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Abstract—We present a novel user-centric vehicle-to-grid
(V2G) framework that enables electric vehicle (EV) users to
balance the trade-off between financial benefits from V2G
and battery health degradation based on individual preference
signals. Specifically, we introduce a game-theoretic model that
treats the conflicting objectives of maximizing revenue from
V2G participation and minimizing battery health degradation
as two self-interested players. Via an enhanced semi-empirical
battery health degradation model, we propose a finite-horizon
smart charging strategy based on a horizon-splitting approach.
Our method determines an appropriate allocation of time slots
to each player according to the user’s preferences, allowing
for a flexible, personalized trade-off between V2G revenue and
battery longevity. We conduct a comparative study between
our approach and a multi-objective optimization formulation
by evaluating the robustness of the charging schedules under
parameter uncertainty and providing empirical estimates of
regret and sensitivity. We validate our approach using realistic
datasets through extensive trade-off studies that explore the
impact of factors such as ambient temperature, charger type,
and battery capacity, offering key insights to guide EV users in
making informed decisions about V2G participation.

Index Terms—Vehicle-to-grid (V2G), Game theory modeling,
Smart charging, Electric vehicle.

I. INTRODUCTION

THE global energy sector is currently being transformed
by the rapid expansion of renewable energy sources and

the widespread adoption of electric vehicles (EVs), driving
research on the impact of those technologies to the elec-
tricity grid and the integration of energy storage systems to
address emerging challenges. The energy storage industry has
historically relied heavily on lithium-ion batteries (LIBs) [1];
however, due to factors such as material security and other
concerns [2], reducing the reliance on new battery purchases
has become essential. Along this direction, researchers have
proposed repurposing existing EV batteries for grid-support
services [3]–[5]. This idea, known as vehicle-to-grid (V2G),
was first introduced in [6] and has been tested in over 100
pilot projects worldwide since 2002 [7], [8]. Despite these
efforts, widespread adoption of V2G technology has been
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slow, primarily due to regulatory challenges and societal resis-
tance [4]. The key to driving regulatory reform lies in gaining
the voluntary participation of EV users in V2G programs. A
crucial qualitative study in [9] identified the main reasons for
societal hesitation towards V2G, with two prominent concerns
being the uncertainty of financial benefits and the potential
for battery degradation. To illustrate these concerns, one EV
user in [9] stated, “If discharging for V2G-mode is done only
a couple of times per year, then I would find it acceptable
to participate in V2G. But if you do V2G on a daily basis
(hundreds of times per year), I believe that the battery pack
will be damaged and then I would not participate.” Given
these concerns, there is a pressing need for robust research to
evaluate the effects of V2G participation on battery health and
the associated financial benefits for EV owners.

Few studies [10]–[14] have rigorously investigated the im-
pact of V2G services on EV battery health. In [10], the
authors demonstrate that battery degradation is accelerated
when providing bulk energy and ancillary services through
V2G. However, their degradation model does not account for
the distinction between battery cell temperature and ambient
temperature, potentially leading to inaccurate results. Simi-
larly, the study in [11] assesses battery health degradation
due to V2G participation, concluding that the degradation
is negligible when compared to naturally occurring factors
such as driving and calendar aging. Nevertheless, neither
the study in [10] nor that in [11] offers a comprehensive
analysis of the trade-offs between the financial benefits of
V2G participation and the associated financial losses due
to battery degradation. Furthermore, these studies do not
consider the effects of time-varying charging and discharging
power (commonly referred to as smart charging) on battery
health during V2G sessions—a critical omission given that a
recent study [15] has demonstrated the financial benefits of
implementing smart charging for V2G services. Authors in
[12] present an experimental study involving real-world EVs
engaged in V2G services over a five-year period. The authors
propose an empirical method for measuring battery capacity
and demonstrate a total capacity fade of 17.8%, with one-third
of this degradation attributable to cyclic processes, including
V2G usage and daily driving. Finally, studies such as [13],
[14] have aimed to incorporate user-centric considerations in
developing smart-charging algorithms under V2G services,
taking battery degradation into account. However, these works
do not provide a framework that enables users to individually
balance their interests between maximizing V2G participation
and minimizing battery degradation.
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While the above studies provide insights into EV battery
health degradation from V2G participation, they fall short of
offering solid recommendations for EV owners regarding the
optimal timing and extent of participation in V2G to achieve
favorable outcomes. To address this gap, we propose a novel
framework that captures the trade-offs between two conflicting
objectives: (a) the financial gains from V2G participation and
(b) the degradation of battery health. For the first time, we
model this trade-off using game theory to simulate the inherent
competition between these objectives. In our game-theoretic
framework, each objective is assigned to a player, and the
players engage in a strategic game constrained by factors such
as EV charger ratings, required energy levels at the end of
V2G sessions, and battery dynamics. Building on the game
equilibrium solution, we delve deeper into practical scenarios,
examining the effects of varying ambient temperatures, EV
charger types, battery capacities, and other relevant factors.
Finally, we present key insights that hold significant potential
value for the stakeholders.

Our main contributions with respect to the related literature
are the following:

1) Novel equilibrium concept: We propose a game-
theoretic trade-off between the two conflicting objectives
of V2G exploitation and battery degradation (Section
III) where the two players involved determine the level
of participation via an a-priori parameter while sharing
common constraints. The key difference in contrast with
the existing approaches [13], [14] is a user-defined hyper-
parameter allowing users to balance their level of V2G
participation and battery degradation, facilitating a more
user-friendly smart charging solution for widespread EV
adoption.

2) Complexity vs accuracy: For the battery degradation
modeling, we provide a balance between complexity and
accuracy by deriving a smooth approximation of the
empirical battery health degradation model (Section II)
proposed in [16], thus making it suitable for integration
into an optimization framework. Unlike previous studies
[12], [13], [14], we calculate an offline solution for
the battery temperature dynamics, which is incorporated
directly into the semi-empirical degradation model, en-
hancing its accuracy.

