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Abstract. We study the factor model problem, which aims to uncover low-dimensional structures in

high-dimensional datasets. Adopting a robust data-driven approach, we formulate the problem as a

saddle-point optimization. Our primary contribution is a general first-order algorithm that solves this

reformulation by leveraging a linear minimization oracle (LMO). We further develop semi-closed form

solutions (up to a scalar) for three specific LMOs, corresponding to the Frobenius norm, Kullback-

Leibler divergence, and Gelbrich (aka Wasserstein) distance. The analysis includes explicit quantifi-

cation of these LMOs’ regularity conditions, notably the Lipschitz constants of the dual function,

whthich govern the algorithm’s convergence performance. Numerical experiments confirm our meod’s

effectiveness in high-dimensional settings, outperforming standard off-the-shelf optimization solvers.
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1. Introduction

The correlation structure among observed random variables can be understood using factor analysis

in many applications. This correlation is expressed in terms of a smaller number of common factors [40],

i.e., the information contained in a high-dimensional data vector can be compressed into a small

number of common unobserved factors [63]. Mathematically, a high-dimensional data point ξ ∈ Rn is

represented as the sum of two independent unobserved parts

ξ = Φα + ω, (1)

where Φ ∈ Rn×r is a tall, full-rank matrix (n≫ r), known as factor loading matrix, and α ∈ Rr is the

vector of independent unobserved (latent) factors. Therefore, Φα, having interrelated components,

specifies the low-dimensional representation of ξ. The second part in (1) denoted by ω is known

as idiosyncratic noise, and has independent components and represents the remaining part of the

description [2, 20]. Such low-dimensional decompositions have also been studied in other contexts,

such as principal component analysis (PCA). However, PCA is particularly well-suited for scenarios

where the data is corrupted by small, unstructured noise [11]. In contrast, the factor model addresses

the opposite setting where the noise may be substantial but exhibits a structure, for instance, it has

independent components. Another similar problem is compressed sensing, where the noise is still small

and unstructured, but r factors are contained in a sparse tall vector α [27].
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Originating from the analysis of mental test scores [2, 54], the factor model has found wide-ranging

applications across various domains, including control engineering [15], system identification [38, 1, 30],

fault detection [60, 62], anomaly detection [61], econometrics [32, 33, 29, 57, 23], and statistics [31, 20].

In the systems and control community, the factor model is particularly valuable for modeling and iden-

tifying large-scale or complex networked systems that are subject to uncertainty and disturbances [51].

In the context of machine learning, it serves as an effective tool for dimensionality reduction and fea-

ture extraction, leveraging the low-dimensional representation given in (1). We note that factorable

structures have also been leveraged in various contexts, such as Markov decision processes [16], robust

optimization [22], and matrix factorization problems [42], among many others. This paper aligns most

closely with the matrix factorization literature.

1.1. Problem formulation

When the covariance of ξ, denoted by Σ, is available, and assuming that both random variables ξ

and ω are zero-mean and independent from each other, we can rewrite (1) as the matrix decomposition

Σ = L + D, (2)

where L = ΦΣαΦ⊤ is a low rank matrix with rank(L) = r (i.e., number of factors) in which Σα = I

is the covariance matrix of α, and D is the covariance of noise inheriting the properties of the noise,

e.g., it is a non-negative diagonal matrix. In practice, the covariance data Σ is often not available and

is only observable through a finite dataset {ξk}Nk=1. Considering this limitation, one may approximate

the covariance matrix with its empirical counterpart

Σ̂ =
1

N

N∑
k=1

(
ξk − µ̂

)(
ξk − µ̂

)⊤
, µ̂ =

1

N

N∑
k=1

ξk. (3)

Under the assumption that the random vector ξ is zero-mean (E(ξ) = 0), one can also consider the

data-driven covariance approximation where µ̂ = 0 in (3). To robustify to this approximation error, a

common practice is to consider a family of covariance matrices in the vicinity of Σ̂ defined as

Bd
ε (Σ̂) :=

{
Σ ⪰ 0 : d(Σ, Σ̂) ≤ ε

}
, (4)

where d is a generic distance function in the space of matrices, and ε is the radius (size) of the set.

Considering the target decomposition (2) and the uncertainty set (4), our robust data-driven factor

model problem can be formulated as the optimization problem

J⋆ := min
L,D

Tr (L)

s.t. L ∈ S+, D ∈ D+,

L + D ∈ Bd
ε (Σ̂)

(5)

where the cone of PSD matrices S+ and the cone of nonnegative diagonal matrices D+ capture the

structural properties of the decomposition, and the trace operator in the objective function is a stan-

dard convexification for the nonconvex rank function [52]. We note that the second line constraint in

(5) is indeed equivalent to d(L + D, Σ̂) ≤ ε, thanks to the conic structural information in the first

two constraints. Moreover, the radius ε of the uncertainty ball is a hyperparameter that is determined

based on the precision of our data-driven approximation Σ̂.
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1.2. Existing work

Traditionally, the factor model problem was addressed under the assumption that the sample covari-

ance matrix Σ̂ is an accurate estimate of the true covariance matrix Σ (i.e., Σ = Σ̂), which corresponds

to ε = 0. Under this assumption, several solution methods based on expectation-maximization algo-

rithm [25, 45], rank-constrained optimization, and asymptotic principal components method [24, 11, 4]

have been proposed. However, these approaches may suffer from the inaccuracy of the estimate Σ̂, a

situation commonly encountered in practice. Consequently, recent research has increasingly focused

on versions of the factor model that explicitly account for uncertainty in Σ̂, i.e., considering ε > 0. For

example, the authors in [19] propose a coordinate descent-type algorithm that minimizes the squared

Frobenius norm of residual (∥Σ̂ − L − D∥2F), while [9] develops an algorithm based on conditional

gradient method targeting the general Schatten q-norm of this residual (∥Σ̂ − L −D∥qq). The robust

factor model problem (5) has also previously been studied in [20] for the special case where the distance

function d is the Kullback-Leibler divergence.

While existing approaches are typically designed for a specific choice of distance function d, this

study introduces a generic algorithm that only requires access to the linear minimization oracle (LMO)

O(Λ) := arg min
Σ

{
⟨Λ,Σ⟩ : Σ ∈ Bd

ε (Σ̂)
}

(6)

for any symmetric matrix Λ, where the ball Bd
ε (Σ̂) is defined as in (4). An important computational

advantage of the proposed algorithm lies in the reduced dimensionality of the linear minimization

oracle (LMO) (6). Specifically, the number of decision variables in the LMO (i.e., the matrix Σ)

is essentially half that of the original problem (5), which involves both D and L. This reduction

becomes particularly beneficial in high-dimensional settings, where solving the LMO is significantly

more efficient than addressing the full optimization problem directly. Although the LMO is often

tractable and admits near-analytic solutions, the conic constraints associated with the feasible sets S+
and D+ can make the solutions to (5) computationally demanding.

Finally, we wish to note that this study, along with the literature mentioned above, focuses on a

static formulation of the factor model, where the latent factors remain constant over time. However, a

dynamic counterpart also exists, as explored in works such as [51, 41, 39], where the temporal evolution

of factors is modeled via state-space representations. The study of dynamic factor models, however,

lies beyond the scope of this work.

