
Linear Time-Varying Parameter Estimation:
Maximum A Posteriori Approach via Semidefinite Programming

Sasan Vakili, Mohammad Khosravi, Peyman Mohajerin Esfahani and Manuel Mazo Jr.

Abstract— We study the problem of identifying a linear
time-varying output map from measurements and linear time-
varying system states, which are perturbed with Gaussian ob-
servation noise and process uncertainty, respectively. Employing
a stochastic model as prior knowledge for the parameters of
the unknown output map, we reconstruct their estimates from
input/output pairs via a Bayesian approach to optimize the
posterior probability density of the output map parameters. The
resulting problem is a non-convex optimization, for which we
propose a tractable linear matrix inequalities approximation to
warm-start a first-order subsequent method. The efficacy of our
algorithm is shown experimentally against classical Expectation
Maximization and Dual Kalman Smoother approaches.

I. INTRODUCTION

Bayesian approaches for estimating characteristics of dy-
namical systems have been a subject of studies for decades
and have recently received extensive attention [1], [2]. In
systems theory, the significance of the Bayesian approach
is highlighted in state estimation of dynamical systems [3],
[4], e.g., through the celebrated recursive Kalman filter. The
Rauch-Tung-Striebel (RTS) Smoother counterparts [4], on
the other hand, are (offline) iterative non-causal algorithms
incorporating future measurements into the current state
estimation.

An alternative to Bayesian estimation, which requires a
prior distribution of the parameters of interest, is the min-
imax estimation approach, assuming instead the knowledge
of ambiguity sets. The least favourable uncertainty model
from this ambiguity set is then used for estimation [5]–[8].
Here, we focus instead on designing a classical smoother
for a different problem: system parameters estimation from
input/output measurements via Bayesian estimation. This
problem arises in, e.g., robot mapping in unknown environ-
ments, such as Autonomous Underwater Vehicles operating
in the deep sea where global positioning is expensive due to
low visibility and lack of radio communications.

Given unknown parameters with random states, apply-
ing a Bayesian estimation framework leads to severe non-
convexities in the resulting optimization problem. As such,
iterative schemes are typically employed to overcome theses
non-convexities. Assuming the parameters also follow a sta-
tistical formulation, two main types of smoother approaches,
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Dual Kalman Smoother (DKS) and Expectation Maximiza-
tion (EM), are available in the literature [9].

Dual Kalman Smoothers (and filters) attempt to maxi-
mize the joint probability space of parameters and state
(conditioned on input and output observations), iterating
between estimating the system states using the last parame-
ters’ estimates followed by estimating the parameters from
the currently estimated states. Although DKS is compu-
tationally efficient according to its recursive structure, its
estimation performance can be significantly suboptimal due
to the bilinearity between the parameters and states. Unlike
DKS, Expectation Maximization learns the parameters of
statistical models by maximizing the posterior distribution
of the parameters from the observed data and their prior
density function when incomplete data or hidden variables
exist [10]–[12].

Considering the states of a dynamical system as hid-
den variables [13]–[15], EM estimates the parameters of a
dynamical system in two steps by integrating all possible
values of the states in which the model could have generated
the observations. The distribution over hidden variables is
maximized in the E-Step using the parameters estimates from
the previous iteration. Subsequently, the M-Step maximizes
a lower bound of the original cost by fixing the hidden
variables distribution to the one optimized in the E-Step. A
closed-form solution of the M-Step is provided in [14] for
estimating the parameters of linear time-invariant dynamical
systems and in [9, Chapter 6] for estimating the parameters
of a Gaussian radial basis function (RBF) approximator. Both
solutions consider the maximum likelihood case, where no
prior exists for the parameters.

Finding a closed-form expression for the parameters up-
date in the M-Step of a Maximum A Posteriori (MAP)
smoothing problem when the parameters are time-varying
and in the presence of a priori knowledge is non-trivial. This
challenge leads to a slow convergence of the EM algorithm
utilizing computationally demanding approaches to solve
the optimization in M-step, e.g., first-order methods. The
slow convergence of EM is shown experimentally in [16],
and further analyses in [17], [18] demonstrate the slow
convergence rate of the gradient variant of the EM algorithm
for Gaussian Mixture Models.

