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Abstract. This article focuses on a class of distributionally robust optimization (DRO) problems

where, unlike the growing body of the literature, the objective function is potentially nonlinear in

the distribution. Existing methods to optimize nonlinear functions in probability space use the

Frechet derivatives, which present both theoretical and computational challenges. Motivated by

this, we propose an alternative notion for the derivative and corresponding smoothness based on

Gateaux (G)-derivative for generic risk measures. These concepts are explained via three running

risk measure examples of variance, entropic risk, and risk on finite support sets. We then propose

a G-derivative based Frank-Wolfe (FW) algorithm for generic nonlinear optimization problems in

probability spaces and establish its convergence under the proposed notion of smoothness in a com-

pletely norm-independent manner. We use the set-up of the FW algorithm to devise a methodology

to compute a saddle point of the nonlinear DRO problem. Finally, we validate our theoretical results

on two cases of the entropic and variance risk measures in the context of portfolio selection problems.

In particular, we analyze their regularity conditions and “sufficient statistic”, compute the respective

FW-oracle in various settings, and confirm the theoretical outcomes through numerical validation.

Keywords. Gateaux derivative, norm-free-smoothness, Frank-Wolfe algorithm, saddle point

1. Introduction

Modern-day decision problems involve uncertainty in the form of a random variable ξ whose

behavior is modeled via a probability distribution Po. A central object to formalize such decision-

making problems under uncertainty is risk measures. The most popular risk measure is arguably

the expected loss, yielding the classical decision-making problem of

Stochastic Program: min
x∈X

EPo

[
ℓ(x, ξ)

]
, (1)

where ℓ is the loss function of interest, and X being the set of feasible decisions. The paradigm

of stochastic programming (SP) relies on the assumption that the distribution Po is available (or

at least up to its sufficient statistics), thereby the expectation can be computed for every decision

x ∈ X . A common practical challenge is, however, that the complete information of Po may not be

available. Moreover, it might also be the case that the distribution is varying over a period of time

which could be difficult to characterize. These limitations call for a more conservative risk measure

to ameliorate the decision performance in such situations.
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An alternative framework is Robust Optimization (RO) where the decision-maker has only access

to the support of uncertainty and takes the most conservative approach:

Robust Optimization: min
x∈X

max
ξ∈Ξ

ℓ(x, ξ). (2)

For many interesting examples, the RO min-max problem admits tractable reformulations that can

be solved efficiently [3]. However, a generic RO problem is known to be computationally formidable

as the inner maximization over ξ can be NP-hard. Moreover, if the support Ξ of the distribution is

“large”, the results of RO tend to be extremely conservative.

Distributionally Robust Optimization (DRO). The SP and RO decision models represent two

extreme cases of having full or bare minimum distributional information, respectively. In practice,

however, we often have more information about the ground truth distribution than just its support.

A typical example is when we have sample realizations {ξ̂i : i = 1, 2, . . . , N}. Looking at such settings

through the lens of SP, one may construct a nominal distribution P̂ and use it as a proxy for Po in

the SP (1). A standard data-driven nominal distribution is the discrete distribution P̂ =
∑N

i=1 δξ̂i .

The SP decision when Po = P̂ in (1) often admits a poor out-of-sample performance on a different

dataset, a phenomenon that is also known as the “optimizer’s curse” or “overfitting” [45]. On the

other hand, the RO viewpoint in (2) completely disregards the statistical information of Po available

through the dataset (ξ̂i)i, or any other form of prior information.

An attempt to bridge the SP and RO modeling frameworks gives rise to the paradigm of Dis-

tributionally Robust Optimization (DRO), which dates back to the Scarf’s seminal work on the

ambiguity-averse newsvendor problem in 1958 [41]. The “ambiguity” set P is a family of distri-

butions that are close in some sense to the nominal distribution P̂, potentially including the true

unknown distribution Po. With this in mind, the DRO problem is formulated as

min
x∈X

sup
P∈P

EP[ℓ(x, ξ)]. (3)

On the one hand, if the ambiguity set is very big, possibly including all possible distributions, the

DRO problem (3) reduces to the RO problem (2). On the other hand, if the ambiguity set P is very

small, potentially a singleton containing the nominal distribution, then the DRO problem reduces to

the SP problem (1). In this light, the DRO framework (3) provides flexibility for the decision-maker

to fill the gap between SP (1) and RO (2). The ambiguity set P in (3) is typically constructed either

based on the moments information [10, 17, 51], or a neighborhood of P̂ with respect to a notion

of distance over probability distributions, e.g., Prohorov [12], Kullback-Leiber [20, 11], Wasserstein

[20, 27, 5, 14, 16], Sinkhorn [50], to name but a few; see also the surveys [39, 23] and the references

therein.

Linear DRO problems: An important feature of (3) is the linearity of the objective function in

the distribution P, which is also shared among all the literature mentioned above. The simplicity

of this linearity in the inner maximization of (3) is the underlying driving force to develop tractable

convex reformulations and computational solutions for various combinations of ambiguity sets and

cost functions [38, 53, 40, 43, 7]. This line of research effectively translates the original infinite-

dimensional DRO problem (3) to a tractable finite-dimensional one; see also the general optimal

transport framework of [52], and the case of mean-covariance risk measure [34] in a financial context.
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Nonlinear DRO (NDRO): Our goal here is to generalize the linear setting (3) to

min
x∈X

sup
P∈P

F
(
x,P

)
, (4)

where F : X ×P → R is a generic, possibly nonlinear, function signifying a risk measure. We refer to

the decision-making problem (4) as Nonlinear Distributionally Robust Optimization (NDRO). There

are several interesting NDRO examples including the variance [4], entropy [46], [8, Example 1, p. 14].

In this study, instead of focusing only on the outer decision x in (4), we aim to compute an approx-

imate saddle point between the decision-maker and the nature presented by the distribution P. A

motivation supporting this effort is the fact that, unlike the worst-case distribution computed for

a given decision, the saddle point distributions (also called Nash equilibria) naturally retain more

realistic features [42]. From a computational perspective, the existing techniques deployed in linear

DRO problems cannot be directly extended for the NDRO (4). The objective of this work is to

precisely tackle this challenge, where we seek to devise a methodology along with mild regularity

conditions under which a saddle point solution exists and can be computed.

Frank-Wolfe (FW) algorithm. It is a first-order method that only uses the information of the

gradient to solve a constrained optimization problem [19, 13, 9]. In a nutshell, each iteration of the

FW algorithm optimizes the linear function given by the gradient of the objective function and then

takes a step towards the optimizer of the linear problem. On the contrary, other first-order methods

like projected gradient descent require a quadratic function to be minimized at each iteration. Since

solving a linear problem at each iteration is easier than a quadratic one, the iteration complexity of

the FW algorithm is much simpler than other first-order methods. This is crucial for optimization

problems over probability distributions since the complexity of projecting onto the ambiguity set can

be as challenging as solving the original NDRO problem. In comparison, optimizing a cost function

that is linear in distributions admits strong duality and tractable finite-dimensional reformulations

for many interesting examples as seen in linear DRO. Therefore, we seek to use the principles of

the Frank-Wolfe algorithm in the context of NDRO problems and devise an iterative procedure to

compute a saddle point of (4).

The FW algorithm for optimization problems over probability distributions has already been in-

troduced in [21], which uses Frechet derivatives and the associated notion of smoothness to establish

convergence. We would also like to highlight the work of [25], where the canonical gradient ascent-

descent algorithm [28, 18] for min-max problems is extended to infinite-dimensional spaces involving

probability distributions using the Frechet derivatives and its smoothness. In a similar spirit, the

recent work of [33] proposes a mirror-descent algorithm [29] for constrained nonlinear optimization

problems over probability distributions using the Frechet derivative. However, Frechet derivatives

are difficult to deal with in practice due to several prominent challenges including their (i) exis-

tence, (ii) finite representability, and (iii) norm consistency; see Section 3.3 for more details on this.

Our focus in this study is to remedy this by proposing a FW algorithm based on an alternative

G-derivative along with a completely norm-independent convergence analysis.

Contributions. The main contributions of this study are summarized as follows:

(i) Norm free smoothness in probability spaces. We propose a novel G-derivative based

notion of derivative for nonlinear risk measures (Definition 3.1), and the associated notion of
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smoothness that is independent of the norm structure on the ambiguity set (Definition 3.6).

Moreover, we also derive conditions on the function F
(
x,P

)
such that the risk measure P 7−→

minx∈X F
(
x,P

)
is smooth in the sense of the proposed notion (Lemma 5.5).

(ii) G-derivative based Frank-Wolfe algorithm. We provide a Frank-Wolfe algorithm based

on the proposed notion of derivative for optimizing nonlinear risk measures. Moreover, the

classical proof techniques for the FW algorithm carry forward under the proposed notion of

derivative and smoothness, resulting in apriori (Propositions 4.4) and aposteriori (Proposi-

tion 4.6) convergence guarantees that exist for finite-dimensional problems.

(iii) Saddle point seeking algorithm for NDRO problems. For the potentially infinite-

dimensional min-max problem of NDRO, we propose a FW-based algorithm to compute a

saddle point (Algorithm 1), and also quantify its convergence properties (Theorem 5.6).

(iv) The entropic and variance risk measures. We study the NDRO problem and our pro-

posed algorithm for two cases of the entropic and variance risk measures in Sections 6 and

7, respectively. An interesting difference between these two examples is that in the context

of portfolio selection, the variance preserves its “sufficient statistic” throughout the FW-

algorithm while the entropic risk requires the knowledge of the entire distribution. We estab-

lish the required convex regularity conditions (Lemmas 6.3 and 7.2, respectively), and then

provide a complete description of the corresponding FW-oracle (Lemmas 6.4 and 7.4, 7.6,

respectively). Furthermore, for the minimum variance portfolio selection problem, in the spe-

cial case of Ξ = Rn and the type-2 Wasserstein ambiguity set, we slightly extend the results

of [4] by explicitly describing the saddle point of the minimum variance problem when the

feasible portfolio set X is any arbitrary compact set (Proposition 7.5). To facilitate the repro-

ducibility of the numerical results, we also provide the open source repository [44] including

the respective MATLAB code.

The rest of the paper is organized as follows: In Section 2, we discuss a generic nonlinear opti-

mization problem over distributions with relevant examples. In Section 3, we introduce the notion

of a directional derivative and the associated notion of smoothness. In Section 4, the FW-algorithm

and its convergence guarantees are discussed. In Section 5, we introduce the NDRO problem, discuss

a solution concept, and provide an FW-based algorithm to compute the solution. To illustrate the

methodology (the required assumptions and algorithms), we discuss in detail the NDRO problems

for two nonlinear risk measures of entropic and variance, respectively, in Sections 6 and 7. The

numerical results are provided for both risk measures in the context of optimal portfolio selection.

All of the technical proofs have been relegated towards the end of the article in Section 8.

Notations. The set of real-valued n × n matrices is denoted by Rn×n. The trace of a matrix

M is denoted by tr(M) and being positive semi-definite is denoted by M ⪰ 0. For a function r

defined over a finite-dimensional space, its gradient at x is denoted by ∇r(x). For a multivariate

distribution P, the first and second moments are denoted by the shorthand notation µP := EP[ξ]

and ΣP := EP[ξξ
⊤], respectively. Given two probability distributions P,Q, we also use EP−Q[ · ] :=

EP[ · ]− EQ[ · ]. Other notations shall be defined whenever necessary.
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2. Worst-case Nonlinear Risk Measures

In this section, we focus our attention to the potentially infinite-dimensional optimization problem:

R∗ := sup
P∈P

R
(
P
)
, (5)

where R : P → R is a desired, possibly nonlinear, concave risk measure, and P is the ambiguity

set containing a family of probability distributions over Ξ ⊂ Rn. Our main goal is to develop a

framework with appropriate mathematical notions for a Franke-Wolfe (FW) like algorithm to solve

problem (5) and investigate its convergence properties. Furthermore, since the FW algorithm for

(5) operates in an infinite-dimensional setting, we also seek to derive its tractable finite-dimensional

simplification to solve specific instances of (5).

Definition 2.1 (Regular risk (RR) measures & sufficient statistic). A risk measure R in (5) is

regular if it can be described as R
(
P
)
= r

(
EP[L(ξ)]

)
, for some functions L : Ξ → Rm that is

integrable for all P ∈ P and r : Rm → R that is concave and differentiable. We refer to EP[L(ξ)]

the “sufficient statistic” as the risk value depends on the distribution P only through this vector.

A particular feature of the regular risks in Definition 2.1 is that its value is determined based

on a finite-dimensional vector EP[L(ξ)]. This is a concept close to “sufficient statistic”, which is

particularly appealing when it comes to the computation of the worst-case risk in (5). We will return

to this in Section 4 when discussing the FW algorithm in the space of probability distributions.

Example 2.2 (RR-examples). Throughout this study, we discuss three particular examples of the

regular risk measures to showcase the concepts and our theoretical statements:

(a) Variance: A popular risk measure is the variance associated with the distribution. Formally,

considering ξ to be a P-distributed random variable for P ∈ P, the associated variance is

V (P) := EP
[
∥ξ − EP[ξ]∥22

]
. (6a)

Considering the functions L : Ξ → Rn×n × Rn and r : Rn×n × Rn → R{
L(ξ) = (ξξ⊤, ξ)

r(Σ, µ) = tr(Σ)− ∥µ∥22 ,
(6b)

one can observe that the variance is indeed an RR measure, since

V (P) = EP
[
∥ξ∥22

]
− ∥EP[ξ]∥22 = tr

(
EP[ξξ

⊤]
)
− ∥EP[ξ]∥22 = r

(
EP[L(ξ)]

)
.

(b) Entropic risk : Another interesting example of a nonlinear RR measure is the entropic risk of

a multivariate distribution [46, Section 5]. If P ∈ P is a distribution with marginals Pj for

j = 1, 2, . . . , n, (i.e., the j-th component ξj is Pj distributed). The entropic risk E(P) associated
with the distribution P is defined as

E(P) :=
n∑

j=1

1

θj
log
(
EPj [e

−θjξj ]
)
, (7a)
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where (θj)
n
j=1 is a collection of positive real numbers referred to as the risk-aversion parameters.

This is indeed an RR measure, which can be seen by introducing the functions
L(ξ) =

(
e−θ1ξ1 , e−θ2ξ2 , . . . , e−θnξn

)
r(z) =

n∑
j=1

1

θj
log(zj).

(7b)

(c) Finite-support : The final example is the case of Ξ being a finite set: Ξ = {ξi : i = 1, 2, . . . , N}.
In this case, the simplex ∆N is the set of all probability distributions on Ξ, and the ambiguity

set of distributions is a subset, P ⊂ ∆N . It turns out that any arbitrary risk measure R can

be characterized as an RR-measure in the sense of Definition 2.1 by introducing appropriate

functions r : RN → R, and L : Ξ → RN . To see this, we first observe that Ξ being a finite set

gives rise to the enumerating bijection b : Ξ → {1, 2, . . . , N} defined by b(ξ) := {i : ξ = ξi};
secondly, the matrix M ∈ RN×N given by [M ]ij := (j/N)i for i, j = 1, 2, . . . , N , is invertible.

Then, considering the functions{
L(ξ) =

(
(b(ξ)/N) , (b(ξ)/N)2 , . . . , (b(ξ)/N)N

)⊤
r(z) = R

(
M−1z

)
for z ∈ M(P),

(8)

we have EP[L(ξ)] = M ·P (viewing P ∈ ∆N as an element of RN ), and as such, R
(
P
)
=

r(EP[L(ξ)]) for all P ∈ P.

3. Derivatives of Risk Measures

Figure 1. Pictorial representation of the risk

surface and its directional derivative.

A well-defined notion of the gradient is a funda-

mental quantity in developing iterative algorithms

like that of FW to solve any optimization problem.

For finite-dimensional convex problems, the FW

algorithm optimizes the linear functional given by

the gradient of the objective function over the

feasible set at each iteration. Naturally, devis-

ing a similar algorithm for (5) requires at least

a well-defined notion of directional derivative or

G-derivative [2, (A.3), p. 152].

3.1. Gateaux directional derivatives

Definition 3.1 (G-derivative). Given P,Q ∈ P,

the Gateaux (G)-derivative dR
(
P;Q

)
of the risk

measure R at P in the direction Q is defined as

dR
(
P;Q

)
:= lim

γ↓0

1

γ

(
R
(
Pγ

)
−R

(
P
))

, where Pγ = P+ γ(Q− P) . (9)

Whenever the above limit exists, we say that the function R is Q-directionally differentiable at P.

Moreover, we say that the risk measure R is directionally differentiable on P if it is Q-directionally

differentiable at every P ∈ P and for all Q ∈ P.
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We note that the G-directional derivative in Definition 3.1 does not rely on any metric underlying

the space of probability distributions. This is in fact the main feature with respect to the alternative

F-derivative (Frechet derivative) that will be discussed in Section 3.3. Figure 1 visualizes this

directional derivative. Next lemma provides an explicit description of Definition 3.1 for RR measures.

Lemma 3.2 (Regular G-derivatives). Suppose that the risk measure is regular, i.e., R
(
P
)

=

r(EP[L(ξ)]) with ∇r denoting the gradient of function r. Then, for any P,Q ∈ P, we have

dR
(
P;Q

)
= EQ−P [⟨∇r(EP[L(ξ)]), L(ξ)⟩] = ⟨∇r(EP[L(ξ)]), EQ−P[L(ξ)]⟩ . (10)

Lemma 3.2 indicates that the G-derivative of an RR-measure is essentially characterized by the

“sufficient statistic” vectors EP[L(ξ)] and EQ[L(ξ)] (cf. (10)). Thus, if an algorithm optimizes an

RR measure using only their directional derivatives, it then requires tracking the evolution of this

finite-dimensional sufficient statistic, allowing them to be implemented efficiently.

Example 3.3 (Regular G-derivatives). The directional derivative of an RR measure is completely

characterized in terms of only a few finite-dimensional quantities that depend on the moments of

the distribution, and the functions r and L.

(a) Variance: With the underlying inner product ⟨(Σ, µ), (Σ′, µ′)⟩ := tr(Σ⊤Σ′) + µ⊤µ′, we recall

from (6) that ∇r(Σ, µ) =
(
In,−2µ

)
. Then the Q-directional derivative of the variance V , at

P can be calculated from (10) as

dV (P;Q) = tr
(
ΣQ − ΣP

)
− 2µ⊤

P(µQ − µP). (11)

(b) E-measure: With the canonical inner product ⟨z, ẑ⟩ = z⊤ẑ, we recall from (7) that ∇r(z) =(
(θ1z1)

−1, (θ2z2)
−1, . . . , (θnzn)

−1
)
at every z ∈ Rn

+. Thus, its Q-directional derivative at P is

dE(P;Q) =
n∑

j=1

EQj−Pj [e
−θjξj ]

θjEPj [e
−θjξj ]

. (12)

(c) Finite support : Recall from (8) that EP[L(ξ)] = M ·P for all P ∈ P. Then with the canon-

ical inner product ⟨z, z′⟩ = z⊤z′, we have ∇r(z) = (M−1)
⊤∇R(M−1z) for all z ∈ M(P).

