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Abstract. This paper presents a Bayesian estimation framework for Wiener models, focusing on learn-
ing nonlinear output functions under known linear state dynamics. We derive a closed-form optimal
affine estimator for the unknown parameters, characterized by the so-called “dynamic basis statis-
tics” (DBS). Several features of the proposed estimator are studied, including Bayesian unbiasedness,
closed-form posterior statistics, error monotonicity in trajectory length, and consistency condition (also
known as persistent excitation). In the special case of Fourier basis functions, we demonstrate that
the closed-form description is computationally available, as the Fourier DBS enjoys explicit expres-
sions. Furthermore, we identify an inherent inconsistency in the Fourier bases for single-trajectory
measurements, regardless of the input excitation. Leveraging the closed-form estimation error, we de-
velop an active learning algorithm synthesizing input signals to minimize estimation error. Numerical
experiments validate the efficacy of our approach, showing significant improvements over traditional
regularized least-squares methods.
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1. Introduction

System modelling and identification quality are essential for practical analysis, prediction, and control
of complex phenomena across disciplines. Classical system identification techniques combine theoretical
frameworks with empirical data to select appropriate model structures and estimate parameters for
constructing accurate models of dynamic systems [41, 23, 9]. While linear system identification has a
well-established foundation, identifying nonlinear systems remains an evolving area of research [29].

Parametric approaches for nonlinear system identification, such as extending linear state-space mod-
els to incorporate polynomial nonlinear terms [30], have shown significant achievements [24]. However,
these methods require a trade-off between bias and variance in model order selection [33, 38]. Recent
regularization-based approaches address this challenge by exploring high-dimensional search spaces
through kernel-based methods [8, 31]. These techniques enhance robustness in model selection by
using continuous regularization parameters instead of discrete model orders. Furthermore, leverag-
ing infinite-dimensional reproducing kernel Hilbert spaces via Gaussian process models [35] offers a
probabilistic framework for nonlinear system identification [32], allowing prior knowledge about system
properties, such as stability and smoothness, in the identification process.
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While robust for system identification, kernel-based methods are computationally expensive for large-
scale problems due to operations like matrix inversion in high dimensions. To address this challenge,
randomized low-dimensional feature spaces, particularly Fourier basis functions, were introduced to
accelerate kernel machine training [34]. Various techniques, including probabilistic variational meth-
ods [17], have since been proposed to approximate radial basis kernels using random Fourier fea-
tures [22]. Additionally, approximations have been developed to handle input noise in Gaussian pro-
cess regression [13, 27], enhancing applicability to real-world scenarios. This work addresses similar
challenges for identifying an unknown nonlinear function influenced by time-varying correlated noise
in its inputs. We propose an optimal Bayesian estimator for nonlinear functions represented as finite
combinations of basis functions, focusing on Fourier bases.

Our problem can also be classified within the block-oriented nonlinear models, specifically Wiener
systems characterized by a linear process followed by a static nonlinear observation model [39]. Existing
Wiener system identification techniques span a range of methodologies. Some approaches use Gaussian
process models for the static nonlinear block and approximate posterior densities using Markov Chain
Monte Carlo (MCMC) methods [21, 36]. Others model the static nonlinearity as a polynomial of known
order or approximate it as a linear combination of predefined basis functions, employing the Prediction
Error Method (PEM) or Gaussian sum filtering with Expectation-Maximization (EM) algorithms for
inference [5, 7, 42]. Additionally, studies on parameter estimation consistency using PEM and Maximum
Likelihood under various noise assumptions [15, 16] demonstrate that traditional least-squares methods
can lead to biased estimates when process noise is present.

Unlike these existing techniques, our work focuses solely on the Bayesian estimation of static non-
linear observation parameters in Wiener systems with known linear time-varying dynamics affected by
process and measurement noise. This problem arises in many applications, such as robot mapping in
unknown environments. For instance, Autonomous Underwater Vehicles (AUVs) mapping the seabed
in deep-sea environments face challenges due to the interplay between vehicle dynamics and unknown
nonlinear seabed observation models. Our proposed Bayesian Minimum Mean Square Error (MMSE)
affine estimator analytically computes estimates and estimation errors. By accounting for process noise
correlations over time through information gained from the covariance of the observation model, our
method avoids divergence issues observed in approximate prediction error method.

While our Bayesian MMSE affine estimator addresses parameter estimation robustness against noise
correlations, the quality of identification depends heavily on the choice of input signals used to excite
the system. Active learning and optimal input design maximize information gain by selecting informa-
tive samples [40] or constructing input signals that optimize experimental criteria like Fisher or mutual
information [10, 28]. Numerous studies have explored strategies for optimizing input selection for both
linear [20, 45] and nonlinear systems [12, 44, 43, 26], where different experimental design criteria have
led to varied approaches. In this work, we derive an optimal input design by directly minimizing
the analytical estimation error of our parameter estimates, specifically by minimizing the trace of the
estimate covariance matrix. Integrating this optimal input design with our Bayesian MMSE affine esti-
mator prior to conducting experiments enhances the efficacy of identifying static nonlinear observation
parameters under correlated noise conditions.
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Contributions. The main contributions are as follows:

‚ Optimal Bayesian affine estimator: Introducing a Bayesian setting, we derive the closed-
form solution of the optimal affine estimator for the unknown parameters of the output function
(Theorem 3.2), which is characterized in terms of the so-called “dynamic basis statistics” (DBS).

‚ Optimal estimator features: The proposed optimal estimator enjoys the following proper-
ties: (i) Bayesian unbiasedness (Proposition 3.3), (ii) Closed-form updates for posterior statis-
tics (Remark 3.4), (iii) Monotonic error reduction (Corollary 3.5), and (iv) Consistency under
specific conditions (Proposition 4.3).

‚ Fourier basis explicit solution: The generic closed-form solution of the Bayesian estimator
requires the respective DBS of the basis functions, which can be computationally demand-
ing. We show that these statistics admit explicit expressions in the special case of Fourier
basis (Lemma 4.1). We further identify an inherent inconsistency of single-trajectory measure-
ments for the Fourier bases, irrespective of the input trajectory (even if unbounded and persis-
tently excited), when the underlying dynamics are stochastically unstable (Proposition 4.2).

‚ Active learning: Leveraging the closed-form description of the estimation error, we propose
a first-order algorithm to actively design an input signal that locally minimizes it.

The theoretical results are validated through extensive numerical experiments, demonstrating the su-
periority of our Bayesian estimator with active learning over classical regularized least-squares methods
(cf. Figure 2). To facilitate reproducibility, we provide an open-source MATLAB library available at
https://github.com/sasanvakili/Bayesian4Wiener.

Orgnaiziation. Section 2 introduces the modelling setting and problem formulation. Section 3 presents
the solution approaches: classical regularized least-squares, Bayesian MMSE affine estimator and its
properties. Section 4 provides explicit expressions for the special case of Fourier basis functions and
discusses the consistency condition. Section 5 describes a first-order algorithm for actively learning
input signals. Section 6 outlines an experimental setup to examine the consistency condition and com-
pares the proposed Bayesian affine estimator across four benchmarks. Detailed proofs of mathematical
statements are provided in the “Technical Proofs” subsection of each corresponding section.

Notation. Throughout this paper, Z`, R, R`, Rnˆm, and Sn` denote the set of positive integers, the
real numbers, nonnegative real numbers, n ˆ m real matrices, and the space of all symmetric positive
semidefinite matrices in Rnˆn, respectively. The symbol I refers to the identity matrix, vectors are
represented with lowercase letters (e.g., ϕ), while matrices are represented with uppercase letters (e.g.,
Φ). Subscripts denote elements of a vector or matrix (e.g., µtϕn for a vector and Σtt

1

ϕmn
for a matrix),

while superscripts represent the time index of vector or matrix elements (e.g., µtϕ for a vector and Σtt
1

ϕ

for a matrix). The trace operator is denoted by tr, the transpose of a matrix A is denoted by A
T,

and diagpA1, . . . ,Akq represents a block-diagonal matrix with diagonal entries A1, . . . ,Ak. The inner
product of two vectors x and y is given by xx, yy “ x

T
y, and the respective 2-norm is ∥x∥ “

a

xx, xy.
For a matrix A P Rnˆn, the largest (smallest) absolute value of eigenvalues is denoted by λmaxpAq

(λminpAq). The conic inequality A ĺ B means that the matrix difference B´A is positive semidefinite,
i.e., B ´ A ľ 0. The notation Ppµ,Σq refers to an arbitrary distribution with mean µ and covariance
matrix Σ, while a multivariate normal (Gaussian) distribution is denoted by N pµ,Σq and a uniform
distribution over ra, bs is denoted by Upa, bq. The symbol „ stands for “distributed according to”.

https://github.com/sasanvakili/Bayesian4Wiener
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2. Problem description

Consider a known discrete-time linear time-varying dynamical system where the states at time t are
observed through an unknown observation model

xt`1 “ Atxt ` Btut ` wt`1,

yt “ hpxtq ` vt.
(1)

Here, t “ t0, . . . , T u represents the time index starting from 0 and ending at time T , xt P Rnx is the
vector of state variables, At P Rnxˆnx is the state transition matrix, ut P Rnu is the vector of inputs,
Bt P Rnxˆnu is the input matrix, and wt`1 P Rnx is the process noise, which has a distribution given
by Pp0,Σwt`1q. Additionally, the initial state x0 is characterized by a mean vector µx0 and covariance
matrix Σx0 . Observations are made through the scalar output measurements yt P R, while vt P R
represents the measurement noise with a distribution Pp0, σ2vtq. The output function h : Rnx Ñ R is
defined as a finite linear combination of known basis functions ϕn : Rnx Ñ C:

hpxq “

N
ÿ

n“0

θnϕnpxq “ xϕpxq, θy, (2)

where θ “ rθ0, . . . , θNs
T is the vector of unknown parameters, ϕpxq “ rϕ0pxq, . . . , ϕNpxqs

T is the vector of
basis functions evaluated at x, and N`1 is the number of basis functions. We note that the setting (1),
i.e., linear dynamics followed by nonlinear output function, is referred to as the Wiener model.