Alternatives to the iterative schemes can be found in the
parameter estimation problem of an elliptically contoured
distribution [19, Page 107], employing recent Conic Geo-
metric Optimization methods [20]. These methods, however,
require reformulating the MAP problem via techniques, such
as those proposed in [21, Section 3], which result in losing



the output map’s original structure. Retaining such a structure
to leverage the available a priori knowledge is essential to
our problem.

In this work, we consider systems with known linear
time-varying dynamics affected by process and measurement
Gaussian noise but with unknown time-varying output maps.
We propose a method to estimate the unknown parameters
of the output map having as a priori information a linear
stochastic system encoding the evolution of the parameters.
We derive an optimization problem applying a fully Bayesian
approach, maximizing the exact posterior distribution of the
parameters when unfolded over the whole time horizon. A
tractable conservative approximation to the resulting opti-
mization problem is derived via semidefinite programming
(SDP) using linear matrix inequalities (LMIs) techniques.
The solution from this approximation then provides a warm-
start for a first-order quasi-Newton algorithm that enjoys
a locally superlinear convergence rate. This combination
allows us to enjoy both the computational advantage of
DKS and outperform the statistical performance of EM.
We illustrate the efficacy and performance of our proposed
method in comparison with DKS and EM through a Monte
Carlo experiment with different signal-to-noise ratios (SNRs)
in Section V.

Notation: Throughout this paper, Z+, R and Rn×m

denote the set of positive integers, real numbers, and n by
m real matrices, respectively. We indicate diag(A1, . . . ,Ak)
as a block diagonal matrix with diagonal entries of given
matrices A1, . . . ,Ak. The symbol I denotes the identity
matrix, and tr is the trace operator. Given A ∈ Rm×n, a
matrix with columns a1, . . . , an ∈ Rm, we define vec(A) as
the vector [aT1 , . . . , a

T
n]

T ∈ Rmn. For a positive symmetric
matrix A ∈ Rn×n, Λ(A) :=

(
λi(A)

)n
i=1

indicates the
vector of eigenvalues of A in descending order, i.e., λi(A)
is the ith largest eigenvalue of A. A multivariate normal
(Gaussian) distribution with mean µ and covariance matrix
Σ is denoted by N (µ,Σ), and the symbol ∼ stands for
“distributed according to”.

II. PROBLEM DEFINITION

Consider a discrete-time linear time-varying dynamical
system described by the process model:

xk+1 = Akxk +Bkuk +wk, k ∈ Z+, (1)

where k denotes the time index, xk ∈ Rnx is the vector of
state variables, Ak ∈ Rnx×nx is the state transition matrix,
uk ∈ Rnu is the vector of inputs, Bk ∈ Rnx×nu is the input
matrix, and wk ∈ Rnx is an independent realization at time k
of the process noise with Gaussian distribution N (0,Σwk

).
The initial state of system (1), denoted by x0, is also assumed
to be drawn from a Gaussian distribution N (µx0

,Σx0
). For

k ∈ Z+, the state of the system is observed at time instant
k through a perturbed linear time-varying map:

yk = Ckxk + vk, k ∈ Z+, (2)

where yk ∈ Rny denotes the output measurements, Ck ∈
Rny×nx is an unknown time-varying observation matrix, and

vk ∈ Rny is the vector of measurement noise signals with
Gaussian distribution N (0,Σvk

). Let θk be the vector of all
parameters at each time index k:

θk := vec(CT
k), (3)

which implies that Ck and θk uniquely characterize each
other. We introduce the following assumption, providing
a form of a priori information. This plays a role akin
to that of a regularizer in non-Bayesian techniques, such
as in Supervised Learning, where algorithms without such
regularizers are prone to overfitting.