3) Sensitivity and trade-off analysis: We compare the
proposed framework with a multi-objective optimization
approach and a state-of-the-art MPC-based method [14]
using sensitivity and regret metrics, and the empirical
results indicate that our method is significantly more
robust when the parameters of the objective function are
subject to perturbations. We perform a comprehensive
trade-off analysis (Section IV) of our methodology to
assess the impact of factors such as ambient temperature,
EV charger ratings, V2G tariff structures, and battery
capacities. This analysis aims to alleviate uncertainties
for EV users, encouraging more active participation in
V2G programs.

Finally, Section V concludes the paper by proposing direc-
tions for further research.

II. MODELLING OF BATTERY HEALTH DEGRADATION

To accurately represent the health degradation of a Li-ion
battery, we leverage a capacity fading model from [16], which
explicitly relates the capacity fading of the Li-ion battery with
the so-called operating C-rate of the battery. The operating
C-rate of a battery is an important unit used for measuring
how fast a battery is charged or discharged with respect to
its capacity. The proposed model is based on the distinction
between two primary forms of capacity fading, namely cal-
endar aging and cyclic aging. Previous works have employed
physics-based models [17] and machine learning models [18],
[19] to predict battery degradation. However, both approaches
have limitations, including high computational complexity and
reliance on extensive experimental datasets. To offer a balance
between model complexity and accuracy and thus mitigate the
challenges encountered in [17]–[19], our work follows a semi-
empirical approach, integrating battery temperature dynamics
represented by differential equations with empirical models
on calendar and cyclic aging. This leads to a model which
is fit for fast and reliable real-time operation with reasonable
accuracy.

A. Calendar and cyclic aging

Calendar aging refers to capacity loss due to an irreversible
process of gradual self-discharge. This capacity loss is the re-
sult of lithium inventory loss during the solid-state-interphase
(SEI) formation at the graphite negative electrode [16]. In other
words, the growth of the SEI layer consumes lithium, causing
irreversible capacity loss. The capacity loss in calendar aging
increases with time (t) and the temperature (Tb) of the battery.
In this work, we leverage an empirical model developed in
[16], [20] for capturing calendar aging of Sanyo UR18650W
Li-ion battery cells. Note that our analysis and methodology
are not restricted to this particular battery model and can, in
fact, be appropriately adapted to handle other Li-ion models.
According to this model, the capacity loss due to calendar
aging Qcal

loss,% is given by

Qcal
loss,% = A exp

(
− Ea

RTb

)√
t, (1)

where A is a pre-exponential factor, Ea is the activation
energy, which is 24.5 kJ/mol, and R is the ideal gas constant,
which is 8.314 J/mol/K. Note that the temperature Tb is
implicitly also a function of time.

To model cyclic aging, we follow the empirical model
proposed in [16]:

Qcyc
loss,% = B1(exp (B2|Irate|)Cratedncycle), (2a)

B1 = aT 2
b + bTb + c, (2b)

B2 = dTb + e, (2c)

where Crated is the capacity of the battery in Ah, Tb is the
battery temperature in K, ncycle is the number of cycles,
Irate is the operating C-rate of battery, and a, b, c, d, e are
constants calculated from the experimental data and given in
Table I. Equation (2) is the degradation model of a single
battery cell. We need to scale down the battery pack level
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TABLE I: Experimental parameters of empirical model [16].

Parameters Value
a 8.61× 10−6,1/Ah-K2
b −5.13× 10−3 1/Ah-K
c 7.63× 10−1 1/Ah
d −6.7×10−3 1/K-(C-rate)
e 2.35 1/(C-rate)
A 14, 867 1/day0.5

h 0.0465

charging/discharging power to a single-cell level. To alleviate
computational challenges, while retaining an accurate model,
we consider a smooth approximation of Equation (2a):

Qcyc
loss,t = B1,tC

2
ratedn̂

(
1 +

B̂2
2,tP

2
bat,t

hs2

)
, (3)

where n̂ = nmax∆t
T×100 , Pbat,t is the charging/discharging power

of the battery (positive value implies charging and negative
value indicates discharging), nmax is the maximum number
of full cycles1 by time T , B̂2,t =

B2,t

VbatCrated
with the coefficient

1
VbatCrated

being used to convert Irate to Pbat,t, s = nseries×nparallel
is the scaling factor for bringing down Pbat,t to a single cell
level, nseries and nparallel are respectively the number of series
connected battery cells and parallel connected strings of cells
forming the battery in the EV. Vbat is the terminal voltage
of a single battery cell, and h is an appropriate curve fitting
parameter for approximation of (2). Note that, B1,t, and B̂2,t

are time varrying due to Tb. The detailed derivation of (3) is
given in Appendix A.

Remark 1. We note that the degradation result of (1) and
(2) have recently been compared with experimental results
in [12] (see Fig. 10 and 11) and found to be reasonably
accurate. Moreover, authors in [12] conducted the comparison
considering the typical usage of EVs under different V2G
services. Note that our recent work [21] provides a more
accurate data-driven battery degradation model, which could
easily be integrated into our proposed framework due to its
convexity property with respect to charging/discharging power.

In the model above, a crucial factor is the accuracy of the
battery temperature Tb, which is not straightforward to evalu-
ate. To account for this, we combine our battery degradation
model with a variant of the dynamic battery temperature model
proposed in [11].

B. Dynamic battery temperature model

The temperature of the battery (Tb) cell is influenced by
several factors, including ambient temperature, energy con-
sumed by the HVAC system of the car, charging/discharging
rate, and efficiency of battery thermal management systems.
Authors in [22] have utilized a car-level lumped capacitance
thermal network approach for modeling Tb considering the

1Assuming tf being the required time for a complete charging to discharg-
ing cycle, nmax is equal to ⌈T/tf ⌉) where, ⌈·⌉ is the least integer function.

above factors. In [11], authors have used the model of [22] to
develop the following coupled differential equations for Tb.

