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ABSTRACT. Inspired by the recent successes of Inverse Optimization (IO) across various application
domains, we propose a novel offline Reinforcement Learning (ORL) algorithm for continuous state
and action spaces, leveraging the convex loss function called “sub-optimality loss” from the 10O
literature. To mitigate the distribution shift commonly observed in ORL problems, we further
employ a robust and non-causal Model Predictive Control (MPC) expert steering a nominal model
of the dynamics using in-hindsight information stemming from the model mismatch. Unlike the
existing literature, our robust MPC expert enjoys an exact and tractable convex reformulation. In
the second part of this study, we show that the IO hypothesis class, trained by the proposed convex
loss function, enjoys ample expressiveness and achieves competitive performance compared with the
widely used baselines in the low-data regime of the MuJoCo benchmark while utilizing three orders
of magnitude fewer parameters, thereby requiring significantly fewer computational resources. To
facilitate the reproducibility of our results, we provide an open-source package implementing the

proposed algorithms and the experiments.

1. INTRODUCTION

In dynamic environments where real-world interactions are impractical, there is often the need to
work with datasets of previously collected interactions. Decision-making in these contexts typically
follows one of two paradigms. (i) Imitation learning (IL), a subclass of the Supervised Learning
(SL) paradigm, in which the aim is to imitate a given expert’s decisions (i.e., labels in SL terms)
and (ii) offline Reinforcement Learning (RL), where the aim is to learn a policy that improves upon
the performance observed within the dataset. SL in general, and IL in particular, has proven to
be successful in a wide range of applications [Hussein et al., 2017], while offline RL is known to
be a notoriously hard task (both computationally and statistically) [Bertsekas, 2021]. One of the
primary challenges in offline RL is the mismatch between the dataset and the policy distributions.
Hence, naively applying existing online RL algorithms combined with high-capacity Q function
approximation leads to optimistic and potentially biased value functions, which, in turn, leads to

poorly performing and unstable policies that do not generalize in the online evaluation.

To combat these issues, in this work, we approach the offline RL problem in two steps: (i) by
utilizing a non-causal expert, we perform an “action improvement” step over the dataset; and (ii)
using the improved actions, we fit a Q-function using a novel “sub-optimality loss” to obtain an
efficient and causal policy that generalizes over online evaluations. Specifically, in the first step, by
leveraging a nominal model and in-hindsight model mismatch information, unknown at runtime,
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we introduce an expert in the form of a non-causal Model Predictive Control (MPC). To realize
the non-causal expert, we propose to replace the Bellman residual loss with the “sub-optimality
loss” drawn from the Inverse Optimization (IO) literature that fits the optimal Q function given
the improved dataset. The proposed optimization problem enjoys the convexity of the loss function,
yielding an efficient and causal policy that can generalize over unseen states. Before proceeding
with further details regarding our proposed approach and the related literature, we introduce some

notations.

Notation: The dimension of a variable x is denoted by n,. We denote with N the MPC horizon
and with T the size of a dataset. With bold, we denote the stacking of variables, i.e., x;.y =
(x1,x2,...,2N), unless noted otherwise. When no exact range is given in the subscript, the default
length of a bold variable is N (i.e., x = x1.n5). We denote by (-, -) an inner product with the respective
norm ||z||* = (x,z). For any A = 0, we define ||z||, = (z, Az). With ®, we denote the Kronecker
product. As the letter “Q” will be used to indicate both matrices and Q-functions, we denote with
Q@ the former and with Q(s,u) the latter, although it should usually be clear from the context.
The operators diag(-) and blkdiag(-) construct a square or block matrix, respectively. Finally, with
MPC-N, we refer to policies stemming from the minimization of an N-stage cost that predicts the
future behavior of the system using some model.

1.1. Problem statement and Contributions

We consider the constrained control of discrete-time dynamical systems with unknown dynamics
f, where we have access to a deterministic nominal model fy, and an offline trajectory of state-action
pairs Dy = {#, fat}tT:O collected under some behavior policy applied to f. The control « is constrained
to belong to some U (x), which is also assumed to be known, and there is an N-stage control objective
defined through the known stage- and terminal-cost functions c(z,u) and cy(x). We aim to learn a
causal® stationary parameterized policy mg that distills a non-causal MPC expert on fy with access
to the full future model-mismatch sequence inferred from D and fy. Concretely, our proposed RL
scheme comprises two key steps:

e Non-causal action improvement: From Dp and fy infer the mismatch trajectory (e.g., w41 =
Z441 — fo(@y, ). Feed the full future mismatch sequence into an N-stage receding-horizon
non-causal MPC defined on fy to produce an expert control sequence {4$*}7_;. A robust variant
replaces the known mismatch with a worst-case element from a specified uncertainty set.

e Imitation learning/policy distillation: Fit a causal policy 7y to the new improved state-action
dataset {@, 4$*}1_; via a tractable convex IO objective (sub-optimality loss) yielding a computa-
tionally cheap policy for deployment.

The above procedure is documented in detail in Algorithm 1. Building on this setting, we summarize

our contributions as follows:

(i) Two-step offline RL via I0-based policy distillation: We use the Inverse Optimization
framework to bridge offline RL with Imitation Learning, distilling the non-causal MPC expert
from the above two-step process into a causal policy. This yields computational benefits through

1A policy 7 is deemed to be causal iff it depends only on past and present data, i.e., ur = 7(s|7 < t).
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convex training and results in policies that are efficient to evaluate, while also opening the door
for tools from online convex optimization to be readily used for the control tasks considered here.

(ii) Tractable robustification of the MPC expert: For the case of linear dynamics, quadratic
stage/terminal costs, and polytopic constraints, we derive an exact convex reformulation of a
robust non-causal MPC expert that optimizes against worst-case model-mismatch trajectories
within a prescribed uncertainty set. This allows us to incorporate adversarial robustness without
introducing conservatism or sacrificing tractability. From the empirical analysis of Appendix B
and Section 4.1, we show that the robustification helps combat the distribution shift from the
training to the test phase and the mismatch between the nominal model and the true dynamics.

(iii) Empirical validation of IO expressiveness: Through experiments on nonlinear control
problems and MuJoCo benchmarks, we provide evidence that the 10 hypothesis class is expressive
enough for high-quality policy distillation in imitation learning. In particular, our method
achieves state-of-the-art performance in low-data regimes while using orders-of-magnitude fewer
parameters than neural-network-based baselines.