Substituting these quantities in (10) and simplifying, we get

dR
(
P;Q

)
= (∇R

(
P
)
)⊤(Q− P). (13)

It is to be observed that the matrix M has no relevance in the G-derivative as one would expect

since the risk measure R is defined independent of the matrix M .

The G-derivative enjoys inherent properties that will be helpful to devise computational solutions.

Proposition 3.4 (G-derivative: properties). For any P,Q ∈ P, and γ ∈ [0, 1], let Pγ = P+ γ(Q−
P), then the directional derivative dR

(
P; ·

)
in Definition 3.1 satisfies

Positively homogeneous: dR
(
P;Pγ

)
= γdR

(
P;Q

)
(14a)

Upper bound for concave risk measures: R
(
Q
)
−R

(
P
)

⩽ dR
(
P;Q

)
. (14b)

Remark 3.5 (Optimality conditions). Similar to KKT conditions, F-derivative based first-order

optimality conditions for both constrained and unconstrained versions of (5) are given in [24, Sec-

tion 3]. With G-derivatives, the upper bound (14b) for the concave risk measure R immediately
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gives sufficient optimality conditions for (5). More precisely, if P∗ ∈ argmaxQ∈P dR
(
P∗;Q

)
, then

applying (14b) for any Q ∈ P yields

R
(
Q
)

⩽ R
(
P∗)+ dR

(
P∗;Q

)
⩽ R

(
P∗)+ dR

(
P∗;P∗) = R

(
P∗),

which establishes the optimality P∗ ∈ argmaxQ∈P R
(
Q
)
.

3.2. Smoothness

The proposed approach to solve (5) builds on the Frank-Wolfe (FW) algorithm for finite-dimensional

convex optimization problems [13]. It is a well-known fact that the primal sub-optimality in FW

algorithm converges at a sub-linear rate O(1/k) for optimization of “smooth” objective functions

over compact feasible sets in finite-dimensional problems. A convex function is said to be smooth

if it has Lipschitz continuous gradients with respect to some norm. The choice of norm in an

infinite-dimensional setting can be problematic, as all the norms are not equivalent (unlike the

finite-dimensional setting). To extend such convergence attributes for a FW like algorithm in the

infinite-dimensional setting of (5), we first propose an appropriate notion of smoothness in terms of

the directional derivatives (as in Definition 3.1) that is also norm-independent.

Definition 3.6 (G-smoothness). The risk measure R is C-smooth if there exists a constant C ⩾ 0

such that for all P,Q ∈ P and γ ∈ [0, 1], we have the inequality

dR
(
Pγ ;P

)
+ dR

(
P;Pγ

)
⩽ γ2C where Pγ = P+ γ

(
Q− P

)
. (15)

Connection to the existing notions of smoothness. The notion of smoothness in Definition

3.6 is a generalization of the canonical smoothness condition of Lipschitz continuous gradients [31,

Section 2.1.5]. Formally, a function f : D → R with a finite-dimensional domain (D, ∥ · ∥) and

gradients ∇f is said to be β-smooth if

∥∇f(x)−∇f(y)∥∗ ⩽ β ∥x− y∥ holds for all x, y ∈ D. (16)

It is further generalized (or relaxed) by the notion of Holder-smoothness (particularly, 1-Holder

smooth) where it is required that〈
∇f(x)−∇f(y), y − x

〉
⩽ β ∥x− y∥2 holds for all x, y ∈ D. (17)

Furthermore, if the set D is ∥ · ∥-bounded in addition, then the notion of Holder-smoothness (17)

is sufficient to the requirement that there exists some constant C ⩾ 0 such that for every x, y ∈ D,

γ ∈ [0, 1], the function f satisfies the inequality〈
∇f(x)−∇f(xγ), xγ − x

〉
⩽ γ2C where xγ := x+ γ(y − x). (18)

Expanding the left-hand side of (18) as
〈
∇f(x)−∇f(xγ), xγ −x

〉
=
〈
∇f(x), xγ −x

〉
+
〈
∇f(xγ), x−

xγ
〉
, we see that the individual terms are simply the directional derivatives of f ; Definition 3.6 of

the proposed notion of smoothness becomes apparent at once. We also highlight that the notion of

smoothness in Definition 3.6 is closely related to the notion of “curvature coefficient” used in [19,

(3)]. In fact, it can be easily shown that a function has a finite curvature coefficient if it is smooth

in the sense of Definition 3.6.
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Figure 2. Concave-quadratic lower

bound via smoothness.

Concave quadratic lower bound via smoothness. It is

well established that in a finite-dimensional setting, smooth-

ness conditions like (16) and (17) give rise to a global convex

(resp. concave) quadratic upper bound (resp. lower bound).

For the risk measure R specifically, a sample representation

of such a quadratic lower bound is shown in Figure 2. The

existence of such bounds guarantees that the curvature of the

function is at most that of the quadratic bounds, which is

crucial in concluding the convergence of the FW algorithm.

In other words, if a function f is β-canonically smooth (as in

(16)), then the following inequality holds:

−β

2
∥y − x∥2 ⩽ f(y)− f(x)− ⟨∇f(x), y − x⟩ ⩽ β

2
∥y − x∥2 for all x, y ∈ D.

The notion of smoothness in Definition 3.6 imposes similar quadratic bounds, but without using

any norm. This is done by enforcing “quadratic-like” bounds to hold uniformly over all directions.

The following Lemma establishes the smoothness of the class of RR measures.

Lemma 3.7 (Regular G-smoothness). Suppose the RR measure R
(
P
)
= r(EP[L(ξ)]) satisfies

(i) bounded diameter in expectations with d := sup
P,Q∈P

∥EP[L(ξ)] − EQ[L(ξ)]∥ < +∞, and

(ii) it admits a smooth r in the canonical sense (16), i.e.,

∥∇r(u)−∇r(v)∥∗ ⩽ β ∥u− v∥ for all u, v ∈ {EP[L(ξ)] : P ∈ P}.

Then, it is (βd2)-smooth in the sense of Definition 3.6.

Example 3.8 (Regular G-smoothness). For the RR measures in Examples 2.2 and 3.3 with the

same underlying norms, the smoothness constant β of the respective r-function is as follows:

(a) Variance: Recalling the function r from (6), and that ∇r
(
Σ, µ

)
=
(
In,−2µ

)
, we get β = 2.

(b) Entropic risk : Assume that there exists b > 0 such that b ⩽ EPj [e
−θjξj ] for all j = 1, 2, . . . , n,

and P = (Pj)j ∈ P, and letting θmin := minj⩽n θj , we see that the function r : [b,+∞)n → R
as given in (7) is β-canonically smooth for β = (b2θmin)

−1.

(c) Finite support : Assuming that the risk measure R has β′-Lipschitz continuous gradients on ∆N

with respect to some norm ∥ · ∥. It follows from (8), that β = β′ ∥∥M−1
∥∥2
o
, where,

∥∥M−1
∥∥
o
=

sup∥u∥⩽1

∥∥M−1u
∥∥.

One of the advantages of the proposed notion of smoothness is that it allows us to employ

inequalities and bound sets in a finite-dimensional space to guarantee the smoothness of the risk

measures. Since all norms on finite-dimensional spaces are equivalent, establishing that β, d < +∞
with respect to the same norm is not restrictive, even though this may give rise to dimension-

dependent constants β and d.
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3.3. Frechet derivatives

An important observation to be made is that the Q-directional derivative dR
(
P;Q

)
of regular-

risk measures is affine in Q.1 In principle, without any further assumptions on the risk measure

R, its Q-directional derivative need not be affine in Q. Counter examples of functions that have

well defined G-derivatives in all directions but that are nonlinear in the direction exist even among

functions defined on R2, let alone the infinite-dimensional setting of P. A sufficient condition for

the directional derivative to be affine in Q is the existence of a stronger notion of derivative called

the Frechet-derivative or F-derivative.

Definition 3.9 (Frechet-derivative). The Frechet(F)-derivative of the risk measure R at P ∈ P
associated with a given norm ∥ · ∥P on P, is a function ℓP : Ξ → R such that the mapping P ∋
P′ 7−→ EP′ [ℓP(ξ)] is continuous w.r.t. ∥ · ∥P and satisfies

0 = lim
∥P′−P∥P↓0

R
(
P′)−R

(
P
)
− EP′−P[ℓP(ξ)]

∥P′ − P∥P
. (19)

Smoothness with F-derivatives. If the F-derivative ℓP were to exist at every P ∈ P, the canonical

notion of smoothness (39) can be naturally extended into the infinite-dimensional setting. The risk

measure R is F-smooth if there exists some β ⩾ 0 such that its F-derivative ℓP satisfies

F-smoothness: ∥ℓP − ℓP′∥P∗ ⩽ β
∥∥P− P′∥∥

P for all P,P′ ∈ P, (20)

where ∥ · ∥P∗ is the dual norm of ∥ · ∥P . If the risk measure in (5) is F-smooth, most of the convergence

analysis due to smoothness in finite-dimensional convex problems simply carries forward to the

infinite-dimensional setting right away. This provides a natural recipe to extend the FW algorithm

into the infinite-dimensional setting of probability spaces and establish their convergence under F-

smoothness. F-derivative based FW-algorithms in probability spaces have already been studied in

the literature [21] with a slightly more general notion of smoothness than (20), and for a slightly more

general class of risk measures than the usual concavity assumption. Our approach differs from [21]

in the fact that we only make use of G-derivatives in both the development of the FW-algorithm and

also in establishing its convergence based on only G-derivative based regularity conditions, which

are simpler to deal with than F-derivatives.

Comparison with G-derivatives. It is not necessary for a function to have F-derivatives even

if it has affine directional derivatives in all directions, such counterexamples exist even in a finite-

dimensional setting. On the contrary, if the risk measure R has a well-defined F-derivative ℓP, then

it can be shown that its Q-directional derivatives also exist in all directions Q ∈ P. This is easily

seen by considering P′ = P + γ(Q − P) for γ ∈ [0, 1] in the definition (19) and observing that

EP′−P[ℓP(ξ)] = γEQ−P[ℓP(ξ)]. When Q ̸= P, the limit ∥P′ − P∥P ↓ 0 is achieved if and only if

γ ↓ 0. Then it follows from (19) that

0 = lim
γ↓0

R
(
Pγ

)
−R

(
P
)
− γEQ−P[ℓP(ξ)]

γ ∥Q− P∥P
=

1

∥Q− P∥P

(
dR
(
P;Q

)
− EQ−P[ℓP(ξ)]

)
.

Since Q ̸= P, we conclude that the Q-directional derivative exists and dR
(
P;Q

)
= EQ−P[ℓP(ξ)].

Moreover, this equality holds even if Q = P since dR
(
P;P

)
= 0 = EP−P[ℓP(ξ)].

1A function f : S → R is said to affine if f(x+ θ(y − x)) = f(x) + θ(f(y)− f(x)) for every x, y ∈ S and θ ∈ [0, 1].
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The notion of F-derivative relies heavily on the underlying metric structure on P, whereas, the

notion (Definition 3.1) of G-derivatives is independent of it. To compare, for a G-derivative to exist

along a given direction, it is only required for the limit in (9) to exist. However, the existence of an

F-derivative requires that the limit in (9) is achieved uniformly over all possible directions.

Challenges with F-derivatives. Even though the notion of F-smoothness (20) is a natural ex-

tension of canonical smoothness (39) in an infinite-dimensional setting, working with F-derivatives

is potentially challenging due to the following reasons:

(i) Existence: It is a stronger requirement that the limit in (20) converges uniformly (w.r.t. ∥ · ∥P)
in all directions, which often implies that an F-derivative might not even exist.

(ii) Finite representability: An F-derivative is a function ℓP : Ξ → R which is an infinite-

dimensional object, so apriori, it is not clear as to whether it can be characterized in terms of

a few finite-dimensional quantities.

(iii) Norm consistency: Most importantly, it is often very difficult to establish the smoothness

condition (20) of the F-derivatives in a specific norm. To elaborate further, we know that the

FW algorithm in a finite-dimensional convex problem converges sub-linearly, if the feasible

set is bounded and the objective function is smooth. Since all norms on finite-dimensional

vector spaces are equivalent, the choices of norms for establishing the smoothness of the

objective function, and the boundedness of the feasibility set are irrelevant (even though this

could potentially give rise to dimensionally dependent constants). However, since no such

equivalence exists between norms on an infinite-dimensional space, it becomes then necessary

that the risk measure is F-smooth w.r.t. the same norm under which the ambiguity set is

bounded, which is a much stronger condition to expect.

We close this discussion by providing an example wherein a risk measure has directional derivatives

and is G-smooth, yet its F-derivatives do not exist. In particular, we argue that all RR measures

that satisfy conditions of Lemma 3.7 are G-smooth, whereas their F-derivative does not exist if the

corresponding L function (i.e., sufficient statistic) is discontinuous.

Example 3.10 (G-derivative vs F-derivative). Suppose the support set is Ξ = [−1,+1], the ambi-

guity set P contains all possible distributions supported on Ξ and it is equipped with a Wasserstein

metric. Let the regular risk be defined by the sign function L(ξ) = sgn(ξ) (with the convention that

sgn(0) = 0) and r(z) = z, i.e., R
(
P
)
= EP[sgn(ξ)].

(a) Existence of G-smoothness: We conclude from Lemma 3.2 that the G-derivatives of the risk

measure exist and are given by dR
(
P;Q

)
= EQ−P[sgn(ξ)]. Moreover, since the support Ξ

is bounded, condition (i) of Lemma 3.7 is satisfied with d = 2, and since ∇r(z) = 1 for all

z ∈ [−1,+1], condition (ii) of Lemma 3.7 is also satisfied with β = 0. Consequently, the given

regular risk is 0-smooth in the sense of Definition 3.6.

(b) Non-existence of F-derivatives: Since dR
(
P;Q

)
= EQ−P[sgn(ξ)], if the F-derivative of the risk

measure R were to exist, the mapping Q 7−→ EQ−P[sgn(ξ)] must be continuous. However, for

the sequence of distributions Qn(ξ) = δ(ξ − 1/n), we see that EQn−P[sgn(ξ)] = 1 − EP[sgn(ξ)]
for all n = 1, 2, , . . ., and they converge to the distribution Q = δ(ξ) in the Wasserstein metric,

for which we have EQ−P[sgn(ξ)] = −EP[sgn(ξ)] ̸= 1−EP[sgn(ξ)] = EQn−P[sgn(ξ)]. Therefore,

the F-derivative of the risk measure does not exist.
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More sophisticated examples of risk measures and ambiguity sets can be constructed following the

same underlying idea of discontinuity of function L. Example 3.10 highlights the relevance of differ-

ent notions of derivatives and the resulting regularity. The existence of F-derivatives and associated

smoothness requires the derivative object to be continuous w.r.t.more variations of distributions

whereas the notion of G-derivatives and smoothness considers variations only along a line joining

any pair of distributions. Luckily, since the FW algorithm operates by taking convex combinations

at each iteration, we only require the latter bounds which are considerably less restrictive.

3.4. G-derivatives in non-flat spaces

In the following, we consider a slightly general setting wherein the ambiguity set P may not be

convex, e.g., when P ⊂ N (Rn) is the set of n multivariate Gaussian distributions. In such a setting,

given two distributions P,Q ∈ P, the line joining them Pγ = P + γ(Q − P) is not contained in P.

Even though such examples cannot be directly handled in our setting, it turns out that a slight

modification of the definition of the derivative allows us to take care of such scenarios. To this end,

we assume that the ambiguity set P is equipped with

(a) Metric: d : P × P −→ [0,+∞[

(b) Geodesics: For any P,Q ∈ P, there exists a parametric curve [0, 1] ∋ γ 7−→ Pd
γ ∈ P such that

Pd
0 = P, Pd

1 = Q, and d(Pd
γ ,P

d
γ′) = |γ − γ′| d(P,Q).

For example, if P = N (Rn), then each distribution is uniquely identified by its first and second

moments µ and Σ respectively. Then, for given two distributions P = N (µ,Σ) and P′ = N (µ′,Σ′),

we define the metric d(P,P′) :=
√
∥µ− µ′∥22 + ∥Σ− Σ′∥2F , and the associated geodesic is Pd

γ =

N (µγ ,Σγ), where (µγ ,Σγ) = (1− γ)(µ,Σ) + γ(µ′,Σ′).

G-derivatives and smoothness. Given a geodesic structure on P, we define the associated

G-derivatives by

dR
(
P;Q

)
:= lim

γ↓0

1

γ

(
R
(
Pd

γ

)
−R

(
P
))

.

Observe that the above definition is slightly different from that of (9) where the convex combination

Pγ of distributions P and Q is replaced with its geodesic counterpart. Consequently, we can also

define G-smoothness on non-flat spaces in a geodesic sense similar to Definition 3.6. We say that

the risk measure R is C-smooth if there exists some C ⩾ 0 such that the inequality holds

dR
(
P;Pd

γ

)
+ dR

(
Pd

γ ;P
)
⩽ γ2C, for any P,Q ∈ P and γ ∈ [0, 1].

Geodesic concavity. We can define a notion of concavity using the geodesic structure that is

slightly more general than the usual notion. We say that a risk measure R is geodesically concave

on P if the mapping [0, 1] ∋ γ 7−→ R
(
Pd

γ

)
is concave for every P,Q ∈ P. It turns out that both of

the results from Proposition 3.4 hold true for derivatives defined in a geodesic sense. This allows us

to consider DRO problems like

min
x∈X

sup
P∈N

EP[f(x, ξ)]− λG(P, P̂),

where G(P, P̂) is the Gelbrich distance (or any other moment-based distance). We wish to emphasize

that the FW algorithm must also be adapted to work with the geodesic derivatives instead.
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4. The Frank-Wolfe Algorithm

Given the notion of G-derivative as in Definition 3.1, the Frank-Wolfe (FW) algorithm for (5) is

an iterative procedure that involves solving the optimization problem

sup
Q∈P

dR
(
P;Q

)
, (21)

Figure 3. FW-oracle.

for a given P ∈ P, at each iteration. The FW-problem

(21) is linear if and only if the G-derivative dR
(
P;Q

)
is affine in Q, for every P ∈ P, translating the prob-

lem into the linear DRO class in (3). This is indeed the

case for many interesting risk measures as seen in Exam-

ple 3.3. Moreover, in all finite-dimensional optimization

problems, the corresponding FW-problem (21) is always

linear, which need not be the case for a generic infinite-

dimensional optimization problem like (5).