Assumption 1 (Output map dynamics). The dynamics of the
output map are governed by the difference equation

θk+1 = θk + ηk, k ∈ Z+, (4)

where k denotes the time index, θk ∈ Rnynx is the vector of
parameters driven by the vector of process noise ηk ∈ Rnynx

with Gaussian distribution N (µηk
,Σηk

). Further, assume
that the initial parameter of system (4), denoted by θ0, is
drawn from the normal distribution N (µθ0 ,Σθ0).

Assumption 1 imposes a Gaussian random walk dynamics
on the evolution of the parameters, which is the minimal
structure and assumption on the variations of the parameters
because of the maximum entropy feature of the Gaussian dis-
tributions. This assumption allows us to employ a stochastic
belief of a deterministic reality in the Bayesian viewpoint.

Let the inputs and outputs of system (1)-(2) be measured
for k = 0, . . . , nT , where (nT +1) ∈ Z+ denotes the length
of the measurement data. More precisely, the input-output
trajectory data is given by D = {(uk, yk) | k = 0, . . . , nT }.
Additionally, we assume:

Assumption 2 (Noise). The process, measurement, and out-
put map noise realizations, i.e., wk, vk and ηk, respectively,
for all k ∈ {0, . . . , nT }, are independent. Furthermore, the
means µx0 , µθ0 , µηk

, and covariance matrices Σx0 , Σwk
,

Σvk
, Σθ0 and Σηk

, for k ∈ {0, . . . , nT }, are known.

Remark 1 (A priori knowledge). While we assume µθ0 , µηk
,

Σθ0 , and Σηk
to be readily known, in practical applications,

these parameters can be obtained through various means
depending on the context, e.g., employing prior knowledge of
the nominal model, empirically from previous experiments’
data, or employing a suitable hyperparameter estimation
method when µηk

= µθ0 and Σηk
= Σθ0 , for k ∈ Z+.

Ultimately, the question is whether the observation model
(2) could be estimated. More precisely, we would like to
address the following problem:

Problem 1. Given the process and observation models
(1) and (2), input-output measurement data D, and under
Assumptions 1 and 2, estimate the unknown time-varying
observation matrices Ck in an efficient and tractable way.

To address the problem 1, we develop a MAP approach in
the next section, followed by a tractable reformulation using
LMI techniques in Section IV.



III. MAXIMUM A POSTERIORI ESTIMATION

In this section, we propose a Bayesian method for esti-
mating the unknown observation matrices C0, . . . ,CnT . The
three main elements in Bayesian estimation methods are
a prior density function, an observation model, and a loss
function, which we briefly explain for solving our problem
with the MAP approach.

A. Lifted Process and Observation Model

Let us represent the process model (1) in the following
lifted matrix form:

x = A(u + wx), (5)

where x =
[
xT
0 , . . . , x

T
nT

]T
includes the system states

over the entire horizon up to time nT , while the in-
put vector is modified to include the initial state u =[
µT
x0
, (B0u0)

T , . . . , (BnT −1unT −1)
T
]T

, and the noise vector
consists of the uncertainty of the initial state and process
noises wx =

[
wT

x0
,wT

0 , . . . ,w
T
nT −1

]T
with wx0 ∼ N (0,Σx0).

Given that the process noises and initial state uncertainty are
uncorrelated from Assumption 2, we can specify wx in terms
of a multivariate normal distribution N (0,Σwx

) in which
Σwx

= diag(Σx0
,Σw0

, . . . ,ΣwnT −1
). The lifted transition

matrix A has the lower triangular form:

A =


I
A0 I

A1A0 A1 I
...

...
. . . . . .

AnT −1 . . .A0 AnT −1 . . .A1 . . . AnT −1 I

 .

Similarly, the observation model (2) for the entire trajectory
can be expressed as:

y = Cx + v, (6)

where y =
[
yT
0 , . . . , y

T
nT

]T
is the vector of all measurements,

v ∼ N (0,Σv) is the vector of all measurement noise
realizations with Σv = diag(Σv0 ,Σv1 , . . . ,ΣvnT

), and C is
the lifted observation matrix:

C = diag(C0,C1, . . . ,CnT ).

