 0, σ ≤ σxmax

(18)

with given scalars a, σxmax > 0 and b, X11, X12 as defined in (15b), Bωa and Ca in (5b), H12 in

(17c), Tν in (17d), and C̄ in (7b). Denote the optimizers as P ⋆, R⋆, Q⋆, J⋆, ρ⋆ and σ⋆. Then, the

following parameters of (7), θ = θ⋆ = {E⋆ = P ⋆−1
R⋆,K⋆ = P ⋆−1

Q⋆, J⋆} guarantees the following:

(1) The estimation error dynamics in (11) is ISS with respect to input ω̄a = (ωa, νa). In addition,

the ISS property guarantees the asymptotic stability of the origin of the estimation error

dynamics for ω̄a = 0. Moreover, if ω̄a is bounded uniformly in t; ISS implies the existence

of an ultimate bound on the estimation error;

(2) J1(·) in (13) is upper bounded by
√
ρ⋆, i.e., the L2-gain of (10) with ν = 0 from ωa =

(δηlx , ω, f
(r)) to the fault estimation error ef is upper bounded by

√
ρ⋆.

(3) J2(·) in (14) is upper bounded by
√
bσ⋆, i.e., the L2−L∞ induced norm of (10) with ωa = 0

from νa = (ν, ν̇) to ef is upper bounded by
√
bσ⋆.

Proof: Theorem 3.1 follows from the above discussion and Propositions 1-3. ■

Note that, for numerical tractability, we replace X11 in the first strict inequality and P ≻ 0 in

the last strict inequality with X11 + ϵI (it becomes non-strict inequality) and P − ϵI ⪰ 0, with

a given ϵ > 0, respectively (See [22] for the relation of ϵ and ISS-gain). Furthermore, the scalar

parameters a and b in Theorem 1 are tuned for the minimal L2-gain with respect to disturbances

ωa for an acceptable L2 −L∞-gain for noise νa by a line search. To facilitate the implementation of

the proposed scheme, the steps to implement it are given as follows:

(1) Reformulate the system dynamics in the form of (1);

(2) Select the number of fault derivative augmentation r in (4);

(3) Construct the known part of augmented dynamics (5) based on the known model in (1) and

(4);
14



(4) Construct filter (2) with functions in (7) as fault estimator, given the known matrices in

Step 3;

(5) Solve the semi-definite program in Theorem 1 to design the fault estimator parameters in

Step 4.

Remark 6 (Limitations). The limitations of the proposed method are listed as:

• Same Distribution Matrices for Fault and Disturbance: If the system in (1) has the

same fault and disturbance distribution matrices (i.e., the same Bω and Bf in (1a)), we

cannot provide an accurate estimate of the fault (while exploiting robust control techniques,

we cannot induce a low L2-gain with respect to same entry disturbance). This is a challenging

open problem that is, in general, impossible to address without assuming known “signal”

characteristics of the fault and disturbance entering the dynamics through the same channel

(e.g., frequency/power content, stochasticity, and even closed-form expressions for faults).

We remark, however, that our approach allows for the estimation of combined fault and

disturbance signals. Moreover, some existing work, such as [19], explores this challenge for

linear time-varying systems. In [19], regression methods are used to isolate two same entry

faults. It’s important to note that this is different from fault estimation. The assumption

made in [19] is that the faults are piece-wise constant and a similar condition of persistently

excitation exists in one of the fault signals.

• Pre-Defined Fault Estimation Performance: By the proposed scheme, we cannot pro-

vide a pre-defined performance for fault estimation. We only minimize the effect of pertur-

bations and find an optimal fault estimate in terms of the gains from disturbances and noise

to fault estimation error. However, the accuracy of fault estimates might not be acceptable

in some cases, depending on system characteristics and disturbance levels.

In what follows, we discuss the uncertainty model and how different types of models affect the

provided solution of the fault estimation problem.

3.5. Discussion on Uncertainty Models

To obtain an uncertainty model of the form ηlx in (1b), we can use results in e.g., [38, 39,

40]. Available methods allow fitting parametric static functions, which might be state or output

dependent. To use these results in the context of fault estimation, we have to assume that there is

some time window during the system operation in which no fault occurs and that data is collected

for this healthy mode. The collected data can be used to learn uncertainty models to have a more

accurate system description (valid at least for trajectories close to the training data set) for fault

estimation.