McṪc = Kac(Ta − Tc) +Kbc(Tb − Tc) + qrad + qhvac, (4a)

MbṪb = Kab(Ta − Tb) +Kbc(Tc − Tb) + qbtms +Q, (4b)

where Ta is the ambient temperature, Tc is the temperature
of the cabin of the EV, Kab and Kac are, respectively,
the effective heat transfer coefficients between ambiance and
battery, and ambiance and cabin; Mc and Mb are the thermal
mass of vehicle cabin and battery respectively; qrad is the solar
radiance falling directly on the car, qhvac is the heat added to or,
removed from the cabin by HVAC (Heating, ventilation, and
air conditioning) system of the EV, qbtms is the heat added to or,
removed from battery pack by the battery thermal management
system, and finally Q represents the heat generated from the
battery during charging/discharging process. In particular, Q
is equal to I2Rint where I is the charging/discharging current,
and Rint is an estimated internal resistance of the battery.
To obtain a solution of (4), we assume for simplicity the
following: (1) qrad is zero, which implies that the EV is in
the shade of a car parking lot or charging station; (2) qhvac is
also zero as the HVAC system is most of the time turned off
during parking; (3) the goal of the battery thermal management
system is to regulate the battery temperature Tb, when the
ambient temperature Ta exceeds the 15o−30oC range [23]. In
case Ta is between 15o−30oC, qbtms can be roughly assumed
to be equal to −0.9Q considering 90% heat removal efficiency
of battery thermal management system. We impose the above
assumptions as it is difficult to provide a good estimate
of qrad, qhvac, and qbtms without having access to a detailed
vehicle model and sensory data. Furthermore, these parameters
are inherently scenario-specific and may vary depending on
environmental conditions and vehicle-specific characteristics.
Ideally, an adaptive mechanism should be integrated into
the proposed framework to dynamically update it over time.
However, estimates of qhvac can be obtained by measuring the
energy consumption of the HVAC system. To access qrad for a
particular region, open-source websites such as NASA Power
[24] could be used. Once the values of qrad, qhvac, and qbtms
are retrieved, they can be incorporated in the solution of (4).

In our proposed formulation, we use the battery temperature
Tb as a parameter. However, note that Tb is itself a func-
tion of the battery’s current I , which plays the role of the
decision variable in the subsequent developments. Thus, for
the heat Q generated from the battery’s operation, we use its
approximation Î2Rint where, Î := ρ(Pmax

Vbat
), with Pmax being the

maximum charging/discharging power, and ρ is a user-defined
hyperparameter for denoting V2G participation level. The role
of the hyperparameter ρ is further elaborated in Section III.B.
By considering values of other parameters in (4) as given in
Table 1 of [22], we explicitly solve the dynamical equations
in (4), where the input is the profile of Ta. Thus, we plot Tb in
Fig. 1 for a one-hour duration and find the gradual difference
it creates with Ta. We use this pre-calculated profile of Tb in
(2) for better accuracy.
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Fig. 1: Evolution of battery temperature (Tb) with respect to ambient
temperature (Ta).

III. A GAME-THEORETIC APPROACH TO BALANCE V2G
PARTICIPATION LEVEL WITH BATTERY DEGRADATION

A. Preliminaries on game theory

To model the trade-off between the V2G exploitation and
battery degradation, we consider a non-cooperative game
between N = 2 players, indexed by i ∈ I := {1, 2}.
Each player i makes decisions ui ∈ Rni in the feasibil-
ity set Ωi(u

−i) ⊆ Rni such that, the objective function
(or, utility function) θi : Rn → R is minimized, where
n =

∑N
i=1 ni, and u−i := col((uj)j∈I\{i}). Each player’s

strategy depends on the other players’ strategies u−i. Finally,
let u := col(u1, u2) ∈ R2n be the collection of the decision
variables of both players, and Ω(u) :=

∏N
i=1 Ωi(u

−i) be the
collective feasible set. We define game G as the two coupled
optimization problems as follows:

G : ∀ i ∈ I :

{
min
ui

θi(ui, u−i),

s.t. ui ∈ Ωi(u
−i).

(5)

Let us focus on the solution concept of generalized Nash
equilibrium (GNE).

Definition 1. (Generalized Nash equilibrium [25]) A gener-
alized Nash equilibrium of the game G in (5) is a tuple of
strategies u := col(u1, u2) ∈ Ω such that, for each player
i ∈ I, we have

θi(ui, u−i) ≤ θi(yi, u−i), ∀yi ∈ Ωi(u
−i).

Therefore, at a GNE, no player can improve their objective
function value by unilaterally changing to any other feasible
solution, given the other player’s decision. We note that thanks
to the convexity of θi(., u−i) for all i ∈ I and the compactness
of the feasible set, the GNE problem in (5) admits at least one
solution [25].

To conclude the subsection, we recall the definition of
a special class of games that behave similarly to a single
optimization problem:

Definition 2. (Exact potential games [26]) Consider G on a
non-empty, closed set Ω =

∏N
i=1 Ωi(u

−i), where Ωi(u
−i) :=

{ui ∈ Di : (ui, u−i) ∈ Ω}, and Di a closed constraint set
local to agent i. G is an exact generalized potential game if
there exists a continuous function P (u) : Rn → R such that

the following holds:

P (xi, u−i)− P (yi, u−i) = θi(xi, u−i)− θi(yi, u−i),

for all players i ∈ I, and all strategies xi, yi ∈ Ωi(u
−i). □

Definition 2 implies that each player’s seemingly selfish
behaviour is aligned with an underlying common goal, rep-
resented by the potential function P .

B. Horizon-splitting method for V2G smart charging

Our model considers an EV parking lot or charging station,
also referred to as a system operator, which provides V2G
services to the parked EVs. Specifically, the system operator
delivers grid support services through the solution of an
optimization problem, ensuring the satisfaction of operational
constraints and charging options of the parked EVs. The
operator determines the terms of energy exchange with the
parked EVs by issuing a V2G price signal to each incoming
EV [27].