1.3. Main contribution

Given the above literature, we summarize the contributions of this work as follows.

• Saddle point characterization. For a general class of distance functions and possible convex

conic structural information about the covariance matrix, we reformulate the factor model (5)

as a saddle point problem (Proposition 2.1).

• First-order algorithm & convergence. Leveraging the saddle point reformulation and

given a linear minimization oracle (LMO), we propose a first-order algorithm with convergence

guarantees derived based on standard regularity conditions such as Lipschitz constants (Propo-

sition 2.3). A particular feature of the proposed algorithm is the linear convergence rate of the
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projection operator, as opposed to the standard sublinear rate, which is enabled by Dykstra’s

projection technique (Proposition 2.5).

• Special LMOs: closed-form description & Lipschitz constant. The choice of distance

function directly influences the corresponding oracle and Lipschitz constant of the dual func-

tion, both of which play a central role in the implementation of the proposed algorithm and its

convergence performance. We derive the closed-form description for the LMO and its respective

Lipschitz constant for the special cases of the Frobenius norm (Proposition 3.1), the Kullback-

Leibler divergence (Proposition 3.3), and the Gelbrich (aka Wasserstein) distance (Proposi-

tion 3.6). Particular emphasis is devoted to providing a tight, explicit characterization of how

key parameters, such as the ambiguity set, affect these quantities.

The theoretical results are validated through extensive numerical experiments, demonstrating the

performance of the proposed algorithms. To facilitate reproducibility, we provide an open-source

MATLAB library available at https://github.com/skhodakaram/Factor_Model.

Organization. Section 2 presents the saddle point reformulation and the first-order algorithm of

the factor model. Section 3 studies the oracle of the three special distance functions in which their

closed-form solutions and other regularities are characterized. Section 4 numerically validates the

theoretical results, and Section 5 concludes with some final remarks and possible research directions.

Notation. For any symmetric square matrix A, λmax(A) denotes its maximum eigenvalue and its

trace is represented by Tr (A). The nuclear norm of A is denoted as ∥A∥∗. The matrix denoted as

Diag(A) is a diagonal matrix whose diagonal elements are the diagonal elements of matrix A. For any

A,B ∈ Rn×m, ⟨A,B⟩ = Tr
(
A⊤B

)
denotes the inner product of A and B. The respective squared

Frobenius norm is denoted by ∥A∥2
F

:= ⟨A,A⟩. In the special case of a ∈ Rn vectors (i.e., m = 1),

the Frobenius norm coincides with the classical Euclidean norm and is denoted by ∥a∥2. The operator

ΠA [x] denotes the orthogonal projection of the vector x onto the set A. The element-wise inequality

between matrices is denoted by A ≥ B, and the semidefinite counterpart by A ⪰ B. The positive semi-

definite cone (i.e., all symmetric matrices A ⪰ 0) is denoted by S+. Given a convex cone C ∈ Rn, its

dual cone is defined by C∗ := {x ∈ Rn : ⟨x, y⟩ ≥ 0,∀y ∈ C}. The function 1A denotes the binary-valued

indicator function over the set A, i.e., 1A(x) = 1 if x ∈ A; otherwise = 0.

2. Saddle Point Reformulation and First-Order Algorithm

2.1. Saddle point characterization

The first result of this paper is a saddle point (max-min) reformulation of the factor model prob-

lem (5). This reformulation paves the way for optimization algorithms, especially considering the

availability of the LMO (6).

Proposition 2.1 (Saddle point reformulation). The optimal value J⋆ of the factor model problem

in (5) is equivalent to the max-min problem

J⋆ = max
I−Λ∈S+

−Λ∈D∗
+

min
Σ∈Bd

ε (Σ̂)

⟨Λ,Σ⟩, (7)

https://github.com/skhodakaram/Factor_Model
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where D∗
+ =

{
A : Diag(A) ≥ 0

}
is the dual cone of D+.

Proof. Let us consider a new decision variable Σ = L + D, which is aligned with the equality (2).

The corresponding Lagrange multiplier of this equality constraint is denoted by Λ. The factor model

problem (5) can then be rewritten as

max
Λ

min
Σ,L,D

Tr (L) + ⟨Λ,Σ− L−D⟩

s.t. L ∈ S+, D ∈ D+

Σ ∈ Bd
ε (Σ̂),

(8)

where the strong duality holds thanks to the usual convex-concave property. Λ is symmetric since Σ, L,

and D are symmetric. We note that the usual Slater’s condition is not required due to the linearity of

the dualized constraint [7]. In the dualized program (8), the decision variables L and D are separable,

and as such, the inner minimization over their respective conic spaces S+ and D+ can be computed

explicitly. This yields the so-called support functions maxL∈S+⟨Λ− I, L⟩, and maxD∈D+⟨Λ, D⟩ in the

objective. It is worth stating that using the dual cone definition, maxL∈S+⟨Λ−I, L⟩ = 0, if I−Λ ∈ S∗+;

otherwise is +∞; and maxD∈D+⟨Λ, D⟩ = 0 if −Λ ∈ D∗
+; otherwise is +∞; for more general setting,

the reader is referred to [7, Proposition 5.3.9]. Hence, the support functions essentially confine the

feasible set of I − Λ and −Λ to the respective dual cones S∗+ and D∗
+, respectively. It then suffices to

note that the PSD cone is self-dual (i.e., S∗+ = S+), and computing the dual cone D∗
+ arrives at the

desired program (7). □

It is worth noting that the LMO (6) is used to find the solution to the inner minimization of

the primal-dual reformulation in (7) as a function of the decision variable of the outer maximization

problem. The max-min formulation (7) facilitates the development of an optimization algorithm to

tackle (5) numerically. The inner minimal value, hereafter referred to as the dual function, is

g(Λ) := min
Σ∈Bd

ε (Σ̂)
⟨Λ,Σ⟩ (9)

Note that the dual function g(Λ) in (9) is indeed the optimal value corresponding to the optimal

point of the LMO in (6). The availability of this oracle motivates us to study the application of first-

order algorithms on (9). The Lipschitz continuity of the dual function g(Λ) in (9) is a critical regularity

condition that ensures the success of the optimization algorithm. For instance, if g(Λ) is Lipschitz

continuous and its (sub)gradient is available, then one can use the classical projected gradient ascent

with the stepsize proportion to 1/
√
t, where t is the iteration count [53]. With this in mind, the next

result quantifies the Lipschitz constant of the dual function.

Lemma 2.2 (Dual function Lipschitz constant). The function g(Λ), defined in (9), is Lipschitz con-

tinuous with the constant L, i.e.,

|g(Λ1)− g(Λ2)| ≤ L∥Λ1 − Λ2∥F, where L := max
Σ∈Bd

ε (Σ̂)

∥Σ∥F . (10)

Proof. Using the definition of the dual function in (9), we have

g(Λ1)− g(Λ2) = min
Σ1∈Bd

ε (Σ̂)
⟨Λ1,Σ1⟩ − min

Σ2∈Bd
ε (Σ̂)
⟨Λ2,Σ2⟩
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= min
Σ1∈Bd

ε (Σ̂)
max

Σ2∈Bd
ε (Σ̂)
⟨Λ1,Σ1⟩ − ⟨Λ2,Σ2⟩

≤ max
Σ2∈Bd

ε (Σ̂)
⟨Λ1 − Λ2,Σ2⟩ ≤ L∥Λ1 − Λ2∥F,

where the last inequality is the direct application of the Cauchy-Schwarz inequality (i.e., ⟨A,B⟩ ≤
∥A∥F∥B∥F for all A, B with appropriate dimensions). □

2.2. First-order algorithm and Dykstra projection oracle

We propose a first-order algorithm using the LMO (6) to solve problem (7), which is the primal-dual

reformulation of the factor model problem.