Remark 2.1 (Modelling setting). Two important points are worth noting regarding the modelling
setting of this study:

(i) Multivariate output measurements: For measurements in higher dimensions (yt P Rny),
the output function (2) extends to a vector form hpxq “ rh1pxq, . . . , hnypxqs

T, where the goal is to
learn each function hipxq separately, parameterized as in (2). A common assumption in many
applications is that the parameters of each hipxq are independent of those of other components,
effectively reducing the learning of a multivariate output function to multiple single-variate
outputs. Therefore, for the simplicity of the exposition, we focus on single-output measurements
(ny “ 1) for the remainder of this study.

(ii) Bayesian prior interpretation: A fundamental aspect of the Bayesian framework is incor-
porating prior information about unknown parameters. This information is formalized math-
ematically through a probability distribution, which in this study is characterized solely by its
mean and covariance, i.e., the prior distribution belongs to Ppµθ ,Σθq, where µθ and Σθ are
given modelling parameters.

Let the process noise wt, the measurement noise vt, the initial state x0, and the vector of parameters
θ be independent of one another at all times. Our objective is to identify the model parameters θ from
the measurement data yt at all time steps, represented as ȳ “ ry0, . . . , yT s

T. This task can also be
interpreted as estimating the parameters of a linear or nonlinear function influenced by time-varying
correlated noise in its inputs. The problem can be formally described as follows:

Problem 1 (Bayesian estimator for Wiener model). Given measurements ȳ P RT`1 and the
parameters prior information Ppµθ ,Σθq, design the optimal estimator θ̂ : RT`1 Ñ Θ that minimizes



OPTIMAL BAYESIAN AFFINE ESTIMATOR AND ACTIVE LEARNING FOR THE WIENER MODEL 5

the expected loss, minθ̂p¨q
Erℓpθ, θ̂pȳqqs, where ℓ is a predefined loss function quantifying the discrepancy

between the true parameters θ and their estimate θ̂pȳq.

3. Solution Approaches

The unknown function hpxtq in the observation model of (1) is assumed to belong exactly to the
hypothesis class defined in (2). Consequently, the output function can be reformulated and expressed
in lifted matrix form as

ȳ “ Φ
T
θ ` v̄, (3)

where ȳ “ ry0, . . . , yT s
T, Φ “ rϕpx0q, . . . , ϕpxT qs is the basis aggregation matrix, θ “ rθ0, . . . , θNs

T, and
v̄ “ rv0, . . . , vT s

T is the measurement noise vector. The measurement noise follows v̄ „ Pp0,Σv̄q, where
Σv̄ “ diagpσ2v0 , . . . , σ

2
vT

q assuming vt are independent from each other at all times. Let us recall that
the prior information about θ is characterized by a probability distribution defined by its mean and
covariance, Ppµθ ,Σθq (cf. Remark 2.1(ii)). The propagation of the state trajectory of the dynamical
system through the output basis function is a key object in characterizing our proposed Bayesian
estimator. This concept is introduced next.

Definition 1 (Dynamic basis statistics). Let xt be the dynamics trajectory of the system (1), and
ϕpxq be the set of basis functions of the output function (2). The dynamic basis statistics (DBS),
denoted by pµtϕ,Σ

tt1

ϕ q, is the mean and covariance of ϕpxtq at two time instants pt, t1q, i.e.,

µtϕ “ Erϕpxtqs, Σtt
1

ϕ “ Erϕpxtqϕ
T
pxt1qs ´ ErϕpxtqsErϕpxt1qs

T
. (4)

Given the randomness of the elements of Φ as defined in Definition 1, the observation model can be
rewritten as ȳ “ pErΦs`∆Φq

T
θ`v̄, where ∆Φ is a zero-mean random matrix. If ∆Φ were deterministic,

however, a solution to Problem 1 could be obtained via the classical least-squares methods of supervised
learning, as discussed in the next subsection.

3.1. Classical regularized least-squares

Regularized least squares (RLS), also called Ridge Regression, identifies unknown parameters by
extending the ordinary least-squares method with a penalty on the parameters, known as the L2

regularization [4, Ch. 3]. This regularization reduces model complexity, helping to avoid overfitting
and improving generalization to new, unseen data. Since Φ in observation model (3) is a random
matrix, as noted in (4), one can approximate its columns by Φ̃ “ rϕ̃px0q, . . . , ϕ̃pxT qs in two ways:

(i) Dead reckoning least squares (DLS): ϕ̃pxtq “
“

ϕ0pErxtsq, . . . , ϕNpErxtsq
‰T
.

(ii) Mean least squares (MLS): ϕ̃pxtq “ µtϕ “
“

Erϕ0pxtqs, . . . ,ErϕNpxtqs
‰T
.

Using either of these approximations, the regularized least-squares method provides an estimator by
solving the optimization problem

min
θ

∥∥∥ȳ ´ Φ̃
T
θ
∥∥∥2 ` λ ∥θ∥2 , (5a)

where λ is a hyperparameter. The closed-form optimal solution yields a linear estimator with respect
to the measurements ȳ [4, Ch. 3] as

θ̂LSpȳq “ pΦ̃Φ̃
T

` λIq
´1
Φ̃ȳ. (5b)
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This estimator requires inverting a square matrix with dimensions equal to the number of basis func-
tions. Consequently, the computational complexity of (5b) is OLSpN2T`N3q, depending on the number
of measurements and unknown parameters. This complexity further simplifies to OLSpT q when N ! T .
These approximate approaches are used to evaluate the performance of this method through numerical
experiments in Section 6.

3.2. Optimal Bayesian affine estimator

Given the input-output trajectory data, the optimal Bayesian estimator θ̂ : RT`1 Ñ Θ, which ad-
dresses Problem 1, is obtained by solving

θ̂pȳq “ argmin
ϑPΘ

Erℓpθ, ϑq|ȳs “ argmin
ϑPΘ

ż

Θ
ℓpθ, ϑqppȳ|θqppdθq,

where the second equality follows from Bayes’ rule. Here, ℓpθ, θ̂pȳqq is a loss function that defines the
performance criterion for estimating the unknown parameters using θ̂pȳq. The term ppȳ|θq represents
the likelihood, i.e., the probability density function of the data given the unknown parameters, which is
derived from the relationship between the data and the parameters. Meanwhile, ppdθq is the prior prob-
ability density function of the unknown parameters. Consequently, the Bayesian estimation approach
requires both a performance criterion and a prior distribution as its starting point.

Among various performance criteria, the mean squared loss function, defined as ℓpθ, ϑq “ ∥θ ´ ϑ∥2,
leads to the Minimum Mean Square Error (MMSE) estimate. This estimate corresponds to the mean
of the posterior distribution of the unknown parameters θ given the measurements [19, Ch. 4], i.e.,

θ̂pȳq “ Erθ|ȳs “

ż

Θ
θppȳ|θqppdθq. (6)

However, computing the posterior solution (6) is often challenging due to either an incomplete specifi-
cation of the likelihood distribution ppȳ|θq or because the integral does not have a closed-form solution.
For certain special classes of joint distributions, such as Gaussian distributions, the posterior distri-
bution admits an analytical solution. A fundamental classical result in these cases is that the mean
of the posterior belongs to the class of affine estimators [1, Ch. 2]. The distribution P of a random
vector ν P Rnf is called elliptical, denoted as P “ Enfρ pµ,Σq, if its characteristic function is given by
φpfq “ exppjxf, µyqρpf

T
Σfq, where µ P Rnf is a location parameter, Σ P S

nf
` is the dispersion matrix,

and ρ : R` Ñ R is the characteristic generator [18, p. 107].