As opposed to previous methodologies, our work takes
the EV owners’ perspective and develops a framework that
allows them to individually choose their participation level in
V2G services. In our model, this personalized participation
level is controlled via a hyperparameter that illustrates the
subjective importance each EV owner assigns to their EV’s
possible battery degradation because of charging/discharging
during V2G. Without loss of generality, we consider that
each vehicle is charging/discharging for T time intervals, each
with duration of ∆t = 15 minutes. Our aim is to devise
a smart charging/discharging strategy for each time interval
t ∈ [T ], where [T ] := {1, 2, . . . T}. To model the inherent
competition between V2G services and battery degradation
(BD), we consider a game between a player that optimizes
with respect to the V2G revenue and a player that minimizes
their battery degradation cost.

Given this game-theoretic model, each vehicle user de-
termines the value of a hyperparameter that illustrates how
much they value their battery health. Note that being overly
conservative with respect to their battery degradation might
be less beneficial, especially when V2G yields significantly
higher returns to the EV user. This hyperparameter is then used
to determine the trade-off between V2G and BD by assigning
a subset of [T ] to one player, and the rest intervals to the
other player. Each of the players optimizes their respective
objectives during their allocated intervals only.

Let us define T w
m as the set of possible subsets of [T ], where

w indicates the number of intervals chosen and m indicates
which particular subset of intervals is chosen from [T ].

We define the decision vector for player 1 (V2G) as
u1 := col((Pbat,t)t∈T w

m
), where Pbat,t > 0 (< 0) signifies the

charging (discharging) of the EV’s battery; the decision vector
for player 2 (BD) is defined as u2 := col((Pbat,t)t∈T̃ w

m
), where

T̃ w
m := [T ] \ T w

m . The way the horizon is split encapsulates
the relative importance that the EV user assigns between the
two objectives.
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We first introduce the operational constraints that need
to be satisfied at each time step t ∈ [T ]. The bounds on
charging/discharging power of EV charger are as follows:

P ≤ Pbat,t ≤ P , ∀t ∈ T w
m or T̃ w

m . (6)

The constraints related to battery energy dynamics are given
by

E ≤ E0+ ηavg∆t

 t∑
j=1

Pbat,j

 ≤ E, ∀ t ∈ T w
m or T̃ w

m , (7)

where E0 is the initial energy level of the battery, and ηavg is
the average charging/discharging efficiency. The final energy
level (Edes), as set by the user, should be met with ϵ tolerance
by time T as∣∣∣∣∣∣Edes −

E0 + ηavg∆t

 T∑
j=1

Pbat,j

∣∣∣∣∣∣ ≤ ϵ. (8)

Note that constraints (7) and (8) couple the strategies of
players V2G and BD, while constraint (6) is local. For
compactness, we collect all the constraints in the set Ωi given
by:

Ω1(u
−1) := {u1 ∈ Rm1 | (7) and (8) hold, ∀t ∈ T w

m },

Ω2(u
−2) := {u2 ∈ Rm2 | (7) and (8) hold, ∀t ∈ T̃ w

m },

and define the local feasibility sets U1 := {u1 :
(6) holds, ∀ t ∈ T w

m } and U2 := {u2 : (6) holds, ∀ t ∈ T̃ w
m }.

Player V2G then solves the optimization problem

min
u1∈U1

θ1(u1, u2) :=
∑
i∈[T ]

αi(Pbat,i∆t)

s.t. u1 ∈ Ω1(u
2), (9)

where αt (in e/kWhr) is the V2G price2 as provided by the
charging operator, and ∆t is the fixed time interval. Player
BD solves the optimization problem

min
u2∈U2

θ2(u1, u2) := γ

∑
i∈[T ]

Qcyc
loss,i(Pbat,i)


s.t. u2 ∈ Ω2(u

1), (10)

where γ is the weight associated to battery health degradation,
and Qcyc

loss,i is the capacity loss at the ith interval as given in (3).
Note that, θ2 does not take into account the calendar loss Qcal

loss
from equation (1). This modelling choice stems from the fact
that Qcal

loss remains constant for given values of Tb and t. The
calendar loss is thus present, irrespective of the EV usage. As
such, we focus solely on the cyclic battery aging Qcyc

loss, since,
contrary to the calendar aging, Qcyc

loss directly depends on the
power rate Pbat,t, which constitutes a decision variable in our
methodology. We denote the game between players V2G and
BD by Ḡ .

Remark 2. Previous studies [28], [29] have demonstrated

2This dynamic price inherently encodes different ancillary services offered
to the grid, which include demand response, peak shaving, and congestion
management.

that battery capacity fade is influenced by the average state
of charge (or equivalently, state of energy, E) and the depth
of discharge (DoD). However, the effects of average state of
charge and DoD on battery degradation are highly dependent
on individual electric vehicle (EV) usage patterns. In partic-
ular, we note that: (a) parameters such as the initial energy
level (E0) and desired energy level (Edes) are user-defined and
inherently stochastic; and (b) variations in driving behavior
significantly influence how average state of charge and DoD
affect battery health. As a result, our vehicle-to-grid (V2G)
framework has limited control over these factors. Therefore,
we do not explicitly incorporate average state of charge or
DoD into our battery degradation model.

In our game-theoretic formulation, the hyperparameters w
and m provide two degrees of freedom when choosing a
solution. By varying w keeping m fixed, we essentially prefer
one objective over another, and by varying m keeping w fixed,
we change the quality of the solution. We can choose m in
TCw combinatorial ways. Thus, our horizon-splitting model
provides a more flexible setting when it comes to choosing
an appropriate smart charging strategy compared to other
approaches. We propose the following price-based interval
assignment strategy for choosing one of the m combinations.

1) Once w is chosen by the EV user, sort the T intervals
based on the value of αt in descending order.

2) Assign the first w intervals to player V2G and the rest
(T − w) intervals to player BD, keeping the order of
sorting intact.

A schematic diagram is given in Fig. 2 to better illustrate the
strategy. The main idea behind devising the above strategy is
to allocate the intervals with a higher price (αt) to player V2G
so that it can exploit the higher price value to its advantage.
However, note that if (T − w) is small, then the impact of
choosing an optimal m becomes minimal.