Based on (1b), we have assumed that we have the state dependent uncertainty model ηlx(·) to

develop the results of this paper. In the case of an output dependent uncertainty model ηly(·), (1b)
will change as follows:

η(Vηx, u, t) = ηly(Tηy, u, t) + δηly(x, u, t), (19)

where δηly(x, u, t) := η(Vηx, u, t) − ηly(Tηy, u, t). Matrix Tη is a selection matrix that the user

selects to specify what particular outputs drive the model. If we use this ηly(·) instead of the state
15



dependent ηlx(·) in (1b), (5b) modifies as follows:

Bua :=

[
Bu Sη

0 0

]
, ua :=

[
u

ηly(Tηy, u, t)

]
, Sga :=

[
Sg

0

]
,

Vga :=
[
Vg 0

]
, ga(·) := g(·), ωa :=

[
δηTly ωT f (r)T

]T
.

(20)

As you can see above (see ga(·) in (20)), ηly(·) does not act as a nonlinearity for the augmented

system (as ηlx does in (5b)); instead, it acts as a known input signal. The latter affects the required

assumption for the application of this uncertainty model (See Remark 7).

Remark 7 (Uncertainty Model Selection). In Assumption 4, the state-dependent uncertainty

model ηlx must be globally Lipschitz to ensure the boundedness of the fault estimator. On the

other hand, the output-dependent model ηly relaxes this requirement by only requiring ηly to be

continuous. The latter comes at the price of lower model accuracy when the system uncertainty

is not an explicit function of the system output (i.e, Vηx might contain more states than those

measured in the output).

4. Simulation Results

In this section, we evaluate the proposed method using a benchmark example for FDI [24, 41, 42,

22]. The system dynamics (a single-link robotic arm with a revolute elastic joint, see Figure 1 for a

schematic) can be described as follows:

Jbq̈l + Flq̇l + (ks +∆ks) (ql − qm) +mg(c+∆c) sin (ql) = ω,

Jmq̈m + Fmq̇m − (ks +∆ks) (ql − qm) = kτu,

where ql and qm are the angular position of the link and the angular position of the motor, respec-

tively. Constants Jb and Jm are the moments of inertia of the link and the motor, and Fl and Fm

are the viscous coefficients associated with friction acting at the link and the motor, respectively.

The flexibility in the joint is modeled by a spring with a spring coefficient ks, the inaccuracy in

the spring coefficient is denoted by ∆ks, m is the link mass, g is the gravity constant, c is the

height of the link center of mass, ∆c is the inaccuracy in the height of the link center of mass, kτ

is the amplifier gain, and u is the torque input delivered by the motor. Units are in SI, and the

parameters values are: Jb = 4.5 kgm2, Jm = 1 kgm2, Fl = 0.5 Nms/rad, Fm = 1 Nms/rad, ks = 2

Nm/rad,∆ks = −0.25k,m = 4 kg, g = 9.8 m/s2, c = 0.5 m,∆c = 0.25c and kτ = 1. The torque

input is set to u = 2sin(0.25t), and ω = 0.03sin(0.1t) is an exogenous unknown (torque) disturbance

affecting the link.

Let x1 := q̇m, x2 := qm, x3 := q̇l, x4 := ql, and for the fault scenario, we consider the actuator

fault; then, the system can be written in the form of (1a)

{
ẋ = Ax+Buu+ Sgg (Vgx) + Sηη (Vηx) +Bωω +Bff,

y = Cx+Dff +Dνν,
(21)
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Motor

Link
Joint

Figure 1. Benchmark System Schematic.

where x := [x1, x2, x3, x4]
T is the state vector,

A =


−Fm

Jm − ks
Jm

0 ks
Jm

1 0 0 0

0 ks
Jl

−Fl
Jl

−ks
Jl

0 0 1 0

 , Bu =
[

kτ
Jm

0 0 0
]T

, C =

[
0 1 0 0

0 0 0 1

]
,

Sg =
[
0 0 −mgc

Jl
0
]T

, Vg =
[
0 0 0 1

]
, Sη =

[
1 0 0 0

0 0 1 0

]T

,

Vη =

[
0 1 0 0

0 0 0 1

]
, Bω =

[
0 0 1 0

]T
, Bf =

[
1 0 0 0

]T
,

Df =
[
0 0

]T
, Dν = I.