1.2. Related works

Offline Reinforcement Learning: To prevent the value function from exploiting any dataset bias,
offline RL approaches typically attempt to enforce pessimistic policy learning [Rashidinejad et al.,
2021]; this can be achieved by constraining the policy learning within the region supported by the
dataset [Fujimoto et al., 2018] or by penalizing the value function for the state-action pairs outside the
dataset [Kumar et al., 2019, Wu et al., 2019, Kostrikov et al., 2021, Kumar et al., 2020]. Model-based
approaches employ similar ideas but instead try to exploit the model information to learn a less
conservative value function. For instance, COMBO [Yu et al., 2021] approximates the true model
dynamics and utilizes both simulated and dataset samples to learn a conservative value estimation by
penalizing out-of-support state-action pairs obtained by running the simulated model. On the other
hand, our proposal uses a nominal model to improve the actions of the state-action pairs present
in the dataset; finally, in contrast to the aforementioned works, our work is more computationally

attractive, as the resulting program for learning the policy is convex.

Imitation Learning: The second step of our algorithm, where we employ Inverse Optimization to fit
a policy on the improved state-action pairs, is analogous to IL. Similar to our dataset improvement
scheme, several other IL algorithms employ augmentation strategies to further improve policy learning.
For example, BAIL [Chen et al., 2020] first estimates the Monte Carlo returns of each state-action
pair in the dataset, an infinite horizon and discounted extension of our objective function, and
employs a neural network-based estimate to fit the returns. Based on this estimate, BAIL selects only
the highest-valued state-action pairs and learns a policy via IL. On the other hand, our approach
makes use of the entire dataset, improving actions through our robust MPC formulation, and utilizes
a convex “sub-optimality loss” to perform the IL step. The decision to employ a relatively small
model together with a convex loss function (in the parameter space) is justified by our empirical
studies (see Section 4) and aligns with similar findings reported by Emmons et al. [2021], particularly
in limited data regimes.
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Terminal value function approximation: Since MPC projects its internal model into the future, it
can also act as an approximation to the Bellman equation. This observation is exploited by [Zhong
et al., 2013] to effectively increase the planning horizon by constructing approximate terminal Value
Functions (VF) from MPC simulation data. Using the same principle, [Lowrey et al., 2018] showcased
an algorithm that promotes exploration and, therefore, accelerates VF learning. Finally, [Bhardwaj
et al., 2020] propose a blended approach that combines elements from model-free and model-based
methods to reduce model bias. Similarly, our work can be viewed as a specific instance of VF
approximation, where learning the Q-function reduces the horizon to a single step. Additionally, in
contrast to the papers mentioned above, our approach is computationally tractable.

Trajectory Augmentation: A large body of work has studied the augmentation of offline datasets
to mitigate distributional shift and synthetically generate high-return trajectories. Among recent
approaches, Generative Trajectory Augmentation (GTA) [Lee et al., 2024] employs a trajectory-level
conditional diffusion model to enrich the offline RL dataset toward high-return regions, while remaining
consistent with observed data. Similarly, Diffusion-based Trajectory Stitching (DiffStitch) [Li et al.,
2024] synthesizes bridging sub-trajectories that connect low- and high-return trajectories, effectively
stitching them together to form an expanded dataset. More closely related to our setting are model-
based augmentation methods [Wang et al., 2021, Lyu et al., 2022, Zhang et al., 2023], which learn
the dynamics and the rollout policy to generate synthetic trajectories, while enforcing conservatism
via model agreement or uncertainty-based truncation. By contrast, we do not synthesize new states
or transitions; instead, given a nominal model, we improve the actions along observed trajectories by
solving the robust non-causal MPC problem introduced in Section 3.

2. INVERSE OPTIMIZATION FOR RL

In what follows, we briefly review the existing literature on IO and its potential to learn a control
law. We then introduce the first contribution of this study: how in-hindsight information can be

exploited to devise an offline RL algorithm.

2.1. Inverse Optimization as Supervised Learning

The goal of Inverse Optimization is to learn the behavior of an expert whose actions depend on
an external signal. Specifically, for a given s € S C R™s, the expert’s decisions u™* € U(s) C R
stem from a deterministic policy: u®™ = 7%*(s). We wish to approximate 7%*(s) with a policy in a
similar spirit as in Q-Learning that is defined as:

mp(s) :== arg min Qy(s, u),
uel(s)
where Qg is a parameterized function belonging to the hypothesis class Q. Throughout this work,
we consider the strongly convex quadratic hypothesis class

Q ={Qu(s,u) = (u, Oyyu) + 2(s, sy 1) : Oy, = I, }- (1)

To learn the optimal 6*, we use the “sub-optimality loss”, which was first introduced in [Moha-
jerin Esfahani et al., 2018]:

EE“b(s,ueX) = Qp(s,u™) — min Qp(s,u). (2)
u€U(s)
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Notice that the mapping 6 — Qg(s,w) is linear, and thus, the “sub-optimality loss” (2) is convex in
0 for convex U(s). Given a dataset {(3;,05¥)}]_, of states §; and expert actions 4$* = 7%%(§;), and a
polytopic constraint set U(s) = {u: G(s)u < h(s)}, we have that [Akhtar et al., 2021]:

T N
i 0 (84, 05%) = ‘ 8, 4%) + 1 B, A 3
%Ze S) = iy Q) et (e ) )
st Ouur L, M\ >0, t<T,
euu GI)\t+29;—u§t >FO, tST,
* Tt

where we use the shorthand Gy = G(8;) and h; = h(3;). The convex optimization (3) offers an
efficient way to learn the policy 7#°*(-). It is important to highlight that a key part upon which
this program is built is the sequence of the “ground-truth” expert actions u{’,. While the actions
contained within an offline RL dataset can be regarded as expert actions, we propose to improve
them by leveraging the hindsight information of a controlled dynamical system.

2.2. Imitating an MPC expert with Inverse Optimization

Given a deterministic nominal model fjy, and denoting state and input constraints for each step as
X and U respectively, we formulate the deterministic MPC-N problem as follows:
N—-1

Vare(z) = min c(zk, up) + cp(n)
i i kz_o k) + cf(Tn (4)

st. uely (z).

(z

where Uy (z) == {u € RN™ : wy, € U, xp11 = folop,up) € X,k < N, 29 = x} Thanks to the prin-
)
) =

mpc

ciple of optlmahty, we can express the Q-function of (4) as Q™P¢(x,u) = c(z,u) + Vi1 (fo(z, u)),
{ueR™: uel, fo(x,u) e X}. To
approximate Q™P¢ with Inverse Optimization, we solve (3) with §; = &, and ug* = 7™P°(%;), where
7P(x) = argmin Q™P(z,u). (5)

VISl €9)

which is defined over the 1-step constraint set U;"’°(x

Remark 2.1 (MPC computational costs). For the MPC problem (4) to be tractable, a common
assumption is that fy is linear in x and u and the sets X and U are polytopic. In such a setting,
the Q-function Q™P° is piecewise quadratic where the number of pieces may be exponential in the
horizon length N. Therefore, approximating Q™P¢ using the quadratic hypothesis class (1) may likely
not be exact. Nonetheless, as reported in [Akhtar et al., 2021], such an approximation can work quite
well. If there are no constraints, then (4) becomes a finite-horizon LQR problem, whose Q-function
is known to be quadratic and positive definite, and as such, we can have an exact approximation
within the hypothesis class (1). In this case, the approximate policy becomes mg(s) = —0,10%,s,
which implies that we essentially learn an optimal linear control policy.