 V2G price:

 

  

Player 1 
(V2G)

Player 2 
(Battery degradation)

Fig. 2: Assuming T = 4 and w = 3, the allocation of time intervals
to both players is shown. Player V2G gets 3 intervals of relatively
higher V2G price (αt), and the remaining interval goes to player BD.

Thanks to the convexity and compactness of the problem
data, there always exists a GNE solution for our model.
Furthermore, we show next that our game Ḡ in (9), (10) is
an exact potential game.
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Proposition 1. (Potential game characterization) The GNE
problem Ḡ in (9), (10), is an exact generalized potential game
with potential function

P (u) :=
∑
j∈T w

m

(αjPbat,j∆t) + γ
∑
j∈T̃ w

m

Qcyc
loss,j(Pbat,j). (11)

Proof: See Appendix B.
Based on Proposition 1, the following optimization problem

provides a Nash equilibrium solution to the game Ḡ in (9),
(10).

GP : min
u∈U×Ω

P (u) (12)

where u := col((Pbat,t)t∈[T ]), Ω := {u :
(7) and (8) hold, ∀t ∈ [T ]} and U := {u : (6) holds, ∀t ∈
[T ]}. Given that the problem in (12) is a convex optimization
problem, we can retrieve a globally optimal solution, which
corresponds to a GNE of Ḡ . In what follows, we propose a
different formulation of the decision problem at hand based
on multi-objective optimization.

Remark 3. In general, the choice of the hyperparameter
w is based on the subjective importance users assign to
the battery degradation. However, as a rule of thumb, one
could select the w∗ that corresponds to the minimum of
the sum of battery degradation and charging cost. Consider
u∗
w as the solution of (12) parameterized in w. Therefore,

w∗ := argminw∈[T ] [θ
1(u∗

w) + θ2(u∗
w)] could well be used as

a reference guide for the user.

C. Robustness of V2G charging: game theory vs multi-
objective optimization

We model a trade-off between the two conflicting objectives
of V2G profit maximization and battery degradation mini-
mization using a multi-objective optimization approach. In
this case, a user-defined weight is assigned to each objective,
reflecting their relative importance to the user. We frame our
problem in terms of a multi-objective optimization problem as
follows.

min
u∈U×Ω

J(u) :=
[
ρθ1(u1, u2) + (1− ρ)θ2(u1, u2)

]
(13)

where u, Ω and U are defined as in the formulation of GP in
(12). ρ ∈ [0, 1] is the weight chosen by the user to indicate
which objective among V2G revenue and battery degradation
health is more favorable. We want to investigate the outcome
of the game-theoretic approach (Section III.B) and the multi-
objective optimization approach. To this end, we evaluate both
methodologies based on the same case study. Note that, for the
capacity loss model of the EV battery in (3), the parameters
B1,t, and B2,t change after several cycles of operation. Thus,
a sensitivity study of both solution approaches with respect to
B1,t and B2,t is of utmost importance. To study the robustness
properties of both approaches, we first solve (12) and (13) and
retrieve their solutions xgt and xmo respectively, i.e.,

ugt(w, ζ) = argmin
u∈U×Ω

P̃ (u, ζ), (14a)

umo(ρ, ζ) = argmin
u∈U×Ω

J̃(u, ζ), (14b)

where P̃ (·), and J̃(·) are the perturbed versions of P (·) and
J(·) respectively; ρ ∈ [0, 1], w ∈ [T ], and ζ ∈ [a, a] is an
uncertain perturbation parameter. Given {ugt, umo}, we define
the sensitivity functions as follows:

Sgt(w, ζ) :=
∥ugt(w, ζ0)− ugt(w, ζ)∥

∥ζ − ζ0∥
, (15a)

Smo(ρ, ζ) :=
∥umo(ρ, ζ0)− umo(ρ, ζ)∥

∥ζ − ζ0∥
, (15b)

where ζ0 is the nominal value of the uncertain parameter, ∥·∥
is the euclidian norm, and ζ follows an uniform distribution
constructed on [a, a]. Such a sensitivity analysis is important
because the trade-off insights derived from our study should
remain meaningful to a certain extent, irrespective of the
changes in battery condition. When we solve (12) or (13)
considering ζ0, we do not know the true realization of ζ
in advance. This motivates us to investigate the impact of a
different realization of ζ other than ζ0. We define the notion
of empirical regret in the following sense:

Rgt(w, ζ) :=
P̃ (ugt(w, ζ0), ζ)− P̃ (ugt(w, ζ), ζ)

P̃ (ugt(w, ζ), ζ)
(16a)

Rmo(ρ, ζ) :=
J̃(umo(ρ, ζ0), ζ)− J̃(umo(ρ, ζ), ζ)

J̃(umo(ρ, ζ), ζ)
(16b)

where the term P̃ (ugt(w, ζ), ζ) (resp. J̃(umo(ρ, ζ), ζ) ) signi-
fies the objective function value corresponding to the solution
when the decision maker knows the true realization of ζ in
advance, and P̃ (ugt(w, ζ0), ζ) (resp. J̃(umo(ρ, ζ0), ζ) is the
value of the objective function based on the solution where the
decision maker considered ζ0. In other words, the empirical
regret indicates the relative loss of the objective function
value if changes in battery degradation parameters are not
considered in the formulation. Thus, the solution approach
with a smaller sensitivity or regret value is considered more
reliable, especially when the horizon is long.