Implementation of the FW algorithm only requires a

well-defined notion of the G-derivative, and as seen in

Lemma 3.2, such objects can be computed by means of

a few finite-dimensional quantities in several problems of

interest. Moreover, even though the FW-problem (21) is

infinite-dimensional in nature, it admits tractable finite-

dimensional convex reformulations for many relevant ap-

plications similar to linear DROs [23]. This is a compelling

reason to investigate FW methods for optimization prob-

lems over probability distributions, particularly in the case of nonlinear risk measures as in (5).

4.1. FW oracle

The FW-oracle is a set-valued mapping F : P × [0, 1] → 2P defined as

F(P, γ) :=

{
Q′ ∈ P such that sup

Q∈P
dR
(
P;Q

)
⩽ γδC + dR

(
P;Q′)} . (22)

Given the current iterate P ∈ P, the FW algorithm involves solving the FW-problem (21) to obtain

its approximate solution Q′ ∈ P, then the current iterate P is updated by moving it towards Q′ as

shown in Figure 3.

Additive accuracy of the oracle. The parameter δ > 0 is an arbitrary positive number signifying

the accuracy of the FW oracle, and C is the smoothness constant of the risk measure R as in

Definition 3.6. It must be observed that in an iterative scheme to solve (5), it is typical that the

stepsize sequence (γk) is monotonically decreasing and converges to 0. Therefore, it is also required

that the FW-oracle solves the sub-problems (21) up to a greater precision as the iterations progress.

The Frank-Wolfe-gap. We refer to the quantity supQ∈P dR
(
P;Q

)
as the Frank-Wolfe(FW)-gap

at P, and it is crucial in defining aposteriori stopping criteria for the FW-algorithm. Along with
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the distribution Q′, we assume that the FW-oracle also provides access to the quantity dR
(
P;Q′),

which is an approximate of the FW-gap at P.

Assumption 4.1 (Accessibility of FW oracle). We assume that the FW oracle (22) is computa-

tionally available, i.e., there exists a tractable approach to find a feasible solution from the set (22).

To develop our algorithm for NDRO problems, we assume the accessibility of the FW oracle in

Assumption 4.1. However, given a DRO problem at hand, one needs to ensure that the corresponding

FW oracle is indeed computationally available. When the directional derivatives are linear in Q,

the corresponding FW problem is a linear worst-case distribution problem, akin to the linear DRO

problems (3). The properties of the loss function ℓ(ξ) (suppressing the decision variable x in (3))

under which the respective linear DRO enjoys a tractable reformulation have been extensively studied

in the literature. Next, we provide an example of this kind.

Remark 4.2 (Tractable FW oracle). For the RR measures in Definition 2.1, the FW oracle is

a lienar DRO (3) with the loss function ℓ(ξ) = ⟨∇r(EP[L(ξ)]), L(ξ)⟩ (cf. (10)). If this loss

can, for instance, be described as a sum of pointwise maximum of concave functions (i.e., ℓ(ξ) =∑
t⩽T maxk⩽K ℓtk(ξ)), we know that the linear DRO (3) under the Wasserstein ambiguity set P and

the norm transportation cost ∥ · ∥ has a tractable reformulation [27, Theorem 6.1]. In this light, a

sufficient condition for the RR measure is when each element of the sufficient statistic vector L(ξ)

constitutes a pointwise maximum of finitely many concave functions and ∇r ⩾ 0.

We note that the sufficient statistics of the variance and entropic risks in Example 2.2 do not

meet the piecewise concavity condition of Remark 4.2; they are convex quadratic and exponential

function, respectively, over the desired support sets. It is interesting to see that in the case of entropic

risk, the positivity ∇r ⩾ 0 is, however, fulfilled (see Example 3.3(b)). Besides the tractability

setting of Remark 4.2, the literature includes various other combinations of ambiguity sets and

functionals of probability distributions supported on finite support [38], the moment-based ambiguity

sets [10, 17, 51], and the metric-based ambiguity set [15, 23], to name but a few.

Lemma 4.3 (FW-one-step-bounds). Consider (5) with a risk measure that is C-smooth in the

sense of Definition 3.6 for some C ⩾ 0, and let R∗ be its optimal value. Let F be the corresponding

FW-oracle as in (22) with an arbitrary accuracy parameter δ ⩾ 0. For any P ∈ P, γ ∈ [0, 1], and

Q′ ∈ F(P, γ), let Pγ = P + γ(Q′ − P) be the one-step-ahead FW update from P with a stepsize of

γ. Then we have

R∗ −R
(
P
)

⩽ sup
Q∈P

dR
(
P;Q

)
⩽

1

γ

(
R
(
Pγ

)
−R

(
P
))

+ γC(1 + δ). (23)

Rearranging the inequality (23), the one-step improvement in sub-optimality is seen to be

R∗ −R
(
Pγ

)
⩽ γ2C(1 + δ) + (1− γ)

(
R∗ −R

(
P
))
. (24)

4.2. FW convergence guarantees

The FW-algorithm seeks to solve the optimization problem (5) by iteratively solving the FW-

problem (21) using a FW-oracle as in (22). More precisely, given a step size sequence (γk)k ⊂ [0, 1]
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and a distribution P0 ∈ P, the FW-algorithm generates a sequence of distributions (Pk)k such that

FW-algorithm: Pk+1 = Pk + γk(Qk − Pk), where Qk ∈ F(Pk, γk). (25)

It must be observed that the implementation of the FW algorithm (25) does not depend on the

choice of a norm on the ambiguity set P. Therefore, it is desirable to have a norm-independent

analysis of the FW algorithm. To this end, we take inspiration from [19], which has a similar

analysis for the convergence of FW-algorithm for finite-dimensional problems by working with the

notion of curvature co-efficient instead of the canonical smoothness (16) used in [13]. It turns out

that the notion of smoothness defined in Definition 3.6 is also amenable to a similar analysis of the

FW-algorithm; with the advantage that (15) is more in-line as a generalized notion of smoothness

from (16) and (17).

Proposition 4.4 (Apriori bounds). Consider (5) with a risk measure that is C-smooth in the sense

of Definition 3.6 for some C ∈ [0,+∞), and let R∗ be its optimal value. For k = 1, 2, . . . , let (Pk)k

be the sequence of distributions obtained from the FW-algorithm (25) with a step size sequence

γk = 2
k+2 and some P0 ∈ P. Then

R∗ −R
(
Pk

)
⩽

4C

k + 2
(1 + δ) for all k ⩾ 1. (26)

Regarding the FW algorithm (25), an important observation to be made is that the “complexity”

of the distribution Pk may, in general, increase with each update of FW -iteration. To make this

more clear, suppose that the distributions of Pk and Qk are both discrete with potentially different

support sets. Then, it is straightforward to see that the support of the next iteration Pk+1 is the

union of the two supports, and as such, its cardinality increases in each iteration. However, this

issue can be avoided in the case of regular risk measures.

Remark 4.5 (Sufficient statistics & reduced FW update). When the risk measure is regular in

the sense of Definition 2.1 (i.e., R
(
P
)
= r

(
EP[L(ξ)]

)
), we recall from (10) that the G-derivative

dR
(
P;Q

)
is characterized entirely in terms of the finite-dimensional sufficient statistic vector EP[L(ξ)].

The FW algorithm (25) reduces to the finite-dimensional update

µk+1 = µk + γk
(
νk − µk

)
, where νk ∈

{
EQ[L(ξ)] ∈ Rm : Q ∈ F(P, γ)

}
(27)

in which F(P, γ) is the FW-oracle (22), and the initial condition is µ0 = EP̂[L(ξ)]. When the FW-

oracle (22) is computationally available (e.g., the tractable cases in Remark 4.2), it suffices to follow

the reduced finite-dimensional update rule (27), instead of the infinite-dimensional update (25).

In other words, the worst-case risk (5) can be solved via supP∈P R
(
P
)
= r(µ∗), where µ∗ is the

convergent point of the reduced FW-algorithm in (27). Thus, the finite vector EP[L(ξ)] is indeed

“sufficient” for computing the worst-case risk via the FW algorithm.

We note that the sufficient statistics in Remark (4.5) becomes more involved when an additional

decision such as x in (4) must be determined. This shall be addressed in the next section.
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4.3. FW-gap based termination and aposteriori bounds

Suppose that we know some C ′ ⩾ 0 that satisfies the smoothness condition (15). Then for

any given ε > 0, if the FW algorithm is run for K ⩾
⌈
4C′(1+δ)

ε

⌉
− 2 iterations with the stepsize

sequence γk = 2
k+2 , then the last iterate PK is guaranteed to be ε sub-optimal in objective value.

Thus, in principle, it suffices to only know some upper bound C ′ ⩾ C for the smoothness constant.

However, if finding C exactly is challenging, and the known upper bound C ′ is not tight; the

theoretically guaranteed number of iterations required for ε-sub-optimality may not be practical.

In such a setting, it turns out that the optimal value of the FW-problem (21) called the FW-gap

provides a good measure to define aposteriori stopping criteria. Moreover, we will also see later for

NDRO problems that terminating the FW algorithm when the FW-gap is small provides worst-case

performance bounds in the context of DRO problems. We follow the analysis of [19, 9] by considering

the FW algorithm under two regimes of stepsize sequence to obtain provable upper bounds on the

FW-gap towards later iterations.

Since the oracle employed to solve the linear minimization sub-problems at each iteration is only

accurate to some specified precision, the actual value of the FW-gap supQ∈P dR
(
P;Q

)
is never

known exactly. However, at each iteration k, the FW-oracle does provide its approximate estimate

dR
(
P;Qk

)
, which satisfies the inequality supQ∈P dR

(
P;Q

)
⩽ δγkC+dR

(
P;Qk

)
. Thus, for a given

value of ε > 0, we terminate the FW procedure by examining the quantity dR
(
P;Qk

)
such that the

desired FW-gap inequality: supQ∈P dR
(
P;Q

)
⩽ ε, is satisfied.

Proposition 4.6 (Aposteriori bounds). Consider (5) with a risk measure that is C-smooth in the

sense of Definition 3.6 for some C ⩾ 0, and let R∗ be its optimal value. Let K ⩾ 1 and let (Pk)k

be the sequence obtained from the FW-algorithm (25) using a diminishing stepsize γk := 2
k+2 for

k = 0, 1, . . . ,K − 1, and then a constant stepsize γk = 2
K+2 for k = K,K + 1, . . . , 2K + 1. Finally,

let gk = dR
(
P;Qk

)
for k = 1, 2, . . . , 2K + 1 be the sequence of approximate FW-gaps. There exists

k̂ ∈ {K,K + 1, . . . , 2K + 1} such that

R∗ −R
(
P

k̂

)
⩽ sup

Q∈P
dR
(
P

k̂
;Q
)

⩽
2C(2 + 3δ)

K + 2
, (28)

and every such k̂ is recognised by verifying the inequality g
k̂
⩽ 4C

K+2(1 + δ).

Remark 4.7 (Explicit error bounds). Consider the setting of Proposition 4.6 with K = K(ε) :=⌈
2C
ε (2 + 3δ)

⌉
− 2 for an ε > 0. Then, there exists k̂ ∈ {K(ε),K(ε) + 1, . . . , 2K(ε) + 1} such that

sup
Q∈P

dR
(
P

k̂
;Q
)
⩽ ε,

and every such k̂ is recognised by verifying the inequality g
k̂
⩽ ε2+2δ

2+3δ .

4.4. FW stepsize selection

The last part of this section discusses two particular features of the stepsize rule (two-regimes

and diminishing behavior) in Proposition 4.6.
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Two-regimes stepsize. The two-regimes for γk in Proposition 4.6 turns out to be crucial to obtain

provable guarantees that the FW-gap is bounded above in the later iterations. Even though such

certificates are of independent interest in their own right, having such upper bounds is also essential

in the context of DRO problems. An upper bound on the FW-gap at iteration k ensures that the

performance of the decision xk for the worst-case distribution is not “too-bad”.

Different stepsize selection for the FW algorithm. For generic feasible sets, the Frank-Wolfe

algorithm requires that the stepsize sequence (γk)k be diminishing. Even though the risk measure

is smooth, the direction Q′
k may change dis-continuously around the optimal solution if the ambigu-

ity set P has flat faces (like Wasserstein-1 balls). Therefore, the Frank-Wolfe algorithm in general

requires diminishing stepsize to converge, and might not converge with constant stepsize unlike gra-

dient descent algorithms. Even with the standard diminishing stepsize of γk = 2/k+2, the canonical

FW algorithm is plagued with the zig-zag phenomena where the iterates keep oscillating around the

optimal solution. To remedy these challenges of FW in finite-dimensional convex problems, various

adaptive stepsize sequences have been proposed in the literature with provably better guarantees

under some additional assumptions. In the following, we describe the main ideas of these stepsize

selection rules in the context of (5).

(a) Demyanov-Rubinov (DR) stepsize: A very interesting stepsize selection is due to [49, 48]

γk = min
{ gk
2C

, 1
}
, (29)

which adaptively tunes the stepsize γk using the current value of the FW-gap.

(b) Backtracking: Suppose, it is relatively easy to evaluate the risk measure R, then one can employ

the backtracking based DR step size due to [36, 35]. This stepsize selection rule adaptive

tunes the smoothness constant C locally along the line segment (Pk,Q
′
k). This allows the

backtracking step size to take larger steps than other methods. Specific way to adaptively tune

the smoothness constant may vary, the specific rule in [36] can be summarised as follows. For

fixed constants η ∈ (0, 1), τ ⩾ 1, at each iteration the stepsize rule is γk = min

{
gt

2τ tCk
, 1

}
for the largest t = 1, 2, . . . such that

R
(
Pk+1

)
⩾ R

(
Pk

)
+ γkgk − γ2τ tCk.

(30)

The smoothness constant is also updated as Ck+1 = ητ tCk. Another variant [35, Assumption

6.1, Algorithm 1] of backtracking-based step size selection in the FW algorithm gives rise to

linear/geometric convergence with further assumptions on the feasible set.

(c) Exact line search: If it is easier to optimize the risk measure R on the line segment (Pk,Q
′
k),

then one can also select the stepsize by exactly maximizing

γk = argmax
γ∈[0,1]

R
(
Pk + γ(Q′

k − Pk)
)
. (31)

5. Nonlinear Distributionally Robust Optimization

Let us recall that a generic DRO problem is formulated as the min-max problem

F ∗ := inf
x∈X

sup
P∈P

F
(
x,P

)
, (32)
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where X ⊂ Rn is a closed convex set, denoting the set of feasible decisions, and P denotes a given

ambiguity set of distributions. A DRO problem is said to be feasible if F ∗ < +∞, which happens if

and only if there exists some x ∈ X such that supP∈P F
(
x,P

)
< +∞. Our objective is to develop

a framework to solve a generic DRO problem (32). Particularly, with emphasis on the case when

F
(
x,P

)
is nonlinear in P for every x ∈ X , to which we refer to (32) as a nonlinear distributionally

robust optimization (NDRO) problem.

The way the variable x enters the risk F in (32) may have an impact on the scalability of the

proposed FW algorithm. In particular, in the case of the regular risks in Definition 2.1, the important

feature is whether the decision x influences the sufficient statistics of the risk (cf. Remark 4.5). This

consideration leads to two classes of regular risk measures:

(i)F (x,P) = r
(
x,EP[L(ξ)]

)
and (ii)F (x,P) = r

(
EP[L(x, ξ)]

)
. (33)

It should be noted that class (i) in (33) is a special form of class (ii). For regular risk measures

in class (i), the sufficient statistic EP[L(ξ)] is not influenced by the decision x, whereas this is not

the case for general regular risk measures in class (ii). This subtle difference makes a significant

impact on whether the FW algorithm can benefit from the notion of sufficient statistic described in

Remark 4.5. The variance and entropic risks investigated in this article are indeed different in view

of this feature.

Example 5.1 (Regular NDRO examples). The analogous examples of Example 2.2 in the NDRO

context are the following:

(a) Variance: The variance V (x,P) (cf. (6)) associated with the distribution P and a decision x is

V (x,P) := x⊤
(
ΣP − µPµ

⊤
P

)
x, where ΣP := EP[ξξ

⊤] and µP := EP[ξ]. (34)

(b) Entropic risk measure: The entropic risk measure E(x,P) (cf. (7)) of a multivariate distribution

P and decision x. If P is a distribution with marginals Pj for j = 1, 2, . . . , n, (i.e., the j-th

component ξj is Pj distributed). For a given set of positive risk-aversion parameters (θj)
n
j=1 in

(0,+∞), the associated risk is defined as

E(x,P) :=
n∑

j=1

1

θj
log
(
EPj [e

−θjxjξj ]
)
. (35)

It is straightforward to see that the NDRO variance risk (34) belongs to the class (i) in (33), and

thus keeping its sufficient statistic (i.e., the first two moments) intact, while the NDRO entropic

risk (35) belongs to the class (ii) in (33) where the vector L(x, ξ) depends inseparably on x. Looking

ahead at (64), we see that the proposed FW Algorithm 1 applied to variance risk measure simplifies

to iterations over only sufficient statistic (µ,Σ) and x.

NDRO Dual problem. Associated with the DRO problem (32) is its dual problem:

Dual problem: F∗ := sup
P∈P

inf
x∈X

F
(
x,P

)
. (36)

In general, we have weak-duality F∗ ⩽ F ∗ relating the optimal values of the primal problem (32)

and its dual (36). If F∗ = F ∗ specifically, we say that strong duality holds between (32) and (36).
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Moreover, suppose the DRO problem (32) and its dual (36) admit the solutions x∗ and P∗, i.e.,

x∗ ∈ argmin
x∈X

sup
P∈P

F
(
x,P

)
and P∗ ∈ argmax

P∈P
inf
x∈X

F
(
x,P

)
,

Then, the pair (x∗,P∗) is said to be a saddle point solution to the problems (32) and (36), which is

also characterized by the condition

max
P∈P

F
(
x∗,P

)
= F

(
x∗,P∗) = min

x∈X
F
(
x,P∗).

The existence of a saddle point is sufficient for strong duality to hold, however, it is not necessary.

Therefore, whenever strong duality holds, we consider the slightly relaxed notion of an ε-sub-optimal

saddle points as a solution concept for (32).