The nonlinearity is given by g (V x) = sin (x4), which is Lipschitz with constant α = 1. The

uncertainty is η(Vηx) = [∆ks
Jm

(x4 − x2),
∆ks
Jl

(x2 − x4) − mg∆c
Jl

sin(x4)]
T , which is induced by the

uncertainty on the stiffness and the location of the center of mass of the link. We set initial

conditions as x(0) = [0.01, 0.01, 0.01, 0.01]T .

We have the following linear state- and output-dependent uncertainty models:

ηlx(Vηx; Θx) =ΘxVηx,

ηly(Tηy; Θy) =ΘyTηy,
(22)

where Tη is the identity matrix (since the uncertainties are dependent on both outputs). Matrices

Θx and Θy are parameters of state- and output-dependent models with appropriate dimensions,

respectively.

Secondly, considering the system in (21) and either of state and output dependent uncertainty

models in (22), we construct augmented system (5a) with r = 1, using (5b) or its modified version

(20) for state and output dependent uncertainty models, respectively. Next, we design two actuator

fault estimators of the form (7), one for each of cases considering state- and output-dependent

uncertainty models, by solving the semi-definite problem in Theorem 3.1. The initial condition

of the filters in simulation is taken as the zero vector. A sinusoidal actuator fault with the same

frequency of input is simulated (i.e., fx = 0.1sin(0.25(t− 25))).
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Figure 2. The actual actuator fault and its estimates.

We evaluate two aspects of the proposed methods:

(1) Effect of the learning models for uncertainty in a noise-free case.

(2) Effect of robustification of fault estimate against noise.

4.1. Model Learning for Uncertainty

To indicate the performance of the proposed fault estimation approaches (two cases considering

two uncertainty models) in a noise-free situation, we compare those approaches with the case in

which we neither use the uncertainty model in the design of the fault estimator nor robustify the

fault estimation error against perturbations induced by uncertainty (see the fault estimator given

in [22]). Figure 2 depicts the actual fault and its estimates for three different approaches (two

proposed methods plus one without any model for uncertainty). It can be seen that the estimated

actuator faults using both proposed estimators follow the actual fault properly. Note that the fault

estimate accuracy for this system does not change that much using either of the uncertainty models.

However, this observation cannot be generalized since the fault estimation accuracy depends on the

used uncertainty model (i.e., state- or output-dependent model) in the fault estimator filter and the

gain from the uncertainty mismatch to fault estimate error. The combination of these two factors

might not result in similar fault estimate accuracy for every system.

4.2. Robustification against Noise

In this section, we aim to show that the fault estimation performance and the noise attenuation

are always a trade-off, and that the proposed synthesis approach allows us to make this trade-off

in a constructive manner. Therefore, in the simulation of this section, the measurement noise ν is

generated from a uniform distribution with an amplitude of five percent of the output signals for

both sensors. Note that in the result of this section the modeling uncertainty is available and the

state-dependent uncertainty model is used in the fault estimator. To show the trade-off between

fault estimation performance and noise attenuation, we consider the filter of the form (7), which

can be designed in three different ways as follows:
18



0 10 20 30 40 50 60 70 80 90 100
-4

-3

-2

-1

0

1

2

3

4

Figure 3. The actual actuator fault and its estimates using the optimal L2-gain

with respect to disturbance ωa estimator.

(1) Only minimizing the L2-gain from ωa to ef in (10) (assuming νa = 0), subject to the ISS

LMI in (15a).

(2) Only minimizing the L2−L∞ induced gain from νa to ef in (10) (assuming ωa = 0), subject

to the ISS LMI in (15a).

(3) Minimizing the L2-gain, subject to an upper bound for L2 −L∞ induced norm and the ISS

LMI in (15a) (proposed method in Theorem 1).