IV. NUMERICAL SIMULATIONS

A. Simulation Setup

Since both optimization problems in (12) and (13) are
convex, we used the Python-based package Pyomo [30] to
formulate the problem and solved them using the MOSEK
[31] solver. We consider the V2G tariff profile αt of Fig. 7
in [27], thus leveraging a dynamic pricing strategy for EVs
to provide demand response-based ancillary services to the
local distribution grid. Furthermore, we assume the EV user
takes part in the V2G program between 8 AM-8 PM. The
discretizing interval (∆t) is 15 minutes. Considering T = 48
intervals (i.e., 12 hours), MOSEK solver takes < 50 ms to
solve (12). The processor used is Apple M1 Pro with a 10-core
CPU. Such a low computation time is due to the convexity of
the optimization problems, which allows our proposed method
to be implemented in real-time in an embedded platform with
reasonable computational power. The upper (E) and lower (E)
bounds of available energy in the battery are 1 and 0.2 (in p.u.)
respectively. Similarly, maximum (P ) charging/discharging
power is 22 kW. The user tolerance ϵ is 0.02 (in p.u.). The
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(a)

(b)

Fig. 3: (a) Box plots on the sensitivity of the solution profiles for
the game-theoretic and multi-objective approaches, (b) box plot for
regret evaluation of both approaches.

desired energy level of the battery (Edes) is 0.9 (in p.u.). The
capacity of a single cell battery Crated is 1.5 Ah. Different
parameters for 50 kWh battery pack are nseries, nparallel, and
nmax with the values of 83, 94, and 5.28 respectively. The
terminal voltage (Vbat) of the battery pack is 350V.

Given various standardized charging technologies available
in the market, we are particularly focused on bi-directional EV
chargers with variable charging/discharging rates as a recent
study [15] demonstrates the financial benefits of it compared
to charging with a fixed C-rate. For this purpose, we choose
a level-2 three-phase on-board charger of power rating 22
kW, which Eaton and other major manufacturers currently
manufacture [32]. The market analysis in [33] shows that most
passenger EVs have battery capacity in the range of (50−100)
kWh. To account for the vast majority of users, we conduct
the studies based on the battery capacity of 50 kWhr in this
subsection. Detailed results on how different capacity values
affect the obtained results can be found in Subsection IV.C. For
our simulation studies, we consider that a new battery costs
207e/kWh (battery pack cost of Chevrolet Bolt in [34]). After
a 30% loss in capacity, it can be further used as a second-life
battery in other storage applications. Hence, we consider the

resale value of it as 45e/kWhr [35]. The effective cost of our
EV battery stands at (207−0.7×45)

0.3 = 585e/kWhr, which is the
value of γ in (10). In the following, we construct several case
studies to investigate the trade-off between battery degradation
and the V2G exploitability of EVs.

B. Comparative Study of Sensitivity & Regret

We use the notions defined in Section III.C to compare
the empirical robustness of the game-theoretic and the multi-
objective approaches by evaluating (15) and (16). In Fig. 3a,
the box plot of Sgt and Smo is illustrated, for varying values
of the hyperparameters w (or, ρ), respectively3, and different
realizations of the uncertain parameter ζ. The parameter ζ is
assumed to take values in the support set [0.9ζ0, 1.1ζ0]n with
ζ0 being the nominal value. The V2G session is set for twelve
hours (T = 48 intervals).

Figure 3a shows that the game-theoretic solution is signifi-
cantly more robust compared to the multi-objective one. As a
result, the trade-off insights derived from the game-theoretic
solutions remain meaningful irrespective of the realizations
of ζ in the support set compared to the multi-objective one.
Finally, Fig. 3b depicts a comparison of the regret of the
cumulative cost functions of both approaches as defined in
(16). We observe that, under perturbations in ζ, the loss in
the objective function value of the game-theoretic approach
is significantly smaller compared to the multi-objective one.
Having such low regret explains why our proposed method
may not require further robustification against uncertainty, as
opposed to a multiobjective approach. Thus, our approach
avoids overly conservative decision-making without sacrificing
safety against small perturbations.

C. V2G Exploitability and Battery Degradation Trade-off

The trade-off is influenced by various factors, including
average ambient temperature, EV battery capacity, charging
duration, and the V2G tariff rate for energy transactions.
However, we concentrate on three key factors that significantly
affect both players.

1) Impact of Ambient Temperature: As discussed in Section
II.C, battery temperature (Tb) plays a critical role in battery
health degradation. EVs are operated globally across diverse
climate zones, each with distinct average ambient temperatures
(Ta) that vary by season. To account for this, we consider
average Ta values of 10◦C, 20◦C, and 40◦C to represent
EV usage in cold 4, mild, and hot regions, respectively. The
influence of Ta is illustrated in Fig. 4 and 5. Note that in Fig.
4 the markers represent different user-defined trade-offs on the
charging cost and battery degradation cost, controlled by the
hyperparameter w. Specifically, the markers on the left-hand
side of the plot correspond to the costs when the user has
chosen a high value of w, i.e., they are more interested in

3Because of the discrete nature of w, we considered T number of discrete
realizations of ρ ∈ [0, 1].

4In latest generation EVs, battery pre-heating is conducted by battery
thermal management system [36] to bring back Tb at 15° C before operation in
cold geographical locations. Our analysis does not capture this phenomenon.
Instead, it is suitable for existing EVs devoid of such features.
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Fig. 4: Trade-off curve for comparison between charging cost and
cyclic battery degradation cost while taking part in V2G for different
Ta. The markers along the curve indicate discrete solutions of (12)
for decreasing values of w.

minimizing the V2G charging cost without being concerned
about the battery degradation. Respectively, the markers on the
right-hand side of the figure correspond to lower values of w
and represent the case when the user prioritizes their vehicle’s
battery health over minimizing the V2G charging cost.

We observe that for Ta = 20◦C, putting more emphasis on
minimizing the charging cost of V2G leads to more savings
in the long run than being concerned with the vehicle’s
battery degradation. However, this pattern starts changing as
the environmental temperature decreases. In fact, for colder
regions with Ta < 10◦C, EV users should exercise greater
caution when selecting a higher value of w, i.e., placing more
emphasis on V2G exploitability as the battery degradation
costs can be significantly higher in the long run, as evidenced
by the slope of the curve. Figure 5 illustrates the percent-
age battery capacity loss due to cyclic aging as a function
of the hyperparameter w for different temperatures. A key
observation is that as Ta increases, the slope of Qcyc

loss with
respect to (w/T ) decreases. This indicates that changes in
V2G participation levels have a smaller impact on cyclic
battery degradation in higher temperature zones.