Proposition 2.3 (Algorithm & convergence). Consider the optimization algorithm
Σt = O(Λt)

Λt+1 = ΠS1∩S2 [Λt + δΣt]

Λt = t−1
t Λt−1 + 1

t Λt, Σt = O(Λt)

(11)

where S1 = {Λ : Diag(Λ) ≤ 0}, S2 = {Λ : I − Λ ∈ S+} are the conic constraint sets of the decision

variable Λ in (7), O is the linear minimization oracle defined in (6), and δ is a constant stepsize.

Then, after T iterations of algorithm (11) we have

0 ≤ ⟨Λ⋆,Σ⋆⟩ − ⟨ΛT ,ΣT ⟩ ≤
∥Λ1 − Λ⋆∥2

2δT
+

δ

2
L2 (12)

where (Λ⋆,Σ⋆) is a saddle point solution of (7), Λ1 is the initial condition of (11), and the constant L
is the Lipschitz constant defined in (10).

Proof. The proof follows from the standard projected subgradient method. To see this, note that our

LMO (6) is indeed the subgradient of our dual function (9), i.e., O(Λ) = ∂g(Λ)
∂Λ . This observation is a

consequence of Danskin’s theorem [6, (A.22), p 154]. Therefore, the first two steps in (11) effectively

implement the projected subgradient ascent applied to the dual function d defined in (9) while the

dynamics of Λt is the averaging method over all the iterations, i.e., Λt = 1
N

∑t
i=1 Λi. Leveraging the

classical bound of the projected subgradient (e.g., [8, Proposition 3.2.4]), we have the error bound (12).

□

Remark 2.4 (Diminishing stepsize & averaging). Minimizing the error bound in (12) with respect to

the constant stepsize δ reveals that the optimal choice is δ = O(1/
√
T ), which yields a suboptimality gap

of O(1/
√
T ); see for example [3, Corollary 2]. However, such constant stepsizes often perform poorly in

practice. Alternatively, it is shown in [53] that a diminishing anytime stepsize δt = O(1/
√
t) achieves

similar convergence, up to a logarithmic factor. This justifies the widespread use of O(1/
√
t) stepsizes,

which we adopt in our experiments. We further note that other stepsize management approaches, such

as averaging techniques, have been employed in the context of the Lagrangian dual for constrained

optimization [47] and general saddle-point problems [48].

It should be noted that the possible difficulty in the proposed algorithm (11) is the projection on

the intersection of S1 and S2. Depending on the cones of S1 and S2, this projection operation may be
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difficult. To address this issue, we propose Dykstra’s algorithm as an effective approach to implement

this operation, which is described in Algorithm 1 [55, 28].

Algorithm 1 Dykstra’s projection (ΠS1∩S2 [Λ])

1: Input: U0
2 = Λ, Z0

1 = 0, Z0
2 = 0, k = 1

2: while
∥Uk

2 −Uk
1 ∥F

∥Uk
2 ∥F

≥ 10−6 do

3: Uk
1 = ΠS1 [Uk−1

2 + Zk−1
1 ]

4: Zk
1 = Uk−1

2 + Zk−1
1 − Uk

1

5: Uk
2 = ΠS2 [Uk

1 + Zk−1
2 ]

6: Zk
2 = Uk

1 + Zk−1
2 − Uk

2

7: k ← k + 1
return Uk

2

2.3. Analysis of Dykstra’s projection algorithm

This section addresses the projection step in algorithm (11). Formally, for a given symmetric

matrix Λ̄, we aim to solve the optimization problem

Λ⋆ = arg min

{
1

2
∥Λ− Λ̄∥2F : Λ ∈ S1 ∩ S2

}
. (13)

Projecting onto the intersection of convex sets is generally viewed as a convex optimization problem,

often called the best approximation problem. Dykstra’s projection algorithm, introduced in [28, 17, 37],

efficiently solves this problem. Algorithm 1 outlines Dykstra’s projection algorithm for problem (13).

Unlike the alternating projection algorithm proposed in [58], Dykstra’s projection algorithm is guar-

anteed to converge to the unique solution of the best approximation problem. Specifically for prob-

lem (13), given that S1 ∩ S2 ̸= ∅, the sequence generated by this algorithm converges asymptotically

to the unique solution of (13) due to [17, Theorem 2]

lim
k→∞

∥Λ⋆ − Λ∥F = 0,

where Λ is the output of Dykstra’s projection algorithm.

Despite its simplicity, Dykstra’s projection algorithm requires no additional assumptions for con-

vergence, unlike splitting methods such as Douglas-Rachford splitting, which need further regularity

conditions; see [5, Corollary 28.3]. Convergence rate analysis of Dykstra’s projection algorithm and

its variants has been studied extensively in recent years. In particular, when all sets are polyhe-

dral, [44, 26, 56] establish the linear convergence of the algorithm. Additionally, [34, 37] prove that

Dykstra’s projection algorithm can be viewed as a dual coordinate gradient descent method. Using

this connection and showing that the dual objective function admits a so-called Kurdyka- Lojasiewicz

property [12, 13], [59, Theorem 5.3] prove a linear convergence rate of the algorithm for a certain

class of conic problems and under some regularity conditions. The following theorem establishes that

these conditions are satisfied for certain points Λ̄ when we solve (13). For a set A, we denote by

NA(x) := {v : ⟨v, y − x⟩ ≤ 0, ∀y ∈ A} the normal cone of the set at x.
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Proposition 2.5 (Linear convergence for projection). Suppose that the optimizer of the program (13)

satisfies Λ⋆ − Λ̄ ∈ rint(NS1∩S2(Λ̄)). Then, Algorithm 1 converges linearly to Λ⋆.

Proof. The proof concludes if we show all requirements of [59, Theorem 5.3] specified in [59, Assump-

tion 4.1] are satisfied for problem (13). Observe that S1 is a polyhedron, and it is therefore C2-cone

reducible in the sense of [14, Definition 3.135]. The same also holds for S2 as it can be reduced to a

(shifted) semidefinite cone. Thus, the first requirement in [59, Assumption 4.1] is satisfied. The second

requirement also holds as rint(S1 ∩ S2) is nonempty. Finally, the third requirement is satisfied due to

the assumption we made that Λ⋆ − Λ̄ ∈ rint(NS1∩S2(Λ̄)). This concludes the proof. □

We note that the assumption Λ⋆ − Λ̄ ∈ rint(NS1∩S2(Λ̄)) cannot be verified a priori. However, this

assumption is both standard in the literature and crucial for establishing linear convergence. For

further discussion on its necessity for linear convergence, we refer the reader to [59, Example 5.1].