Finally, we describe the dynamics of the output map param-
eters θ for the entire trajectory as:

θ = µθ +wθ, (7)

where θ =
[
θT0 , . . . , θ

T
nT

]T
, and µθ results from the sum-

mation of the biases of the initial parameter and the noise:

µθ =
[
µT
θ0
, µT

θ0
+ µT

η0
, . . . , µT

θ0
+
∑nT −1

i=0 µT
ηi

]T
. Similarly, the

noise signal wθ results from the integration over the entire
horizon including the uncertainty of the initial parameter as:
wθ = Dη, where η =

[
ηT
θ0
, ηT

0 , . . . , η
T
nT −1

]T
and ηθ0 ∼

N (0,Σθ0), with

D =


I
I I
...

...
. . .

I I . . . I

 .

Since the parameters are assumed to be independent (As-
sumption 2), we have wθ ∼ N (0,Σwθ

), Σwθ
= DΣηD

T ,
with Ση = diag(Σθ0 ,Ση0 , . . . ,ΣηnT −1). Ultimately, the
model (7) is used to specify the prior density function.

In what follows, we represent C as C(θ) to emphasize
the dependence of C on θ according to (3). Consequently,
substituting x in (6) with the expression from (5) results in
the observation model, with unknown C(θ), describing the
measurements y as a function of the applied inputs u:

y = C(θ)Au + wy(θ), (8)

where wy(θ) = C(θ)Awx + v. Also, from Assumption 2:

wy(θ)|θ ∼ N (0,Σwy
(θ)),

where Σwy
(θ) = C(θ)AΣwx

ATC(θ)T + Σv. This model
is used later to specify the conditional probability density
function of the measurements. Note that wy(θ)|θ remains
Gaussian with the derived covariance since both noise
sources, wx and v, are Gaussian and independent.

B. MAP Loss Function
In MAP estimation, one aims to find an estimate θ̂

for the parameters by minimizing the cost function [22]:
E
[
1 − 1θ:∥θ−θ̂∥∞

≤ϵ(θ)
]
, where θ is the vector of random

variables, 1(.) is an indicator function, and ϵ is a small scalar.
Minimizing the expectation of such a loss function implies
maximizing the conditional probability density of θ given the
vector of observations and inputs, θ̂ = argmax

θ
p(θ|y,u),

where θ̂ is the estimate of the true parameter θ [23, Chap-
ter 4]. The following lemma formalizes this first step to
compute the MAP estimation.

Lemma 1 (MAP optimization problem). Let us define the
function J : Rnynx(nT +1) → R as

J (θ) := logdet(Σwy
(θ))

+
∥∥y − C(θ)Au

∥∥2
Σ−1

wy (θ)
+
∥∥θ − µθ

∥∥2
Σ−1

wθ

.
(9)

The MAP estimation is equivalent to

θ̂ = argmin
θ

J (θ). (10)

Proof. Using Bayes’ rule, the MAP estimation can be refor-
mulated as

max
θ

p(θ|y,u) = max
θ

p(y|θ,u)p(θ|u)
p(y|u)

. (11)

We first note that the denominator of (11) does not depend
on θ and, hence, can be neglected without changing the
optimizer. Moreover, we note that the dynamics of θ in (4)
(or equivalently in the lifted form in (7)) do not depend on
the input sequence of u (i.e., p(θ|u) = p(θ)). Next, using a
straightforward computation, one can derive the probability
density functions p(θ) and p(y|θ,u). Specifically, from (7),
we know that the variable θ is Gaussian with the probability
density function

p(θ) =
exp

(
− 1

2 (θ − µθ)
TΣ−1

wθ
(θ − µθ)

)
√
(2π)(nT +1)nynx det(Σwθ

)
.



Similarly, we know from (8) that given θ and the input
sequence u, the output sequence y is also Gaussian with
the conditional probability density function

p(y|θ,u) =
exp

(
− 1

2 (y − C(θ)Au)TΣ−1
wy

(θ)(y − C(θ)Au)
)

√
(2π)(nT +1)ny det(Σwy(θ))

.