Remark 3.1 (MMSE estimate of elliptical distributions). If the joint distribution of the unknown
parameters θ and the measurements ȳ is elliptical, then the conditional distribution ppθ|ȳq is elliptical,
and its first moment, forming the optimal solution (6), is affine in the variable ȳ [6, Thm. 5].

Inspired by Remark 3.1 and to enhance computational efficiency, we restrict the family of estimators
in Problem 1 to affine functions for the remainder of this study. The following theorem presents the
optimal closed-form solution for this class of estimators.

Theorem 3.2 (Optimal Bayesian MMSE affine estimator). The optimal Bayesian MMSE affine
estimator of Problem 1 is of the form θ̂Bpȳq “ Ψ‹ȳ ` ψ‹, where

Ψ‹ “ ΣθΦ̄
`

Φ̄
T
ΣθΦ̄ ` M ` Σv̄

˘́ 1

, ψ‹ “ µθ ´ Ψ‹Φ̄
T
µθ , (7a)
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Φ̄ “ rµ0ϕ, . . . , µ
T
ϕ s, the pt ` 1, t1 ` 1qth element of matrix M is Mtt1 “ tr

`

Σtt
1

ϕ pΣθ ` µθµ
T

θq
˘

, in which
pµtϕ,Σ

tt1

ϕ q is the respective DBS of ϕpxtq in the sense of Definition 1. Consequently, the optimal MMSE
estimation error is

J ‹
B “ tr

`

Σθ ´ ΣθΦ̄
`

Φ̄
T
ΣθΦ̄ ` M ` Σv̄

˘́ 1

Φ̄
T
Σθ

˘

. (7b)

We note that the technical proofs of the theoretical results are provided in Section 3.3. The compu-
tational complexity of the optimal Bayesian MMSE affine estimator is OBpN2T 2 ` T 3q, depending on
the number of measurements and unknown parameters. When N ! T , the computational complexity
simplifies to OBpT 3q, which is significantly higher than that of the DLS and MLS linear estimators dis-
cussed in Section 3.1. While computationally more expensive, the Bayesian MMSE estimator accounts
for process noise correlations over time and provides unbiased estimates relative to the prior.

Proposition 3.3 (Bayesian unbiasedness). The optimal Bayesian MMSE affine estimator (7a) is
Bayesian unbiased, i.e., Erθ ´ θ̂Bpȳqs “ 0, where θ represents the true unknown parameters and the
expectation is taken with respect to the joint distribution of pθ, ȳq.

Given that the estimator is unbiased with respect to the prior, one can update the prior with the
result obtained from this MMSE estimation.

Remark 3.4 (Bayesian update via posterior distribution). Using the measurements ȳ and the
proposed Bayesian MMSE affine estimator, the unknown parameters follow a posterior distribution,
i.e., θ|ȳ „ Ppµ

pos

θ ,Σ
pos

θ q, with known mean and covariance, given by
$

&

%

µ
pos

θ “ µθ ` Ψ‹pȳ ´ Φ̄
T
µθq,

Σ
pos

θ “ Σθ ´ ΣθΦ̄
`

Φ̄
T
ΣθΦ̄ ` M ` Σv̄

˘́ 1

Φ̄
T
Σθ .

(8)

The proposed optimal affine estimator achieves the minimum variance among all affine estimators
and reduces the variance relative to the prior distribution, i.e., Σθ ľ Σ

pos

θ , as evident from (8).

Corollary 3.5 (Bayesian error monotonicity). Let J ‹
Bptq be the optimal MMSE estimation error

defined in (7) at time t corresponding the measurement vector ȳ “ ry0, . . . , yts
T. Then, with one extra

measurement at time pt` 1q, the estimation error decreases monotonically, i.e., J ‹
Bpt` 1q ď J ‹

Bptq.

In the following section, we present Fourier basis functions as a particular case of our generic solution
and further illustrate the efficacy and performance of that through numerical analyses in Section 6.

3.3. Technical Proofs

This subsection contains detailed proofs of the theoretical results introduced earlier.

Proof of Theorem 3.2. Let us denote Φ “ Φ̄ ` ∆Φ, where Φ̄ “ ErΦs and ∆Φ is a zero-mean random
matrix. Specifically, Φ̄ “ rµ0ϕ, . . . , µ

T
ϕ s, where µtϕ “ Erϕpxtqs, as defined by the DBS in (4). Similarly,

θ “ µθ ` ∆θ with ∆θ „ Pp0,Σθq. Expanding the MMSE, min
Ψ, ψ

Er∥θ ´ Ψȳ ´ ψ∥2s, replacing ȳ with its
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model from (3), and decomposing Φ and θ results in

min
Ψ, ψ

E
”

`

∆θ ´ ΨpΦ̄ ` ∆Φq
T
∆θ ´ Ψv̄ ´ Ψ∆Φ

T
µθ

T̆̀
∆θ ´ ΨpΦ̄ ` ∆Φq

T
∆θ ´ Ψv̄ ´ Ψ∆Φ

T
µθ

˘

ı

´ 2E
”

`

∆θ ´ ΨpΦ̄ ` ∆Φq
T
∆θ ´ Ψv̄ ´ Ψ∆Φ

T
µθ

T̆̀
ψ ´ µθ ` ΨΦ̄

T
µθ

˘

ı

` E
”

`

ψ ´ µθ ` ΨΦ̄
T
µθ

T̆̀
ψ ´ µθ ` ΨΦ̄

T
µθ

˘

ı

.

(9)

The second term in the above optimization is zero because all random variables are zero-mean, i.e.,
Er∆θs “ 0, Er∆Φs “ 0, Erv̄s “ 0, Er∆θ

T
∆Φs “ 0 from the stochastic independence of θ and wt at all

times, and ψ ´ µθ ` ΨΦ̄
T
µθ is a constant. In addition, the last term in (9) is zero if ψ “ µθ ´ ΨΦ̄

T
µθ .

Therefore, minimizing (9) over the variable Ψ results in

ψ‹ “ µθ ´ Ψ‹Φ̄
T
µθ .

Expanding the first term of (9), applying the trace operator, noting that all the random variables
are independent, and after some algebraic manipulation, the problem (9) reduces to minimizing the
following cost function over Ψ:

J pΨq “ tr
`

Σθ ´ 2Ψ
T
ΣθΦ̄ ` Ψ

T
ΨpΦ̄

T
ΣθΦ̄ ` H ` V ` Σv̄q

˘

,

where H “ Er∆Φ
T
∆θ∆θ

T
∆Φs and V “ Er∆Φ

T
µθµ

T

θ∆Φs. The minimum of J pΨq is obtained from
setting its partial derivative to zero, hence,

BJ
BΨ

ˇ

ˇ

ˇ

Ψ“Ψ‹
“ ´2ΣθΦ̄ ` 2Ψ‹

`

Φ̄
T
ΣθΦ̄ ` H ` V ` Σv̄

˘

“ 0

ðñ Ψ‹ “ ΣθΦ̄
`

Φ̄
T
ΣθΦ̄ ` H ` V ` Σv̄

˘́ 1

.

Since Σv̄ “ diagpσ2v0 , . . . , σ
2
vT

q, we have Φ̄T
ΣθΦ̄`H`V`Σv̄ ą 0, i.e., that the above matrix is invertible

and Ψ‹ has a unique solution. It remains to find the elements of matrices H and V. The pt`1, t1 `1qth

elements of matrices H and V is calculated based on the pt` 1qth and pt1 ` 1qth columns of matrix ∆Φ

defined as ∆ϕpxtq and ∆ϕpxt1q, respectively. Applying the trace operator to each of their elements,

Htt1 “ Er∆ϕ
T
pxtq∆θ∆θ

T
∆ϕpxt1qs “ E

“

tr
`

∆ϕ
T
pxtq∆θ∆θ

T
∆ϕpxt1q

˘‰

“ E
“

tr
`

∆ϕpxt1q∆ϕ
T
pxtq∆θ∆θ

T˘‰

,

Vtt1 “ Er∆ϕ
T
pxtqµθµ

T

θ∆ϕpxt1qs “ E
“

tr
`

∆ϕ
T
pxtqµθµ

T

θ∆ϕpxt1q
˘‰

“ E
“

tr
`

∆ϕpxt1q∆ϕ
T
pxtqµθµ

T

θ

˘‰

.

Noting that ∆ϕpxt1q∆ϕ
T
pxtq and ∆θ are independent, one could observe that

Htt1 “ tr
`

E
“

∆ϕpxt1q∆ϕ
T
pxtq

‰

Σθ
˘

,

Vtt1 “ tr
`

E
“

∆ϕpxt1q∆ϕ
T
pxtq

‰

µθµ
T

θ

˘

.