Definition 5.2 (ε-saddle point). Given ε ⩾ 0, a pair
(
xε,Pε

)
∈ X × P is an ε-saddle point of the

DRO problem (32), if it satisfies

−ε+ sup
P∈P

F
(
xε,P

)
⩽ F

(
xε,Pε

)
⩽ ε+ inf

x∈X
F
(
x,Pε

)
. (37)

It is worth noting that if
(
xε,Pε

)
is an ε-saddle point, then we have the inequalities:

sup
Q∈P

F
(
xε,Q

)
⩽ 2ε+ inf

y∈X
F
(
y,Pε

)
⩽ 2ε+ inf

y∈X
sup
Q∈P

F
(
y,Q

)
= 2ε+ F ∗, and

inf
y∈X

F
(
y,Pε

)
⩾ −2ε+ sup

Q∈P
F
(
xε,Q

)
⩾ −2ε+ sup

Q∈P
inf
y∈X

F
(
y,Q

)
= −2ε+ F∗.

In other words, if (xε,Pε) is an ε-saddle point, then both xε and Pε are at most 2ε-sub-optimal to

the DRO problem (32) and its dual (36) respectively. Consequently, the decision xε is guaranteed

to be at most 2ε worse from the best decision that could have been made in a DRO framework.

Solving the minimization over x in the dual-problem (36) results in a maximization problem

(potentially nonlinear) over the distributions

sup
P∈P

R
(
P
)
, where R

(
P
)
:= inf

x∈X
F
(
x,P

)
. (38)

Denoting x(P) := argminx∈X F
(
x,P

)
(whenever a minimizer exists), for every P ∈ P, the proposed

method to compute an ε-saddle point of the DRO problem generates a sequence (xk,Pk)k, where

xk ∈ x(Pk) for each k, and the sequence of distributions (Pk)k is obtained by applying the FW

algorithm to the maximization problem (38). If a pair (x′,P′) satisfies P′ ∈ argmaxP∈P R
(
P
)
and

x′ ∈ x(P′), then it is not guaranteed that x′ ∈ argminy∈X supP∈P F
(
y,P

)
unless x(P′) is unique.

It so turns out that the regularity assumptions on F and P, required for the algorithm convergence,

also ensure uniqueness.

5.1. NDRO: continuity, derivatives and smoothness

Our proposed method to solve the NDRO problem (32) by applying the FW algorithm to (38)

requires that the risk measure R therein has well defined G-derivatives that are also smooth in the

sense of Definition 3.6. This is not guaranteed apriori. In the following, we impose some regularity

assumptions on the function F that guarantee the required smoothness of the risk measure R.

Assumption 5.3 (NDRO smoothness). Let Pγ := P + γ
(
Q − P

)
as in (9) and denote Fx( · ) :=

F
(
x, ·

)
, for every x ∈ X . We assume that there exists positive constants α,C1, C2 such that
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(i) Continuous function: The mapping X × [0, 1] ∋ (x, γ) 7−→ F
(
x,Pγ

)
is proper, convex-concave,

and continuous for all P,Q ∈ P.

(ii) Continuous derivatives: The function Fx(P) is directionally differentiable on P, and the G-

derivative dFx(P;Q) is C1-Lipschitz continuous in x uniformly over P,Q ∈ P, i.e.,

dFx(P;Q)− dFy(P;Q) ⩽ C1 ∥x− y∥ , ∀x, y ∈ X ∀P,Q ∈ P. (39)

(iii) Smoothness: The function Fx(P) is C2-smooth in the sense of Definition 3.6, uniformly over

x ∈ X .

(iv) Strong convexity: The function F
(
x,P

)
is α-strongly convex in x w.r.t. the norm ∥ · ∥, uni-

formly over all P ∈ P, i.e.,

α

2
∥x− y∥2 ⩽ F

(
y,P

)
− F

(
x,P

)
−
〈
∇1F

(
x,P

)
, y − x

〉
, ∀x, y ∈ X , ∀P,Q ∈ P.2 (40)

Remark 5.4 (Choice of norm on X ). It must be noted that the norm ∥ · ∥ considered in the strong

convexity assumption (40) and the continuity assumption (39) is identical. Considering an identical

norm is not restrictive since all norms on X are equivalent. However, using such equivalence often

makes the resulting constants α,C1 to be dimension dependent (of X ). We emphasize here that

the smoothness constant given in Lemma 5.5, requires that the constants α, and C1 that satisfy

conditions (39) and (40), to satisfy with an identical norm.

For now, we assume that these conditions for the abstract problem (32) are satisfied. However, for

specific problems like the entropic or variance risk minimization (Sections 6 and 7, respectively), we

will determine verifiable conditions whenever possible so that the conditions in Assumption 5.3 are

indeed satisfied, (see Lemmas 6.3 and 7.2). Informally, condition (39) together with the smoothness

condition is akin to saying that the directional derivatives of Fx(P) are similar to being “Lipschitz

continuous” with respect to both x and P. Moreover, the strong convexity assumption implies that

the mapping P 7−→ x(P) is also similar to being “Lipschitz continuous”. These two consequences

together, yield the smoothness of R. The following lemma formally establishes this deduction in a

norm-independent (in P) analysis.

Lemma 5.5 (NDRO-derivative properties). Let the function F satisfy Assumptions 5.3 with con-

stants α > 0, and C1, C2 ⩾ 0, then the following holds for the risk measure R as defined in (38)

(i) Danskin’s theorem: The risk measure R is directionally differentiable on P, and for any

P,Q ∈ P its Q-directional derivative dR
(
P;Q

)
at P, is given by

dR
(
P;Q

)
= dFx(P)(P;Q). (41)

(ii) Smoothness: The risk measure R is C-smooth in the sense of Definition 3.6 for

C = C2 +
C1

2α

(
C1 +

√
C2
1 + 4αC2

)
.

2∇1F (x,P) :=
(
∂F/∂x

)
(x,P) denotes the partial derivative of F w.r.t. x evaluated at (x,P).
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5.2. Frank-Wolfe based algorithm for the NDRO problem.

Let Pk for k = 0, 1, 2, . . . , be the sequence of iterates generated by the FW-algorithm (25) for

R as defined in (38). Assume that the FW oracle is δ-accurate, for some arbitrary δ > 0. To

produce a solution xε to the NDRO problem (32) for a given ε > 0, one must decide the number

of iterations K(ε), the stepsize sequence γk for k = 0, 1, . . . ,K(ε), and the stopping criteria for the

FW-algorithm. Algorithm 1 and the related next theorem present the main result of the article that

provides a solution to the NDRO problem (32).

Algorithm 1: FW algorithm for NDRO problem (32)

Input: A distribution P ∈ P, positive real numbers ε and C, and access to a FW-oracle

corresponding to the function F .

Output: The final decision variable xε and worst case distribution Pε .

1 Initialization: P0 := P

diminishing stepsize regime

2 for: k = 0, 1, 2, . . . ,K(ε) :=
⌈
2C
ε (2 + 3δ)

⌉
− 2

stepsize: γk := 2
k+2

find (xk,Qk) ∈ X × P such that

F
(
xk,Pk

)
= min

x∈X
F
(
x,Pk

)
and sup

Q∈P
dFxk

(Pk;Q) ⩽ δγkC + dFxk
(Pk;Qk) (42)

gk = dFxk
(Pk;Qk) and Pk+1 := Pk + γk(Qk − Pk)

3 end for

constant stepsize regime

4 for k = K(ε) + 1, . . . , 2K(ε) + 1

stepsize: γk := 2
K(ε)+2

if gk > ε2+2δ
2+3δ , do

find (xk,Qk) ∈ X × P based on (42)

gk = dFxk
(Pk;Qk) and Pk+1 := Pk + γk(Qk − Pk)

else

Output: xε := xk and Pε := Pk and end for.

5 end for

Theorem 5.6 (NDRO solution). Consider the Nonlinear DRO problem (32) under the setting of

Assumptions 5.3. Then the following holds

(i) Strong duality:

F ∗ = min
x∈X

sup
P∈P

F
(
x,P

)
= sup

P∈P
min
x∈X

F
(
x,P

)
= F∗ (43)

(ii) Saddle point computation: Given any ε > 0, the pair (xε,Pε) computed from Algorithm 1 is

an ε-saddle point in the sense of Definition 5.2.

Approaching an NDRO problem via the FW-based approach in Algorithm 1 requires the following

three key ingredients:



NONLINEAR DISTRIBUTIONALLY ROBUST OPTIMIZATION 22

(i) Regularity conditions of Assumption (5.3): To ensure the convergence of the FW algorithm,

we must ensure that the corresponding G-derivatives exist, and satisfy regularity conditions

of Assumption 5.3, particularly (ii) continuous derivatives and (iii) smoothness.

(ii) Solver for minx∈X F
(
x,P

)
in (42): Since it is a finite-dimensional convex problem, any well

known first-order methods like ISTA, FISTA [1], Nesterov’s Accelerated Gradient Descent

[30], Extra Gradient [22] can be applied. Moreover, since the risk function F is assumed to

be strongly convex in x (or at least with a regulariser), these first-order methods solve the

corresponding minimization problems with geometric convergence.

(iii) Feasibility of the FW oracle (42): The FW worst-case distribution problem must admit

tractable reformulations. In fact, when the directional derivatives are linear in the distri-

bution, the corresponding FW problem is indeed tractable for several interesting choices of

risk measures and ambiguity sets, as discussed in [38, 23, 15].

5.3. Slower convergence without strong-convexity

In this case, we assume that the function F satisfies conditions (ii) and (iii) of Assumption 5.3.

However, it may not be necessarily strongly convex in x. For example, the variance risk measure

is strongly convex if and only if the smallest eigenvalue of the matrix
(
ΣP − µPµ

⊤
P

)
is bounded

away from 0 uniformly over P ∈ P, which might not be the case. Even in such a setting, we desire

to develop methods that compute an ε-saddle point of F using the setup of Algorithm 1 for any

ε > 0. We take inspiration from the smoothing techniques in the optimization literature [32] for

smoothing a non-smooth convex function and devise similar techniques that work with a suitable

strongly-convex approximation Fε, of F , and still use Algorithm 1 to compute an ε-saddle point of

F . To this end, we assume that the set X is also bounded in addition to being closed and, thus,

compact. Many common examples of X like the simplex ∆n, satisfy the compactness assumption.

For any given an ε > 0, x ∈ X , and P ∈ P, let Fε(x,P) := F
(
x,P

)
+
(
ε/B2

x

)
∥x∥2. We propose to

solve the following min-max problem in place of (32)

min
x∈X

sup
P∈P

Fε(x,P), (44)

where Bx := maxx∈X ∥x∥. It is apparent at once that Fε(x,P) is (2ε/B2
x)-strongly convex in x,

uniformly over P ∈ P, and consequently satisfies all the conditions in Assumption 5.3. Thus,

employing Algorithm 1 with Fε computes a pair (x′,P′) that satisfies the inequalities

−ε+ sup
Q∈P

Fε(x
′,Q) ⩽ Fε(x

′,P′) ⩽ ε+ inf
y∈X

Fε(y,P
′). (45)

It turns out that such a pair (x′,P′) is an ε-saddle point of F as well. This is easily seen by observing

that on the one hand, we have(
ε/B2

x

) ∥∥x′∥∥2 + sup
Q∈P

F
(
x′,Q

)
= sup

Q∈P
Fε(x

′,Q) ⩽ ε+ Fε(x
′,P′) (from (45))

= ε+
(
ε/B2

x

) ∥∥x′∥∥2 + F
(
x′,P′).
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Thus, we immediately get supQ∈P F
(
x′,Q

)
⩽ ε + F

(
x′,P′). On the other hand, since the mini-

mization over x is solved exactly in Algorithm 1, we have

Fε(x
′,P′) = min

y∈X
Fε(y,P

′) = min
y∈X

F
(
y,P′)+ (ε/B2

x

)
∥y∥2

⩽ ε+min
y∈X

F
(
y,P′) since ∥y∥ ⩽ Bx for all y ∈ X .

Thus, it is apparent that the pair (x′,P′) is an ε-saddle point of the function F as well.

Corollary 5.7 (Slower convergence). Consider a function F
(
x,P

)
that is not necessarily strongly

convex in x. Then for any desired precision ε > 0, an ε-saddle point of F can be computed by

applying Algorithm 1 with K(ε) =
⌈
2Cε
ε (2 + 3δ)

⌉
− 2, to the strongly convex approximate function

F ε , where Cε = C2 +
C1B2

x
4ε

(
C1 +

√
C2
1 + 8ε

B2
x
C2

)
.

Since the strong convexity parameter of Fε itself depends on ε, we conclude from Lemma 5.5

that the risk measure Rε(P) := miny∈X Fε(y,P), also has an ε dependent smoothness constant

Cε = C2 +
C1B2

x
4ε

(
C1 +

√
C2
1 + 8ε

B2
x
C2

)
. Now, Algorithm 1 terminates in O(K(ε)) iterations, where

K(ε) = O(Cε/ε). Since Cε = O(1/ε), it is easily seen that for non-strongly convex functions F ,

applying Algorithm 1 to its regularized strongly-convex approximation Fε takes O(1/ε2) iterations to

compute an ε-saddle point of F . To compare, recall that for a strongly-convex function F , Algorithm

1 takes O(1/ε) iterations to compute an ε-saddle point. This trade-off between speed of convergence

and precision in the approximation is a typical occurrence in standard smoothing techniques as well.

6. Entropic Risk Portfolio Selection

This section is dedicated to study the proposed methodology and its required conditions for the

entropic risk (35). To this end, let ξ(t), t = 1, 2, . . . , T be i.i.d. samples drawn from some unknown

underlying distribution Po supported on Ξ = Rn. We assume that the individual components

ξi(t), i = 1, 2, . . . , n, are independently distributed from each other. Let P̂i :=
1
T

∑T
t=1 δ(ξi(t)) for

i = 1, 2, . . . , n, and let P̂ = Πn
i=1P̂i. For c > 0 and any two distributions P,Q supported on R, let

WDc(P,Q) be a Wasserstein distance between them defined as

WDc(P,Q) :=


sup
π

Eπ

[
ec|u−v|

]
where (u, v) are π-jointly distributed

subject to P(u) =

∫
v
π(u, v)dv and Q(v) =

∫
u
π(u, v)du.

(46)

For each j = 1, 2 . . . , n, considerWc((P̂j , ρ)) := {P : WDc(P, P̂j) ⩽ ρ} and let Pc = Πn
j=1Wc((P̂j , ρ)).

Let θj ∈ (0, 1) for j = 1, 2, . . . , n be the risk aversion parameters, and for c > max{θj : j =

1, 2, . . . , n}, we seek to solve

min
x∈∆n

sup
P∈Pc

E(x,P) :=
n∑

j=1

1

θj
log
(
EPj [e

−θjxjξj ]
)
. (47)

We will study (47) in detail for the various notions of the directional derivative, smoothness, and

the resulting FW-oracle with its tractable formulations.
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6.1. Regularity conditions

Recalling the entropic risk (7), we note that in the optimization (47) the mapping P 7−→ E(x,P)
is an RR measure in the sense of Definition 2.1 with functions L and r given by

L(x, ξ) =
(
e−θ1x1ξ1 , e−θ2x2ξ2 , . . . , e−θnxmξn

)
and r(z) =

n∑
j=1

1

θj
log(zj).

Thus, in view of Lemma 3.2 and using the short-hand notation Ex( · ) := E(x, · ), we can write the

directional derivatives of the risk measure Ex as

dEx(P;Q) =
n∑

j=1

EQj−Pj [e
−θjxjξj ]

θjEPj [e
−θjxjξj ]

for every P,Q ∈ P. (48)

It turns out that for any saddle point (x∗,P∗) of the problem (47), P∗ belongs to a strictly smaller

set P ′
c contained in Pc and is of bounded support. The following Definition characterizes the smaller

ambiguity set and the subsequent Lemma 6.2 formalizes this assertion.

Definition 6.1 (Restricted ambiguity set). For each j = 1, 2, . . . , n, let

ξ
j
:= −ρ− log(T )

c
+ min

t=1,...,T
ξj(t) and ξj = max

t=1,...,T
ξj(t),

let W ′
j ⊂ Wc((P̂j , ρ)) be the collection of distributions supported on [ξ

j
, ξj ], and let P ′

c := Πn
j=1W ′

j.

Lemma 6.2 (Restricted ambiguity set). A pair (x∗,P∗) is a saddle point of (47) if and only if it

is also a saddle point of

min
x∈X

sup
P∈P ′

c

E(x,P), (49)

The crucial consequence of Lemma 6.2 is that it allows us to conclude regularity conditions for the

risk measure E(x,P) by restricting our analysis to the smaller ambiguity set P ′
c. It turns out that

the continuous derivatives and smoothness conditions (ii) and (iii) of Assumption 5.3 respectively,

are not satisfied for the entropic risk portfolio optimization problem (47) on the entire ambiguity set

P but only on the smaller set P ′
c. Lemma 6.2 ensures that we can indeed restrict the ambiguity set

from Pc to P ′
c without losing any optimal solution. The following lemma establishes the regularity

conditions.

Lemma 6.3 (Entropic risk regularity conditions). Consider the entropic risk portfolio optimization

problem (47). Let Ex( · ) := E(x, · ) for every x ∈ X , then the following assertions hold

(i) Continuous derivatives: The directional derivatives dEx(P;Q), satisfy

dEx(P;Q)− dEy(Q;P) ⩽ ∥x− y∥2

√√√√ n∑
j=1

(ξj − ξ
j
)2e

4θj(ξj−ξ
j
)
, ∀x, y ∈ X ∀P,Q ∈ P ′

c.

(ii) Smoothness: The risk measure Ex is C-smooth in the sense of Definition 3.6 on P ′
c and

uniformly over x ∈ X for C =
∑n

j=1
1
θj

(
e
θj(ξj−ξ

j
) − 1

)2
.

Besides the smoothness and continuity conditions, the uniform strong-convexity assumption is

extremely difficult to verify for the entropic risk measure. Therefore, as discussed in Section 5.3, we

add a strongly-convex regularizer of x to apply Algorithm 1.
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6.2. The FW Oracle

The FW problem for minimum entropic risk portfolio selection (47), at a given distribution P is

sup
Q∈Pc

n∑
j=1

1

θj

EQj−Pj [e
−θjxjξj ]

EPj [e
−θjxjξj ]

. (50)

Since Q = Πn
j=1Qj and Qj ∈ Wc((P̂j , ρ)), the FW problem (50) for entropic risk is separable into n

different problems, and for each j = 1, 2, . . . , n, we have

sup
Qj∈Wc((P̂j ,ρ))

EQj [e
−θjxjξj ]. (51)

Lemma 6.4 (Entropic risk FW oracle). Let θ > 0, x ∈ [0, 1], and z(t), t = 1, 2, . . . , T, be any

arbitrary collection of real numbers and let P̂ = 1
T

∑T
t=1 δ(z(t)) be a given discrete distribution.