Finally, applying the monotonically increasing function log
and observing that all terms in the denominators except
det(Σwy(θ)) are constant, we arrive at the minimization
problem of the function J defined in (10). ■

In the next section, we propose a tractable conservative
approximation using LMI techniques to tackle the non-
convex objective function J (θ) defined in (9).

Remark 2 (Robust estimation). Alternatively, a robust mini-
max estimation formulation similar to [8] could be employed.
This approach, however, requires finding an ambiguity set to
approximate non-Gaussian observation uncertainties due to
the multiplication of Gaussian variables in wy(θ).

IV. PROPOSED SOLUTION

The optimization problem (10) is non-convex not only
because of the weight Σ−1

wy
(θ), being quadratic in the pa-

rameters θ, in the second term but also because of the log-
determinant operator in the first term. A typical approach
is to use first-order algorithms to find a solution due to
the mentioned non-convexities. These algorithms, however,
only guarantee convergence to a local optimum. Therefore,
selecting an appropriate initial starting point is crucial to the
obtained quality of the solution. We propose to solve the
problem in two steps: first, we perform a convex relaxation
of (10) into a set of LMIs, which we use to compute
an initial approximate minimizer; next, we employ this
approximate minimizer to initialize (warm-start) a first-order
optimization method, e.g., steepest descent [24] or quasi-
Newton algorithms [25], to solve (10) thus refining our initial
minimizer estimate.

Theorem 2 (LMI conservative approximation). Consider the
following LMIs:

min
S,θ,γ,β

tr(S− I) + γ + β

s.t.

[
−Σ−1

wx
ATC(θ)T

C(θ)A Σv − S

]
⪯ 0,[

−S (y − C(θ)Au)

(y − C(θ)Au)T −γ

]
⪯ 0,[

−Σwθ
(θ − µθ)

(θ − µθ)
T −β

]
⪯ 0.

(12)

Then, the optimal value of the nonlinear program (10) is
upper bounded by J∗+

∥∥y−C(θ∗)Au
∥∥2
Σ−1

wy (θ
∗)−S∗−1 , where

J∗ and (S∗, θ∗) are the optimal value and the optimizer
of (12), respectively.

Proof. Consider a matrix S ≻ 0 upper bounding the covari-
ance matrix Σwy

(θ) ≻ 0 as

Σwy(θ) = C(θ)AΣwxA
TC(θ)T +Σv ⪯ S. (13)

Thus, λi(Σwy
(θ)) ≤ λi(S), for i = 1, . . . , ny(nT +1), which

implies that

logdet(Σwy(θ)) ≤ logdet(S).

Since logdet(S) =
∑ny(nT +1)

i=1 log λi(S) and tr(S) =∑ny(nT +1)
i=1 λi(S), we also have

logdet(Σwy
(θ)) ≤ logdet(S) ≤ tr(S− I).

Using the Schur complement, one can see that (13) is
equivalent to the following linear matrix inequality[

−Σ−1
wx

ATC(θ)T

C(θ)A Σv − S

]
⪯ 0.

Similarly, considering γ ≥ 0 and β ≥ 0 such that

(y−C(θ)Au)TS−1(y − C(θ)Au) ≤
(y − C(θ)Au)TΣwy

(θ)−1(y − C(θ)Au) ≤ γ,
(14)

and
(θ − µθ)

TΣ−1
wθ

(θ − µθ) ≤ β, (15)

we can apply again the Schur complement to the inequalities
in (14) and (15) to obtain the last two LMIs in (12). Finally,
replacing the terms in the cost function J (θ) in (9) with their
bounds and including the corresponding LMIs as constraints
arrives at the LMIs (12). Note further that by definition, we
have

J∗ +
∥∥y − C(θ∗)Au

∥∥2
Σ−1

wy (θ
∗)−S∗−1 =

J (θ∗) + tr(S∗ − I)− logdet(Σwy(θ
∗)) ≥ J (θ∗),

(16)
where the function J (θ∗) is defined in (9), and the last
inequality follows from (13). ■