3. Special Cases of Linear Minimization Oracle

In this section, we study three special cases of the LMO (6) in more detail, in particular in view of

their computational complexity and the respective Lipschitz continuity of the dual function (9). This

includes (1) the Frobenius distance, (2) the Kullback-Leibler divergence, and (3) the Gelbrich distance.

3.1. Frobenius norm

The first distance is the Frobenius norm F(Σ, Σ̂) := ∥Σ − Σ̂∥F. We show that the LMO (6) corre-

sponding to the Frobenius distance admits an explicit form up to a scalar convex optimization.

Proposition 3.1 (Frobenius oracle & Lipschitz constant). Consider the LMO (6) for a given Σ̂ where

the distance function is the Frobenius norm d(Σ, Σ̂) = F(Σ, Σ̂).

(i) Closed-form description: For any matrix Λ and a positive scalar γ, we define

Σ⋆(Λ, γ) := Π⪰0

[
Σ̂− 1

2γ
Λ

]
, (14)

where Π⪰0 denotes the projection with respect to the Frobenius norm onto the PSD cone. Then,

the LMO (6) equates to O(Λ) = Σ⋆(Λ, γ⋆), where the scalar γ⋆ is the solution to

max
0<γ≤∥Λ∥F

⟨Λ,Σ⋆(Λ, γ)⟩+ γ
(
∥Σ⋆(Λ, γ)− Σ̂∥2F − ε2

)
. (15)

(ii) Lipschitz constant: The Lipschitz constant of g(Λ) in Lemma 2.2 is bounded by

L ≤ ε + ∥Σ̂∥F (16)

Proof. Let us start with part (i). Introducing the Lagrange multiplier γ corresponding to the constraint

∥Σ− Σ̂∥2F ≤ ε2, the dual program of the oracle optimization (6) is

max
γ≥0

min
Σ⪰0
⟨Λ,Σ⟩+ γ

(
∥Σ− Σ̂∥2F − ε2

)
. (17)

To compute the inner minimizer explicitly, we note that the Hessian of the Lagrangian function in (17)

with respect to Σ is a scaled identity. This allows us to first compute the optimal solution of the

unconstrained problem (ignoring the positivity constraint Σ ⪰ 0), and then project that onto the PSD
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cone. With this in mind, the first-order optimality condition for the unconstrained program of the

inner minimization yields Λ + 2γ(Σ∗ − Σ̂) = 0, for every (Λ, γ). Notice that the inner optimization

in (17) has a unique solution described by this linear algebraic equation, and as such, it explains

the closed-form projected solution Σ∗(Λ, γ) in (14). Substituting Σ⋆(Λ, γ) in the inner minimization

of (17) arrives at the program (15) whose solution γ⋆ together with the closed-form solution Σ⋆(Λ, γ⋆)

determines the saddle point of the max-min problem (17). It is important to note that excluding

γ = 0 is without loss of generality since the objective function of the inner minimization in (17) is

lower-semicontinuous in γ (pointwise minimum of a continuous function in both variables (γ,Λ)). The

final step of the proof in the first part is to show that the optimal γ⋆ is bounded by ∥Λ∥F. To this

end, we use [47, Lemma 1], which relies on the existence of a Slater point. Considering Σ̂ as the Slater

point, [47, Lemma 1] offers the upper bound

γ⋆ ≤ 1

ε

(
⟨Σ̂,Λ⟩ − min

Σ∈BF
ε (Σ̂)
⟨Σ,Λ⟩

)
= max

Σ∈BF
ε (Σ̂)

1

ε
⟨Σ̂− Σ,Λ⟩ ≤ ∥Λ∥F (18)

where the last inequality is a direct consequence of lifting the positivity constraint Σ ⪰ 0 and the fact

that the Frobenius norm is self-dual. This concludes the proof of part (i).

Next, we continue with the proof of part (ii). Thanks to Lemma 2.2, in particular (10), the Lipschitz

constant L satisfies

L = max
Σ∈BF

ε (Σ̂)

∥Σ∥F ≤ max
Σ∈BF

ε (Σ̂)

∥Σ− Σ̂∥F + ∥Σ̂∥F ≤ ε + ∥Σ̂∥F

where the first inequality above is the basic triangle inequality of the norm, and the second inequality

is the direct consequence of the constraint Σ ∈ BF
ε (Σ̂). □

Proposition 3.1(i) provides an efficient computational way to implement the LMO (6) since the scalar

concave maximization problem (15) can be efficiently solved through bisection within the feasible region

γ ∈ (0, ∥Λ∥F].

3.2. Kullback-Leibler divergence

Our second case study is the Kullback-Leibler (KL) divergence, also known as relative entropy,

between two normal distributions with the same means and the covariance matrices Σ and Σ̂ [21,

Chap. 2]. To make this definition well defined, we assume throughout this section that Σ̂ ≻ 0, and as

such invertible. Moreover, we assume that the vectors ξ, α, and ω are Gaussian random vectors. The

result can be extended to the case of rank deficient Σ̂ in which the KL-ball with finite radius is also

required to carry the same null space. Nonetheless, for the sake of clarity, we do not pursue this level

of generality here.

Definition 3.2 (Kullback-Leibler divergence). The Kullback-Leibler divergence between two zero-mean

normal distributions with covariance matrices Σ and Σ̂ is

KL(Σ||Σ̂) =
1

2

(
− log det Σ + log det Σ̂ + Tr

(
ΣΣ̂−1

)
− n

)
.

The KL divergence is a popular statistical distance with a rich geometric interpretation that finds

various applications in control, information theory, economics, and finance, to name a few. While the

KL divergence is a similarity measure, unlike the Frobenius norm, it is not symmetric in its arguments
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and does not satisfy the triangle inequality. Next, we provide an explicit description of its respective

oracle and dual function Lipschitz constant.

Proposition 3.3 (KL oracle & Lipschitz constant). Consider the LMO (6) for a given Σ̂ where the

distance function is the KL divergence d(Σ, Σ̂) = KL(Σ||Σ̂)

(i) Closed-form description: For any matrix Λ and a positive scalar γ, we define

Σ⋆(Λ, γ) :=

(
Σ̂−1 +

2

γ
Λ

)−1

. (19a)

Then, the LMO (6) equates to O(Λ) = Σ⋆(Λ, γ⋆), where the scalar γ⋆ satisfies the equations KL(Σ⋆(Λ, γ⋆)||Σ̂)− ε = 0

max
{

0, 2λmax(−Σ̂
1
2 ΛΣ̂

1
2 )
}
< γ⋆ ≤

∥∥Σ̂
1
2 ΛΣ̂

1
2

∥∥
∗

(√
6
ε 1[0, 1

24
] +

(
6 + 1

4ε

)
1( 1

24
,∞)

) (19b)

(ii) Lipschitz constant: The Lipschitz constant of g(Λ) in Lemma 2.2 is bounded by

L ≤
(
n
√

6ε1[0, 1
24

] + n
(
6ε +

1

4

)
1( 1

24
,∞) + 1

)
∥Σ̂∥F. (20)

We note that the authors of [20] also analyze a related closed-form solution to the dual of the

KL oracle (19a) (cf. [20, Proposition 4.1]). However, our formulation refines both the closed-form

solution(19a) and, more specifically, the characterization of the feasible region for the optimal dual

multiplier (19b). The proof of Proposition 3.3 builds on the following technical lemma, which char-

acterizes a lower bound for the KL divergence and, as such, a subset of the KL-ball in terms of the

eigenvalues of the geometric average of the matrices involved.