Fig. 5: The capacity loss for different choices of w by the user under
different Ta.

2) Impact of Varying V2G Tariff Profiles: The V2G tariff
profile αt can exhibit different levels of variance depending
on the flexibility available at the charging station or parking

(a)

(b)

Fig. 6: (a) Profiles of V2G tariff (αt) for different variances, (b)
trade-off curve for comparison between charging cost and cyclic
battery degradation cost while taking part in V2G for different
variances in αt.

lot and the ancillary service requirements of local distribution
system operators. A high variance profile characterized by fre-
quent fluctuations and greater distances between consecutive
peaks and troughs is depicted in Fig. 6a. Such profiles are
common in regions with a high share of intermittent renewable
energy sources and a large population of EVs. Conversely,
regions without these conditions may experience a relatively
low variance in the αt profile. The level of variance in αt

significantly impacts the trade-off curve, as shown in Fig. 6b.
Higher variance allows users to exploit V2G more effectively
for monetary gains. As illustrated in Fig. 6b, users can opt for
a higher value of w while accounting for battery degradation
costs under a high variance αt profile.

3) Impact of Charger Power Ratings: Currently, common
EV chargers are classified into Level−1 (up to 7 kW), Level−2
(7− 22 kW), and Level−3 (≥ 50 kW) categories. We investi-
gate the trade-off when the same EV is charged using chargers
with power ratings of 6.6 kW, 22 kW, and 50 kW. The results,
depicted in Fig. 7, show that variations in both charging cost
and battery degradation cost are more pronounced when using
higher-rated chargers. This indicates that both V2G exploita-
tion and the extent of battery health degradation accelerate
as the charger power rating increases. Therefore, higher-rated
EV chargers offer users greater flexibility in selecting their
preferred operating point on the trade-off curve.
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Fig. 7: Trade-off curve for comparison between charging cost and
cyclic battery degradation cost for chargers of different power ratings.

Fig. 8: Smart charging profiles for different choices of w.

D. Smart Charging Profiles of EVs

Figures 4 illustrate how users can select their desired oper-
ating point by adjusting the hyperparameter w in our proposed
framework. Figure 8 depicts the charging power of an EV as
w varies, alongside the corresponding V2G tariff profile (αt)
on the secondary y-axis. Player V2G aims to minimize total
charging costs by purchasing energy at low prices and selling it
back to the grid at higher prices. Conversely, player BD seeks
to reduce the C-rate of charging and discharging, resulting in
a relatively flat charging profile with minimal exploitation of
the αt profile. Notably, regardless of the w values, the final
energy level consistently approaches the user’s desired energy
level Edes.

E. Long-term Trade-off Analysis for Different Battery Capac-
ities

A crucial aspect of this work involves studying the long-
term effect of V2G services on battery degradation, i.e.,
how a gradual, seemingly negligible accumulation of daily
degradations due to V2G can affect battery health in the long
run. To this end, we conducted a projection study using one
year of real data for EVs with battery capacities of 50 kWh,
75 kWh, and 100 kWh. The setup for the year included the
following:

The EV user drives an average of 30 km daily, resulting in
approximately 5 kWh of energy consumption per day [37].

The EV user participates in a V2G program three days a
week, with each session lasting 12 hours. One year’s worth
of ambient temperature data (Ta) for Delft, the Netherlands,
was used, as sourced from [38]. Each data point in the daily
V2G tariff profile was sampled from a Gaussian distribution,
with the mean taken from Fig. 7 of [27] and a standard
deviation of 10%. This setup was chosen to reflect a realistic
scenario, allowing the trade-off analysis to yield practical
insights. Numerical simulations based on this data produce
the trade-off plot shown in Fig. 9a, which reveals that the
cyclic degradation cost becomes increasingly competitive with
the charging cost as battery capacity decreases.5 Note in
both figures that the number of charging/discharging cycles
increases as battery capacity decreases, leading to greater
cyclic degradation by the end of the year. Secondly, the ratio
of battery capacity to charger power rating plays a significant
role in battery degradation. A lower ratio results in higher
cyclic degradation because the charging/discharging cycles
occur at a higher C-rate for smaller batteries when using the
same charger. Previous studies [16], [39] have shown that
cycling a battery with a higher C-rate causes increased battery
health degradation. The key takeaway from Fig. 9a is that EV
users with lower-capacity batteries must carefully manage their
level of V2G participation. For larger-capacity batteries, full
participation in V2G is likely to result in minimal additional
battery degradation costs relative to the monetary benefits
gained.

F. Comparison with MPC-based method in [14]

In the recent work [14], the authors propose a model pre-
dictive control (MPC)-based vehicle-to-grid (V2G) charging
algorithm for electric vehicles (EVs), incorporating battery
degradation into the optimization framework. Considering
their algorithm is applied to each EV separately, it serves
as a state-of-the-art benchmark to compare our method. To
ensure a fair comparison, we assume that the objective in [14]
is to minimize the sum of the charging cost and the battery
degradation cost. We also use the same battery degradation
model for both methods. Furthermore, we use the same set of
uncertain samples to evaluate various metrics. In our game-
theoretic framework, we assign equal importance to both
cost components by setting w = T/2. Using identical V2G
tariff profiles and constraint settings for both methods, the
resulting solutions are presented in Fig. 10. As expected, both
approaches satisfy all constraints and successfully achieve the
user-specified terminal energy level Edes by the end of the
V2G session.

However, when we investigate the behaviour of total cost
(charging cost + battery degradation cost) as the uncertain
parameter ζ in the battery degradation cost function (θ2) is
perturbed, we observe the following: 1) Assuming ζ is sampled
from a uniform distribution with support set [0.9ζ0, 1.1ζ0]

n,
Fig. 11a shows that, our method incurs a slightly higher
expected total cost compared to its counterpart. 2) On the

5Note that a positive charging cost in Fig. 9a indicates that the EV
user incurs a cost, whereas a negative cost indicates that the EV user is
compensated by the V2G service provider at the end of the year.
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(a)

(b)

Fig. 9: (a) Trade-off curve of the one-year-long projection study
where the EV battery capacities are varied, and (b) the corresponding
battery capacity losses as the user-defined hyperparameter w varies.

contrary, when we evaluate regret (following the definitions in
(16)) for both methods, our method significantly outperforms
the MPC-based approach (as shown in Fig. 11b). These results
suggest that our approach offers improved robustness against
parameter uncertainty, albeit at the expense of a marginal
increase in total cost.