2.3. Exploiting in-hindsight information

This section contains the first contribution of this study, aiming to bridge the gap between IO and
offline RL settings. To this end, we consider an extended nominal model with additive disturbances
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w e R™, ie., fo(z,u,w) = fo(z,u) + Fw where ETE = I. Denoting the N-length disturbance
trajectory by w, we define the non-causal MPC-N problem via

N-1
VAP (2, W) = min Z c(zp, ur) + cp(an) ©)
k=0

st uely " (z,w).

with Uy "¢ (2, w) = {u € RN™M sy € U, wpp = fo(mk,uk,wkH) € X, k < N, z¢g = z}. Then, akin
to Section 2.2, we can define Q"“™P¢(z, u, w) and U, "P°(x, w) accordingly, and therefore we obtain
the non-causal MPC expert policy

r,w)= argmin Q""" (x,u, w) (7)

welUy P (z,w)

ﬂ_nc—mpC(

We construct expert actions by leveraging in-hindsight disturbance trajectories extracted from
data. Given the extended nominal model fy and a measured transition (Z,4,24), we define the
residual Fw = &4 — fo(Z,4). By concatenating such residuals across the dataset Dp, we obtain
disturbance sequences that can be injected into the non-causal MPC problem (6) to compute expert
actions. Because this policy requires future disturbances w;y1..+n, not available online at time ¢, it
is inherently non-causal and can only be used offline.

To make this expert usable in practice, we approximate it causally. We introduce a feature map ¢
that summarizes past information and define the augmented state s; = ¢(x1.4, u1.t). In general, the
design of ¢ is a feature-engineering problem and lies outside the scope of this paper; we assume that,
given the application at hand, one has access to features that can capture predictive structure in the
disturbances; for example, if disturbances evolve linearly, a natural feature choice is the most recent

H residuals, i.e., ¢(X1.4,U1:4) = Wi— 414, with H chosen sufficiently large.

We then use Inverse Optimization to train a causal policy m(s;) that imitates the non-causal
MPC expert policy (7), implicitly learning both the predictive relationship between past and future
disturbances and the corresponding optimal response. The procedure used to approximate the
non-causal MPC expert with IO is outlined in Algorithm (1).

Remark 2.2 (Validity of in-hindsight trajectories). The validity of this construction depends on
the source of the mismatch. If disturbances are exogenous, i.e., generated by an external process
independent of the state—action trajectory, then the non-causal MPC problem with in-hindsight
disturbances (6) is equivalent to optimizing directly on the true system f, and the expert corresponds
to the true optimizer. If disturbances depend on the state—action path, the disturbance sequence is
path-dependent and cannot be reused counterfactually; in this case the in-hindsight expert remains
a useful surrogate teacher, but not the true optimizer.

Remark 2.3 (Literature on disturbance feedback and non-causal control). The idea of “disturbance
feedback control” has also been explored in recent works related to online control for adversarial
disturbances [Hazan et al., 2020, Agarwal et al., 2019, Foster and Simchowitz, 2020]. Additionally,
a similar problem is also considered [Goel and Hassibi, 2021] where a non-causal controller is
approximated by a causal one in an offline setting. Contrary to these works, which consider a linear



OFFLINE REINFORCEMENT LEARNING VIA INVERSE OPTIMIZATION 7

Algorithm 1 Using in-hindsight information for 10

: Input:
- Offline trajectory Dy = {(&, )} 4
- Extended nominal model fy(x,u) + Ew
- Non-causal expert policy 7jf (z, w) with horizon N

1

2

3

4

5. - Feature map ¢(-,-)
6: Initialize dataset of training pairs Dey < ()

7. fort=1to7T —1do

8 Compute residual mismatch w1 < ET (2441 — fo(Z¢, Gy))
9 Compute augmented state §; < ¢(X1.¢, Uy:¢)

10: Let T+~ t—N+1

11: if 7 > 1 then

12: Query expert action u$* < 7R (L, Wri1:74N)
13: Append (87, 45F) to Dex

14: end if

15: end for

16: Solve the IO training problem (3) with dataset Dex to obtain 6*
17: Return: policy parameters 6*

policy class with no constraints on state or input, our proposed policy is nonlinear in nature and can

handle constraints.

3. RoBUST DISTURBANCE-AWARE MPC

3.1. Robustification around disturbance trajectory

The non-causal MPC expert (7) optimizes directly against the noisy disturbance trajectory.
However, due to stochasticity and/or potential distribution shifts in the data, performance might be
degraded, and we may even observe instabilities. Therefore, we opt for a policy that is robust to such
issues. To this end, let us introduce the robust counterpart to the non-causal MPC (7) described as

N—-1
Vi Pz, w) ;= min  max c(xy, ug) + cr(xn)

u weEW(w) =0 (8)
st wely "z, w).
where W(w) C RV is the disturbance uncertainty set centered around the trajectory w, and

u]I\lfC—rIan(w,W) _ {u c RNnu S ue ujr\lfc—mpc(a;’W), Vw € W(W)} . (9)

A problem like (8) can easily be computationally intractable, even if its non-robust version (6) is not.
When dealing with such problems, it is therefore common for conservative approximations to be
used even when the nominal model fj is linear. Here, we propose an uncertainty set ¥ for which (8)
is tractable under linear dynamics and constraints and quadratic costs. Before we proceed, let us

introduce a useful preparatory Lemma.
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Lemma 3.1 (Vectorized MPC formulation for linear dynamics). Under linear nominal dynamics
fo(x,u) = Ax + Bu, and quadratic costs c(x,u) = ||x||22z + ||u||22u and cf(xz,u) = ||x||22f, where
Qz,Qf = 0 and Q, > 0, the objective of (6) can be equivalently expressed by

2 2
|Az + Bu+ Bw[3_+ [ul, .

with Qx = blkdiag(In—1 ® Q4,Qf), Qu = IN ® Qu, A = blkeol(4,...,AY), B = Tn(4, B),
E = Tn(A, E)?. Moreover, when the stage constraints are polytopic U = {u € R™ : Gyu < hy} and
X = {x € R"™ : Gy < hy}, the constraint set of (6) is also polytopic in the form of

UL (1 w) = {u € RV™ : Fz + Gu < h(w)},

with FT = [(GXA)T 0], GT = [(GXB)T GuT}, h(w) = [(hx — GEw)T huT}, Gx = Iy ® Gy,
Gu:IN®Gu7 hx:1N®ha:7 hu:1N®hu-

Thanks to Lemma 3.1, the MPC problem (6) can be simplified to the convex quadratic program

min | Az + Bu + Ewl|, + [[ullg, 10)
10
st. Fz+ Gu < h(w)

The uncertainty set VW we consider here is a ball centered on the N-length disturbance trajectory w
W(w) = {w eRV™ ;W — w3 < 92} , (11)

where P > 0 is a desired geometry on the uncertainty trajectories. With this choice of uncertainty
set, the robust constraints Uy, "+ (z, W), as defined in (9), enjoy an exact polytopic representation.