Lemma 3.4 (KL-lower bound). The KL divergence KL(Σ||Σ̂) in Definition 3.2 satisfies

2 KL
(
Σ||Σ̂

)
≥

n∑
i=1

f
(
λi(Σ̂

−1
2 ΣΣ̂

−1
2 )

)
where f(λ) :=

1

3
(λ− 1)21[0, 3

2
] +

(1

3
λ− 5

12

)
1( 3

2
,∞) . (21a)

In particular, for any radius ε ≥ 0, if KL
(
Σ||Σ̂

)
≤ ε we then have∣∣λmax

(
Σ̂

−1
2 ΣΣ̂

−1
2
)
− 1

∣∣ ≤ √6ε1[0, 1
24

] +
(
6ε +

1

4

)
1( 1

24
,∞). (21b)

Proof. Following Definition 3.2, we have

2 KL
(
Σ||Σ̂

)
= Tr

(
Σ̂− 1

2 ΣΣ̂− 1
2 − I

)
− log det

(
Σ̂− 1

2 ΣΣ̂− 1
2
)

=
n∑

i=1

λi(Σ̂
−1
2 ΣΣ̂

−1
2 )− 1− log λi(Σ̂

−1
2 ΣΣ̂

−1
2 ) ≥

n∑
i=1

f
(
λi(Σ̂

−1
2 ΣΣ̂

−1
2 )

)
,

where the equalities above hold due to the symmetric property of the trace and determinant operators

(i.e., Tr (AB) = Tr (BA) and det(AB) = det(BA)), and the inequality follows from the Taylor series

expansion with degree 2 of the convex function λ− 1− log(λ) at point λ = 1 within the interval [0, 32 ],

followed by a linear extension of this lower bound for λ > 3
2 . This concludes the assertion (21a). Con-

cerning the second part, it suffices to use an inverse function argument for the lower bound function f

in (21a) and apply the simple inequality maxi≤n f(λi) ≤
∑

i≤n f(λi). This yields the desired assertion

in (21b). □
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The lower bound in Lemma 3.4 provides a means to introduce a superset for the KL-ball, which is

useful for bounding the closed-form description of the respective oracle and its Lipschitz constant of

the optimal dual function with respect to the ball radius.

Proof of Proposition 3.3. The proof of both parts follows similar lines as in Proposition 3.1. Concern-

ing (i), we note that dualizing the distance function constraint corresponding to KL(Σ||Σ̂) ≤ ε in the

LMO (6) yields

max
γ≥0

min
Σ⪰0
⟨Λ,Σ⟩+

γ

2

(
− log det Σ + log det Σ̂ + Tr

(
ΣΣ̂−1

)
− n

)
− γε . (22)

When γ > 0, we can exclude the boundary of the PSD cone for the inner optimizer Σ (i.e., Σ ≻ 0)

due to the term − log det Σ in the objective (22). Similar to the proof of Proposition 3.1, we can also

exclude the case of γ = 0 since the optimal value of the inner minimization is lower-semicontinuous in

γ. Therefore, the first-order optimality condition for the inner minimization problem yields the unique

inner minimizer Σ∗(Λ, γ) in (19a). Substituting Σ∗(Λ, γ) in (22), we arrive at

max
γ>0
⟨Λ,Σ∗(Λ, γ)⟩+

γ

2

(
− log det Σ∗(Λ, γ) + log det Σ̂ + Tr

(
Σ∗(Λ, γ)Σ̂−1

)
− n

)
− γε . (23)

Applying the first-order optimality condition to the optimization (23) yields the algebraic equa-

tion (19b). Next, we derive the lower and upper bounds for the optimal solution γ⋆ solving (23)

(or equivalently the algebraic equation (19b)). For the lower bound of the optimizer γ⋆ in (19b), note

that the inner optimizer Σ∗(Λ, γ∗) ≻ 0, and as such, we have the lower bound Σ̂−1 + 2
γ⋆ Λ ≻ 0, which

implies γ⋆ > 2λmax(−Σ̂
1
2 ΛΣ̂

1
2 ). The above bound, together with the original non-negativity constraint,

concludes the lower bound.

The last part of the proof is to show the upper bound of the optimizer γ⋆ in (19b). The analysis

follows similar lines as in Proposition 3.1, starting from the corresponding bound (18), that is,

γ⋆ ≤ max
Σ∈BKL

ε (Σ̂)

1

ε
⟨Σ̂− Σ,Λ⟩ ≤

{
max
Σ⪰0

1
ε ⟨Σ̂− Σ,Λ⟩

s.t. KL
(
Σ||Σ̂

)
≤ ε

≤

 max
Σ⪰0

1
ε ⟨Σ̂− Σ,Λ⟩

s.t.
∣∣λmax

(
Σ̂

−1
2 ΣΣ̂

−1
2

)
− 1

∣∣ ≤ √6ε1[0, 1
24

] +
(
6ε + 1

4

)
1( 1

24
,∞),

(24)

where the last inequality follows from (21b) in Lemma 3.4 in which the radius is 2ε. Note further that

the objective function of the above program can be upper bounded by

⟨Σ̂− Σ,Λ⟩ =
〈
I − Σ̂− 1

2 ΣΣ̂− 1
2 , Σ̂

1
2 ΛΣ̂

1
2
〉
≤ max

i≤n

∣∣λi(Σ̂
− 1

2 ΣΣ̂− 1
2 )− 1

∣∣∥∥Σ̂
1
2 ΛΣ̂

1
2

∥∥
∗, (25)

where ∥ · ∥∗ is the nuclear matrix norm. Considering the above upper bound in the program (24) and

replacing λmax yields the desired upper bound for γ⋆ in (19b).

Regarding the Lipschitz constant in part (ii), following the bound (10), we have

L = max
Σ∈BKL

ε (Σ̂)
∥Σ∥F ≤ max

Σ∈BKL
ε (Σ̂)

∥Σ− Σ̂∥F + ∥Σ̂∥F ≤
(

max
Σ∈BKL

ε (Σ̂)
∥Σ̂

−1
2 ΣΣ̂

−1
2 − I∥F + 1

)
∥Σ̂∥F

≤
(

max
Σ∈BKL

ε (Σ̂)
nλmax

(
Σ̂

−1
2 ΣΣ̂

−1
2 − I

)
+ 1

)
∥Σ̂∥F ≤

(
n
√

6ε1[0, 1
24

] + n
(
6ε +

1

4

)
1( 1

24
,∞) + 1

)
∥Σ̂∥F,

where the last inequality above follows from (21b) in Lemma 3.4. □



A SADDLE POINT ALGORITHM FOR ROBUST DATA-DRIVEN FACTOR MODEL PROBLEMS 12

3.3. Gelbrich distance

Our final case study examines the Gelbrich distance, denoted by G(Σ, Σ̂), which measures the

distance between two distributions with identical means and covariance matrices Σ and Σ̂. While a

more general form of this distance exists for distributions with different means, we omit it here as it

is not necessary for our study [36].