Finally, rewriting ∆ϕpxtq “ ϕpxtq ´ Erϕpxtqs, it is straightforward to obtain

Er∆ϕpxt1q∆ϕ
T
pxtqs “ Erϕpxt1qϕ

T
pxtqs ´ Erϕpxt1qsErϕpxtqs

T
,

hence, we have
Htt1 “ tr

`

pErϕpxt1qϕ
T
pxtqs ´ Erϕpxt1qsErϕpxtqs

T
qΣθ

˘

,

Vtt1 “ tr
`

pErϕpxt1qϕ
T
pxtqs ´ Erϕpxt1qsErϕpxtqs

T
qµθµ

T

θ

˘

.

Introducing matrix M :“ H ` V, its pt` 1, t1 ` 1qth element is

Mtt1 “ Htt1 ` Vtt1 “ tr
`

Σt
1t
ϕ pΣθ ` µθµ

T

θq
˘

,
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where Σt
1t
ϕ “ Erϕpxt1qϕ

T
pxtqs ´ Erϕpxt1qsErϕpxtqs

T. Since

tr
`

Σt
1t
ϕ pΣθ ` µθµ

T

θq
˘

“ tr
`

Σtt
1

ϕ pΣθ ` µθµ
T

θq
˘

,

we write Mtt1 “ tr
`

Σtt
1

ϕ pΣθ ` µθµ
T

θq
˘

. Ultimately, substituting Ψ‹ “ ΣθΦ̄
`

Φ̄
T
ΣθΦ̄ ` M ` Σv̄

˘́ 1

and

ψ‹ “ µθ ´Ψ‹Φ̄
T
µθ in (9) results in the last two terms to be zero and the optimal MMSE error J ‹

B after
a simple algebraic manipulation arrives at (7b), which concludes the proof. □

Proof of Proposition 3.3. Showing that Erθ ´ θ̂Bpȳqs “ 0 indicates that the estimator is Bayesian un-
biased. We substitute θ̂Bpȳq with its optimal estimator (7a), which leads to

Erθ ´ θ̂Bpȳqs “ Erθs ´ ErΨ‹ȳ ` ψ‹s “ µθ ´ Ψ‹Erȳs ´ µθ ` Ψ‹Φ̄
T
µθ “ Ψ‹

`

Φ̄
T
µθ ´ Erȳs

˘

.

Noting that Erȳs “ ErΦsµθ from the stochastic independence of θ and wt at all times, and that
ErΦs “ Φ̄, it follows that Erθ ´ θ̂Bpȳqs “ 0. □

Proof of Corollary 3.5. Let us define R :“ M`Σv̄ , then the optimal MMSE estimation error in (7b) is

J ‹
B “ tr

`

Σθ ´ ΣθΦ̄
`

Φ̄
T
ΣθΦ̄ ` R

˘́ 1

Φ̄
T
Σθ

˘

.

Applying the matrix inversion lemma [2], we derive the equivalent expression

Σθ ´ ΣθΦ̄
`

Φ̄
T
ΣθΦ̄ ` R

˘́ 1

Φ̄
T
Σθ “

`

Σ
´1

θ ` Φ̄R
´1
Φ̄
T ˘́ 1

, (10)

which allows us to rewrite (7b) as J ‹
B “ tr

``

Σ
´1

θ ` Φ̄R
´1
Φ̄
T ˘́ 1˘

. Let J ‹
Bpt ` 1q denote the estimation

error at time pt` 1q using measurements ȳ “ ry0, . . . , ypt`1qs
T. Define matrices

Φ̄pt` 1q“rΦ̄ptq, µ
pt`1q

ϕ s, Rpt` 1q“

«

Rptq cpt` 1q

c
T
pt` 1q rpt` 1q

ff

,

with Φ̄ptq “ rµ0ϕ, . . . , µ
t
ϕs, cpt` 1q “ rM0pt`1q, . . . ,Mtpt`1qs

T, and rpt` 1q “ Mpt`1qpt`1q ` σ2vpt`1q
. Using

the Schur complement [2],

R
´1

pt` 1q “

«

I ´R
´1

ptqcpt` 1q

0 I

ff «

R
´1

ptq 0

0
`

rpt` 1q ´ c
T
pt` 1qR

´1
ptqcpt` 1q

˘́ 1

ff «

I 0

´c
T
pt` 1qR

´1
ptq I

ff

.

Given Rpt`1q “ Mpt`1q `Σv̄pt`1q ą 0, one can observe that
`

rpt`1q ´ c
T
pt`1qR

´1
ptqcpt`1q

˘́ 1

ą 0.
We define Spt ` 1q :“ Φ̄pt ` 1qR

´1
pt ` 1qΦ̄

T
pt ` 1q, which decomposes as ∆Spt ` 1q :“ Spt ` 1q ´ Sptq,

where Sptq :“ Φ̄ptqR
´1

ptqΦ̄
T
ptq, ∆Sptq “ γpt` 1q

´1
spt` 1qs

T
pt` 1q ľ 0,

spt` 1q “ Φ̄ptqR
´1

ptqcpt` 1q ´ µ
pt`1q

ϕ , γpt` 1q “ rpt` 1q ´ c
T
pt` 1qR

´1
ptqcpt` 1q.

Since Σ
´1

θ ľ 0, Spt` 1q ľ 0, and Sptq ľ 0, we obtain
`

Σ
´1

θ ` Sptq ` ∆Spt` 1q
˘́ 1

ĺ
`

Σ
´1

θ ` Sptq
˘́ 1

.

Thus, the estimation error decreases monotonically, i.e.,

J ‹
Bpt` 1q “ tr

``

Σ
´1

θ ` Sptq ` ∆Spt` 1q
˘́ 1˘

ď tr
``

Σ
´1

θ ` Sptq
˘́ 1˘

“ J ‹
Bptq.

□
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4. Fourier Basis

The question that arises concerns the extent to which the matrices Φ̄ and M of Theorem 3.2 in (7) de-
pend on the respective DBS pµtϕ,Σ

tt1

ϕ q introduced in Definition 1. By employing Fourier basis functions,
one can leverage their unique properties to efficiently compute these expectations via their characteristic
function. Furthermore, any sufficiently well-behaved function can be approximated as a sum of Fourier
series [37], with the Discrete Fourier Transform (DFT) providing an efficient method for calculating
the coefficients of these series. The Fourier basis function is defined as

$

’

&

’

%

ϕ0pxq “ 1 n “ 0

ϕnpxq “
ř

ℓPt´1,1u

exppjxℓfn, xyq n ě 1,
(11)

where fn P Rnx represents a known frequency, and n denotes the frequency index. To ensure that the
codomain of h in (2) remains in R, symmetry is imposed on the frequencies and their corresponding
parameters to eliminate imaginary components. Specifically, the basis function is constructed such
that identical parameters are assigned to terms with positive and negative frequencies, fn and ´fn.
Additionally, ϕ0pxq “ 1 corresponds to a Fourier basis with f0 “ 0. Using the Fourier basis functions
defined in (11), we derive explicit expressions for the elements of the mean vectors µtϕ and covariance
matrices Σtt1ϕ , which are required for the analytical formulation of the optimal Bayesian MMSE estimator
outlined in Theorem 3.2. These expressions are presented in a compact form, which relies on the lifted
matrix representation introduced in the following section.

4.1. Lifted process model

We represent the process model in (1) for the entire trajectory in the lifted matrix form

x̄ “ ĀpB̄ū ` w̄q, (12)

where x̄ “ rx
T

0, . . . , x
T

T s
T consists of the system states vector, ū “ rµ

T

x0 , u
T

0, . . . ,u
T

T´1s
T is the input vector

with the initial state mean as its first element, and w̄ “ rw
T

0,w
T

1, . . . ,w
T

T s
T denotes the noise vector in

which the first element corresponds to the uncertainty of the initial state. As such, w0 „ Pp0,Σx0q and
w̄ is a zero-mean uncertainty, i.e., w̄ „ Pp0,Σw̄q, Σw̄ ľ 0. The covariance matrix is diagonal only if
wt are independent, i.e., Σw̄ “ diagpΣx0 ,Σw1 , . . . ,ΣwT q. Furthermore, the matrices Ā and B̄ have the
following lower triangular and block-diagonal structures, respectively:

Ā “

»

—

—

—

—

—

—

—

—

—

—

–

I 0 0 . . . 0

A0 I 0 . . .
...

A1A0 A1 I
. . .

...
...

...
...

. . . 0
T´1
ś

i“0
Ai

T´1
ś

i“1
Ai . . . AT´1 I

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B̄ “ diagpI,B0, . . . ,BT´1q. (13)

The lifted matrix representation in (12) provides a compact expression for the mean and covariance of

the random variable xt as a function of ū and Σw̄ , given by xt “ ĀtpB̄ū`w̄q and xt „ PpĀtB̄ū, ĀtΣw̄Ā
T

t q,
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where Āt corresponds to the pt` 1qth block-row of Ā in (13), i.e.,

Āt “

„

t´1
ś

i“0
Ai

t´1
ś

i“1
Ai . . . I 0 . . . 0

ȷ

. (14)

This representation serves as the foundation for deriving the DBS of Fourier bases presented next.