Lemma 3.2 (Exact polytopic representation of robust constraint set). Under the hypotheses of
Lemma 3.1 with uncertainty set (11) and P = 0, the constraints (9) have the following polytopic

representation

Fz 4+ Gu < h(w)

where h(w)T = |(hy —g(w)T huT|, gw)T = [g,(w) Ga(w) .| and gi(w) = o[ P7/2g, +
glw, Vi. The vectors g; are such that [GxEwW], = g]w.

The proof is provided in Appendix A. We are now in a position to state our main result.

Theorem 3.3 (Exact SDP reformulation). Under the hypotheses of Lemmas 3.1 and 3.2, the robust
non-causal MPC problem (8) is expressed as the min-mazx problem

VN w) = min - max A7+ But+ B, (12)
12

s.t. Fz+ Gu < h(w)

B e 0
2Denotes a matrix Tn(A,B) = : o
AN-'B ... B
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Furthermore, let us denote X (z,u) = Az + Bu. Then, the optimization problem (12) admits the
convex reformulation

min 9+
u7)"’yl Y2

st. A>0, Fz+ Gu<h(w),

[ETQ.E — AP ETQ,X(z,u) + \Pw
B =AWl = e?) ] T
[ Iy (BTQxB + Qu)"?u

- x 2(BTQxAz,u) + |Az(lg, — 2|

The proof is relegated to Appendix A.

Remark 3.4 (Uncertainty set). The uncertainty set (11) is not necessarily uniform in time as it is a
ball on Nn,-dimensional space, i.e., not all w; components of w need to be distanced equally from

wyg. For instance, considering the case when P = Iy, , we then have
_ N — 2
{W € RVmw o S flwg, — wg|)* < 92} .

The above uncertainty set includes disturbances with similar measures of energy to w. Other
similar approaches [Lofberg, 2003] aim to mitigate this by considering uncertainty sets such as
{maxy, ||wy, — wg||* < 0%}, where each realization is bounded uniformly in time. However, since
multiple quadratic inequalities are introduced as constraints, this necessitates the use of the inexact
S-Lemma [Boyd et al., 1994], which inserts conservativeness. We use its exact version since only one
quadratic inequality is involved in the constraints, thus allowing for an exact reformulation.

3.2. Approximating with Inverse Optimization
The non-causal policy (12) can be expressed in the form

AT (1 ) = argmin QTP (z, u, w) (13)

weUy P (z,w)
with ¢4)""P°(z, w) and Q""™P¢(z, u, w) are defined accordingly, as in the previous sections. The
procedure to approximate (13) with Inverse Optimization is identical to that used for the non-robust
disturbance-aware MPC of Section 2.3 and is outlined by Algorithm 1. The only difference lies in
the expert policy used; in this context, policy (13) is used instead of (7). One key difference with (7)
is that (13) requires solving a semidefinite program —instead of a quadratic one— so we can expect
greater computational improvement, albeit potentially at the expense of reducing the quality of the

approximation.

By combining (3), and (7), we arrive at the convex optimization program whose solution is the
fitted Q-function

T
min 8¢, U5*) — min S¢,u
; t;Qe( ¢, ™) ueu(St)Qe( ¢ ) (14)

nc-rmpc (i,t , ‘;Vt+1 ) ,

st. =7
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where the labels 4§* are the in-hindsight optimal inputs computed by the min-max problem (8). An
interesting parallel can be drawn between the exploration-exploitation dilemma and the robustification
when computing the labels a3*.

Remark 3.5 (Exploration vs exploitation). When looking at the exploration/exploitation dilemma
as a competitive game between two conflicting objectives, we note that a similar trade-off exists in
the min-max MPC (8) that is controlled by the uncertainty radius p. This trade-off allows us to take
into account disturbance trajectories different than the ones observed, a key feature that is addressed
by exploration in RL and hence helps with generalization. This hypothesis is also confirmed by our
numerical results in Section 4 and with additional experiments in the Appendix.

4. NUMERICAL EXPERIMENTS

In our numerical analysis, we focus on two domains, the quadrotor environment from safe-control-
gym [Brunke et al., 2021] and the MuJoCo control benchmark [Todorov et al., 2012]. Additionally,
we include detailed ablation studies for two more experiments found in Appendix Section B: the
control of the linearized dynamics of a fighter jet [Safonov et al., 1981] and a nonlinear temperature
control problem.

4.1. Quadrotor environment

We conduct experiments in a nonlinear quadrotor environments from safe-control-gym [Brunke
et al., 2021] and evaluate our approach in comparison with two RL algorithms: Proximal Policy
Optimization (PPO) [Schulman et al., 2017] and Conservative Q-Learning (CQL) [Kumar et al.,
2020]. Both are model-free, with CQL falling under the offline RL paradigm and PPO being an
on-policy algorithm.

Environment specifications: The quadrotor environment consists of a 6-dimensional state
space and two control inputs. The objective is to reach a fixed goal state starting from a randomly
sampled starting position while keeping the quadrotor stable under an unknown external force that
acts as a disturbance. This force consists of a sinusoidal signal of a random phase with additive
Gaussian noise applied to the body of the quadrotor. The environment has a nonlinear dynamical
system, assumed to be known, with the minimum and maximum episodic cost being 0 and 300,

respectively.

Experimental Setup: We linearize the dynamics around an equilibrium point to form a nominal
model before giving it to the MPC policies. In the following experiments, we denote an MPC policy
that is oblivious to the external sinusoidal disturbance by MPC (obl), and with MPC (f-dst), we refer
to an MPC that has the full information of the future disturbance trajectory. In our evaluations, we
trained the PPO agent with 3M environment steps, which we refer to as PPO-3M, and the CQL
agent for 50k iterations, where we observed convergence in performance. Both 10 and CQL agents
are trained with the same dataset generated by an MPC (obl) policy with a 25-step horizon.

Figures 1 and 2 show our comparisons and ablation studies in the quadrotor environment. In all
six figures, T denotes the dataset length, N is the MPC horizon, and H is the lookback horizon.
IO-RMPC* is the p-tuned policy. Unless stated otherwise, the default values of N and H are set to
25 and 2, respectively, and each evaluation of an agent is performed with 20 different starting points.
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TABLE 1. Comparison of IO agent in MuJoCo benchmark.