Consider the following problem

sup
Q∈Wc((P̂,ρ))

EQ[e
−θxz]. (52)

Let
(
Z(t)

)
t
be a non-increasing permutation of

(
z(t)

)
t
, i.e., we have Z(1) ⩾ Z(2) ⩾ · · · ⩾ Z(T ). Let

T ′ ∈ {1, 2, . . . , T} be the smallest integer such that (Tecρ − T ′)e
−cθxZ(T ′)

c−θx ⩾
∑T

t=T ′+1 e
−cθxZ(t)

c−θx , define
η∗ :=

θx

c

(
1

Tecρ − T ′

T∑
t=T ′+1

e
−cθxZ(t)

c−θx

) c−θx
θx

and

z∗(t) := min

{
z(t),

cz(t) + log(cη∗/θx)

c− θx

}
for t = 1, 2, . . . , T.

(53)

(i) Optimal solution: The discrete distribution Q∗ = 1
T

∑T
t=1 δ(z

∗(t)) is the optimal solution Q∗

to the linear worst-case distribution problem (52).

(ii) Lower and upper bounds: For any t = 1, 2, . . . , T we have

z := −ρ− log(T )

c
+ min

t=1,...,T
z(t) ⩽ z∗(t) ⩽ z := max

t=1,...,T
z(t).

Corollary 6.5 (FW restricted ambiguity set). For any x ∈ ∆n and P ∈ P, we have

arg max
Q∈Pc

dEx(P;Q) = arg max
Q′∈P ′

c

dEx(P;Q′). (54)

6.3. Simulation results

We validate the convergence properties of Algorithm 1 for the NDRO problem of the entropic risk

portfolio selection (47) with unrestricted support (i.e., Ξ = Rn). For each j = 1, 2, . . . , n, the samples

ξj(t), for t = 1, 2, . . . , T = 2n, are drawn randomly from bi-exponential distribution with density

fj( · ) = λje
−λj | · | with each parameter λj drawn uniformly from [0, 1], and the distribution P̂ is

uniformly distributed over the samples drawn. The risk aversion parameter θj are drawn uniformly

from [0, 1] for each j = 1, 2, . . . , n, and we select c = 1 to define the Wasserstein distance in (46) and

the resulting ambiguity set P. For n = 250 and various values of ρ (the radius of the ambiguity set),

we solve (47). The proposed FW-based method (Algorithm 1 with the FW-oracle of Proposition

6.4) is implemented in MATLAB on a Macbook Air (M1 with 8GB RAM), wherein the minimization

problem: minx∈∆n E(x,Pk) is solved by running the FISTA algorithm [1] until convergence.
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(c) ρ = 10, α = 0

Figure 4. Convergence plots for Algorithm 1 with K(ε) = 350, applied to (47).

For three distinct values of ρ = 1, 5, and 10, Figure 4 shows the convergence of Algorithm 1 with

K(ε) = 350, on the entropic risk portfolio selection problem (47). The plots on the top show the

evolution of the Primal and Dual functions: minx∈∆n E(x,Pk) and supP∈Pc
E(xk,P) respectively,

w.r.t. the iteration k of the algorithm. Whereas, the plots at the bottom of the figure show the

evolution of the two sub-optimality metrics:
primal sub-optimality : E∗ − min

x∈∆n
E(x,Pk) and

duality gap : sup
P∈Pc

E(xk,P) − min
x∈∆n

E(x,Pk).

Since Algorithm 1 explicitly solves the minimization over x in each iteration (see (42)), the primal

function is readily available. However, this is not the case with the dual function which needs to

be computed independently at each iteration by solving supP∈Pc
Exk

(P) while keeping the current

iterate xk fixed.

With explicit regularization of x. We observe in Figure 4 that, as the value of ρ increases, the

convergence of the algorithm becomes extremely slow. This can be attributed to the fact that the

strong-convexity parameter becomes extremely small, and thus the resulting smoothness constant

is prohibitively large, making the convergence slow. To remedy this, as suggested in Section 5.3,

we compute an approximate saddle point of (47) by applying the FW-algorithm to the explicitly

regularized min-sup problem

min
x∈∆n

sup
P∈Pc

α

2
∥x∥22 + E(x,P). (55)
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(b) ρ = 15, α = 5
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(c) ρ = 15, α = 10

Figure 5. Convergence plots for Algorithm 1 with K(ε) = 350, applied to (55).

Since ∥x∥2 ⩽ ∥x∥1 = 1 for all x ∈ ∆n, we know that an ε-saddle point of (70) can be computed for

any ε > 0 by applying Algorithm 1 to (71) with α = 2ε.

In Figure 5, we show the convergence plots of Algorithm 1 when applied to the explicitly regu-

larized problem (55). We consider the same data set from Figure 4 but with a slightly larger value

of ρ = 15, making the conditioning of the problem even worse than that for ρ = 10. We show the

convergence plots of the algorithm for three different values of α = 0, 5, 10. Clearly, for α = 0, the

problem is not regularized, and the convergence is bad (even worse than that for ρ = 10 from Figure

4c). Then the effect of explicit regularization and how it improves the regularity and convergence

can be clearly seen in Figure 5b and 5c.

7. Minimum Variance Portfolio Selection

The minimum variance portfolio selection (34) is one of the textbook examples of NDRO [26,

37, 4, 34]. This section is dedicated to studying the NDRO regularity of this example and the

different aspects of the proposed algorithm in this context. To this end, let ξ̂i: i = 1, 2, . . . , N be

i.i.d. samples drawn from some unknown underlying distribution Po, and let P̂ be the nominal

distribution that is uniformly distributed over the samples (ξ̂i)i. Let P = Wm(P̂, ρ) := {Q :

WDm(P̂,Q) ⩽ ρ}, where WDm is the m-th order Wasserstein distance between the distributions,
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induced by the transportation cost coming from a norm ∥ · ∥ on Ξ. More specifically, we have

WDm(P,Q) :=


sup
π

(
Eπ[∥u− v∥m]

)1/m
where (u, v) are π-jointly distributed

subject to P(u) =

∫
v
π(u, v)dv and Q(v) =

∫
u
π(u, v)du.

Associated with the distribution P, let ΣP := EP[ξξ
⊤] and µP := EP[ξ] denote its first and second

moments respectively. Finally, let X ⊂ ∆n denote the set of feasible actions, then we seek to

investigate the min-sup problem:

min
x∈X

sup
P∈Wm(P̂,ρ)

V (x,P) := x⊤
(
ΣP − µPµ

⊤
P

)
x. (56)

We shall study in detail the notion of the directional derivative, smoothness, and the resulting

FW-oracle with its tractable formulations for (56) under different conditions.

7.1. Regularity conditions

We recall that the variance risk (6) and note that the mapping P 7−→ Vx(P) is an RR measure

in the sense of Definition 2.1 with the respective sufficient statistic L and the function r

L(ξ) = (ξξ⊤, ξ) and r
(
x, (Σ, µ)

)
= x⊤Σx−

(
x⊤µ

)2
.

Unlike the risk entropic in Section 6, the variance sufficient statistic L above is not influenced by the

decision x (cf. the two regular risk classes in (33)). This is a particularly useful feature to control

the complexity of the FW iteration (25) by only tracing the finite-dimensional sufficient statistic;

see also Remark 4.5. In view of Lemma 3.2 and using the risk functions the short-hand notation

Vx( · ) := V (x, · ), we can describe the directional derivatives of Vx as

dVx(P;Q) = EQ−P
[
x⊤(ξ − 2µP)ξ

⊤x
]

for every P,Q ∈ Wm(P̂, ρ). (57)

Assumption 7.1 (Variance moments bound). There exists constants BΣ, Bµ ⩾ 0 such that

∥ΣQ − ΣP∥o ⩽ BΣ and ∥µQ − µP∥2 ⩽ Bµ for all P,Q ∈ Wm(P̂, ρ), (58)

where ΣP = EP[ξξ
⊤] and µP = EP[ξ].

Lemma 7.2 (Variance regularity conditions). Consider the minimum variance portfolio optimiza-

tion problem (56), and suppose that Assumption 7.1 holds with constants BΣ, Bµ. Let Vx( · ) :=

V (x, · ) for every x ∈ X , then the following assertions hold

(i) Continuous derivatives: For C1 = 2
(
BΣ + 2

(
Bµ + ∥µ̂∥2

)2
+ B2

µ

)
, the directional derivatives

dVx(P;Q), satisfy

dVx(P;Q)− dVy(Q;P) ⩽ C1 ∥x− y∥2 , ∀x, y ∈ X ∀P,Q ∈ P.

(ii) Smoothness: The risk measure Vx is
(
2B2

µ

)
-smooth in the sense of Definition 3.6, uniformly

over x ∈ X .

If Assumption 7.1 holds, then Lemma 7.2 ensures that the continuous derivatives and smoothness

conditions (ii) and (iii) of Assumption 5.3 respectively, are satisfied for the minimum variance

portfolio optimization problem (56). However, the uniform strong-convexity assumption need not
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hold in general. For instance, if the ambiguity set is large (i.e., if ρ is large), then all the data points

ξi can be perturbed within their respective ρ-neighborhoods such that the variance corresponding

to the perturbed points is rank deficient. Thus, the strong-convexity condition in Assumption 5.3

is not satisfied at the distribution supported over the perturbed points. In such cases, adding an

explicit strongly-convex regularizer to apply Algorithm 1 (as discussed in Section 5.3) not only

provides theoretical guarantees for convergence but also improves the speed of the algorithm in our

observation; see the numerical simulations concerning Figure 7.

7.2. The Frank-Wolfe algorithm

The FW-Oracle. Let us consider the FW-problem arising in the NDRO problem of minimum

variance portfolio selection (56),

sup
Q∈Wm(P̂,ρ)

dVx(P;Q). (59)

Since the directional derivatives dVx(P;Q) are affine in Q for every pair (x,P), the corresponding

FW-problem is linear. However, the existence and characterization results of the solution to the

FW-problem (59) change depending on the interplay of (i) the Wasserstein distance type m, (ii)

the transportation cost ∥ · ∥, and (iii) the support set Ξ (unbounded, or compact). Therefore, the

specific settings for which the corresponding FW-oracle is easy to describe are discussed later in

the section. To this end, we simplify (59), and study its dual problem which is used later in the

characterization of a solution to (59).

It is a simple algebraic exercise to verify that

dVx(P;Q) = EQ−P

[
x⊤
(
(ξ − 2µP)ξ

⊤)x]
= EQ

[
(ξ − µP)

⊤(xx⊤)(ξ − µP)
]
− x⊤

(
ΣP − µPµ

⊤
P

)
x.

Since the distribution P is constant in (59), eliminating terms that only depend on P does not affect

the set of maximizers. Thus, we have

argmax
Q∈Wm(P̂,ρ)

dVx(P;Q) = argmax
Q∈Wm(P̂,ρ)

EQ

[
(ξ − µP)

⊤(xx⊤)(ξ − µP)
]
. (60)

We now focus on a generic version of the linear worst-case distribution problem:

sup
Q∈Wm(P̂,ρ)

EQ[(ξ − v)⊤
(
xx⊤

)
(ξ − v)], (61)

for any given x, v ∈ Rn. We known that [23, Theorem 7] (61) admits an equivalent dual formulation

given by

inf
η⩾0

ηρm +
1

N

N∑
i=1

 sup
qi

(qi + ξi − v)⊤
(
xx⊤

)
(qi + ξi − v)− η ∥qi∥m

subject to qi + ξi ∈ Ξ for all i = 1, 2, . . . , N.
(62)

For η ⩾ 0 and ξ ∈ Ξ, let

q(η, ξ, v) :=

 argmax
q

(
(x⊤q) + x⊤(ξ − v)⊤

)2 − η ∥q∥m

subject to q + ξ ∈ Ξ,
(63)
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whenever an optimal solution exists. If the dual problem (62) admits an optimal solution ηx, and

q(ηx, ξi, v) exists for each i = 1, 2, . . . , N ; then for any collection q′i ∈ q(ηx, ξi, v), i = 1, 2, . . . , N ,

the discrete distribution Qx(ξ) := 1
N

∑N
i=1 δ

(
ξ − ξi − q′i

)
is a maximizer for the linear worst-case

distribution problem (61).

Tractable one step FW-update. We observe that in the minimum variance problem (56), the

only information needed pertaining to a distribution Q ∈ Wm(P̂, ρ) is its first and second order

moments µQ = EQ[ξ], ΣQ = EQ[ξξ
⊤] respectively. Thus, in order to solve the DRO problem (56)

via the FW-algorithm (Algorithm 1), it is apparent that it suffices to track the evolution of these

moments rather than the entire distribution (which gets increasingly difficult with the iterations).

To this end, a single FW-update (42), in Algorithm 1, for the minimum-variance problem (56) can

be summarised in terms of the finite-dimensional quantities:

Solve for x : xk ∈ argmin
x∈X

x⊤(Σk − µkµ
⊤
k )x

FW-oracle :


ηk = ηxk

and qi ∈ q(ηk, ξi, µk) for all i = 1, 2, . . . , N,

µ′
k =

1

N

N∑
i=1

(ξi + qi) and Σ′
k =

1

N

N∑
i=1

(ξi + qi)(ξi + qi)
⊤,

FW-update : µk+1 = µk + γk
(
µ′
k − µk

)
, Σk+1 = Σk + γk

(
Σ′
k − Σk

)
.

(64)

The tractable formulation (64) of the FW algorithm for variance particularly highlights the discus-

sion in Remark 4.5 and (33) on the sufficient statistic for variance. In particular, it must be noted

that the entire information of the distribution is characterized by (µ,Σ), and therefore, the FW

algorithm (Algorithm 1) can be simplified as (64) which is an iteration over only finite-dimensional

quantities (µ,Σ) and x.

We now focus on specific settings of (56) for which the FW-oracle is easily characterized.

Case 1: unconstrained support. We consider the setting: Ξ = Rn, X ∈ ∆n being any

compact subset, and the transportation cost ∥ · ∥ to define the Wasserstein ambiguity set (and let

∥ · ∥∗ be the associated dual norm).

Lemma 7.3. Consider the maximization problem (63) for Ξ = Rn, and η ⩾ 0, x, v, ξ ∈ Rn, and let

J denote its optimal value. Then the following assertions hold

(i) (Unbounded): J = +∞, and no optimal solution exists for (63) in the following cases: (m <

2), (m > 2, η = 0), (m = 2, η < ∥x∥2∗), and (m = 2, η = ∥x∥2∗ , x⊤(ξ − v) ̸= 0).

(ii) (Bounded): J < +∞, and the optimal solution q(η, ξ, v) exists for (63) in all other cases, and

in particular,

(a) (m > 2, η > 0), both J < +∞, and q(η, ξ, v) exists.

(b) (m = 2, η > ∥x∥2∗), then we have

J =
η
∣∣x⊤(ξ − v)

∣∣2
η − ∥x∥2∗

, q(η, ξ, v) =
∥x∥∗

(
x⊤(ξ − v)

)
η − ∥x∥2∗

q̄x for q̄x ∈ argmin
∥q̄∥⩽1

x⊤q̄.

(c) (m = 2, η = ∥x∥2∗ , x⊤(ξ − v) = 0), then J = 0 and q(η, ξ, v) = {sq̄x : s ⩾ 0}.

Lemma 7.4 (Variance FW-oracle: unconstrained support). Consider the linear worst-case-distribution

problem (61) and its dual (62), under the setting, Ξ = Rn, m = 2, and any x ∈ X . The solutions
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(Qx, ηx) to (61) and its dual (62) are given by
ηx = ∥x∥2∗ +

∥x∥∗
ρ

√√√√ 1

N

N∑
i=1

|x⊤(ξi − v)|2,

Qx(ξ) =
1

N

N∑
i=1

δ
(
ξ − (ξi + q′i)

)
for any q′i ∈ q(ηx, ξi, v), i = 1, 2, . . . , N.

(65)

It turns out that for the special case of m = 2, the problem (56) with unconstrained support re-

duces to a simple empirical risk minimization problem. This was already discovered in [4] specifically

for the case when X = X (ᾱ) := {x ∈ ∆n : EQ[x
⊤ξ] ⩾ ᾱ, for all Q ∈ P}, for any ᾱ. We generalize

it slightly by showing that a similar conclusion holds for any compact set X ⊂ ∆n. Moreover, we

provide an alternate proof completely based on first-order optimality conditions and the FW-oracle,

for the min-max problem (56). We emphasize here that since it is shown explicitly that the min-max

problem (56) reduces to an empirical minimization problem, a solution can be computed without

the need to run the FW-algorithm (64) iteratively. More importantly, this also alleviates the need

to ensure that the convex regularity assumptions hold for this special case of (56).

Proposition 7.5 (Variance saddle point). Consider the minimum variance portfolio optimization

problem (56) in the setting of m = 2, and Ξ = Rn. Let

x∗ ∈ argmin
x∈X

√〈
x, (Σ̂− µ̂µ̂⊤)x

〉
+ ρ ∥x∥∗ , (66)

then there exists some q̄x∗ ∈ argmax∥q̄∥⩽1 ⟨x∗, q̄⟩ such that for

P∗ :=
1

N

N∑
i=1

δ
(
ξ − (ξi + q∗i )

)
, where q∗i =

ρ ⟨x∗, ξi − µ̂⟩√〈
x∗, (Σ̂− µ̂µ̂⊤)x∗

〉 q̄x∗ ∀i ⩽ N, (67)

the pair (x∗,P∗) is a saddle point to (56).

Case 2: ellipsoidal support. We consider the setting: Ξ = EM := {ξ : ⟨ξ, Mξ⟩ ⩽ 1} for some

M ⪰ 0, m = 2, and the underlying transportation cost defining the Wasserstein distance to be

∥ · ∥ = ∥ · ∥2. Under this setting, the FW problem in (42) involves maximizing a quadratic function

subject to convex ellipsoidal constraints. Even if this problem is non-convex in general, it admits a

tractable reformulation as an SDP via the celebrated S-procedure [6, Appendix B], [47].