Definition 3.5 (Gelbrich distance). The Gelbrich distance between two zero-mean distributions with

the positive semidefinite covariance matrices Σ and Σ̂ is

G(Σ, Σ̂) =

√
Tr

(
Σ + Σ̂− 2

(
Σ̂

1
2 ΣΣ̂

1
2

) 1
2

)
It is well known that the Gelbrich distance is a lower bound for the Wasserstein distance between

two distributions, and its maximal coincides with the Wasserstein distance for the subclass of elliptical

distributions (e.g., normal distributions [35, Theorem 2.1]). The LMO (6) under the Gelbrich distance

in Definition 3.5 has been studied before [49, 50]. In parallel with the other two oracles discussed

in the preceding sections, we adapt the Gelbrich LMO from these studies, incorporating a slight

generalization that extends to arbitrary matrices (rather than only positive semidefinite matrices as

in [50]). Additionally, we provide a tight upper bound for the univariate optimization problem and

establish the Lipschitz constant of the corresponding dual function, the two parameters contributing

to the convergence of the proposed algorithm.

Proposition 3.6 (Gelbrich oracle & Lipschitz constant). Consider the LMO (6) for a given Σ̂ ⪰ 0

where the distance function is the Gelbrich distance d(Σ, Σ̂) = G(Σ, Σ̂).

(i) Closed-form description: For any Λ and a non-negative scalar γ, we define

Σ⋆(Λ, γ) := γ2(γI + Λ)−1Σ̂(γI + Λ)−1. (26a)

Then, the LMO (6) equates to O(Λ) = Σ⋆(Λ, γ⋆), where the scalar γ⋆ is the unique solution to

the concave optimization max
γ≥0

γ
(
ε2 + ⟨γ(γI + Λ)−1 − I, Σ̂⟩

)
s.t. λmax(−Λ) < γ ≤ ∥Λ∥F

(
2λ

1
2
max(Σ̂) + ε

) (26b)

(ii) Lipschitz constant: The Lipschitz constant of g(Λ) in Lemma 2.2 is bounded by

L ≤
(
2λ

1
2
max(Σ̂) + ε

)
ε + ∥Σ̂∥F (27)

We note that the quasi-closed form description (26a) and the lower bound of the dual multiplier

in (26b) were previously proposed in [50, Proposition A.2]. However, when the matrix Λ is indefinite,

which is an important case in the factor model in this study, the upper bound of the dual multiplier

in (26b) and the Lipschitz constant of the dual function in (27) are first introduced here. The proof

of Proposition 3.6 builds on the following technical lemma that characterizes the regularity properties

of the Gelbrich distance and the respective ball.

Lemma 3.7 (Gelbrich lower bound). The Gelbrich distance in Definition 3.5 satisfies

G(Σ, Σ̂) ≥ max

{∥∥λ 1
2 (Σ)− λ

1
2 (Σ̂)

∥∥
2
, λ

− 1
2

max

(
Σ + Σ̂ + 2(Σ̂

1
2 ΣΣ̂

1
2 )

1
2
)
∥Σ− Σ̂∥F

}
. (28a)
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In particular, for any radius ε ≥ 0, if G
(
Σ, Σ̂

)
≤ ε we then have

G(Σ, Σ̂) ≥ ∥Σ− Σ̂∥F
2λ

1
2
max(Σ̂) + ε

, (28b)

which essentially implies that the squared Gelbrich distance is strongly convex with respect to the

Frobenius norm, uniformly over any compact set of the positive semidefinite cone.

Proof. We first start with the first term on the right-hand side of the inequality (28a). Note that

G2(Σ, Σ̂) = Tr

(
Σ + Σ̂− 2

(
Σ̂

1
2 ΣΣ̂

1
2

) 1
2

)
=

∑
i≤n

λi(Σ) + λi(Σ̂) − 2λ
1
2
i (Σ̂

1
2 ΣΣ̂

1
2 )

≥
∑
i≤n

λi(Σ) + λi(Σ̂) − 2λ
1
2
i (Σ̂)λ

1
2
i (Σ) =

∑
i≤n

(λ
1
2
i (Σ)− λ

1
2
i (Σ̂))2 =

∥∥λ 1
2 (Σ)− λ

1
2 (Σ̂)

∥∥
2
, (29)

where the above inequality follows from the matrix version of the Hardy-Littlewood-Polya inequal-

ity [18, Theorem 3.2]. With regard to the second term on the right-hand side of (28a), note that

Tr
((

Σ + Σ̂− 2(Σ̂
1
2 ΣΣ̂

1
2 )

1
2
)(

Σ + Σ̂ + 2(Σ̂
1
2 ΣΣ̂

1
2 )

1
2
))

= Tr
(

(Σ + Σ̂)2 − 4(Σ̂
1
2 ΣΣ̂

1
2 )
)

= Tr
(

Σ2 − 2ΣΣ̂ + Σ̂2
)

= Tr
(

(Σ− Σ̂)2
)

= ∥Σ− Σ̂∥2F,

where we use the symmetric property Tr (AB) = Tr (BA) to derive the first and second equalities.

Since Tr (AB) ≥ 0 for any A,B ⪰ 0, the above equality leads to

G2(Σ, Σ̂)λmax

(
Σ̂ + Σ + 2(Σ̂

1
2 ΣΣ̂

1
2 )

1
2
)
≥ ∥Σ− Σ̂∥2F,

which, together with (29), concludes the inequality (28a). To derive the inequality (28b), we use the

second part on the right-hand side of (28a) when the term λmax

(
Σ+Σ̂+2(Σ̂

1
2 ΣΣ̂

1
2 )
)

is upper bounded

over the Gelbrich ball with radius ε. To this end, note that

ε ≥ G(Σ, Σ̂)≥∥λ
1
2 (Σ)− λ

1
2 (Σ̂)∥2 ≥ |λ

1
2
max(Σ)− λ

1
2
max(Σ̂)|.

The above inequality implies that

G(Σ, Σ̂) ≤ ε ⇒ λ
1
2
max(Σ) ≤ λ

1
2
max(Σ̂) + ε . (30)

With the above observation, we can deduce that

λmax

(
Σ + Σ̂ + 2(Σ̂

1
2 ΣΣ̂

1
2 )

1
2
)
≤ λmax

(
Σ + Σ̂− 2(Σ̂

1
2 ΣΣ̂

1
2 )

1
2
)

+ λmax

(
4(Σ̂

1
2 ΣΣ̂

1
2 )

1
2
)

≤ ε2 + 4λ
1
2
max(Σ̂)λ

1
2
max(Σ) ≤ ε2 + 4λ

1
2
max(Σ̂)

(
λ

1
2
max(Σ̂) + ε

)
=

(
2λ

1
2
max(Σ̂ + ε)

)2
where, the first and second inequalities are the result of sub-additivity and sub-multiplicativity of the

maximum eigenvalue of the positive semidefinite cone (i.e., λmax(A + B) ≤ λmax(A) + λmax(B), and

λmax(AB) ≤ λmax(A)λmax(B), for all A,B ⪰ 0). It now suffices to apply the above bound in (28a) to

arrive at the bound (28b). □
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Remark 3.8 (Gelbrich strong convexity). The inequality (28b) in Lemma 3.7 suggests that the squared

Gelbrich distance is strongly convex with respect to the Frobenius norm, a property which is of interest

in view of optimization algorithms. In comparison with the earlier results in the literature [10, Theo-

rem1], the strong convexity relation (28b) does not depend on the minimum eigenvalue of the reference

matrix Σ̂, making it particularly useful when the ball contains low-rank matrices.