Environment Data Size CQL IQL COMBO 10
walker2d-medium 10K 50.5£27.3 61.4+226 58.6+19.6 70.6+4.2
1M 85.44+1.2 833+£7.6 829+47 -

hopper-medium 5K 54.3+154 66.6+19.1 57.5+11.0 82.1+11.8
1M 72.5+£15.7 T7+£18.2 98.3+4.5 -
Parameters
walker2d 691, 216 431,377 2,489,949 3,246
hopper 678,922 418,315 2,476,887 840

To normalize the effect of the randomized initial starting points, in both figures, we only report the
steady-state® costs. The dashed lines indicate the median values, and the tubes contain the range
between the 20th to 80th percentiles of the costs, if not stated otherwise.

Comparisons: In the left plot of Fig. 1, we compare the episodic cost histograms of four agents
evaluated with 20 different initial conditions. Our evaluations show that IO-RMPC yields significantly
lower costs even with a limited dataset of T' = 3,000 samples. The center plot of Fig. 1 shows
a comparison of the IO-RMPC policy against various CQL agents. Although CQL converges to
IO-RMPC performance, it requires an order of magnitude more samples. Finally, we compare the
MPC performances with the PPO agent. Although MPC policies are only given a linear nominal
model of the environment, starting with the 15-step horizon, they surpass the PPO performance.

Ablation studies: Additionally, we analyze the effect of the uncertainty radius p and lookback
horizon H. The center plot of Fig. 2 indicates that robustification of the IO-MPC policy, up to some
value of p, improves performance even in the absence of a disturbance bias. This behavior is also
present in the left plot of Fig. 2, where the IO-RMPC policy even surpasses the MPC (f-dst) policy.
We posit that this is due to the fact that robustifying also helps with model mismatch between the
actual dynamics and the nominal one. Finally, we perform an ablation on the lookback horizon of
the IO-MPC policy shown in the right plot of Fig. 2. We observe that when the parameter H is set
to 2, IO-MPC almost recovers the performance of the full-information MPC (f-dst) policy, whereas a
further increase in H degrades performance.

4.2. MuJoCo benchmark

Next, we compare 10 agents with widely used model-based and model-free offline RL algorithms
within the MuJoCo control benchmark [Todorov et al., 2012]. In these experiments, we employ
a model-free version of the IO agent, where the actions 4§* in Algorithm (1) are directly taken
from the dataset. The augmented state ¢(X¢—4.¢, Uz—4:¢) includes the last four state-action pairs, the
cross-products of state features, a constant bias term, and the state sinusoidal terms. The latter
augmentation is motivated by the periodic nature of the targeted tasks in robotics.

Experiment setup: We use the dataset from the D4RL repository [Fu et al., 2021] to train
IO agents and offline RL algorithms. We employ an iterative version of the IO algorithm, using

3Defined as the last 40% of data points of a trajectory.
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FiGURE 1. Comparisons of several agents in the quadrotor environment. Left: The
cost histogram of the offline IO and CQL agents and online model-based MPC and
model-free PPO-3M (trained with 3M environment steps) agents. Center: The cost
distributions of CQL agents trained with 4 seeds on various dataset lengths compared
to a single IO-RMPC policy trained with 3000 samples. Right: Comparison of the
cost distributions between oblivious and full disturbance MPC policies against the
model-free PPO agent.
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FI1GURE 2. Ablation studies of MPC and IO policies in the quadrotor environment.
Left: The cost histogram of 10 and MPC agents with a 25-step horizon. Center:
The cost distribution of IO-RMPC policy with different p values and I0-MPC policy
with the same horizon N. The tube contains the range from the 40th to the 60th
percentiles of the costs. Right: The steady-state cost distributions of the IO-MPC
policy with various look-back horizons (H) against MPC policies. The tube contains
a narrower range from the 45th to the 55th percentiles of the costs.

gradient-based optimization to minimize the objective function in Equation (2). For a fair comparison,
we ran each algorithm with 1M gradient steps and applied the same evaluation scheme. We trained
each algorithm with three different seeds and evaluated the agents throughout the training process
using 40 different seeds for each evaluation. We report the average of top 5% mean evaluation scores
in Table 1. We focus on low-data regimes, limiting the data size to 10K or 5K points in addition to
retaining the original dataset size of 1M points. We obtained the scores for the offline RL algorithms
by running the implementations provided in the OfflineRL-Kit repository [Sun, 2023], which matches
the originally reported scores when the algorithms are executed with the complete dataset.

Table 1 shows the performance of the IO agent in low-data regimes against offline RL algorithms.
In both hopper and walker environments, the IO agent achieves the highest score in the low-data
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regime when compared with model-free and model-based offline RL algorithms. In terms of the
number of parameters, the IO agent has an order of magnitude fewer parameters, as shown in the
bottom of Table 1, while achieving higher scores compared with widely used baselines.

We argue that the successful performance of the 10 algorithm with such a low number of parameters
is due to the inherent richness of the IO hypothesis class, combined with a convex optimization loss
function that allows us to provably reach the (in-sample) global optimizer during the training phase.
Furthermore, due to the inherent simplicity of the proposed policy class, the IO algorithm is able to
generalize with significantly fewer samples.

In these experiments, we refrain from running our proposed I0-RMPC agent that employs the
action improvement step, since constructing a nominal model for MuJoCo tasks, required for the
MPC experts, is a task that is inherently difficult and beyond the scope of this work. Nevertheless,
our experiments with the plain IO agent reveal promising and competitive results in MuJoCo control
tasks. These results underscore the substantial potential of IO0-based algorithms within the RL or IL
contexts, especially in scenarios with limited data. Extending the RMPC-based action improvement
step to deal with more complicated dynamics remains an avenue for future research.

5. CONCLUDING REMARKS, LIMITATION, AND FUTURE DIRECTIONS

In this work, we presented a convex and robust offline RL framework that utilizes a nominal
model and in-hindsight information to learn an optimal policy. Through empirical evaluations,
we showcased that our proposed algorithm can recover the performance of non-causal agents with
complete environmental knowledge, while at the same time significantly outperforming RL algorithms
in the low-sample data regimes (both online and offline). We further demonstrated that the 10
framework, due to its expressivity and convexity properties, can achieve SOTA performance in
challenging MuJoCo offline control tasks while employing orders of magnitude fewer parameters than

its competitors.

We also find it essential to mention some of the inherent limitations of our approach. While
the proposed quadratic hypothesis class, when paired with appropriate features, has demonstrated
sufficient expressiveness in the control environments examined within our numerical studies, for more
sophisticated tasks, additional steps can be required, such as applying kernel tricks or employing a
nonlinear state embedding. Another drawback of our approach is the reliance of our robust MPC
formulation on a nominal model. This requirement can become impractical for complex environments
where approximating a nominal model is challenging. However, these limitations are not inherent

and can be potential avenues for future research, including topics such as:

(i) approximating non-causal policies by utilizing in-hindsight information in real-time, using
tools from Online Convex Optimization; and

(ii) extending the robust min-max optimization (RMPC) framework to off-policy and offline RL
settings.