The first case of the above-mentioned scenarios is depicted in Figure 3. One can see that the effect of

noise is dominant in fault estimate, and this is due to the fact that by only minimizing L2-gain, we

obtain a high-gain filter, which amplifies the noise effect. In contrast, by only minimizing L2 −L∞

induced norm, a low-gain filter is found, which (almost) perfectly filters noise effect but sacrifices

fault estimation performance. Figure 4 shows the result for this filter in dashed-black. The method

proposed in this paper can provide a trade-off between the two previous solutions. Figure 4 depicts

the result using the proposed method in Theorem 1, see the dashed-red line. It can be observed

that we have a decent trade-off between fault estimate performance and noise attenuation. Note

that by tuning the upper bound for L2 − L∞ induced norm from νa to the fault estimate ef , one

can increase noise filtering at the cost of reducing fault estimate accuracy.

5. Conclusion

This paper proposes a method for the estimation of time-varying actuator and sensor faults in

uncertain nonlinear systems. The fault estimator exploits an internal, ultra-local in time, model for

the fault vector which allows us to guarantee zero fault estimation error for a class of faults in the

absence of perturbations. The fault estimator can be designed by solving a semi-definite program.

Herein, the effect of (fault and uncertainty) model mismatches, and external disturbances on the

fault estimation error is minimized in the sense of L2-gain, for an acceptable L2 − L∞ induced
19
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Figure 4. The actual actuator fault and its estimates using different optimal crite-

ria.

norm with respect to measurement noise. This allows to design fault estimators that exhibit a

favorable performance trade-off in the presence of these different perturbations challenging fault

estimation. Simulations for a benchmark system illustrate the performance and potential of the

proposed approach.

Appendix

Appendix A. Proof of Proposition 1

Let us first introduce the following lemma, which is used to ensure ISS using an ISS Lyapunov

function.

Lemma 1. (ISS Lyapunov Function [37, Thm. 4.19]) Consider the error dynamics (11) and let

W (e) be a continuously differentiable function such that

α1(∥e∥) ≤ W (e) ≤ α2(∥e∥),

Ẇ (e) ≤ −W3(e), ∀ ∥e∥ ≥ ξ(∥ω̄a(t)∥),

where α1(·) and α2(·) are class K∞ functions, ξ(·) is a class K function, and W3 is a continuous

positive definite function. Then, the estimation error dynamics (11) is ISS with ISS gain µ(∥ω̄a∥) =
α−1
1 (α2(ξ(∥ω̄a∥))).

Let W (e) := eTPe be an ISS Lyapunov function candidate. Then, it follows from (10) (equivalent

to (11)) and the Lipschitz conditions for the known nonlinearity in (6) that

Ẇ (e) ≤eT∆e+ ω̄T
a T̄

TMν T̄ ω̄a + 2eTPB̄ωaω̄a (23)

with ω̄a, B̄ωa as defined in (11b),

∆ :=NTP + PN + 2αPMSgaS
T
gaM

TP + α(Vga − JCa)
T (Vga − JCa), (24)
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and

Mν := T T
ν JTJTν , Tν := [ Dν 0 ], T̄ := [ 0 I2m ]. (25)

Ẇ =eT
(
NTP + PN

)
e+ 2eTPMSgaδg − 2eTPMBωaωa + 2eTPBνaνa

≤eT
(
NTP + PN

)
e+ 2

∥∥eTPMSga

∥∥ ∥δg∥ − 2eTPMBωaωa + 2eTPBνaνa

≤eT
(
NTP + PN

)
e+ 2

∥∥eTPMSga

∥∥α∥(Vga − JCa)e+ JDνν∥ − 2eTPMBωaωa + 2eTPBνaνa

≤eT
(
NTP + PN

)
e+ 2

∥∥eTPMSga

∥∥α(∥(Vga − JCa)e∥+ ∥JTννa∥)− 2eTPMBωaωa

+ 2eTPBνaνa

≤eT
(
NTP + PN

)
e+ α

(
2
∥∥eTPMSga

∥∥2 + ∥(Vga − JCa)e∥2 + ∥JTννa∥2
)
− 2eTPMBωaωa

+ 2eTPBνaνa

=eT
(
NTP + PN + 2αPMSgaS

T
gaM

TP + α(Vga − JCa)
T (Vga − JCa)