4.2. Fourier basis statistics

To compute the expectation of a Fourier basis, the concept of the characteristic function is directly
relevant, as it provides a mechanism for deriving such expectations.

Definition 2 (Characteristic function). The characteristic function of a random vector is defined
as the sign-reversed Fourier transform of its probability density function [14], i.e., for a random vector
ν „ Pp0, Iq, the characteristic function at frequency f is given by φpfq :“ Erexppjxf, νyqs.

Using characteristic functions, the following lemma derives explicit expressions for the elements of µtϕ
and Σtt

1

ϕ , which are essential for the optimal Bayesian MMSE affine estimator presented in Theorem 3.2.

Lemma 4.1 (Fourier DBS explicit expression). For Fourier basis functions (11) and the dynamics
of (1), let the respective DBS introduced in Definition 1, denoted by pµtϕ,Σ

tt1

ϕ q. Additionally, let Āt and
Āt1 represent the matrices defined analogously to (14). Then, the following holds:

(i) DBS mean: The first element of the mean vector is µtϕ0 “ 1, and its pn` 1qth element is

µtϕn “
ÿ

ℓPt´1,1u

exppjxĀ
T

tℓfn, B̄ūyqφpΣ
1
2

w̄Ā
T

tℓfnq, n ě 1. (15a)

(ii) DBS covariance: The pm` 1, n` 1qth element of the covariance matrix is Σtt
1

ϕmn
“ 0 if m “ 0

or n “ 0. For m,n ě 1, this element is

Σtt
1

ϕmn
“

ÿ

ℓ,ℓ1Pt´1,1u

exppjxĀ
T

tℓfm ` Ā
T

t1ℓ
1fn, B̄ūyq

ˆ
`

φ
`

Σ
1
2

w̄pĀ
T

tℓfm ` Ā
T

t1ℓ
1fnq

˘

´ φpΣ
1
2

w̄Ā
T

tℓfmqφpΣ
1
2

w̄Ā
T

t1ℓ
1fnq

˘

.

(15b)

The technical proofs of the theoretical statements presented in this section are deferred to Section 4.4.
Using the explicit expressions provided in Lemma 4.1, one can analytically compute µtϕ and Σtt

1

ϕ when
the process noise is drawn from known distributions.

Example 1 (Gaussian explicit characteristic). If the process noise is Gaussian, w̄ „ N p0,Σw̄q,

the system states xt follow a Gaussian distribution as xt „ N pĀtB̄ū, ĀtΣw̄Ā
T

t q, where Āt is defined
in (14). In this case, the explicit expressions for (15), when m,n ě 1, are obtained based on the
analytical characteristic function of a multivariate normal distribution [11, Ch. 10],

φpΣ
1
2

w̄Ā
T

tℓfnq “ exp
`

´
1

2
ℓf

T

nĀtΣw̄Ā
T

tℓfn
˘

,

φ
`

Σ
1
2

w̄pĀ
T

tℓfm ` Ā
T

t1ℓ
1fnq

˘

“ exp
`

´
1

2
pℓf

T

mĀt ` ℓ1f
T

nĀt1qΣw̄pĀ
T

tℓfm ` Ā
T

t1ℓ
1fnq

˘

.

(16)

From the analytical expressions of the optimal estimator in Theorem 3.2, under the assumption of
Gaussian process noise, we examine additional properties of the affine estimator, such as consistency,
in the subsequent section.
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4.3. Bayesian MMSE affine estimator consistency

As noted in previous sections, the proposed Bayesian affine estimator (7) requires the computation
of the inverse of the observation covariance matrix, which depends on the matrices Φ̄ and M. These
matrices, and consequently the optimal MMSE error (7b), are significantly influenced by the underlying
dynamical system. The following proposition identifies the conditions under which the estimation error
fails to converge to zero as the number of dependent samples from a trajectory length T approaches
infinity, highlighting cases where the estimator is inconsistent.

Proposition 4.2 (Inherent inconsistency). Consider an unstable linear time-invariant system (1),
where At “ A and λmaxpAq ě 1. Let the process noise be Gaussian, i.e., w̄ „ N p0,Σw̄q, and have an
observation model (2) with N ě 1 spanned by the Fourier basis (11). Then, for any input trajectory
tututPZ`

(possibly unbounded and persistently excited), the optimal estimation error (7b) is uniformaly
away from zero, i.e., limtÑ8 J ‹

Bptq ą 0.

In cases where the underlying dynamical system is marginally stable or unstable, multiple statistically
independent trajectories of data help reduce the estimation error and ensure that the estimator remains
consistent, provided trajectories are persistently excited and their number approaches infinity. We
extend our formulation to accommodate τ multiple statistically independent trajectories of data. For
each trajectory i, the time index t independently starts from 0 and continues for a horizon Ti, resulting
in independent trajectories t0, . . . , T1u, . . . , t0, . . . , Tτu. In this extended formulation, the lifted matrix
forms of Ā and B̄ in the process model (12) change to block-diagonal matrices, i.e., Ā “ diagpĀ1, . . . , Āτ q

and B̄ “ diagpB̄1, . . . , B̄τ q, where Āi and B̄i are defined as in (13) for each trajectory i. All other aspects
of the formulation remain identical to the single-trajectory case, with their sizes extended according to
the total number of data points T τ “ pT1`1q`¨ ¨ ¨`pTτ`1q. The following proposition formally specifies
the condition to provide consistency for the proposed optimal Bayesian MMSE affine estimator.

Proposition 4.3 (Consistency via independent trajectories). Let J ‹
Bpτ, T τ q denote the optimal

estimation error (7b) using τ statistically independent trajectories (or “batches”) with the the total length
of T τ “ pT1 ` 1q ` ¨ ¨ ¨ ` pTτ ` 1q data points, where each trajectory i contains pTi ` 1q measurements,
i.e., ȳi “ ry0, . . . , yTis

T. Then, for any prior distribution and any set of basis functions ϕpxq in (2),
the optimal Bayesian MMSE estimation error (7b) converges to zero as τ tends to 8 if the minimum
eigenvalue of the so-called “information matrix” of the basis functions diverges to infinity, i.e.,

lim
τÑ8

λmin

`

τ
ÿ

i“1

µ0ϕpiqµ0
T

ϕ piq

M00piq ` σ2v0piq

˘

“ 8 ùñ lim
τÑ8

J ‹
Bpτ, T τ q “ 0, (17)

where M00piq “ tr
`

Σ00
ϕ piqpΣθ `µθµ

T

θq
˘

, σ2v0piq is the measurement noise variance, and µ0ϕpiq and Σ00
ϕ piq

are the respective DBS as described in Definition 1,

µ0ϕpiq “ Erϕpx0piqqs, Σ00
ϕ piq “ Erϕpx0piqqϕ

T
px0piqqs ´ Erϕpx0piqqsErϕpx0piqqs

T
,

all evaluated at the initial state of the ith trajectory.

Condition (17) shows that estimates of θ from the optimal Bayesian MMSE affine estimator (7)
converge to their true values if the initial states in statistically independent trajectories are indeed
persistently excited. However, the rate at which the estimation error decays also depends on the
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persistent excitation of dependent data within individual trajectories. Persistent excitation can be
achieved through the strategic selection of inputs ū by actively minimizing the optimal Bayesian MMSE
error (7b). In the subsequent section, we address this input optimization framework, commonly referred
to as active learning.

4.4. Technical Proofs

We provide detailed proofs supporting the theoretical statements of this section.

Proof of Lemma 4.1. The random vector xt follows the distribution xt „ PpĀtB̄ū, ĀtΣw̄Ā
T

t q, where Āt is

defined in (14) and the covariance matrix ĀtΣw̄Ā
T

t is symmetric and positive definite. Therefore, xt can

be expressed as an affine transformation, xt “ ĀtB̄ū`ĀtΣ
1
2

w̄ν, of the standard random vector ν „ Pp0, Iq
under the condition that this mapping transforms the distribution of ν to that of w̄. Consequently, the
characteristic function of the random vector xt from that of ν, according to Definition 2, is

Erexppjxf, xtyqs “ exppjxf, ĀtB̄ūyqφpΣ
1
2

w̄Ā
T

tfq. (18)

Using the Fourier basis (11), it follows that the pn` 1qth element of the mean vector µtϕ is given by

Erϕnpxtqs “

$

’

&

’

%

1 n “ 0
ř

ℓPt´1,1u

exppjxĀ
T

tℓfn, B̄ūyqφpΣ
1
2

w̄Ā
T

tℓfnq n ě 1.