As we conclude, we position our approach as a step towards bridging the gap between robust
control and offline RL, offering a particular applicability in continuous control tasks with substantial
distribution shifts from training to test and also in environments where the availability of training
data is limited.



OFFLINE REINFORCEMENT LEARNING VIA INVERSE OPTIMIZATION 14

REFERENCES

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1-35, 2017.

Dimitri Bertsekas. Abstract Dynamic Programming. Athena Scientific, 3rd edition, 2021.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline
reinforcement learning and imitation learning: A tale of pessimism. Advances in Neural Information
Processing Systems, 34:11702-11716, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning with-
out exploration. In International Conference on Machine Learning, 2018. URL https:
//api.semanticscholar.org/CorpusID:54457299.

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing Off-Policy Q-Learning via
Bootstrapping Error Reduction. Curran Associates Inc., Red Hook, NY, USA, 2019.

Yifan Wu, G. Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. ArXiv,
abs/1911.11361, 2019. URL https://api.semanticscholar.org/CorpusID:208291277.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-learning.
CoRR, abs/2110.06169, 2021. URL https://arxiv.org/abs/2110.061609.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for
offline reinforcement learning. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc.
ISBN 9781713829546.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34, pages 28954-28967. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
£29a179746902e331572c483c45e5086-Paper . pdf.

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yangiu Wu, and Keith Ross. Bail: Best-action
imitation learning for batch deep reinforcement learning. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020.
Curran Associates Inc. ISBN 9781713829546.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiw:2112.10751, 2021.

Mingyuan Zhong, Mikala Johnson, Yuval Tassa, Tom Erez, and Emanuel Todorov. Value func-
tion approximation and model predictive control. In IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning, pages 100-107, April 2013.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control. In International
Conference on Learning Representations, September 2018.

Mohak Bhardwaj, Sanjiban Choudhury, and Byron Boots. Blending MPC & Value Function
Approximation for Efficient Reinforcement Learning. In International Conference on Learning

Representations, September 2020.


https://api.semanticscholar.org/CorpusID:54457299
https://api.semanticscholar.org/CorpusID:54457299
https://api.semanticscholar.org/CorpusID:208291277
https://arxiv.org/abs/2110.06169
https://proceedings.neurips.cc/paper_files/paper/2021/file/f29a179746902e331572c483c45e5086-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f29a179746902e331572c483c45e5086-Paper.pdf

OFFLINE REINFORCEMENT LEARNING VIA INVERSE OPTIMIZATION 15

Jaewoo Lee, Sujin Yun, Taeyoung Yun, and Jinkyoo Park. Gta: Generative trajectory augmentation
with guidance for offline reinforcement learning. Advances in Neural Information Processing
Systems, 37:56766-56801, 2024.

Guanghe Li, Yixiang Shan, Zhengbang Zhu, Ting Long, and Weinan Zhang. Diffstitch: Boosting offline
reinforcement learning with diffusion-based trajectory stitching. arXiv preprint arXiv:2402.02439,
2024.

Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang. Offline
reinforcement learning with reverse model-based imagination. Advances in Neural Information
Processing Systems, 34:29420-29432, 2021.

Jiafei Lyu, Xiu Li, and Zongqing Lu. Double check your state before trusting it: Confidence-aware
bidirectional offline model-based imagination. Advances in Neural Information Processing Systems,
35:38218-38231, 2022.

Junjie Zhang, Jiafei Lyu, Xiaoteng Ma, Jiangpeng Yan, Jun Yang, Le Wan, and Xiu Li. Uncertainty-
driven trajectory truncation for data augmentation in offline reinforcement learning. arXiv preprint
arXiv:2304.04660, 2023.

Peyman Mohajerin Esfahani, Soroosh Shafieezadeh-Abadeh, Grani A. Hanasusanto, and Daniel
Kuhn. Data-driven inverse optimization with imperfect information. Mathematical Programming,
167(1):191-234, January 2018.

Syed Adnan Akhtar, Arman Sharifi Kolarijani, and Peyman Mohajerin Esfahani. Learning for
Control: An Inverse Optimization Approach. IEEE Control Systems Letters, 2021.

Elad Hazan, Sham Kakade, and Karan Singh. The Nonstochastic Control Problem. In International
Conference on Algorithmic Learning Theory, 2020.

Naman Agarwal, Brian Bullins, Elad Hazan, Sham Kakade, and Karan Singh. Online control with
adversarial disturbances. In International Conference on Machine Learning, 2019.

Dylan Foster and Max Simchowitz. Logarithmic regret for adversarial online control. In International
Conference on Machine Learning, 2020.

Gautam Goel and Babak Hassibi. Regret-optimal measurement-feedback control. In Learning for
Dynamics and Control, 2021.

Johan Lofberg. Minimax Approaches to Robust Model Predictive Control. Number 812 in Linkoping
Studies in Science and Technology Dissertations. Univ, 2003.

Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. Linear Matriz
Inequalities in System and Control Theory. STAM, 1994.

Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P. Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning. Annual Review of Control, Robotics, and Autonomous Systems, 2021. URL https:
//arxiv.org/abs/2108.06266.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IROS, pages 5026-5033. IEEE, 2012. ISBN 978-1-4673-1737-5. URL http://dblp.uni-trier.
de/db/conf/iros/iros2012.html#TodorovET12.

M. Safonov, A. Laub, and G. Hartmann. Feedback properties of multivariable systems: The role
and use of the return difference matrix. IEEE Transactions on Automatic Control, 26(1):47-65,
February 1981.


https://arxiv.org/abs/2108.06266
https://arxiv.org/abs/2108.06266
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12
http://dblp.uni-trier.de/db/conf/iros/iros2012.html#TodorovET12

OFFLINE REINFORCEMENT LEARNING VIA INVERSE OPTIMIZATION 16

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://dblp.uni-trier.de/db/
journals/corr/corr1707.html#SchulmanWDRK17.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021.

Yihao Sun. Offlinerl-kit: An elegant pytorch offline reinforcement learning library. https://github.
com/yihaosun1124/0fflineRL-Kit, 2023.

Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

Junho Park, R. Abraham Martin, Jeffrey D. Kelly, and John D. Hedengren. Benchmark temperature
microcontroller for process dynamics and control. Computers € Chemical Engineering, 135:106736,

April 2020.

APPENDIX A. TECHNICAL PROOFS

A.1. Proof of Lemma 3.2

The original constraint expresses a row-wise inequality. With the parameterization [GxEw], = g/ w,
the inequality Fzr + Gu < h(w), Vw € W(w) is equivalent to solving the following optimization

program for every i:

gi(w) = max {g]w: |w - wl} < ¢}
To that end, let w = o~ ' PY/?(w — w). Then the above becomes
Gilw) = max { g7 (0P™/*W +w) : W] <1}
The maximization of a linear function on the unit disk has an analytical solution and that is
gi(w) =0 HP’”zgz‘H +glw

By putting everything together we conclude the proof.