The tightness of the inequality in (16) mainly depends on
the gap between log det(S) and tr(S− I) since log det(S) is
bounded from above by tr(S− I), which is negligible when
λi(S) ≈ 1, for i = 1, . . . , ny(nT + 1). One may employ
a suitable matrix W to scale the eigenvalues of S, replace
log det(S) with log det(WSW)− 2 log det(W) and approx-
imate log det(WSW) with tr(WSW − I). Furthermore, the
closeness of J∗ and J (θ∗) in (16) is proportional to the
fitness quality of the measurements and whether S∗ is close
to the covariance matrix accordingly.

In addition, Theorem 2 provides an approximation of
(10), producing an initial near-optimal solution. As indicated
earlier, we propose to employ this solution to warm-start a
local (non-convex) optimizer. Due to its fast convergence,
we propose to employ, as a refining optimizer, the BFGS al-
gorithm [25, Chapter 6], a variant of quasi-Newton methods.
The BFGS algorithm approximates the Hessian matrix for
its search directions relying on an analytical expression of
the gradient ∇θJ (θ). The gradient of the cost function (9)
with respect to the parameters θ

∇θJ (θ) =
[∂J
∂θ1

, . . . ,
∂J

∂θnynx(nT +1)

]T
(17)



can be easily derived applying the chain rule:

∂J
∂θijk

= 2tr
[(

AΣwx
ATC(θ)TΣwy

(θ)−1
)
Cij

k (θ)

−
(
AΣwxA

TC(θ)TΣwy(θ)
−1×

(y − C(θ)Au)(y − C(θ)Au)TΣwy
(θ)−1

)
Cij

k (θ)

−
(
Au(y − C(θ)Au)TΣwy

(θ)−1
)
Cij

k (θ)

+
(
(θ − µθ)

TΣ−1
wθ

)
θijk

]
,

where Cij
k (θ) is the single-entry matrix of C(θ) with the

block matrix of Ck(θ) having 1 at index (i, j) and zero
elsewhere, and θijk is the single-entry vector of θ with 1
at index ijk and zero elsewhere.

The LMIs (12) initializes the original non-convex problem
with a locally optimal solution. Thus, the computational com-
plexity of the proposed method consists of the well-known
computational complexity of solving the SDP problems [26],
i.e., a one-time solution of (12), and the computation of the
gradient (17) per iteration of the first-order method:

O
(n3

x(nT + 1)3 + n2
x(nT + 1)2

2
+ nyn

2
x(nT + 1)2

+ nxn
2
y(nT + 1)3 + (ny)

3(nT + 1)3
)
,

which is O(n3
T ) when nx, ny ≪ nT .

V. NUMERICAL EXAMPLE

In this section, we provide a numerical example to verify
the efficacy and performance of the proposed method: em-
ploying the LMIs (12) to warm-start the solution of (10) via
the BFGS optimizer. Additionally, we compare the resulting
solution with the estimates obtained from EM and DKS
algorithms. To have a fair comparison, we also employ the
same BFGS optimizer for the M-Step of the EM estimation.

We demonstrate our solution on the following system:

xk+1 =

0.7 0.25 0
0 0.5 0
0 0.25 0.7

 xk +

01
1

 (3.5 + cos(2k)) + wk,

with µx0
=

[
1, 0.5, 2

]T
. The observation is a two-

dimensional model, i.e., the number of measurements per
time instant is ny = 2. The system has sampled input
and measurement pairs in D every 100 milliseconds for 10
seconds, i.e., nT = 100. Thus, the number of parameters to
be estimated is nynx(nT + 1) = 606. The noise covariance
of process, observation and output map dynamics, Σwk

,
Σvk

and Σηk
, are assumed to remain constant across the

entire horizon. Moreover, the initial state and parameter noise
covariance are similar to the noise covariance of process and
output map dynamics, respectively (i.e., Σx0