)
e+ νTa

(
T T
ν JTJTν

)
νa

− 2eTPMBωaωa + 2eTPBνaνa

=eT∆e+ νTa Mννa + 2eTP
[
−MBωa Bνa

][ ωa

νa

]
= eT∆e+ ω̄T

a T̄
TMν T̄ ω̄a + 2eTPB̄ωaω̄a

(26)

Now, inequality (23) (which is the same as (26)) by taking the norm of the right-hand side of

inequality implies the following inequality:

Ẇ (e) ≤− λmin(−∆)∥e∥2 + ∥T̄ TMν T̄∥∥ω̄a∥2 + 2∥e∥∥PB̄ωa∥∥ω̄a∥

=− (1− χ)λmin(−∆)∥e∥2 − χλmin(−∆)∥e∥2 + ∥T̄ TMν T̄∥∥ω̄a∥2 + 2∥e∥∥PB̄ωa∥∥ω̄a∥
(27)

for any χ ∈ (0, 1) and λmin(·) the minimum eigenvalue of its symmetric argument. Now, a class K
function ξ(ω̄a) exist such that we have

Ẇ (e) ≤− (1− χ)λmin(−∆)∥e∥2, ∀ ∥e∥ ≥ ξ(∥ω̄a∥),

ξ(ω̄a) exists since the second quadratic term in ∥e∥ can dominate the third and fourth terms in (27)

for large enough ∥e∥. ξ(ω̄a) can be found by solving the following second-order inequality for ∥e∥

χλmin(−∆)∥e∥2 ≥∥T̄ TMν T̄∥∥ω̄a∥2 + 2∥e∥∥PB̄ωa∥∥ω̄a∥

Since an explicit expression for the ISS gain is not needed in this paper, we do not give a closed-form

solution for ξ(.).

Therefore, the conditions in Lemma 1 are satisfied if ∆ is a negative definite matrix. Hence,

under such condition system (11) is ISS with input ω̄a. Based on the above analysis, the proposition

formalizes an LMI condition (∆ ≺ 0) that guarantees an ISS estimation error dynamics (11).

As the final step, we want to prove that ∆ ≺ 0 is equivalent to (15a)-(15b). Using ∆ defined in

(24), (7c), and the Schur complements on ∆ ≺ 0, we can derive (15a) with X11 and X12 in terms of

the original observer gains {E,K, J} as

X11 := NTP + PN + α(V T
gaVga − V T

gaJCa − CT
a J

TVga),

X12 :=
[ √

2αPMSga

√
αCT

a J
T

]
,
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where NTP + PN expands as

AT
a (I + ECa)

T P − CT
a KP + P (I + ECa)Aa − PKCa,

and we have

PMSga = PSga + PECaSga .

Consider the following change of variables

R := PE, Q := PK.

Applying this change of variables on the above expanded X and X12, the linear inequality (15a)-

(15b) can be concluded.

When α is zero (no nonlinearity), it holds that ∆ = NTP + PN and, therefore, we only require

NTP +PN to be negative definite, which by change of variables transforms to S11 ≺ 0 is necessary

and sufficient condition for ISS of the linear error dynamics [37, Col. 5.1]. This conclude the results

of the proposition.

Appendix B. Proof of Proposition 2

Let us first introduce the following Lemma, which is required to prove the result of Proposition 2.

In the following lemma, we state a Lyapunov-based sufficient condition for having such a bounded

L2-gain property.

Lemma 2. (L2-gain Inequality) Consider (10) with ν(t) = 0 and suppose there exists a contin-

uously differentiable positive semi-definite function W (e) satisfying

Ẇ (e) ≤ a(λ2ωT
a ωa − eTf ef ), (28)

with a, λ > 0 and the fault estimation error ef as in (8). Then, the L2-gain from ωa to ef in (10)

is less than or equal to λ.

Proof: The proof is similar to the proof of Theorem 5.5 in [37]. Clearly, by integrating (28)

over a finite time (0, τ), we have

W (e(τ))−W (e(0)) ≤ aλ2

∫ τ

0
∥ωa∥2dt− a

∫ τ

0
∥ef∥2dt.

Using W (e) ⪰ 0 and neglecting the initial condition, the above inequality can be written as∫ τ

0
∥ef∥2dt ≤ λ2

∫ τ

0
∥ωa∥2dt

Considering Definition 2, the above inequality concludes the result in the lemma. ■

For the purpose of L2-gain analysis, we define W (e) := eTPe with positive definite matrix P .