A.2. Proof of Theorem 3.3

The program (12) follows directly by combining the results of Lemmas 3.1 and 3.2. Let us denote

the inner maximization as

J(u) = Wg/%?cw) |Az + Bu + EV_VH%QX + HuHau

and its corresponding Lagrangian as
L;(\u,w) = [|Az +Bu+Ew|g_+ [ully, — A (|w - w5 — %)
After some manipulations and rearrangements, we have
LiAu,w)=(w,(ETQxE — AP)w) + 2 (ETQx (Az + Bu) + A\Pw,w)
+ Az + Buly, + g, = A (Iwl} - o)
Let us introduce the following notation

A(\) :=ETQ.E — AP


http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
http://dblp.uni-trier.de/db/journals/corr/corr1707.html#SchulmanWDRK17
https://github.com/yihaosun1124/OfflineRL-Kit
https://github.com/yihaosun1124/OfflineRL-Kit
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M(A,

=

=ETQx (Az + Bu) + \Pw

)
) == (Iwl} - ¢?)
va(u) = ||Az + Bulg, + |ullg,
u) :=v1(A) + v2(u)

e

v(A,

The dual of this problem is then

— M\ u)TAN)TM (N u) 4+ v(\ u),
dy(Au) ==max LA u,w) = ¢ if A(A) <0 and MM\, w)T (I = AMNAN)T) =0
400, otherwise

Strong duality holds due to the S-Lemma Boyd and Vandenberghe [2004]. Therefore, J(u) =
miny>o d (A, u). Now consider the following epigraph reformulation

J(u) = min 7+ vs(u)
A1

st. A0,
A(N) <0,
MO, u)T (1 - A()\)A(A)T> —0,
— MOw)TAN MO 1) + 11 (A) < 7

The last three constraints can be cast as an LMI using the non-strict Schur complement Boyd et al.
[1994] and we have

J(u) = min 1 + va(u)

)‘7’71
st. A>0,
AN M) |
* V1(>\) - M h

Therefore the overall robust MPC problem can now be written as min, {J(u) : Fz + Gu < h(w)}.
In order to write this in the standard SDP form, we will have to use another epigraph reformulation,
that of vo(u):

min -y + 72
AY1,72
s.t. A >0,
AN Mow |
* Vl()‘) -MN ’

Fz + Gu < h(w),
l1Az + Bullg, + [|ullg, <7
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The last constraint can now be written as v2 > (u, (BTQxB + Qu) u) + 2 (BTQxAz,u) + HA:L’H2QX,
which can be expressed as the LMI:
(BTQXB + (;Zu)l/2 u

—In <0
2 N
*  2(BTQxAz,u) + [|Azllg, — 12

Hence, by putting everything together we arrive that the original problem (12) is equivalent to:

min 7y + 72
u7A7P717"/2
s.t. A >0,

Fz + Gu < h(w),
ETQ.E — AP ETQy (Az + Bu) + A\Pw

* = A(Iwl - )
—Iyn
-

(BTQxB + Qu)/*u
We have arrived at the formulation in the Theorem statement, and as such, we conclude the proof.

2 < 0-
2(BTQxAz,u) + [[Azllg, — 2

APPENDIX B. ADDITIONAL NUMERICAL EXPERIMENTS

Besides the numerical experiments in Section 4, we include two more examples that enable us to
study our approach in more detail.

B.1. Linear fighter jet

We consider the regulation of the unstable dynamics of a six-dimensional fighter jet [Safonov
et al., 1981] with additive unknown disturbances w11 = fi,(¢; wo) + ve+1, where fi, has a sinusoidal
component with random phase wy ~ U[0, 7/2] and a bias term, and vy ~ N (0,%,). As the dynamics
are given and linear, the nominal model fo(:zj, u,w) = Ax+ Bu+ Fw coincides with the true dynamics
f. Initial conditions are sampled randomly as z¢ ~ N(0,0.1]g). Further, we impose that the state
be constrained in {z € R%: [#!| < 1} and the input in {u € R?: [u!]| < 2, [u?| < 3}. We select the
10 features as ¢(x1., wig) = (¢, 1, wp—1, wy).

The dynamics of the fighter jet Safonov et al. [1981] have been discretized with a sampling time of
0.035 s, resulting in the following discrete-time system matrices:

[0.9991 —1.3736 —0.6730 —1.1226 0.3420 —0.2069 | [ 0.1457  —0.0819] 00
0.0000 0.9422  0.0319 —0.0000 —0.0166 0.0091 —0.0072  0.0035 0 0
L _ |0-0004 03795 09184 —0.0002 —0.6518 04612 |  _ [-04085 02893 | . |1 0
0.0000 0.0068  0.0335  1.0000 —0.0136 0.0096 |’ —0.0052  0.0037 |’ 0 1
0 0 0 0 0.3499 0 0.6501 0 0 0
L0 0 0 0 0 0.3499 | 0 0.6501 | 0 0]

As mentioned in the main body, the disturbances are w1 = fu, (t;wo) + vey1, where vy ~ (0, Xv),

wo ~ U[0,7/2], with

0.5 sin(4.488¢ + wy)

fultiwo) = [ 0.01

0.01 0
and X, = .
0 0.001
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The cost parameters are selected as Q5 = Q, = diag(1, 10%,102,10%,1,1) and Q,, = I3, and the MPC
horizon is N = 20.

Approximating NC-MPC with 10:. First, we want to validate that hindsight can be used to mitigate
unknown disturbances. As such, we will compare the following policies: MPC (obl), an MPC that
can measure only z; at time ¢ and does not know f,,, as described in (4); MPC (dst), an MPC that
can measure both x; and w1 at time ¢, and also knows f,; and IO-MPC, the policy resulting
from applying Algorithm 1 to a dataset of trajectories obtained from MPC (obl). All IO-derived
policies described in this paragraph and the next are trained with a dataset containing 10 trajectories
induced by MPC (obl) of length 51 each. In the left plot of Figure 3 we have the cost histogram of
c(x,u) for each tested policy during steady state*. We can see that in both plots the IO-MPC policy
recovers a significant part of the performance of MPC (dst), both in terms of median and of variance.

Approximating NC-RMPC with IO:. Using the same setup and data, we impose a distribution shift in
the disturbances during evaluation by adding a constant bias to wy; specifically, we apply w; instead
of wy, where w] = w] + [0.1 0.05r. We therefore compare the following: MPC (obl), as before;
MPC (p-dst), as MPC (dst) of the previous section — only measures wyy1; MPC (f-dst), similar
to MPC (p-dst), except that it has access to w1 instead of wyy1; IO-MPC, as before; IO-RMPC,
a robust MPC of the form (12), trained with the same data as IO-MPC and equipped with P = Iny,,
and o = 1072. It is immediately obvious from the middle and rightmost cost distributions of Figure 3
that imitating the robust expert yields performance benefits when faced with distribution shift, as
the median performance of IO-RMPC is better than that of IO-MPC. Not only that, but IO-RMPC
manages to recover the median performance of MPC (f-dst), albeit with a larger variance.