In addition, the pm` 1, n` 1qth element of the covariance matrix Σtt
1

ϕ is expressed as

Σtt
1

ϕmn
“ Erϕmpxtqϕnpxt1qs ´ ErϕmpxtqsErϕnpxt1qs,

which can also be derived from (11) and (18). When at least one index is zero (m “ 0 or n “ 0), the
element simplifies to

Σtt
1

ϕ00 “ Erϕ0pxtqϕ0pxt1qs ´ Erϕ0pxtqsErϕ0pxt1qs “ 0,

Σtt
1

ϕm0
“ Erϕmpxtqϕ0pxt1qs ´ ErϕmpxtqsErϕ0pxt1qs “ 0,

Σtt
1

ϕ0n “ Erϕ0pxtqϕnpxt1qs ´ Erϕ0pxtqsErϕnpxt1qs “ 0.

Finally, for the case where both m ě 1 and n ě 1, the term ϕmpxtqϕnpxt1q is a summation of the
following four terms:

ϕmpxtqϕnpxt1q “
ÿ

ℓ,ℓ1Pt´1,1u

exppjxℓfm, xtyqexppjxℓ1fn, xt1yq.

Given that xt “ ĀtB̄ū ` ĀtΣ
1
2

w̄ν and xt1 “ Āt1B̄ū ` Āt1Σ
1
2

w̄ν, we can simplify ϕmpxtqϕnpxt1q to

ϕmpxtqϕnpxt1q “
ÿ

ℓ,ℓ1Pt´1,1u

exppjxĀ
T

tℓfm ` Ā
T

t1ℓ
1fn, B̄ūyqexppjxΣ

1
2

w̄pĀ
T

tℓfm ` Ā
T

t1ℓ
1fnq, νyq.

Thus, for the case where m,n ě 1, the pm` 1, n` 1qth element of the covariance matrix Σtt
1

ϕ is

Σtt
1

ϕmn
“ ´µtϕmµ

t1

ϕn `
ÿ

ℓ,ℓ1Pt´1,1u

exppjxĀ
T

tℓfm ` Ā
T

t1ℓ
1fn, B̄ūyqφ

`

Σ
1
2

w̄pĀ
T

tℓfm ` Ā
T

t1ℓ
1fnq

˘

,

which can be rewritten as (15b), completing the proof. □
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Proof of Proposition 4.2. Let J ‹
Bptq be the optimal estimation error (7b) at time t given an output

measurement trajectory with length t ` 1, and consider its equivalent representation in (10). From
Corollary 3.5, we derive

J ‹
Bptq “ tr

``

Σ
´1

θ ` Spt´ 1q ` ∆Sptq
˘́ 1˘

, (19)

where Spt´ 1q “ Φ̄pt´ 1qR
´1

pt´ 1qΦ̄
T
pt´ 1q, ∆Sptq “ γ

´1
ptqsptqs

T
ptq, sptq “ Φ̄pt´ 1qR

´1
pt´ 1qcptq ´ µtϕ,

$

’

’

&

’

’

%

γptq “ rptq ´ c
T
ptqR

´1
pt´ 1qcptq ą 0,

rptq “ Mtt ` σ2vt ,

cptq “ rM0t, . . . ,Mpt´1qts
T
.

(20)

Recursively applying the decomposition (19) from t´ 1 to 1, we obtain

J ‹
Bptq “ tr

``

Σ
´1

θ ` Sp0q ` ∆Sp1q ` ¨ ¨ ¨ ` ∆Sptq
˘́ 1˘

“ tr
``

Σ
´1

θ ` Sp0q `

t
ÿ

i“1

1

γpiq
spiqs

T
piq

˘́ 1˘

.

Since Σ
´1

θ ľ 0 and Sp0q ľ 0, J ‹
Bptq tends to 0 as t goes to 8, if and only if the smallest eigenvalue of

the information matrix diverges to infinity, i.e.,

lim
tÑ8

J ‹
Bptq “ 0 ðñ lim

tÑ8
λmax

´

`

Σ
´1

θ ` Sp0q `

t
ÿ

i“1

1

γpiq
spiqs

T
piq

˘́ 1¯

“ 0,

ðñ lim
tÑ8

λmin

`

Σ
´1

θ ` Sp0q `

t
ÿ

i“1

1

γpiq
spiqs

T
piq

˘

“ 8.

Equivalently, the eigenvalues diverge if and only if for every unit vector v̂ P RpN`1q, i.e., ∥v̂∥ “ 1, the
above series diverges to infinity, i.e.,

lim
tÑ8

λmin

`

Σ
´1

θ ` Sp0q `

t
ÿ

i“1

1

γpiq
spiqs

T
piq

˘

“ 8 ðñ @v̂ P RpN`1q, ∥v̂∥ “ 1, lim
tÑ8

t
ÿ

i“1

1

γpiq
pv̂

T
spiqq2 “ 8.

Hence, the necessary and sufficient condition for the convergence of the estimator to the true value is

lim
tÑ8

J ‹
Bptq “ 0 ðñ lim

tÑ8
inf

}v}“1

´

t
ÿ

i“1

1

γpiq
pv̂

T
spiqq2

¯

“ 8. (21)

For the sake of contradiction, let us choose the vector 1tnu as the nth standard basis vector, i.e.,

1tnu “ r0, . . . , 0, 1, 0, . . . , 0s
T
, n ě 1.

Ò
nth

Substituting this unit vector into the convergence condition (21), we have

1

γpiq
p1

T

tnuspiqq2 “
1

γpiq
p1

T

tnuΦ̄pi´ 1qR
´1

pi´ 1qcpiq ´ 1
T

tnuµ
i
ϕq2 “

1

γpiq
p

i´1
ÿ

j“0

1

γpjq
µjϕnMji ´ µiϕnq2,

and

lim
tÑ8

t
ÿ

i“1

1

γpiq
p1

T

tnuspiqq2 “

8
ÿ

i“1

1

γpiq
p

i´1
ÿ

j“0

1

γpjq
µjϕnMji ´ µiϕnq2, (22)
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where γp0q “ M00 ` σ2v0 . From the structure of µiϕn and Σjiϕnm
for the Fourier basis with Gaussian

process noise in (16), i.e.,
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

µiϕn “ χinexp
`

´ 1
2f

T

nĀiΣw̄Ā
T

ifn
˘

, ´2 ď χin ď 2,

Σjiϕmn
“ ξjimnexp

`

´ 1
2f

T

nĀiΣw̄Ā
T

ifn
˘

, ´2 ď ξjimn ď 2,

χin “
ř

ℓPt´1,1u

exppjxĀ
T

i ℓfn, B̄ūyq,

ξjimn “
ř

ℓ,ℓ1Pt´1,1u

exppjxĀ
T

jℓfm ` Ā
T

i ℓ
1fn, B̄ūyq

`

exp
`

´ℓf
T

mĀjΣw̄Ā
T

i ℓ
1fn

˘

´ 1
˘

exp
`

´ 1
2f

T

mĀjΣw̄Ā
T

jfm
˘

,

we have the following properties:

(i) Bounded coefficients: µiϕn ă 8, µjϕn ă 8, Σjiϕ ă 8 for all values of i and j. Also, from (20),

Mji “ tr
`

Σjiϕ pΣθ ` µθµ
T

θq
˘

ă 8, 0 ă γpiq ď Mii ` σ2vi ă 8, 0 ă γpjq ď Mjj ` σ2vj ă 8.

(ii) Impact of stochastic instability: For the special case of marginally stable or unstable LTI
system, i.e., λmaxpAq ě 1,

ṽ
T
pĀiΣw̄Ā

T

i qṽ “

i
ÿ

k“0

ṽ
T
AkΣwpi´kq

Ak
T

ṽ “

i
ÿ

k“0

|λqpAq|2kṽ
T
Σwpi´kq

ṽ,

where ṽ is the eigenvector of matrix A corresponding to λmaxpAq and Σw0 “ Σx0 . It is evident

from the equality that ĀiΣw̄Ā
T

i grows unbounded and expṕ 1
2f

T

nĀiΣw̄Ā
T

ifnq decays to zero.
(iii) Decay of terms: The elements µjϕn , Mji, and µiϕn in (22) decay exponentially to zero due

to expṕ 1
2f

T

nĀiΣw̄Ā
T

ifnq. From (20), one can also observe that cpiq decays exponentially to
zero, while rpiq exponentially converges to σ2vi . Consequently, γpiq and γpjq also exponentially
converge to σ2vi and σ2vj , respectively.

Thus, the numerator of the series (22) decays exponentially as O
`

expṕ 1
2f

T

nĀiΣw̄Ā
T

ifnq
˘

, and therefore,
the summation converges to a bounded value, i.e.,

lim
tÑ8

t
ÿ

i“1

1

γpiq
p1

T

tnuspiqq2 ă 8.