Proof of Proposition 3.6. With regards to the quasi-closed form description (26a) and the lower bound

of the dual multiplier in (26b), we refer to parts (i) and (ii) in [50, Proposition A.2]. Concerning the

upper bound (26b), we follow the approach used for the Frobenius distance and Kullback-Leibler

divergence and derive a similar upper bound to (18) as

γ⋆ ≤ max
Σ∈BG

ε (Σ̂)

1

ε
⟨Σ̂− Σ,Λ⟩ =

{
max
Σ⪰0

1
ε ⟨Σ̂− Σ,Λ⟩

s.t. G(Σ, Σ̂) ≤ ε

≤

 max
Σ⪰0

1
ε∥Λ∥F∥Σ̂− Σ∥F

s.t. ∥Σ− Σ̂∥F
(
2λ

1
2
max(Σ̂) + ε

)−1 ≤ ε
≤ ∥Λ∥F

(
2λ

1
2
max(Σ̂) + ε

)
,

where the first inequality in the last line is the application of the Cauchy-Schwarz inequality to the

objective function and the bound (28b) in Lemma 3.7 for the Gelbrich distance in the constraint. This

yields the desired upper bound (26b). Regarding the Lipschitz constant (27), we again apply the upper

bound (28b) from Lemma 3.7 to the Lipschitz constant (10) from Lemma 2.2 and arrive at

L = max
Σ∈BG

ε (Σ̂)
∥Σ∥F ≤ max

Σ∈BG
ε (Σ̂)
∥Σ− Σ̂∥F + ∥Σ̂∥F ≤

(
2λ

1
2
max(Σ̂) + ε

)
ε + ∥Σ̂∥F,

which concludes (27). □

4. Numerical Example

We pursue two main objectives through our numerical investigations here: (i) assessment of the

performance of our proposed algorithm to solve the factor model (5), particularly in comparison with

the existing off-the-shelf solver MOSEK, and (ii) observing the effect of the hyperparameter ε on

the accuracy of the covariance matrix estimation. For this purpose, we present the results of our

numerical investigation on the convergence of the proposed algorithm, observation of the estimation

error of ΣTrue, and comparison between the computation time of our proposed algorithm and MOSEK.

The stopping condition used for the algorithm (11) is the normalized relative change defined as

|⟨Λt,Σt⟩ − ⟨Λt−1,Σt−1⟩|
|⟨Λt,Σt⟩|

≤ 10−6. (31)

4.1. Synthetic data generation

Every implementation consists of two steps: First, selecting the ground-truth covariance matrix

with the decomposition ΣTrue = DTrue +LTrue, and then producing an approximation of ΣTrue, we use

noisy independently identically distributed (iid) samples of {ξk}Nk=1 based on relation (1) and compute

their empirical covariance matrix Σ̂ in (3). These two steps are described in more detail as follows.



A SADDLE POINT ALGORITHM FOR ROBUST DATA-DRIVEN FACTOR MODEL PROBLEMS 15

10
0

10
1

10
2

10
3

10
-10

10
-5

10
0

(a) Frobenius norm

10
0

10
1

10
2

10
3

10
-10

10
-5

10
0

(b) KL divergence

10
0

10
1

10
2

10
3

10
-10

10
-5

10
0

(c) Gelbrich distance

Figure 1. Convergence error (32) of algorithm (11) with the projection Algorithm 1

Ground-truth covariance matrix generation: A pseudorandom tall matrix ΦTrue ∈ Rn×r, and

a pseudorandom diagonal PSD matrix DTrue ∈ Rn×n which are the true factor loading matrix and

the true covariance matrix of idiosyncratic noise are created using rand function in MATLAB with

rng(1,’twister’) and rng(0), respectively. The r-dimensional covariance matrix Σα is equal to the

identity matrix. The matrix ΣTrue is calculated based on (2), using LTrue = ΦTrueΦ
⊤
True and DTrue

matrices. It is worth noting that the matrices ΦTrue and DTrue are adjusted to be far away from the

origin. To be more precise, the minimum element of these matrices is lower bounded by a certain

amount (in our implementations, this is 5, by adding 5 to the rand function) so that the resulting

ΣTrue matrix is far enough from the origin, to exclude the trivial solution Σ = 0, when Λ ⪰ 0 and the

ball includes the origin.

Sample generation: The number of samples is selected as N = 15n and the factors samples {αk}Nk=1

are pseudorandomly generated from a normal distribution with mean zero and the covariance matrix

Σα = I. Similarly, using a normal distribution with mean zero and the covariance matrix equal to

DTrue, the noise samples {ωk}Nk=1 are produced. Then, the samples of observed vectors are ξk =

ΦTrueαk + wk for all k ∈ 1, · · · , N , based on relation (1).

4.2. Convergence

The primal-dual reformulation of the factor model problem (7) is solved using Algorithm (11) with

diminishing stepsize (δt = 1√
t
) for three cases in which d(Σ, Σ̂) is defined based on F(Σ, Σ̂), KL(Σ||Σ̂),

and G(Σ, Σ̂), respectively. These algorithms are executed with ε = 1 and 104 iterations. We note that

since the true optimal value is unknown, we choose the objective value at iteration 104 as the reference

optimal objective value (⟨Λ⋆,Σ⋆⟩), and investigate the convergence of the algorithm with respect to

this value by computing the normalized convergence error

e(Σt) :=
|⟨Λt,Σt⟩ − ⟨Λ⋆,Σ⋆⟩|

|⟨Λ⋆,Σ⋆⟩|
, (32)

which reflects each iteration’s objective value’s normalized error with respect to the optimal objective

value. The values of the parameters are chosen as n = 20 and r = 4. The results of this experiment are

reported in Figure 1. We emphasize that these simulations are executed without considering the stop-

ping condition (31), to prevent them from stopping earlier than 104 iterations. As depicted in Figure 1,

after 100 iterations, the normalized error (32) decreases to around 0.001%, 0.01%, and 5× 10−5% for
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Figure 2. Estimation error (34) of the ground-truth ΣTrue

the cases where d(Σ, Σ̂) is F(Σ, Σ̂), KL(Σ||Σ̂), and G(Σ, Σ̂), respectively. The performance observed

here validates the theoretical convergence result of Proposition 2.3 for all the distance functions.