= Σwk
and

Σθ0 = Σηk
). The output map noise biases µηk

are generated
such that µ1,ηk

= 5 + e−0.6k cos(0.4k), µ2,ηk
= 1.5 +

e−0.6k sin(0.025k), µ3,ηk
= 2, µ4,ηk

= 5+e−0.6k cos(0.4k),
µ5,ηk

= 1.5+ e−0.6k sin(0.025k), and µ6,ηk
= 2. The initial

parameter bias, µθ0 , is derived from µη0
by setting k = 0,
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Fig. 1: The Mean Squared Error of the three methods in high
noise of Ση and two different SNRs for 100 experiments.

and the DKS and EM algorithms’ initialization is according
to these noise bias values. We examine the performance of
our algorithm, SDP-GD, compared with EM and DKS on
four scenarios generated by employing High/Low SNRs for
the process and observation noise, particularly 30 and 10
decibels (dBs), and High/Low parameter variation of:

High: Σηk
= diag(2.17, 0.076, 1.19, 1.38, 0.87, 1.27)

Low: Σηk
= diag(6.9, 0.2, 3.8, 4.4, 2.8, 4) · 10−2.

Combined results from 100 experiments for each of the
four scenarios, keeping the same ground-truth realization
in each scenario, are illustrated in Figures 1 and 2. The
figures demonstrate the median (vertical dotted lines) and
distribution across experiments based on the mean squared
error (MSE), i.e. MSE = 1

nT +1

∑nT
k=0 ∥θk − θ̂k∥22. One can

observe how the DKS underperforms compared to the EM
and our SDP-GD solutions in more challenging scenarios
where the process-observation model noise is high or in the
presence of High parameter variation.

The average and standard deviation of the computation
time of each method across 100 experiments are reported in
Table I. We performed all the experiments on a cluster node
with 384G memory and 40 CPU cores (2 Intel Xeon Gold
6148 @ 2.40GHz). The elapsed execution times confirm our
hypothesis that EM is computationally more expensive than
the other alternatives.

The performance of EM and DKS algorithms highly
depends on the initialization, while in contrast, our proposed
solution takes advantage of a warm-start initializer obtained
from solving a convexified approximation of the original
optimization problem. This initialization helps converge to
a better local optimum faster than the EM algorithm. In
addition, the M-step of the EM algorithm, in this problem,
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Fig. 2: The Mean Squared Error of the three methods in low
noise of Ση and two different SNRs for 100 experiments.

Elapsed time per seconds (mean ± std)

Experiment Scenario DKS EM SDP-GD

10
dB Low Parameter Variation 18 ± 4 14265 ± 3112 1265 ± 109

High Parameter Variation 27 ± 13 22547 ± 6768 1542 ± 178

30
dB Low Parameter Variation 9 ± 3 7999 ± 802 1543 ± 132

High Parameter Variation 21 ± 13 3796 ± 412 1605 ± 128

TABLE I: The Average computation performance on all
scenarios for 100 experiments.

does not hold a closed-form solution, which results in
utilizing a first-order method. This gradient M-Step also plays
a part in the general slowness of the EM algorithm. Our
algorithm, however, requires a one-time execution of the set
of LMIs followed by an iterative quasi-Newton method with
a superlinear convergence rate. Hence, it provides the best of
both worlds, i.e., better estimations than EM and DKS with
less computation time than EM.

VI. CONCLUSION

We have introduced a method for estimating an unknown
output map of a linear time-varying system by employing
a stochastic characterization of the evolution of the output
map parameters, which serves as a priori information for
MAP estimation. The derived MAP optimization problem
is solved by relaxing the optimization as a set of LMIs,
whose solution provides a warm-start for a gradient descent
algorithm. Compared with standard approaches to solve this
problem, namely EM and DKS, we showed experimentally
the superiority of our method in estimation performance and
lower computational demands compared to EM. Future work
will explore the incorporation of other types of a priori
knowledge on the output map, the development of efficient
causal filters following similar approaches, the minimax
formulation for robust estimation, considering noise models

with more general structures, and introducing methods for
efficient design of the control input.
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