Then, we can guarantee that the L2-gain inequality in (28) holds for the time-derivative Ẇ (e)

evaluated along solutions of the error-dynamics (10), by using (26) (and assuming ν = 0), as

follows:

Ẇ (e) ≤ eT∆e− 2eTPMBωaωa ≤ a(λ2ωT
a ωa − eT C̄T C̄e).

The above inequality can be written as

eT (∆ + aC̄T C̄)e− 2eTPMBωaωa − aλ2ωT
a ωa ≤ 0,
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for which we can give the following sufficient matrix inequality[
∆+ aC̄T C̄ −PMBωa

∗ −aλ2I

]
⪯ 0.

If we follow the same procedure in the proof of Proposition 1, the equivalent inequality can be found

as  X + aC̄T C̄ −(P +RCa)Bωa X12

∗ −aλ2I 0

∗ ∗ −I

 ⪯ 0.

Finally, by defining a change of variable as ρ := λ2, the LMI condition (16a) implies the above

inequality.

When α is zero (linear case), the LMI condition (16a) using the Schur complement is equivalent

to (16b). This LMI is necessary and sufficient condition for the the L2-gain of (10) (with δg = 0 for

this linear case) from ωa to the fault estimation error ef to be upper bounded by
√
ρ, as given in

[25, Prop. 3.12].

Appendix C. Proof of Proposition 3

For the purpose of L2 −L∞-gain analysis, we define W (e) := eTPe with positive definite matrix

P . Then, we can impose the quadratic performance inequality

Ẇ (e) ≤ b2νTa νa. (29)

Using (26) (and assuming ωa = 0), (29) can be written as follows:

Ẇ (e) ≤ eT∆e+ 2eTPBνaνa + νTa Mννa ≤ b2νTa νa.

The above inequality can be written as

eT∆e+ 2eTPBνaνa + (Mν − b2I)νTa νa ≤ 0,

for which we can give the following sufficient matrix inequality[
∆ PBνa

∗ Mν − b2I

]
⪯ 0.

Since Mν = T T
ν JTJTν is not linear in the design variable J , we use the Schur complement again to

obtain the following equivalent inequality: ∆ PBνa 0

∗ −b2I T T
ν JT

∗ ∗ −I

 ⪯ 0.

If we follow the same procedure in the proof of Proposition 1, the equivalent LMI can be found:
X H12 0 X12

∗ −b2I T T
ν JT 0

∗ ∗ −I 0

∗ ∗ ∗ −I

 ⪯ 0,
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where H12 as defined in (17c). This completes the proof that the condition (17a) in the proposition

imply the satisfaction of (29). Besides, by integrating (29) over a finite time (0, τ) and neglecting

the initial condition, we have

e(τ)TPe(τ) ≤ b2
∫ τ

0
νTa νadt.

If we multiply both sides by γ2 and impose a lower bound to enable bounding the error on the fault

estimate (ef = C̄e), we have

eT (τ)C̄T C̄e(τ) ≤ γ2eT (τ)Pe(τ) ≤ (γb)2
∫ τ

0
νTa νadt. (30)

Then, it follows from the first part of the above inequality that we need

eT (τ)(P − C̄T C̄

γ2
)e(τ) ≥ 0.

Using the Schur complement, the following LMI implies the satisfaction of the above inequality:[
P C̄T

∗ σI

]
⪰ 0,

where σ := γ2. Now, by imposing the above LMI, (30) indeed holds. Therefore,

sup
τ≥0

eT (τ)C̄T C̄e(τ) ≤ sup
τ≥0

(γb)2
∫ ∞

0
νTa νadt = (γb)2

∫ ∞

0
νTa νadt

which concludes the result in the proposition for nonlinear case.

When α is zero (linear case), the LMI condition (17a) using the Schur complement is equivalent

to (17e). Then, (17e) and (17b) are necessary and sufficient conditions for the L2 − L∞ induced

norm of (10) (with δg = 0 for this linear case) from νa to the fault estimation error ef to be upper

bounded by
√
σ, as given in [25, Prop. 3.15].
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