Lemma 7.6 (Variance FW-oracle: ellipsoidal support). Consider the minimum variance portfolio

optimization problem (56) under the setting of the ellipsoidal support. The corresponding dual

problem (62) of the linear worst-case-distribution problem (61) is equivalent to the SDP

min
η∈R, λ,θ∈RN

ηρ2 − 1

N

N∑
i=1

θi

subject to


η ⩾ 0, and λi ⩾ 0 ∀i ⩽ N,ηIn − xx⊤ + λiM (xx⊤)v − ηξi

(xx⊤)v⊤ − ηξ⊤i η ∥ξi∥22 − (x⊤v)2 − λi − θi

 ⪰ 0, ∀i ⩽ N.

(68)
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Moreover, for any solution (η∗, λ∗, θ∗), to the SDP (68), the pair (Qx, ηx) given by

ηx = η∗, and Qx(ξ) =
1

N

N∑
i=1

δ
(
ξ −

(
η∗In − xx⊤ + λ∗

iM
)−1(

η∗ξi − xx⊤v
))

, (69)

is a solution to (61) and its dual (62) respectively.

7.3. Simulation results

We validate the convergence attributes of Algorithm 1 for the NDRO problem of the minimum

variance portfolio selection (56) with ellipsoidal support (i.e., Ξ = EM ⊂ Rn). The positive definite

matrix M that characterizes the support EM , is generated randomly and it is ensured to be reason-

ably well conditioned. The samples ξi, for i = 1, 2, . . . , N = 2n, are drawn randomly from EM , and

the distribution P̂ is uniformly distributed over the samples. Then for n = 25 and various values of

ρ (the radius of the ambiguity set), we solve

V ∗ := min
x∈∆n

sup
P∈W2(P̂,ρ)

V (x,P). (70)

The proposed FW-based method (Algorithm 1 with the simplified FW-update (64)) is implemented

in MATLAB, wherein the SDP (68) corresponding to the FW-oracle and the minimization problem:

minx∈∆n V (x,Pk) are solved using the cvx solver.

First, Figure 6 shows the convergence of Algorithm 1 for K(ε) = 75 iterations, and for three

distinct values of ρ = 0.1, 0.5, and 1. The plots on the top show the evolution of the primal and

dual functions: minx∈∆n V (x,Pk) and sup
P∈W2(P̂,ρ)

V (xk,P) respectively, w.r.t. the iteration k of

the algorithm. Whereas, the plots at the bottom of the figure show the evolution of the two sub-

optimality metrics:
primal sub-optimality : V ∗ − min

x∈∆n
V (x,Pk) and

duality gap : sup
P∈W2(P̂,ρ)

V (xk,P) − min
x∈∆n

V (x,Pk).

Since Algorithm 1 explicitly solves the minimization over x in each iteration (see (42)), the primal

function is readily available. However, this is not the case with the dual function which needs to be

computed independently at each iteration for the current iterate xk. We compute it by running the

FW-update (64) for several iterations (∼ K(ε)) independently with xk held fixed, this amounts to

applying the FW-algorithm (25) for the risk measure Vxk
( · ).

With explicit regularization of x. We observe in Figure 6 that, as the value of ρ increases, the

convergence of the algorithm becomes less smooth, and also slower. Perhaps, this can be attributed

to the fact that the strong-convexity assumption in Assumption 5.3 fails. This is so because, a larger

value of ρ allows the samples (ξi)i to be perturbed in such a way that the variance matrix of the

perturbed points is rank deficient. Thus, the function V (x,P) is not strongly convex in x for P

corresponding to the perturbed points.

To remedy this, as suggested in Section 5.3, we compute an approximate saddle point of (70) by

applying the FW-algorithm to the explicitly regularized min-sup problem

min
x∈∆n

sup
P∈W2(P̂,ρ)

α

2
∥x∥22 + V (x,P). (71)
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Figure 6. Convergence plots for Algorithm 1 with K(ε) = 75, applied to (70).

Since ∥x∥2 ⩽ ∥x∥1 = 1 for all x ∈ ∆n, we know that an ε-saddle point of (70) can be computed

for any ε > 0 by applying Algorithm 1 to (71) with α = 2ε. We emphasize that both the primal

function: minx∈∆n V (x,Pk) and the dual function: sup
P∈W2(P̂,ρ)

V (xk,P) are not accessible in the

implementation of Algorithm 1 for the explicitly regularized objective function. Thus, these quanti-

ties are computed separately at each iteration of the algorithm to record the primal sub-optimality

and the duality gap.

In Figure 7, we show the convergence plots of Algorithm 1 when applied to the explicitly regu-

larized problem (71). We consider the same data set from Figure 6 but with a slightly larger value

of ρ = 1.5, making the conditioning of the problem even worse than that for ρ = 1.

We show the convergence plots of the algorithm for three different values of α = 0, 0.1, 1. Clearly,

for α = 0, the problem is not regularized, and the convergence is bad (even worse than that for ρ = 1

from Figure 6c). Then the effect of explicit regularization and how it improves the regularity and

convergence can be clearly seen in Figure 7. For α = 0.1 and 1, we see that the solution computed

is an ε-saddle point for the respective value of ε (i.e., ε = 0.05 for α = 0.1 and ε = 0.5 for α = 1). In

addition, Figures 7b and 7c highlight the trade-off between the speed of convergence and worst-case

performance metrics. For the larger value of α = 1, due to better regularity, the algorithm is faster

which can be seen in Figure 7c that both the curves of primal (blue) and dual (red) functions achieve

within one percent of their final value in less than 20 iterations. Whereas, with α = 0.1, even after

60 iterations, the primal function (blue curve) is only within 3.5 percent of its final value. However,
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Figure 7. Convergence plots for Algorithm 1 with K(ε) = 75, applied to the ex-

plicitly regularized approximation (71).

this improved speed comes at a cost as clearly evident from Figures 7b and 7c that the worst-case

cost for α = 0.1 (0.11731) is smaller than that for α = 1 (0.117403). Furthermore, even though

the solution computed with both α = 0, 1 and 1, is within the respective sub-optimality levels, the

duality gap however, actually goes to zero for α = 0.1, which is not the case for α = 1.

8. Technical Proofs

8.1. Proofs of Section 3 (derivatives)

In this part, we cover the technical proofs of the theoretical statements in Section 3.

Proof of Lemma 3.2. From the definition 3.1, we see that

dR
(
P;Q

)
= lim

ε↓0

1

ε

(
R
(
P+ ε(Q− P)

)
−R

(
P
))

= lim
ε↓0

1

ε

(
r
(
EP[L(ξ)] + ε

(
EQ−P[L(ξ)]

))
− r (EP[ξ])

)
= lim

ε↓0

1

ε

(
r (EP[ξ]) + ε ⟨∇r(EP[L(ξ)]), EQ−P[L(ξ)]⟩+ o(ε2)− r (EP[ξ])

)
= ⟨∇r(EP[L(ξ)]), EQ−P[L(ξ)]⟩
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= EQ−P [⟨∇r(EP[L(ξ)]), L(ξ)⟩] .

□

Proof of Proposition 3.4. From Definition 3.1, we have

dR
(
P;Pγ

)
= lim

ε↓0

1

ε

(
R
(
P+ ε(Pγ − P)

)
−R

(
P
))

= lim
ε↓0

γ

(εγ)

(
R
(
P+ εγ(Q− P)

)
−R

(
P
))

= γ lim
ε′↓0

1

ε′

(
R
(
P+ ε′(Q− P)

)
−R

(
P
))

= γdR
(
P;Q

)
,

which establishes (14a). To establish (14b), we see that

dR
(
P;Q

)
= lim

ε↓0

1

ε

(
R
(
P+ ε(Q− P)

)
−R

(
P
))

⩾ lim
ε↓0

1

ε

(
R
(
P
)
+ ε
(
R
(
Q
)
−R

(
P
))

−R
(
P
))

⩾ R
(
Q
)
−R

(
P
)
,

where the first inequality is due to concavity of P 7−→ R
(
P
)
. This completes the proof. □

Proof of Lemma 3.7. For any P,Q ∈ P with Pγ = P+ γ(Q− P) and γ ∈ [0, 1] we see that

dR
(
Pγ ;P

)
+ dR

(
P;Pγ

)
=
〈
∇r(EP[L(ξ)]), EPγ [L(ξ)]− EP[L(ξ)]

〉
+
〈
∇r(EPγ [L(ξ)]), EP[L(ξ)]− EPγ [L(ξ)]

〉
=
〈
∇r(EP[L(ξ)]) − ∇r(EPγ [L(ξ)]), EPγ [L(ξ)]− EP[L(ξ)]

〉
⩽ β

∥∥EPγ [L(ξ)]− EP[L(ξ)]
∥∥2 ⩽ γ2β ∥EQ[L(ξ)]− EP[L(ξ)]∥2 ⩽ γ2

(
βd2
)
.

□

8.2. Proofs of Section 4 (FW-algorithm)

In this part, we cover the technical proofs of the theoretical statements in Section 4.

Proof for Lemma 4.3. For P and Pγ , we see that the inequalities hold.

R
(
P
)
−R

(
Pγ

)
⩽ dR

(
Pγ ;P

)
from (14b)

= dR
(
Pγ ;P

)
+ dR

(
P;Pγ

)
− dR

(
P;Pγ

)
⩽ γ2C − γdR

(
P;Q′) from smoothness (15), and (14a)

⩽ γ2C(1 + δ) − γ dR
(
P;Q

)
from (22).

Rearranging terms and using (14b), we get

R(Q)−R
(
P
)

⩽ dR
(
P;Q

)
⩽

1

γ

(
R
(
Pγ

)
−R

(
P
))

+ γC(1 + δ),

wherein, by considering the supremum over Q ∈ P, the inequalities in (23) follow at once. □

Proof for Proposition 4.4. Let (Pk)k be the sequence of Frank-Wolfe iterates updated as in (25).

From the one-step inequality (24), we have

R∗ −R
(
Pk+1

)
⩽ γ2kC(1 + δ) + (1− γk)

(
R∗ −R

(
Pk

))
for every k ⩾ 0. (72)
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Using (72), we prove the primal convergence of FW-algorithm following the classical approach [19, 9]

by the method of induction.

Base case: For k = 1, since P1 = P0 + γ0(Q0 − P0) we deduce from (72) using γ = γ0 = 1 that

R∗ −R
(
P1

)
⩽ C(1 + δ) <

4C

3
(1 + δ).

Thus, (26) holds for k = 1.

Induction step: Now, assuming that (26) holds for some k ⩾ 1, we deduce from (72) that

R∗ −R
(
Pk+1

)
⩽ γ2kC(1 + δ) + (1− γk)

(
R∗ −R

(
Pk

))
⩽

4C(1 + δ)

(k + 2)2
+

k

k + 2

4C(1 + δ)

k + 2
=

4C(1 + δ)

k + 2

1 + k

k + 2

⩽
4C(1 + δ)

k + 3
, since (k + 2)2 ⩽ (k + 1)(k + 3).

Thus, we conclude that (26) indeed holds for every k ⩾ 1. The proof is now complete. □

Proof for Proposition 4.6. Following the ideas of [9, 19], we first prove by the method of contradic-

tion that there exists k̂ such that

sup
Q∈P

dR
(
P

k̂
;Q
)
⩽

4C(1 + δ)

K + 2
for some k̂ ∈ {K, . . . , 2K + 1}. (73)

Suppose that supQ∈P dR
(
Pk;Q

)
> 4C(1+δ)

K+2 for every k ∈ {K, . . . , 2K + 1}, then by considering

γ = 2
K+2 in (23) and rearranging terms, we see that for every k ∈ {K, . . . , 2K + 1}, we have the

inequality

R
(
Pk

)
−R

(
Pk+1

)
⩽

4

(K + 2)2
C(1 + δ) − 2

K + 2
sup
Q∈P

dR
(
Pk;Q

)
<

4

(K + 2)2
C(1 + δ) − 8

(K + 2)2
C(1 + δ)

< − 4

K + 2
C(1 + δ).

Summing these inequalities for k = K, . . . , 2K+1, we get R
(
PK

)
−R

(
P2K+2

)
< −

(
4/K+2

)
C(1+δ).

Combining this with the sub-optimality of R
(
PK

)
from (26) finally gives

R∗ −R
(
P2K+2

)
< − 4

K + 2
C(1 + δ) +

4

K + 2
C(1 + δ) < 0,

which is a contradiction. Therefore, there must exist some k̂ ∈ {K, . . . , 2K + 1}, such that (73)

holds.

For every k̂ such that (73) holds, we also necessarily have

g
k̂
= dR

(
P

k̂
;Q

k̂

)
⩽ sup
Q∈P

dR
(
P

k̂
;Q
)
⩽

4C(1 + δ)

K + 2
. (74)

We emphasize that at each iteration k, the FW-oracle solves the FW-problems upto an additive

accuracy of δγ
k̂
C. Therefore, we do not have access to the exact value of supQ∈P dR

(
Pk;Q

)
, but

only its approximation gk. Consequently, it is only possible to verify whether the upper bound (74)

for g
k̂
is satisfied for some k̂, and impossible to verify whether (73) holds. Moreover, even if (74)

holds for some k̂, it is not necessary that (73) also holds since g
k̂

⩽ supQ∈P dR
(
P

k̂
;Q
)
. However,
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since g
k̂
is approximately equal to the FW-gap, an upper bound on g

k̂
gives the following slightly

worse upper bound on the FW-gap

sup
Q∈P

dR
(
P

k̂
;Q
)
⩽ δγ

k̂
C + dR

(
P

k̂
;Q

k̂

)
⩽

2δC

K + 2
+

4C(1 + δ)

K + 2
⩽

2C(2C + 3δ)

K + 2
.

Finally, since R
(
Q
)
− R

(
P
)

⩽ dR
(
P;Q

)
for every Q ∈ P (follows from (14b)), taking supremum

over Q ∈ P immediately gives the inequality

R∗ −R
(
P
)
⩽ sup
Q∈P

dR
(
P

k̂
;Q
)
.

This completes the proof of the proposition. □

8.3. Proofs of Section 5 (NDRO)

In this part we cover the technical proofs of the theoretical statements in Section 5.

Proof of Lemma 5.5 . Since the set X is closed and the function F
(
x,P

)
is continuous and α-

strongly convex in x for every P ∈ P, we conclude that the minimizer argminx∈X F
(
x,P

)
exists

and unique. Consequently, x(P) := argminx∈X F
(
x,P

)
is a singleton for every P ∈ P.

Proof of Lemma 5.5(i): Danskin’s theorem. Letting Pγ := P+ γ
(
Q−P

)
for γ ∈ [0, 1], consider the

mappings X × [0, 1] ∋ (x, γ) 7−→ f(x, γ) := F
(
x,Pγ

)
and

[0, 1] ∋ γ 7−→ g(γ) := min
x∈X

f(x, γ).

It is easily seen that g(γ) = R
(
Pγ

)
. Moreover, for the one sided derivatives of g at γ ∈ [0, 1)

defined: dg(γ; 1) := limδ↓0
1
δ

(
g(γ + δ)− g(γ)

)
, we easily verify that dR

(
P;Q

)
= dg(0; 1). Using the

short-hand notation fx( · ) := f(x, · ), we also verify similarly that dfx(0; 1) = dFx(P;Q), for every

x ∈ X . For every γ ∈ [0, 1], let xγ := argminx∈X f(x, γ), we know from the Danskin’s theorem [2,

(A.22), p. 154] that the one sided derivatives dg(γ; 1) at γ, are given by

dg(γ; 1) = dfxγ (γ; 1) = lim
δ↓0

1

δ

(
f(xγ , γ + δ)− f(xγ , γ)

)
.

Collecting everything, we have dR
(
P;Q

)
= dg(0; 1) = dfx0(0; 1) = dFx(P)(P;Q).

Proof of Lemma 5.5(ii): Smoothness. Recall that ∇1F (x,P) :=
(
∂F/∂x

)
(x,P) denotes the partial de-

rivative of F w.r.t.x evaluated at (x,P). Since x(P) = argminx∈X F
(
x,P

)
, the first-order optimality

conditions give 〈
∇1F

(
x(P),P

)
, y − x(P)

〉
⩾ 0 for all y ∈ X . (75)

Due to α-strong-convexity of F
(
y,P

)
in y, we have

α

2
∥x(P)− x(Q)∥2 ⩽ F

(
x(Q),P

)
− F

(
x(P),P

)
−
〈
∇1F

(
x(P),P

)
, x(Q)− x(P)

〉
⩽ F

(
x(Q),P

)
− F

(
x(P),P

)
from (75) with y = x(Q).

Similarly, α-strong-convexity of F
(
· ,Q

)
gives us

α

2
∥x(Q)− x(P)∥2 ⩽ F

(
x(P),Q

)
− F

(
x(Q),Q

)
.
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Combining the two inequalities, we infer that the inequality

α ∥x(P)− x(Q)∥2 ⩽ F
(
x(Q),P

)
− F

(
x(P),P

)
+ F

(
x(P),Q

)
− F

(
x(Q),Q

)
= F

(
x(Q),P

)
− F

(
x(Q),Q

)
+ F

(
x(P),Q

)
− F

(
x(P),P

)
⩽ dFx(Q)(Q;P) + dFx(P)(P;Q) from (14b)

= dR
(
Q;P

)
+ dR

(
P;Q

)
from (41),

(76)

holds for every P,Q ∈ P. On the one hand, for Pγ = P+ γ(Q− P), γ ∈ [0, 1], we have

dR
(
P;Pγ

)
+ dR

(
Pγ ;P

)
= dFx(P)(P;Pγ) + dFx(Pγ)(Pγ ;P) from (41)

= dFx(P)(P;Pγ) − dFx(Pγ)(P;Pγ) + dFx(Pγ)(P;Pγ) + dFx(Pγ)(Pγ ;P)

= γ
(
dFx(P)(P;Q) − dFx(Pγ)(P;Q)

)
+
(
dFx(Pγ)(P;Pγ) + dFx(Pγ)(Pγ ;P)

)
from (14a)

⩽ γC1 ∥x(Pγ)− x(P)∥ + γ2C2,

(77)

where the last inequality is due to (39) and the smoothness condition (iii) of Assumption 5.3. On

the other hand, considering Q = Pγ in (76), we have

α ∥x(Pγ)− x(P)∥2 ⩽ dR
(
Pγ ;P

)
+ dR

(
P;Pγ

)
. (78)

Collecting (77) and (78) together, we see that

α ∥x(P)− x(Pγ)∥2 ⩽ γC1 ∥x(P)− x(Pγ)∥ + γ2C2.

On rearranging and simplifying terms, it is now easily verified that(
∥x(P)− x(Pγ)∥ − γ

2α

(
C1 −

√
C2
1 + 4αC2

))(
∥x(P)− x(Pγ)∥ − γ

2α

(
C1 +

√
C2
1 + 4αC2

))
⩽ 0,

which is only true if

γ

2α

(
C1 −

√
C2
1 + 4αC2

)
⩽ ∥x(P)− x(Pγ)∥ ⩽

γ

2α

(
C1 +

√
C2
1 + 4αC2

)
.