Effect of uncertainty radius: We further explore the impact of the robustness parameter (uncertainty
radius g) on the steady-state cost distribution across different training datasets. In the left plot
of Fig. 4, we observe that increasing ¢ until ¢o* yields a consistent reduction in the time-averaged
steady-state cost across different training sets. What is surprisingly interesting is that there are
some datasets which, when trained with properly tuned g, can match the performance of the full-
information agent MPC (f-dst). We also looked into the performance of such controllers on the entire
distribution of the steady-state cost in the middle plot of Fig. 4: p has a positive impact on the
entire steady-state cost distribution (and not only the median or average). We also note that the
non-robust controller IO-MPC coincides with the robust one (I0-RMPC) for sufficiently small o. In
the right plot of Fig. 4, we freeze 0 = 0" and look at the entire steady-state cost distributions of the
three policies involved in the middle plot. We observe that even though the median performance
of IO-RMPC surpasses that of MPC (f-dst), its variance across the test set is much more spread,
making it more high-risk than MPC (f-dst). However, as the variance of the non-robust IO policy is
similarly wide, the takeaway message here is that robustification combats distribution shift during
policy evaluation.

B.2. Nonlinear temperature control

Here, we consider a nonlinear 4-th order dynamical system that describes the heat transfer
equations of two coupled heating elements (inputs) and two temperature sensors (outputs), akin to

“Defined as the last 40% of data points of each trajectory.
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MPC policies vs IO-MPC .Center: Difference in performance between the robust
and non-robust version of IO policies when faced with distribution shift. Right:
Performance of IO-RMPC vs MPC policies when faced with distribution shift.
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from the 5th to the 95th percentiles. Center: Steady-state cost distribution for
different controllers trained with 1 dataset and for varying g; the tubes consist of the
20th to the 80th percentile range from 100 trials, while the dashed lines represent
the median values. Right: Steady-state cost histograms for optimal ¢ = p* over 100
trials of a single controller realization; dashed lines indicate the median values.
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cost histograms for the policies described in Section B.2 over 200 trials of a single
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first two, the tubes consist of the range between the 20th and 80th percentiles.
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ap az as ay b1 by Te Th

4-1073 5.1-1071 7.3-1073 10~ 0.011 0.006 18.3 2

TABLE 2. Lumped-parameter coefficients of system (15).

that of Park et al. [2020]. Specifically, the nonlinear differential equations describing the heat-transfer
dynamics are the following:

TRT1 = al(Too — x1> + ag(Téo — x%) + ag(:L'Q — 3?1) + a4(x% — w%) + biug

ThTo = a1 (Too — .%'2) + GQ(TSLO — x%) + ag(.%'l — 372) + a4(x% — .%'%) + bous (16)
Tci'g =1 — I3
Tely = T2 — T4

with outputs y; = x3 and yo = x4. The parameters a1, ao, as,aq, b1, b, 7¢, Th, are lumped-parameter
coefficients that can be summarized in Table 2. We assume full state feedback. The ambient
temperature T, is constant throughout each trial, but randomly sampled from a uniform distribution
Two ~ U[18,28], and is subjected to additional Gaussian noise v;+1 ~ N(0, 1) before entering the
nonlinear dynamics. The control objective is for the outputs y to track the temperature setpoints
r1 = 55°C and rp = 45°C, with Q, = Q5 = I» and @, = diag(1,0.5). To obtain the nominal model
fo, we linearize (15) around (Z, %) which corresponds to the steady-state solution of y = r, and
then discretize with a sampling rate of 10s. As such, here the resulting nominal model fo used
for the MPC controllers differs from the true nonlinear dynamics f. Due to this, the in-hindsight
disturbance trajectories contain terms that stem from model mismatch:

wir1 = BT (f (24, us, Too + vi41) — T — Adzp — Bouy)

where dx; = x4 — T, duy = uy — u are its zero coordinates, on which our policies operate.

Similarly to before, we want to evaluate the performance of Inverse Optimization derived policies,
in both the robust and non-robust settings. Specifically, we will investigate the performance of the
following policies: MPC, a naive MPC with the assumption that T, = E[Tw] = 23°C; IO-MPC (1),
an 10-derived policy akin to (6) with feature map ¢(x1.¢,u1.) = (92, 1, wi—14); IO-MPC (2), like
IO-MPC (1), but with no bias term and H = 8, thus ¢(x1.4, u1¢) = (02, wi_74); IO-RMPC (1),
the robust counterpart to IO-MPC (1), equipped with P = Iy and ¢ = 70. All IO-derived policies
resulted from the same dataset, containing 10 trajectories of length 51 each.

Firstly, we performed an ablation on the features: whether or not to include a bias term and
what is the best value of H (lookback horizon). The results of this are present in the leftmost
plot of Figure 5. It is evident that the optimal combination of features is no bias term and H = 8
(IO-MPC (2)). When evaluating the robust counterpart of IO-MPC (2), we found that for small
values of o, there was little to no performance improvement, and for larger values the performance
deteriorated. We posit that given our experimental setting, IO-MPC (2) has enough expressivity
that it can generalize well to unseen disturbances and capture most of the available performance,
and thereby robustification has little benefit to add. On the other hand, when performing the same
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procedure on the worse-performing policy IO-MPC (1) with a bias term in the features and H = 2,
we saw that robustification led to better generalization, as the performance improved when compared
with its non-robust counterpart, as can be depicted in the middle plot of Figure 5.

Finally, in the rightmost plot of Figure 5, we can clearly see that each IO policy surpasses
the performance of the naive approach (MPC), but that is to be expected as per our previous
experimental discussions. The takeaway message from this figure is that robustifying can help in
better generalization capabilities, and that our framework has the potential to deal with disturbance
sequences that are correlated with the state, such as in cases where there is model mismatch.



	1. Introduction
	1.1. Problem statement and Contributions
	1.2. Related works

	2. Inverse Optimization for RL
	2.1. Inverse Optimization as Supervised Learning
	2.2. Imitating an MPC expert with Inverse Optimization
	2.3. Exploiting in-hindsight information

	3. Robust Disturbance-Aware MPC
	3.1. Robustification around disturbance trajectory
	3.2. Approximating with Inverse Optimization

	4. Numerical Experiments
	4.1. Quadrotor environment
	4.2. MuJoCo benchmark

	5. Concluding Remarks, Limitation, and Future Directions
	References
	Appendix A. Technical Proofs
	A.1. Proof of Lemma 3.2
	A.2. Proof of Theorem 3.3

	Appendix B. Additional Numerical Experiments
	B.1. Linear fighter jet
	B.2. Nonlinear temperature control