Consequently, there exists a unit vector v̂ “ 1tnu and n ě 1, such that the series converges, violating
the condition (21). Therefore, limtÑ8 J ‹

Bptq ą 0, proving the Bayesian MMSE affine estimator is not
consistent for Fourier bases and stochastically unstable LTI systems with Gaussian process noise w̄. □

Proof of Proposition 4.3. Let J ‹
Bpτ, T τ q denote the optimal Bayesian MMSE estimation error (7b),

where τ is the number of statistically independent output trajectories, each with the length of pTi `1q,
namely, ȳi “ ry0, . . . , yTis

T, i P t1, ..., τu. Thus, a total of T τ “ pT1 ` 1q ` ¨ ¨ ¨ ` pTτ ` 1q measurements
are used. Since the error decreases monotonically with additional dependent measurements, as stated
in Corollary 3.5, one can infer that

J ‹
Bpτ, T τ q ď J ‹

Bpτ, τq, (23)

where J ‹
Bpτ, τq represents the estimation error using τ statistically independent trajectories each with

single measurements, T τ “ τ , where each trajectory i contains a single independent measurement, i.e.,
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ȳi “ y0. Using the equivalent representation of the optimal MMSE error (10), we have

J ‹
Bpτ, τq “ tr

``

Σ
´1

θ ` Φ̄pτqR
´1

pτqΦ̄
T
pτq

˘́ 1˘

,

where Rpτq :“ Mpτq`Σv̄pτq. Consider the matrix definition and decompositions S :“ Φ̄pτqR
´1

pτqΦ̄
T
pτq,

Φ̄pτq “ rµ0ϕp1q, . . . , µ0ϕpτqs, Rpτq “ diag
`

rp1q, . . . , rpτq
˘

,

with rpiq “ M00piq ` σ2v0piq ą 0 for batch i, and M00piq “ tr
`

Σ00
ϕ piqpΣθ ` µθµ

T

θq
˘

. The statistical
independence between batches ensures Rpτq is diagonal, leading to

S “

τ
ÿ

i“1

1

rpiq
µ0ϕpiqµ0

T

ϕ piq.

Following the reasoning in the proof of Proposition 4.2, the necessary and sufficient condition for the
convergence of the MMSE estimator with independent and identically distributed (i.i.d.) data is

lim
τÑ8

J ‹
Bpτ, τq “ 0 ðñ lim

τÑ8
λmin

´

τ
ÿ

i“1

1

rpiq
µ0ϕpiqµ0

T

ϕ piq
¯

“ 8.

From the inequality (23), the above provides a sufficient condition for J ‹
Bpτ, T τ q to converge to 0. □

5. Active Learning

Active learning seeks to develop input signals that maximize information gain, thereby reducing
estimation error. While our proposed Bayesian MMSE affine estimator in Theorem 3.2 is optimal
among all affine estimators, it can be coupled with an optimal input signal to improve estimation
performance further. To this end, our approach leverages the analytical expression of the estimation
error (7b), distinguishing it from most active learning methods that rely on maximizing information
gain as a proxy for the estimation error, which is typically unavailable. Consequently, the optimal
inputs can be determined independently of measurements, either a-priori or in real-time, by solving
the following optimization problem:

ū‹ P argmin
ūPU

E
”∥∥θ ´ θ̂Bpȳq

∥∥2ı

“ argmin
ūPU

J ‹
Bpūq, (24)

where U represents the input space, which may impose physical constraints on feasible inputs for
estimation. Since only the second term of J ‹

B in (7b) depends on ū and is negative, the optimization
problem (24) is equivalent to maximizing the second term of (7b). Nevertheless, we present this problem
in its minimization form and solve it using an iterative first-order method, such as steepest descent or
projected steepest descent when constraints are involved [3], while leveraging an analytical expression
for its gradient. It should be noted that (24) is potentially non-convex due to how ū influences matrices
Φ̄ and M. The iterative update rule for projected gradient descent is given by

ūk`1 “ PU
“

ūk ´ αk∇ūJ ‹
Bpūkq

‰

, ∇ūJ ‹
B “

„

BJ ‹
B

Bū1
, ¨ ¨ ¨ ,

BJ ‹
B

Būpnx`Tnuq

ȷT

, (25)

where k represents the current iteration step, PUr¨s denotes the projection operator that maps the
argument onto U, αk is a positive stepsize, and ∇ūJ ‹

Bpūkq is the gradient of the cost function evaluated
at ūk. Various algorithms exist for selecting the stepsize αk, including the standard approach of
diminishing stepsize rules [3, p. 69]. Furthermore, since the explicit description of J ‹

B is available
in (7b) (aka. zero-order information), more sophisticated methods such as exact line search can also
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be employed; we refer interested readers to [3, Ch. 2] for further details. It is worth noting that these
stepsize rules may require parameter tuning (e.g., a constant in diminishing stepsize methods) or involve
computational overhead in line search techniques. To circumvent these possible limitations, one can
also utilize the recent, easy-to-implement, adaptive stepsize from [25] defined as

αk “min

"

a

1 ` βk´1αk´1
,

∥∥ūk ´ ūk´1
∥∥

2
∥∥∇ūJ ‹

Bpūkq ´ ∇ūJ ‹
Bpūk´1q

∥∥
*

, βk “
αk

αk´1

, k ě 1,

with initial conditions β0 “ 8 and α0 “ 10´10. Finally, the gradient of the Bayesian MMSE estimation
error (7b) with respect to each ūi of the input vector is derived by applying the chain rule to J ‹

Bpūq,
resulting in

BJ ‹
B

Būi
“ tr

`

Ψ‹TΨ‹Būi
M ` 2Ψ‹TpΨ‹Φ̄

T
´ IqΣθBūi

Φ̄
˘

, (26)

where Ψ‹ is defined in (7a). The partial derivative terms Būi
M and Būi

Φ̄ depend on the gradient of the
respective DBS as follows:

‚ Būi
Φ̄ “ rBūi

µ0ϕ, . . . , Būi
µTϕ s,

‚ the pt` 1, t1 ` 1qth element of Būi
M is Būi

Mtt1 “ tr
`

pΣθ ` µθµ
T

θqBūi
Σtt

1

ϕ

˘

,
‚ the pn` 1qth element of Būi

µtϕ and pm` 1, n` 1qth element of Būi
Σtt

1

ϕ are

Būi
µtϕn“

BErϕnpxtqs

Būi
, Būi

Σtt
1

ϕmn
“

BErϕmpxt1qϕ
T

npxtqs

Būi
´ Būi

µt
1

ϕmµ
t
ϕn´ µt

1

ϕmBūi
µtϕn.

For Fourier basis functions (11), with the explicit expressions of the DBS pµtϕ,Σ
tt1

ϕ q provided in Lemma 4.1,
the partial derivatives Būi

µtϕ and Būi
Σtt

1

ϕ , are the following DBS gradients:

(i) DBS mean gradient: Būi
µtϕ0 “ 0, and for n ě 1,

Būi
µtϕn“

ÿ

ℓPt´1,1u

jℓf
T

nĀtB̄1tiuexppjxĀ
T

tℓfn, B̄ūyqφpΣ
1
2

w̄Ā
T

tℓfnq, (27a)

(ii) DBS covariance gradient: Būi
Σtt

1

ϕmn
“ 0 if m “ 0 or n “ 0. For m,n ě 1,

Būi
Σtt

1

ϕmn
“

ÿ

ℓ,ℓ1Pt´1,1u

j
`

ℓf
T

mĀt ` ℓ1f
T

nĀt1
˘

B̄1tiuexppjxĀ
T

tℓfm ` Ā
T

t1ℓ
1fn, B̄ūyq

ˆ
`

φ
`

Σ
1
2

w̄pĀ
T

tℓfm ` Ā
T

t1ℓ
1fnq

˘

´ φpΣ
1
2

w̄Ā
T

tℓfmqφpΣ
1
2

w̄Ā
T

t1ℓ
1fnq

˘

,

(27b)

where Āt and Āt1 are defined analogously to (14), and 1tiu is the single-entry vector with 1 at index i
and zero elsewhere, i.e.,

1tiu “ r0, . . . , 0, 1, 0, . . . , 0s
T
.

Ò

ith

In the case of Gaussian noise, it is sufficient to substitute the characteristic functions in the derived
terms of (27) with their corresponding expressions in (16). The computational complexity of computing
the gradient (26) for each element of input per iteration of the first-order method is equivalent to that
of the optimal Bayesian MMSE affine estimator, which scales as O

`

T 3
˘

when N ! T . In the following
section, we numerically demonstrate the reduction in estimation error achieved by applying this active
learning technique.



OPTIMAL BAYESIAN AFFINE ESTIMATOR AND ACTIVE LEARNING FOR THE WIENER MODEL 18

6. Numerical Experiments

In this section, we evaluate the performance of four estimators through numerical examples: two
approximate regularized least-squares (RLS) linear estimators (DLS and MLS) from Section 3.1, the
optimal Bayesian MMSE affine estimator (BMS) from Section 3.2, and its integration with active
learning (BAL) from Section 5. To ease the reproducibility of these experiments, we provide our
MATLAB library at https://github.com/sasanvakili/Bayesian4Wiener.