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we introduce a game-theoretic horizon-
splitting approach to model the conflicting objectives of fi-
nancial gains from V2G participation and battery degradation
from the user perspective. This methodology is a more robust
alternative to existing approaches, offering system designers
the ability to fine-tune the balance between V2G exploitabil-
ity and battery health using adjustable hyperparameters. Our
trade-off analysis yields the following key results: 1) For EVs
with higher battery capacities, users should consider higher
levels of V2G participation, as the relative impact on battery
degradation is reduced. 2) Users are encouraged to increase
V2G participation during periods of high volatility in V2G
pricing, particularly when using high-power chargers, as this
can maximize financial benefits with low impact on battery
health.

Future research will focus on implementing our proposed
methodology in real-world test scenarios. Particularly, using
real V2G tariffs and measuring the capacity of the EV battery,

Fig. 10: Comparison of power and energy profiles based on: 1)
MPC-based method [14] (solid violet) and 2) our proposed method
(dashed orange). Both methods respect power constraints and reach
the desired final energy Edes of 0.8, as set by the user.

we aim to validate our theoretical conclusions. Additionally,
as V2G services are heavily dependent on electricity pricing
aligned with grid demands, our next objective is to develop a
fair pricing mechanism using learning-based approaches and
integrate it into our smart charging framework.

VI. APPENDIX

A. Derivation of equation (3)

From (2), we write

Qcyc
loss,% = B1(exp (B2|Irate|)Cratedncycle).

As, we want the battery pack level power Pbat to be brought
down to cell level c-rate i.e., Irate, considering a total number
of s = nseries × nparallel cells, rated battery voltage Vbat, and
capacity Crated,

Qcyc
loss,% = B1(exp

(
B2|Pbat|
sVbatCrated

)
Cratedncycle),

ncycle is the number of full charging-discharging cycles. We
want to know the fraction of a cycle at every interval (∆t).
For that, we approximate ncycle = nmax∆t

T where nmax is the
maximum number of possible full-cycles in a single V2G
session of T intervals. In addition, the term Qcyc

loss,% is the
percentage capacity loss of rated capacity (Crated). We find
the capacity loss in Ah at time t as, Qcyc

loss,t =
Crated

100 Qcyc
loss,%.

Finally, by representing n̂ = nmax∆t
T×100 , we incorporate the above

changes as,

Qcyc
loss,t = B1,tC

2
ratedn̂(exp

(
B2,t|Pbat,t|
sVbatCrated

)
),

The above function is convex in Pbat,t but non-smooth at
Pbat,t = 0. One could always use optimization solvers that can
handle non-smooth convex optimization problems. However,
we are interested in the smooth version of it as it becomes
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(a)

(b)

Fig. 11: (a) Box plot for comparison of the total cost between MPC-
based method [14] and the proposed method when ζ in θ2(·) is
perturbed, (b) box plot in logarithmic scale for comparison of the
regret metric (following (16)) between these methods.

more computationally efficient, and standard solvers are eas-
ily available. Therefore, we consider the approximation of
expα|x| ≈ (1+ α2x2

h ), where h being a curve fitting parameter.
After replacing the corresponding terms, we have

Qcyc
loss,t = B1,tC

2
ratedn̂

(
1 +

B̂2
2,tP

2
bat,t

hs2

)
,

where B̂2,t =
B2,t

VbatCrated
.

B. Proof of Proposition 1

The local feasibility set of (9) and (10) are convex and
there exists Ω :=

∏2
i=1 Ωi(u

−i), which is a nonempty, closed
and convex set. Therefore, our problem satisfies conditions
of Definition 2. Now, we define the following exact potential
function candidate:

P (u) :=
∑
j∈T w

m

(αjPbat,j∆t) + γ
∑

j∈(T̃ w
m )

Qcyc
loss,j(Pbat,j).

Given x1, y1 ∈ Ω1(u
−1), x1 := [P̂bat,t], y

1 := [P̃bat,t],∀t ∈
T w
m , and u−1 := [Pbat,t],∀t ∈ T̃ w

m , for player 1 (V2G), we

have

P (x1, u−1)− P (y1, u−1) =
∑
j∈T w

m

αj(P̂bat,j − P̃bat,j)∆t

=

 ∑
j∈T w

m

(αjP̂bat,j∆t) +
∑
j∈T̃ w

m

(αjPbat,j∆t)


−

 ∑
j∈T w

m

(αjP̃bat,j∆t) +
∑
j∈T̃ w

m

(αjPbat,j∆t)


= θ1(x1, u−1)− θ1(y1, u−1) (in view of (9)).

Similarly, given x2, y2 ∈ Ω1(u
−2), x2 := [P̂bat,t], y

2 :=
[P̃bat,t],∀t ∈ T̃ w

m , and u−2 := [Pbat,t],∀t ∈ T w
m , for player

2 (BD), we have

P (x2, u−2)− P (y2, u−2)

=
∑
j∈T̃ w

m

γ
(
Qcyc

loss,j(P̂bat,j)−Qcyc
loss,j(P̃bat,j)

)

= γ

 ∑
j∈T̃ w

m

Qcyc
loss,j(P̂bat,j) +

∑
j∈T w

m

Qcyc
loss,j(Pbat,j)


− γ

 ∑
j∈T̃ w

m

Qcyc
loss,j(P̃bat,j) +

∑
j∈T w

m

Qcyc
loss,j(Pbat,j)


= θ2(x2, u−2)− θ2(y2, u−2) (in view of (10)).

Therefore, P (u) is an exact potential function according to
Definition 2. ■
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