4.3. Estimation of the ground-truth ΣTrue

In this numerical study, the effect of the hyperparameter ε on the estimation error of the true

covariance matrix ΣTrue is investigated for Nexp experiments. In each experiment, the factor model

problem is solved using Algorithm (11) with diminishing stepsize (δt = 1√
t
) for all of the values of ε in

the set Ω as defined in

Ω = {0.01(
√

10)i | i = 0, 1, ..., 10} (33)

In all experiments, for these values of ε, the algorithm (11) is executed for maximum tend = 104

iterations, while considering the stopping criterion (31). The data is generated through the synthetic

data generation procedure in Section 4.1 with fixed true covariance matrices DTrue and ΣTrue for all

of the experiments. We note that in each experiment, the same samples of observed vectors (ξk ,

k = 1, . . . , N) are used to solve the problem for different values of ε, while these samples vary among

different experiments. The values of the parameters that are used in this simulation are chosen as

n = 20, r = 4, and Nexp = 100. For numerical illustration, we consider the normalized estimation

error of ΣTrue defined as

ed(Σ⋆, Σ̂) :=
d(Σ⋆,ΣTrue)

d(Σ̂,ΣTrue)
. (34)

The simulation results consist of the mean and [5 − 95]-th percentile of the estimation error of ΣTrue

corresponding to the various values of ε for all of the Nexp experiments, which are executed for each

of the three special cases discussed in Section 3.

The numerical results of this experiment are reported in Figure 2. A sweet spot is observed for

ε = 100 and ε =
√

10 corresponding to F(Σ, Σ̂) and G(Σ, Σ̂), respectively, indicating that the factor

model improves the estimation of ΣTrue in comparison to Σ̂ defined in (3), for different cases of d(Σ, Σ̂)

corresponding to F(Σ, Σ̂) and G(Σ, Σ̂). To be more precise, based on the simulation results, in 59% of

the experiments corresponding to F(Σ, Σ̂), and in 56% of the experiments corresponding to G(Σ, Σ̂),

an improvement in the estimation of ΣTrue, compared to Σ̂, is observed. We note that for the case of
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Figure 3. Computational time comparison of algorithm (11) and MOSEK

d(Σ, Σ̂) corresponding to KL(Σ||Σ̂), although a distinguishable sweet spot has not been observed, in

43% of the experiments, a slight improvement in the estimation of ΣTrue, compared to Σ̂, is observed.

4.4. Execution time

In this subsection, the execution time of the proposed first-order algorithm is investigated and

compared with the off-the-shelf solver MOSEK. Algorithm (11) with diminishing stepsize ( 1√
t
) is used

for these simulations with ε ∈ {0.1, 1, 10}, considering the stopping condition (31). The distance metric

d(Σ, Σ̂) is defined based on F(Σ, Σ̂), KL(Σ||Σ̂), and G(Σ, Σ̂).

The optimization problems solved using MOSEK are implemented as follows. When the distance

function d(Σ, Σ̂) is the Frobenius norm, the factor model problem (5) is directly solved via the MOSEK

solver. For the case of the KL divergence and the Gelbrich distance, we solve the reformulation

proposed by Lemmas A.1 and A.2, respectively. The implementations have been run on a Core(TM)

i7-10610U CPU with 1.80GHz 2.30GHz clock speed, and 16GB of RAM. The SDPs are solved with

MOSEK 9.3 using the YALMIP interface [43] in MATLAB R2024a. The numerical results of this

experiment are illustrated in Figure 3.

According to Figure 3, although the proposed algorithm may take a higher execution time for lower-

dimensional data and small ε, it is more efficient than the off-the-shelf solver MOSEK for higher-

dimensional data. In more detail, our algorithm is able to solve the problem for high-dimensional

settings, while MOSEK stopped solving the problem for higher-dimensional data in our hardware with

the specifications mentioned above. In addition, for the cases in which d(Σ, Σ̂) is defined based on

F(Σ, Σ̂) and G(Σ, Σ̂), for lower-dimensional data, and for big ε, the algorithm is more efficient than

MOSEK, as it takes less computational time. We wish to note that in the case of the KL divergence

with ε = 10 and dimensions larger than 150, the algorithm converges efficiently. However, it still

produces a non-zero duality gap for n = 50 and triggers an “Out of Memory” error for n = 100,

despite the optimal objective value being almost zero. These issues are resolved by calculating the

averaged values of Σt to compute the objective value at each iteration for n = 50, and by removing

the denominator in the stopping condition (31), which tends to zero for n = 100. We also note that

for the cases in which d(Σ, Σ̂) is defined based on F(Σ, Σ̂) and KL(Σ||Σ̂), for the dimensions of 200

and higher, and also for the case of d(Σ, Σ̂) defined based on G(Σ, Σ̂), for the dimensions of 150 and
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higher, MOSEK cannot solve the problem due to an ‘Unknown problem in solver’, corresponding to

‘YALMIP error code’ equal to 9.

5. Conclusion and Future Direction

This paper proposes a saddle point reformulation of the factor model problem, along with a first-

order algorithm to solve it. This algorithm relies on an LMO to solve the inner minimization problem

in the saddle point framework. We address the inaccuracy of the empirical covariance matrix Σ̂ by

robustifying the solution via a family of covariance matrices close to Σ̂ with respect to a generic

distance function. To showcase the practicality of the proposed scheme, we further derive semi-closed

form solutions for the LMO in three particular choices of distance functions: the Frobenius norm, the

Kullback-Leibler divergence, and the Gelbrich distance.

Considering further research directions, there is a need to interpret the physical meaning of the

factor model components (e.g., factor loading matrix and factors) in a dynamical system setting.

Gaining this understanding can help in predicting system behavior by analyzing these components

based on their physical interpretation, or by identifying their variation ranges to determine system

stability or detect potential anomalies. Building on this insight, efforts could also be directed towards

controller design by finding the mapping between control parameters and factor model parameters.

Achieving this goal relies on addressing the interpretation challenge. Once the connection between

physical behavior and factor dynamics is better understood, effective controllers can be designed to

directly regulate the system through the factor model parameters. This development can ultimately

lead to more robust and adaptive control strategies.

Appendix A. Technical Lemmas

In this appendix, we report two technical lemmas that enable us to solve the factor model problem (5)

using commercial optimization solvers such as MOSEK.

Lemma A.1 (KL-Factor model reformulation). The factor model problem (5) with the KL divergence

d(Σ, Σ̂) = KL(Σ||Σ̂) is equivalent to the optimization program

min
L,Σ,Z

⟨L, I⟩

s.t. L ∈ S+, Z ∈ Ln[
Σ Z

Z⊤ Diag(Z)

]
⪰ 0, Σ− L ∈ D+

log
(

det Σ̂
)

+ Tr
(

ΣΣ̂−1
)
− n− 2ε ≤

∑
i log

(
Zii

)
,

where Ln is the space of all n-dimensional lower triangular matrices.

For the proof of Lemma A.1, we refer to the MOSEK Modeling Cookbook [46, Section 6.2.3].
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Lemma A.2 (Gelbrich-Factor model reformulation). The factor model problem (5) with the Gel-

brich d(Σ, Σ̂) = G(Σ, Σ̂) is equivalent to the LMI program

min
L,Σ,C

⟨L, I⟩

s.t. L ∈ S+[
Σ C

C⊤ Σ̂

]
⪰ 0, Σ− L ∈ D+

⟨Σ + Σ̂− 2C, I⟩ ≤ ε2

The proof of Lemma A.2 follows immediately from the application of [50, Proposition 2.2] to the

factor model problem (5).
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