Using a marginally stable dynamical system with a true function in Fourier subspace, we observe the
effects of increasing process noise uncertainty and demonstrate the inherent inconsistency discussed in
Proposition 4.2. We compare estimators using the squared error criterion, ||θ ´ θ̂pȳq||2, over 10,000

simulations, employing identical realizations of w̄ and v̄ across all estimators for fair comparison. In the
resulting plots, dashed lines represent the analytically computed mean squared error, Er||θ ´ θ̂pȳq||2s,
for each method. Non-histogram plots display shaded areas representing the 20th to 80th percentile
range of squared error, while histograms show probability densities.

Experiment setup. Our experiments are based on time-invariant Gaussian noise, vt „ N p0, σ2vIq,
wt`1 „ N p0, σ2wIq, and x0 „ N pµx0 , σ

2
x0Iq, with σ2x0 “ σ2w. To examine the impact of process noise,

we use three incremental variances, σ2w “ t0, 0.001, 0.01u, while maintaining a consistent measurement
noise variance of σ2v “ 0.01 across all experiments. Our experimental design involves generating 100

independent samples each of θ, w̄, and v̄ for various trajectory lengths T , resulting in 10,000 exper-
iments. The dynamical system under study is a linear time-invariant kinematic model representing
a robot moving in two dimensions. In this model, the system states xt P R2 correspond to the ro-
bot’s position, while the inputs ut P R2 represent velocities in each dimension. The system dynamics
are defined by At “ I and Bt “ ∆tI, with a sampling time ∆t “ 0.1. We use µx0 “ r3.2, 2.8s

T

and ut “ 4.5
ř

υPΥrcospυtq, sinpυtqs
T , Υ “ t3, 5, 10, 20, 100u, for DLS, MLS, and BMS experiments,

as well as for initializing the projected steepest descent algorithm of BAL. Each dimension of ut is
constrained within r´200, 200s, representing the robot’s achievable velocity range. The BAL estimator
derives ū‹ within this input range as described in Section 5. To ensure consistent initial states across
all estimators, BAL does not optimize the first element of ū, namely µx0 . Following the Fourier basis
representation in (11), we employ 11 unknown parameters θn, i.e., n “ 0, . . . , 10, with known frequency
vectors fn P R2. Specifically, f0 “ r0, 0s

T , fn “ rn2π
10 , 0s

T for n “ t1, 2, 3u, and fn “ rpn ´ 7q2π10 ,
2π
6 s

T

for n “ t4, ..., 10u. The prior distributions of the unknown parameters follow a uniform distribution
Up2, 8q, implying µθn “ 5 and σ2θn “ 3, from which the true parameter values are drawn.

Benchmark 1: optimal Bayesian vs. RLS expected error. Our first numerical benchmark in-
volves 10,000 simulations for a trajectory of T “ 100, i.e., 101 total measurements, to tune the hyper-
parameter λ of DLS and MLS for three incremental process noise scenarios. The error of BMS remains
constant across λ values, as it does not depend on this hyperparameter. Figure 1 illustrates that the
squared error of DLS and MLS deviates increasingly from BMS as the process noise variance increases.
When σ2w “ 0, as shown in the left plot of Figure 1, all three estimators perform comparably for small
λ values. However, the middle and right plots of Figure 1 demonstrate that DLS and MLS significantly
underperform compared to BMS when σ2w “ t0.001, 0.01u.

Benchmark 2: optimal Bayesian vs. optimal RLS error histogram. After tuning the hyperpa-
rameter λ from Benchmark 1 and determining the optimal hyperparameter λ‹ for MLS in each process

https://github.com/sasanvakili/Bayesian4Wiener
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Figure 1. Squared errors of DLS, MLS, and BMS for different λ values

noise case for a trajectory length of T “ 100, we compare the squared error difference between methods.
The estimates are denoted as follows: MLS using λ‹ as θ̂MLSpȳ, λ‹q, BMS as θ̂BMSpȳq, and BAL as
θ̂BALpȳ, ū‹q, where BAL utilizes optimal inputs ū‹. Figure 2 presents the probability density histogram
of squared error differences between these pairs for 101 total measurements and across 10,000 simula-
tions. Each histogram’s area sums to unity, representing the probability density function, with dashed
lines indicating the analytically computed mean of the differences. The red, blue, and orange distribu-
tions correspond to process noise variances of σ2w “ 0, 0.001, and 0.01, respectively. As observed in the
left plots, MLS shows less squared error than BMS in only 1.62% and 0.03% of cases when σ2w “ 0.001

and 0.01, respectively. The middle plot demonstrates that MLS never outperforms BAL. These results
indicate that BMS and BAL almost surely outperform MLS when process noise exists. Without process
noise, BMS and MLS yield similar results, as evident by the smaller red histogram centred around zero
on the left plot. The right plot shows that BAL with ū‹ consistently provides lower error than BMS
with the input indicated in Experiment Setup when σ2w “ 0 or 0.001, while BMS outperforms BAL in
1.7% of cases when σ2w “ 0.01.

Figure 2. Distribution of squared error differences between pairs of estimators

Benchmark 3: impact of trajectory length and process noise. Building on our previous bench-
marks, we extend our analysis to 10,000 simulations, each featuring trajectories of varying lengths,
T P t0, 4, 10, 13, 16, 20, 25, 32, 40, 50, 63, 79, 100u. Figure 3 compares the squared errors, shown as
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shaded areas, and analytically computed mean squared errors, represented by dashed lines, for DLS,
MLS, BMS, and BAL across three process noise variances. For DLS and MLS, we employ the opti-
mal hyperparameter λ‹, while BAL utilizes optimized input ū‹, derived separately for each trajectory
length. The results confirm that input optimization significantly reduces squared error when the mea-
surement count equals the number of unknown parameters. In the presence of process noise, i.e.,
σ2w “ t0.001, 0.01u, DLS and MLS diverge as they fail to account for system states drift due to accu-
mulated process noise. In contrast, Bayesian methods maintain robustness by precisely calculating the
covariance matrices. Notably, the estimation error reduction of Bayesian estimators slows considerably
with increasing statistically dependent measurements. This observation confirms the inconsistency de-
scribed in Proposition 4.2, which arises from the marginal stability of the chosen dynamical system.

Figure 3. Squared errors of DLS, MLS, BMS, and BAL for varying T

Benchmark 4: evaluation with multiple trajectories. Lastly, we address the slowing rate of
estimation error reduction observed in Figure 3 of the previous benchmark by employing multiple
batches of independent trajectories which demonstrates the consistency condition of the BAL estimator
as outlined in Proposition 4.3. We conduct an experiment using 10,000 simulations, comparing three
settings with different numbers of independent trajectories: τ “ t1, 11, 101u. The same realizations of
w̄ and v̄ were maintained across all cases. When τ “ 101, each trajectory consists of 1 sample; when
τ “ 11, we have 10 trajectories of 10 samples each and 1 trajectory of 1 sample; and when τ “ 1, there
is only 1 trajectory of 101 samples, representing the performance of the BAL estimator from the two
previous benchmarks with T “ 100. For each setting, optimal inputs ū‹ are obtained using (24), which
includes µx0 for different trajectories except the first. The optimization of µx0 for the first batch is
excluded to ensure that the BAL estimates for τ “ 1 are identical to those obtained from T “ 100 in
Benchmarks 2 and 3. Figure 4 compares the probability density histograms of the squared estimation
error for all three settings under process noise variances σ2w “ 0.001 and 0.01. Unlike Figure 2, the
horizontal axes here use a logarithmic scale to better resolve differences in the error distributions. The
σ2w “ 0 scenario is excluded because, in the absence of process noise, measurements across time steps
become statistically independent, providing similar results for all three settings. Results show that
the BAL estimator achieves the least estimation error with 101 independent samples, followed by 11

independent trajectories, and then 1 trajectory of 101 correlated samples. The comparison between the
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two plots demonstrates that the estimation error increases with process noise, highlighting its impact
on estimation performance. This experiment confirms the consistency condition in Proposition 4.3.

Figure 4. Distribution of squared errors for multiple τ

Experimental analysis summary. Benchmark 1 and Benchmark 2 demonstrate the superiority of
the Bayesian MMSE affine estimator, showing that it almost surely outperforms the approximate reg-
ularized least-squares method (cf. Figure 1 and Figure 2). Furthermore, when paired with active learn-
ing, the Bayesian MMSE affine estimator achieves the lowest estimation error (cf. Figure 2 and Fig-
ure 3). Benchmark 3 further investigates the impact of process noise in a marginally stable dynamical
system, emphasizing that unbounded growth in process noise slows down estimation error reduction
(cf. Figure 3). As the number of dependent data points increases, the information gained from each
new measurement diminishes, preventing convergence to the true value even with infinite measure-
ments. Benchmark 4 highlights the importance of using multiple independent trajectories for accurate
parameter estimation under process noise. It demonstrates convergence as the number of independent
trajectories increases (cf. Figure 4).
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