The lower bound is irrelevant since it is negative. However, the upper bound is non-trivial, and

employing it in (77) finally gives

dR
(
P;Pγ

)
+ dR

(
Pγ ;P

)
⩽ γ2

C1

2α

(
C1 +

√
C2
1 + 4αC2

)
+ γ2C2

⩽ γ2
(
C2 +

C1

2α

(
C1 +

√
C2
1 + 4αC2

))
.

Since C2+
C1
2α

(
C1+

√
C2
1 + 4αC2

)
< +∞, we conclude that the risk measure R is C-smooth in the

sense of Definition 3.6 for every C ⩾ C2+
C1
2α

(
C1+

√
C2
1 + 4αC2

)
. The proof is now complete. □

Proof for Theorem 5.6. We establish assertion (i) of the theorem assuming assertion (ii) holds which

is independently proved later.

Proof for Theorem 5.6 (i): Strong duality. Assuming assertion (ii) holds, we see that

min
x∈X

sup
Q∈P

F
(
x,Q

)
⩽ sup
Q∈P

F
(
xε,Q

)
⩽ ε+min

x∈X
F
(
x,Pε

)
⩽ ε+ sup

Q∈P
min
x∈X

F
(
x,Q

)
,
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holds for every ε > 0, and thus, we have minx∈X sup
Q∈P

F
(
x,Q

)
⩽ sup
Q∈P

min
x∈X

F
(
x,Q

)
. This, together

with weak duality: sup
Q∈P

min
x∈X

F
(
x,Q

)
⩽ min

x∈X
sup
Q∈P

F
(
x,Q

)
proves assertion (i).

Proof for Theorem 5.6 (ii): Saddle point computation. Let us recall that

R
(
P
)
= min

x∈X
F
(
x,P

)
and x(P) = argmin

x∈X
F
(
x,P

)
.

From (41), since dR
(
P;Q

)
= dFx(P)(P;Q), the iterates (Pk)k obtained from Algorithm 1 can be

equivalently regarded as the ones obtained from the FW-algorithm (25) for the maximization prob-

lem: supP∈P R
(
P
)
under the setting of Proposition 4.6. Therefore, we conclude from Proposition

4.6, and more specifically from Remark 4.7, we know that there exists a K(ε) ⩽ k̂ ⩽ 2K(ε)+1 such

that dR
(
P

k̂
;Q

k̂

)
⩽ ε2+2δ

2+3δ .

We also conclude from Remark 4.7 that supQ∈P dR
(
P

k̂
;Q
)
⩽ ε for any K(ε) ⩽ k̂ ⩽ 2K(ε) + 1

satisfying dR
(
P

k̂
;Q

k̂

)
⩽ ε2+2δ

2+3δ . In particular, for (xε,Pε) to be the output of Algorithm 1, we know

that

sup
Q∈P

dFxε(Pε;Q) = sup
Q∈P

dR
(
Pε;Q

)
⩽ ε.

Consequently, for any Q ∈ P, we have

F
(
xε,Q

)
− F

(
xε,Pε

)
⩽ dFxε(Pε;Q) ⩽ ε,

where the first inequality follows from (14b) for F
(
xε, ·

)
. Finally, taking the supremum over Q ∈ P

we conclude supQ∈P F
(
xε,Q

)
⩽ ε + F

(
xε,Pε

)
; which together with the fact that F

(
xε,Pε

)
=

minx∈X F
(
x,Pε

)
implies (xε,Pε) being indeed an ε-saddle point in the sense of Definition 5.2. The

proof is now complete. □

8.4. Proof of Section 6 (entropic risk)

We first prove the results on the FW oracle (Lemma 6.4) for the entropic risk portfolio selection

problem (47) and then prove the results on regularity conditions (Lemma 6.2 and 6.3).

Proofs for the FW-oracle. We shall first establish two key lemmas that will be later used to

prove Lemma 6.4.

Lemma 8.1. Let c > θ > 0, η ⩾ 0, x ∈ [0, 1], and ξ ∈ R. Consider

sup
q∈R

L(η, q) := e−θx(ξ+q) − ηec|q|. (79)

The following assertions hold:

(i) If η = 0, the maximization problem (79) is unbounded.

(ii) If η > 0, the maximization problem admits a unique optimal solution qη, given by

qη = min

{
0,

θxξ + log(cη/θx)

c− θx

}
. (80)

Proof of Lemma 8.1. We emphasize that the maximization problem (79) is non-convex. Even then,

we shall establish the conditions for (79) to admit an optimal solution and also explicitly characterize
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it. To this end, if η = 0, we see that

lim
q−→−∞

L(0, q) = e−θxξ lim
q−→−∞

e−θxq = +∞.

Therefore, assertion (i) of the lemma follows at once.

Now, if η > 0, then we see that
lim

q−→+∞
L(η, q) = lim

q−→+∞
e−θx(z+q) − ηecq = 0− η(+∞) = −∞,

lim
q−→−∞

L(η, q) = lim
q−→−∞

e−cq
(
e−θxze(c−θx)q − η

)
= (+∞)(0− η) = −∞.

Therefore, we conclude that whenever η > 0, (79) admits an optimal solution qη ∈ R. Moreover, at

the optimal solution qη, we know that the necessary optimality conditions must be satisfied

0 ∈ ∂

∂q
L(η, qη) = −θxe−θx(z+qη) − ηcec|qη | sgn(qη). (81)

From (81), it is immediately evident that qη ⩽ 0. Moreover, we also see that

• If (cη/θx) ⩾ e−θxz - we see that

∂

∂q
L(η, q) = θxe−θxq

(
(cη/θx)e−(c−θx)q − e−θxz

)
⩾ 0 for all q < 0, and

0 ∈ ∂
∂qL(η, 0) = ηc[−1,+1] − θxe−θxz. Therefore, qη = 0 is the only point satisfying the

necessary optimality condition (81), and consequently the unique optimal solution to (52).

• Similarly if (cη/θx) < e−θxz - it is easily verified that for qη = θxz+log(ηc/θx)
c−θx , is the unique

point which satisfies the necessary first-order optimality condition (81), and consequently, is

the unique optimal solution to (52).

We finally note that the cases above can be compressed as qη = min
{
0, θxz+log(ηc/θx)

c−θx

}
. The proof is

now complete. □

Lemma 8.2. Let c, θ, and x be as in Lemma 8.1, and let Z(t), t = 1, 2, . . . , T be a non-decreasing

sequence of real numbers. Consider the following minimization problem

inf
η⩾0

J(η) := ηecρ +
1

T

T∑
t=1

sup
q(t)∈R

e−θx(Z(t)+q(t)) − ηec|q(t)|. (82)

The minimization problem (82) admits a unique optimal solution η∗ given by

η∗ :=
θx

c

(
1

Tecρ − T ′

T∑
t=T ′+1

e
−cθxZ(t)

c−θx

) c−θx
θx

, (83)

where T ′ ∈ {1, 2, . . . , T} is the smallest integer such that (Tecρ − T ′)e
−cθxZ(T ′)

c−θx ⩾
∑T

t=T ′+1 e
−cθxZ(t)

c−θx .

Proof of Lemma 8.2. Since η 7−→ log(cη/θx) is monotonically increasing and eventually positive, we

observe from (80) that lim
η→+∞

qη = 0. Consequently, we see that

lim
η→+∞

J(η) = lim
η→+∞

η(ecρ − 1) +
1

T

T∑
t=1

e−θxz(t) = +∞.
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Similarly, as η ↓ 0, we conclude from assertion (i) of Lemma 8.1 that qη < 0, consequently, we see

lim
η↓0

J(η) = lim
η↓0

ηecρ + η
−θx
c−θx

( c

θx
− 1
)
(θx/c)

c
c−θx

1

T

T∑
t=1

e
−cθxZ(t)

c−θx = +∞.

Since the mapping η 7−→ J(η) is convex, we know that there exists some η∗ > 0 such that η∗ =

argmin
η⩾0

J(η), i.e., an optimal solution to (82) exists. To characterise an optimal solution η∗, we

observe that qη is unique for any η > 0, and from Danskin’s theorem, we conclude that d
dηJ(η) =

ecρ− 1
T

∑T
t=1 e

c|qη(t)|. Therefore, the optimal solution η∗ is such that Tecρ =
∑T

t=1 e
c|qη∗ (t)|. Finding

such an η∗ where the equality holds is not straightforward.

For η(t) =
(
θx/c
)
e−θxZ(t), t = 1, 2, . . . , T , it is easily verified that qηt(s) = 0 for all s ⩽ t. Thus,

d

dη
J(ηt) = ecρ − 1

T

(
t+

T∑
s=t+1

e
cθx(Z(t)−Z(s))

c−θx

)
.

Let T ′ ∈ {1, 2, . . . , T} be the smallest integer such that d
dηJ(η(t)) ⩾ 0. Since J(η) is convex, d

dηJ(η) is

non-decreasing. Consequently, with η0 = 0, we know that η∗ ∈ ]ηT ′−1, ηT ′ ], and therefore, qη∗(t) = 0

for all t ⩽ T ′, and qη∗(t) =
θxZ(t)+log(cη∗/θx)

c−θx for t = T ′+1, . . . , T . Substituting, these values of qη∗(t)

in the equation Tecρ =
∑T

t=1 e
c|qη∗ (t)| and simplifying for η∗ gives (83). The proof of the lemma is

complete. □

Proof of Lemma 6.4. The dual problem of (52) is given by

inf
η⩾0

J(η) = ηecρ +
1

T

T∑
t=1

sup
q(t)∈R

e−θx(z(t)+q(t)) − ηec|q(t)|, (84)

Proof of Lemma 6.4 (i): Optimal solution. Since the maximization over q(t) is separable over t we

see that

J(η) = ηecρ +
1

T

T∑
s=1

sup
q′(s)∈R

e−θx(Z(s)+q′(s)) − ηec|q
′(s)|,

where the sequence (Z(s))s is non-increasing. Consequently, we conclude from Lemma 8.2 that (84)

admits a unique optimal solution η∗ given by (83). Given η∗, the optimal solution qη∗(t) for each

t = 1, 2, . . . , T is obtained from (80). Substituting for qη∗(t) from (80) and simplifying, we easily

verify that z∗(t) = z(t)+qη∗(t). Consequently, Q
∗ = 1

T

∑T
t=1 δ(z

∗(t)) is the optimal solution to (52).

This proves assertion (i) of the lemma.

Proof of Lemma 6.4 (ii): Lower and upper bounds. To prove assertion (ii) of the lemma, we first see

that since η∗ > 0, the first-order optimality conditions imply 0 = d
dηJ(η

∗) = ecρ − 1
T

∑T
t=1 e

c|qη∗ (t)|.
Therefore, for any s = 1, 2, . . . , T , we have

ec|qη∗ (s)| ⩽
T∑
t=1

ec|qη∗ (t)| = Tecρ.

Taking loge( · ) on both sides of the inequality, we obtain |qη∗(s)| ⩽ ρ+ log(T )
c . Since qη∗(s) ⩽ 0, we

have −ρ − log(T )
c ⩽ qη∗(s) ⩽ 0 for all s = 1, . . . , T . Combining this with z∗(s) = z(s) + qη(s) and

z ⩽ z(s) ⩽ z, assertion (ii) follows. □
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Proofs for regularity of the entropic risk.

Proof of Lemma 6.2. For any x ∈ ∆n, we shall first show that

argmax
P∈Pc

E(x,P) = argmax
P′∈P ′

c

E(x,P′). (85)

To show argmaxP∈Pc
E(x,P) ⊂ argmaxP′∈P ′

c
E(x,P′), let Px ∈ argmaxP∈Pc

E(x,P), due to the

first-order optimality conditions together with (54), we see that

Px = argmax
Q∈Pc

dEx(Px;Q) = argmax
Q′∈P ′

c

dEx(Px;Q
′), and thus, Px ∈ argmax

P′∈P ′
c

E(x,P′).

Similarly, to show that argmaxP′∈P ′
c
E(x,P′) ⊂ argmaxP∈Pc

E(x,P), let P′
x ∈ argmaxP′∈P ′

c
E(x,P′),

then from again the first-order optimality conditions together with (54), we have

P′
x = argmax

Q′∈P ′
c

dEx(P′
x;Q

′) = argmax
Q∈Pc

dEx(P′
x;Q), and thus, P′

x ∈ argmax
P∈Pc

E(x,P).

Now, for (x∗,P∗) to be a saddle-point of (47), we have

x∗ ∈ argmin
x∈X

E(x,P∗) and P∗ ∈ argmax
P∈Pc

E(x∗,P) = argmax
P′∈P ′

c

E(x∗,P′),

where the last equality is due to (85). Thus, (x∗,P∗) is also a saddle point of (49), and vice versa.

The proof is now complete. □

Proof of Lemma 6.3. For every j = 1, 2, . . . , n, since ξ
j
⩽ ξj ⩽ ξj , Pj-almost surely for all Pj ∈

Wc((P̂j , ρ)), we have

e−θjxjξj ⩽ EPj [e
−θjxjξj ] ⩽ e

−θjxjξj for all Pj ∈ Wc((P̂j , ρ)). (86)

Proof of Lemma 6.3(i): Continuous derivatives. Let P,Q ∈ P ′
c, and x, y ∈ ∆n, we have

dEx(P;Q)− dEy(P;Q) =
n∑

j=1

1

θj

(
EQj [e

−θjxjξj ]

EPj [e
−θjxjξ′j ]

−
EQj [e

−θjyjξj ]

EPj [e
−θjyjξ′j ]

)

=
n∑

j=1

1

θj

(
EQj [e

−θjxjξj ] ·EPj [e
−θjyjξ

′
j ] − EQj [e

−θjyjξj ] ·EPj [e
−θjxjξ

′
j ]

EPj [e
−θjxjξ′j ] · EPj [e

−θjyjξ′j ]

)

=

n∑
j=1

1

θj

EQj×Pj

[
e−θj(xjξj+yjξ

′
j) − e−θj(yjξj+xjξ

′
j)
]

EPj [e
−θjxjξ′j ] · EPj [e

−θjyjξ′j ]


Due to convexity of ( · ) 7−→ e( · ), for any a, b ∈ R, we have eb − ea ⩽ |b− a| emax{a,b}, which gives

e−θj(xjξj+yjξ
′
j) − e−θj(yjξj+xjξ

′
j)

⩽ θj
∣∣xjξj + yjξ

′
j − xjξ

′
j − yjξj

∣∣ e−θj min{xjξj+yjξ
′
j , xjξ

′
j+yjξj}

⩽ θj
∣∣(xj − yj)(ξj − ξ′j)

∣∣ e−θj(2ξj) since xj , yj ∈ [0, 1] and ξj , ξ
′
j ∈ [ξ

j
, ξj ]

⩽ θj |xj − yj | (ξj − ξ
j
)e

−θj(2ξj).
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This together with (86) finally gives

dEx(P;Q)− dEy(P;Q) ⩽
n∑

j=1

1

θj

θj |xj − yj | (ξj − ξ
j
)e

−θj(2ξj)

e−2θjξj
=

n∑
j=1

|xj − yj | (ξj − ξ
j
)e

2θj(ξj−ξ
j
)

⩽ ∥x− y∥2

√√√√ n∑
j=1

(ξj − ξ
j
)2e

4θj(ξj−ξ
j
)
,

where the last inequality is due to Cauchy-Schwartz. This establishes assertion (i) of the lemma.

Proof of Lemma 6.3(ii): Smoothness. For every x ∈ ∆n, and P,Q ∈ Pc, we recall that

dEx(P;Q) =
n∑

j=1

1

θj

EQj−Pj [e
−θjxjξj ]

EPj [e
−θjxjξj ]

.

Then for any γ ∈ [0, 1] and Pγ = P+ γ(Q−P), we have from (14a) that dEx(P;Pγ) = γdEx(P;Q).
Moreover, using the relations EP−Pγ [ · ] = −γEQ−P[ · ], we also verify that

dEx(Pγ ;P) =

n∑
j=1

1

θj

−γEQj−Pj [e
−θjxjξj ]

EPj+γ(Qj−Pj)[e
−θjxjξj ]

.

Thus, we obtain

dEx(P;Pγ) + dEx(Pγ ;P) = γ
n∑

j=1

1

θj

(
EQj−Pj [e

−θjxjξj ]

EPj [e
−θjxjξj ]

−
EQj−Pj [e

−θjxjξj ]

EPj+γ(Qj−Pj)[e
−θjxjξj ]

)

= γ

n∑
j=1

EQj−Pj [e
−θjxjξj ]

θj

(
EPj+γ(Qj−Pj)[e

−θjxjξj ] − EPj [e
−θjxjξj ]

EPj [e
−θjxjξj ] · EPj+γ(Qj−Pj)[e

−θjxjξj ]

)

= γ2
n∑

j=1

1

θj

(
EQj−Pj [e

−θjxjξj ]
)2

EPj [e
−θjxjξj ] · EPj+γ(Qj−Pj)[e

−θjxjξj ]

Since Pj ,Pj + γ(Qj − Pj) ∈ Wc((P̂j , ρ)), employing (86) gives

(
EPj [e

−θjxjξj ]
)−1

⩽ eθjxjξj(
EPj+γ(Qj−Pj)[e

−θjxjξj ]
)−1

⩽ eθjxjξj , and

EQj−Pj [e
−θjxjξj ] ⩽ e

−θjxjξj − e−θjxjξj .

Putting things together, we finally obtain

dEx(P;Pγ) + dEx(Pγ ;P) ⩽ γ2
n∑

j=1

1

θj
e2θjxjξj

(
e
−θjxjξj − e−θjxjξj

)2
= γ2

n∑
j=1

1

θj

(
e
θj(ξj−ξ

j
) − 1

)2
.

Thus, assertion (ii) of the lemma follows and the proof is now complete. □

8.5. Proofs of Section 7 (variance risk)

In this part, we cover the technical proofs of the theoretical statements in Section 7. The first

proof is concerned with the regularity of the min-variance portfolio selection problem.
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Proofs for regularity conditions (Variance).

Proof of Lemma 7.2. For any x ∈ X , since Vx is an RR measure, we simplify (57) to get

dVx(P;Q) = x⊤
(
ΣQ − ΣP

)
x − 2

(
x⊤µP

)(
x⊤(µQ − µP)

)
(87a)

= x⊤(ΣQ − ΣP) ·x + (x⊤µP)
2 + (x⊤(µQ − µP))

2 − (x⊤µQ)
2. (87b)

Proof of Lemma 7.2(i): Continuous derivatives. Firstly, we begin by showing that the inequality

x⊤Mx− y⊤My ⩽ 2 ∥M∥o ∥x− y∥2 holds for any x, y ∈ ∆n and M ∈ Sn×n, (88)

where, ∥M∥o := max∥v∥2=1 |⟨v, Mv⟩| , is the operator norm. This follows since

x⊤Mx− y⊤My = (x+ y)⊤M(x− y)

⩽ ∥x− y∥2 ∥M(x+ y)∥o from the Cauchy-Schwartz inequality

⩽ ∥x− y∥2 ∥x+ y∥2 ∥M∥o from the definition of ∥ · ∥o
⩽ 2 ∥M∥o ∥x− y∥2 since ∥z∥2 ⩽ ∥z∥1 = 1 for all z ∈ ∆n.

Now, for any x, y ∈ ∆n, we conclude from (87b) that

dVx(P;Q)− dVy(P;Q) = x⊤(ΣQ − ΣP)x − y⊤(ΣQ − ΣP)y

+ (x⊤µP)
2 + (x⊤(µQ − µP))

2 − (x⊤µQ)
2

− (y⊤µP)
2 − (y⊤(µQ − µP))

2 + (y⊤µQ)
2.

Employing (88) forM = (ΣQ−ΣP), µPµ
⊤
P, µQµ

⊤
Q, and (µP−µQ)(µP−µQ)

⊤; we have the inequalities

x⊤(ΣQ − ΣP)x − y⊤(ΣQ − ΣP)y ⩽ 2 ∥ΣQ − ΣP∥o ∥x− y∥2
(x⊤µP)

2 − (y⊤µP)
2 ⩽ 2 ∥µP∥22 ∥x− y∥2

(y⊤µQ)
2 − (y⊤µQ)

2 ⩽ 2 ∥µQ∥22 ∥x− y∥2
(x⊤(µQ − µP))

2 − (y⊤(µQ − µP))
2 ⩽ 2 ∥µQ − µP∥22 ∥x− y∥2 ,

(89)

where we have used the fact that
∥∥vv⊤∥∥

o
= ∥v∥22 for any v. These inequalities give us the upper

bound

dVx(P;Q)− dVy(P;Q) ⩽ 2
(
∥ΣQ − ΣP∥o + ∥µP∥22 + ∥µQ∥22 + ∥µQ − µP∥22

)
∥x− y∥2

Since ∥µP∥2 ⩽ ∥µP − µ̂∥2 + ∥µ̂∥2, and P, P̂ ∈ P, we conclude from (58) that ∥µP∥2 ⩽ Bµ + ∥µ̂∥2,
(and similarly for µQ). This together with the condition ∥ΣQ − ΣP∥o ⩽ BΣ from (58), finally gives

dVx(P;Q)− dVy(P;Q) ⩽ 2
(
BΣ + 2

(
Bµ + ∥µ̂∥2

)2
+B2

µ

)
∥x− y∥2

The constant C1 in the assertion (i) of the Lemma is immediately picked as C1 = 2
(
BΣ + 2

(
Bµ +

∥µ̂∥2
)2

+B2
µ

)
.

Proof of Lemma 7.2(ii): Smoothness. Consider any x ∈ X , P,Q ∈ Wm(P̂, ρ), and let Pγ :=

P + γ(Q − P) for γ ∈ [0, 1]. Using ΣPγ = ΣP + γ
(
ΣQ − ΣP

)
and µPγ = µP + γ

(
µQ − µP

)
, we
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conclude from (87a), that

dVx(P;Pγ) = x⊤(ΣPγ − ΣP)x + 2
(
x⊤µP

)(
x⊤(µPγ − µP)

)
= γ

(
x⊤(ΣQ − ΣP)x − 2

(
x⊤µP

)(
x⊤(µQ − µP)

))
.

Similarly, we also have

dVx(Pγ ;P) = x⊤(ΣP − ΣPγ )x + 2
(
x⊤µPγ

)(
x⊤(µP − µPγ )

)
= 2γ2

(
x⊤(µQ − µP)

)2
+ γ

(
2
(
x⊤(µQ − µP)

)(
x⊤µP

)
− x⊤(ΣQ − ΣP)x

)
.

Combining the two equalities, we get

dVx(P;Pγ) + dVx(Pγ ;P) = 2γ2
(
x⊤(µQ − µP)

)2
⩽ 2γ2 ∥x∥22 ∥µQ − µP∥22 ⩽ γ2

(
2B2

µ

)
.

The last inequality follows from (58) and the fact that ∥x∥2 ⩽ ∥x∥1 = 1, for every x ∈ ∆n. Thus,

the risk measure Vx is
(
2B2

µ

)
-smooth, uniformly over x ∈ X . This proves assertion (ii) of the Lemma

and the proof is now complete. □

Proofs for the case of unconstrained support, (Ξ = Rn).

Proof of Lemma 7.3. Substituting q = sq̄ for s ⩾ 0 and ∥q̄∥ = 1 in (63), it is equivalently reformu-

lated as  max
s⩾0, q̄∈Rn

(
s(x⊤q̄) + x⊤(ξ − v)

)2 − ηsm

subject to ∥q̄∥ = 1.
(90)

Observe that
(
s(x⊤q̄) + x⊤(ξ − v)

)2
⩽
(
s
∣∣x⊤q̄∣∣ + ∣∣x⊤(ξ − v)

∣∣ )2, where, equality holds if and only

if sgn(x⊤q̄) = sgn(x⊤(ξ − v)). Moreover, applying the Holder’s inequality
∣∣x⊤q̄∣∣ ⩽ ∥q̄∥ ∥x∥∗ = ∥x∥∗

yields (
s(x⊤q̄) + x⊤(ξ − v)

)2
⩽
(
s ∥x∥∗ +

∣∣∣x⊤(ξ − v)
∣∣∣ )2. (91)

The upper bound (91) is achieved if and only if q̄ = sgn(x⊤(ξ−v))q̄x, for any q̄x ∈ argmax{∥q̄∥⩽1} x⊤q̄.

Thus, every such q̄ is an optimal solution to (90), irrespective of s. Simplifying the optimization

over q̄ in (90), the problem reduces to

max
s⩾0

(
s ∥x∥∗ +

∣∣∣x⊤(ξ − v)
∣∣∣ )2 − ηsm. (92)

Now, an optimal solution to (63) exists if and only if (92) admits an optimal solution s∗; in which

case, we have q(η, ξ) = s∗ sgn(x⊤(ξ − v))q̄x.

Optimal solution to (92) under different settings. If m < 2, it is straightforward to see that the

optimal value of (92) is unbounded irrespective of η. Consequently, no optimal solution exists for

the maximization problem (63) in this setting. On the contrary, if m > 2, it is also easily seen that

the objective function of (92) is coercive if and only if η > 0. Therefore, the maximal value of (92)

(and Consequently (63)), is bounded and achieved.

For m = 2, the objective function of (92) can be simplified to

−s2
(
η − ∥x∥2∗

)
+ 2s ∥x∥∗

∣∣∣x⊤(ξ − v)
∣∣∣ + ∣∣∣x⊤(ξ − v)

∣∣∣2 .
It is clear that the optimal value of (92) is unbounded if η < ∥x∥2∗. Whereas, if η > ∥x∥2∗, it is

bounded, in which case, equating the derivative w.r.t. s equal to 0, gives that the optimal value
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of (92) (and consequently, also J(η, ξ)) is equal to η

η−∥x∥2∗

∣∣x⊤(ξ − v)
∣∣2, which is achieved at s∗ =

∥x∥∗|x⊤(ξ−v)|
η−∥x∥2∗

. Finally, if η = ∥x∥2∗, the optimal value of (92) is unbounded if x⊤(ξi − v) ̸= 0;

otherwise, it is bounded and equal to 0 which is achieved for any s ⩾ 0. □

Proof of Lemma 7.4. On the one hand, if
∣∣x⊤(ξi − v)

∣∣ = 0 for all i = 1, 2, . . . , N , we now see that

the dual problem (62) reduces to

inf
η⩾ ∥x∥2∗

ηρ2,

which admits the optimal solution η∗ = ∥x∥2∗ with an optimal value ∥x∥2∗ ρ2. On the other hand, if∣∣x⊤(ξi − v)
∣∣ > 0 for at least some i ∈ {1, 2, . . . , N}, the dual problem (62) reduces to

inf
η > ∥x∥2∗

ηρ2 +
η

η − ∥x∥2∗

(
1

N

N∑
i=1

∣∣∣x⊤(ξi − v)
∣∣∣2) . (93)

It is easily verified that the first-order optimality conditions for (93) are satisfied at

ηx := ∥x∥2∗ +
∥x∥∗
ρ

√√√√ 1

N

N∑
i=1

|x⊤(ξi − v)|2.

Thus, ηx is the unique optimal solution to (93), and consequently, to the dual problem (62). More-

over, due to strong duality of (62), we also know that Qx(ξ) = 1
N

∑N
i=1 δ

(
ξ − (ξi + q′i)

)
is an

optimal solution to the linear worst case distribution problem (61) for any collection q′i ∈ q(η, ξi),

i = 1, 2, . . . , N . □

Proof of Proposition 7.5. We first see that if x∗ ∈ argminx∈X
(
ρ ∥x∥∗ +

√
⟨x, V x⟩

)
, then the first-

order necessary optimality conditions imply that there exists a sub-gradient g of the function(
ρ ∥x∥∗ +

√
⟨x, V x⟩

)
at x∗ for which the inclusion x∗ ∈ argminy∈X ⟨g, y⟩ holds. A quick look

reveals that g must be of the form ρq̄x∗ +
(
1/
√

⟨x∗, V x∗⟩
)
V x∗, where q̄x∗ ∈ argmax{∥q̄∥⩽1} ⟨x∗, q̄⟩.

Therefore, there exists some q̄x∗ ∈ argmax{∥q̄∥⩽1} ⟨x∗, q̄⟩ such that x∗ satisfies the inclusion

x∗ ∈ argmin
y∈X

(
ρ ⟨y, q̄x∗⟩ +

⟨x∗, V y⟩√
⟨x∗, V x∗⟩

)
. (94)

Selecting such a q̄x∗ to define P∗ in (67), we also verify that

µP∗ =
1

N

N∑
i=1

(ξi + q∗i ) = µ̂+
ρ 1
N

∑N
i=1 ⟨x∗, ξi − µ̂⟩√〈

x∗, (Σ̂− µ̂µ̂⊤)x∗
〉 q̄x∗ = µ̂.

Now, we establish that the pair (x∗,P∗) is a saddle point by proving that both x∗ and P∗ are optimal

solutions to their respective problems while the other is held fixed.

Optimality of x∗ for the minimization condition. We begin by showing that the inclusion x∗ ∈
argminy∈X V (y,P∗) holds, by showing that the corresponding first-order optimality condition

x∗ ∈ argmin
y∈X

⟨∇1V (x∗,P∗), y⟩ = argmin
y∈X

〈(
ΣP∗ − µ̂µ̂⊤)x∗, y〉 , (95)
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is satisfied. This condition is also sufficient for optimality since V (y,P∗) is convex in y. Simplifying

the cost function in (95) yields〈(
ΣP∗ − µ̂µ̂⊤)x∗, y〉
=

1

N

N∑
i=1

⟨x∗, ξi + q∗i ⟩ ⟨y, ξi + q∗i ⟩ −
〈
x∗, (µ̂µ̂⊤)y

〉

=
1

N

N∑
i=1

〈
x∗, (ξiξ

⊤
i − µ̂µ̂⊤)y

〉
+ ⟨x∗, ξi⟩ ⟨y, q∗i ⟩+ ⟨x∗, q∗i ⟩ ⟨y, ξi⟩+ ⟨x∗, q∗i ⟩ ⟨y, q∗i ⟩ .

Letting V := Σ̂− µ̂µ̂⊤, we see that V = 1
N

∑N
i=1(ξi − µ̂)ξ⊤i , and

1
N

∑N
i=1 |⟨x∗, ξi − µ̂⟩|2 = ⟨x∗, V x∗⟩,

from which we simplify

1

N

N∑
i=1

⟨x∗, ξi⟩ ⟨y, q∗i ⟩ = ρ ⟨y, q̄x∗⟩
1
N

∑N
i=1 ⟨x∗, ξi − µ̂⟩ ⟨ξi, x∗⟩√

⟨x∗, V x∗⟩
= ρ ⟨y, q̄x∗⟩

√
⟨x∗, V x∗⟩,

1

N

N∑
i=1

⟨x∗, q∗i ⟩ ⟨y, ξi⟩ = ρ ∥x∗∥∗
1
N

∑N
i=1 ⟨x∗, ξi − µ̂⟩ ⟨ξi, y⟩√

⟨x∗, V x∗⟩
= ρ ∥x∗∥∗

⟨x∗, V y⟩√
⟨x∗, V x∗⟩

,

1

N

N∑
i=1

⟨x∗, q∗i ⟩ ⟨y, q∗i ⟩ = ρ2 ∥x∗∥∗ ⟨y, q̄x∗⟩
1
N

∑N
i=1 |⟨x∗, ξi − µ̂⟩|2

⟨x∗, V x∗⟩
= ρ2 ∥x∗∥∗ ⟨y, q̄x∗⟩ .

Employing the above relations, we see that the objective function in (94) simplifies to〈(
ΣP∗ − µ̂µ̂⊤)x∗, y〉 = ⟨x∗, V y⟩+ ρ ∥x∗∥∗

⟨x∗, V y⟩√
⟨x∗, V x∗⟩

+ ρ ⟨y, q̄x∗⟩
√

⟨x∗, V x∗⟩+ ρ2 ∥x∗∥∗ ⟨y, q̄x∗⟩

=
(√

⟨x∗, V x∗⟩+ ρ ∥x∗∥∗
)( ⟨x∗, V y⟩√

⟨x∗, V x∗⟩
+ ρ ⟨y, q̄x∗⟩

)
.

In view of the inclusion (94), the sufficient optimality condition (95) follows immediately. Conse-

quently, the inclusion x∗ ∈ argminx∈X V (x,P∗) also holds.

Optimality of P∗ for the maximization condition. Similar to the proof of the minimization con-

dition, we establish the maximization condition of the saddle point by showing that the first-order

optimality conditions are satisfied. We first recall from (65) (with v = µP∗ = µ̂) that

ηx∗ = ∥x∗∥2∗ +
∥x∗∥∗
ρ

√〈
x∗, (Σ̂− µ̂µ̂⊤)x∗

〉
.

On the one hand, if
〈
x∗,

(
Σ̂− µ̂µ̂⊤)x∗〉 = 0, we have ηx∗ = ∥x∗∥2∗, in which case, we con-

clude from assertion (ii-c) of Lemma 7.3 that 0 ∈ q(ηx∗ , ξi, µ̂) for all i = 1, 2, . . . , N . Moreover,〈
x∗,

(
Σ̂− µ̂µ̂⊤)x∗〉 = 0 also implies that ⟨x∗, ξi − µ̂⟩ = 0, and hence q∗i = 0 for all i = 1, 2, . . . , N .

Thus, we have q∗i ∈ q(ηx∗ , ξi, µP∗) for all i = 1, 2, . . . , N .

On the other hand, if
〈
x∗,

(
Σ̂− µ̂µ̂⊤)x∗〉 ̸= 0, we have ηx∗ > ∥x∗∥2∗, in which case, we see

q∗i =
ρ ⟨x∗, ξi − µ̂⟩√〈
x∗, (Σ̂− µ̂µ̂⊤)x∗

〉 q̄x∗ =
∥x∗∥∗ ⟨x∗, ξi − µ̂⟩

ηx∗ − ∥x∗∥2∗
q̄x∗ ∈ q(ηx∗ , ξi, µ̂) for all i = 1, 2, . . . , N,
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where the last inclusion follows from assertion (ii-b) of Lemma 7.3 since q̄x∗ ∈ argmax∥q̄∥⩽1 ⟨x∗, q̄⟩.
Finally, noting that µ̂ = µP∗ , we have q∗i ∈ q(ηx∗ , ξi, µP∗) for all i ⩽ N . Since P∗ = 1

N

∑N
i=1 δ(ξ −

ξi − q∗i ), we conclude from Lemma 7.4 that P∗ ∈ argmaxQ∈P dVx∗(P∗;Q). Thus, P∗ satisfies the

first-order optimality conditions which are also sufficient. Hence, in view of Remark 3.5, we conclude

that the inclusion P∗ ∈ argmaxP∈P V (x∗,P) also holds. Therefore, (x∗,P∗) is indeed a saddle point

of (56). The proof is now complete. □

Proofs for the case of ellipsoidal support (Ξ = EM ).

Proof of Lemma 7.6. Letting q′ := q+ξ, the maximization problem (63) can be equivalently written

in terms of q′ as

sup
{q′:⟨q′,Mq′⟩⩽1}

〈
q′,
(
xx⊤ − ηIn

)
q′
〉
+ 2

〈
q′, ηξ − (xx⊤)v

〉
+
(
(x⊤v)2 − η ∥ξ∥22

)
. (96)

Even though M ⪰ 0, which makes the feasible set of (96) convex; it is to be observed that the

objective function is concave if and only if η ⩾ ∥x∥22. Therefore, (96) is not a convex problem in

general. However, we observe that (96) is a quadratically constrained quadratic program, that is

strictly feasible. For such problems, the S-procedure guarantees an equivalent reformulation as a

tractable SDP
min

λ∈[0,+∞), θ∈R
− θ

subject to

ηIn − xx⊤ + λM (xx⊤)v − ηξ

(xx⊤)v⊤ − ηξ⊤ η ∥ξ∥22 − (x⊤v)2 − λ− θ

 ⪰ 0,
(97)

with the optimal values of (97) and (96) being equal. Moreover, if (θ∗, λ∗) is a solution to the SDP

(97), we also conclude from the S-procedure that q′ =
(
ηIn − xx⊤ + λ∗M

)−1(
ηξ − xx⊤v

)
, is an

optimal solution to the maximization problem (96). Consequently, for every η ⩾ 0, we conclude

q(η, ξ) = −ξ +
(
ηIn − xx⊤ + λ∗M

)−1(
ηξ − xx⊤v

)
,

is a solution to the maximization problem (96). Substituting for each i = 1, 2, . . . , N , the maxi-

mization problem over qi in (62) with its equivalent SDP (97), we immediately arrive at (68). Now,

suppose (η∗, λ∗, θ∗) is a solution to the SDP (68). Then, the pair (Qx, ηx) as given by (69) is a

solution to the FW problem (61) and its dual (62), respectively. This concludes the proof. □
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