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Abstract

This paper addresses the problem of estimating multiplicative fault signals in linear time-invariant systems
by processing its input and output variables, as well as designing an input signal to maximize the accuracy
of such estimates. The proposed real-time fault estimator is based on a residual generator used for fault
detection and a multiple-output regressor generator, which feed a moving-horizon linear regression that
estimates the parameter changes. Asymptotic performance guarantees are provided in the presence of noise.
Motivated by the performance bounds, an optimal input design problem is formulated, for which we provide
efficient algorithms and optimality bounds. Numerical examples demonstrate the efficacy of our approach
and the importance of the optimal input design for accurate fault estimation.

1 Introduction

In control applications, dynamical systems can occasionally display unexpected behavior due to the presence of
faults. Faults can occur due to many reasons, such as unexpected disturbances or malicious attacks, failure
of some component, or wear and tear. If not detected timely, faults can lead to economic losses due to out-
of-specification performance and system shutdown, or even catastrophic events incurring human, property,
and/or environmental damage. For this reason, fault diagnosis methods have been subject of intense research
since the early seventies [[1]], [2]] and have since been applied to a myriad of applications, such as robots,
transport systems, power systems, manufacturing processes, and chemical processes [[3]]. Particularly for
high-performance control systems, such as high-tech machines, not only the detection of faulty behavior is
important, but also the estimation of how much change has occurred, a problem called fault estimation, which
can be further classified in two types of faults: additive and multiplicative. This distinction is made depending
on the end goal of the technological health monitoring system. If it is sufficient to model the fault in question as
an external signal that enters additively in the system equations, one has an additive fault estimation problem;
in this case, one is satisfied with tracking such an external signal. Instead, if it is more appropriate to model the
fault as a change in system parameters, or additional intrusive dynamics, it becomes a problem of multiplicative
fault estimation. The latter is the topic of the present paper. When faults are additive and the system is
linear, the estimation performance generally does not depend on the input to the system, and hence active
fault estimation is unnecessary. In contrast, this separation property does not hold for multiplicative faults.
For example, changes in friction components of a mechanical system can only be detected when it moves.
Therefore, the ability of the input signals to properly excite the system is a critical component of multiplicative
fault estimation. When a fault estimation scheme involves input design or control design, it is called active fault
estimation. Given its impact in the estimation performance, input design is also a central part of this paper.

The idea of designing inputs to increase the diagnosability of faults was probably pioneered by [[4] using a
statistical framework. Later, a deterministic multi-model approach was proposed by [|5]], whose objective is to
determine which model generates the observed trajectory between two candidates. This has been extended to
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multiple model candidates in a hybrid stochastic-deterministic framework in [[6]]. As an alternative to offline
design of input signals, [[7]] considers a closed loop approach where the residual generator also creates a signal
to be fed back to the system in order to improve fault detectability and/or tolerance. This problem is still an
active area of research [8]], [[9]], [10]]. An overview of active fault detection can be found in [[11]], and of input
design for fault diagnosis in [[12]].

Most of the focus of the literature on active diagnosis has been on classification problems as reported above, as
opposed to fault estimation. Nonetheless, the related field of experiment design for system identification is
much more well established. It emerged in the seventies (see, e.g., [[13]] [14]], [[15]]) inspired by experiment
design in the statistics literature. The idea is to design an input that maximizes a function of the Fischer
Information Matrix (FIM), which depends on input data, based on the observation that the variance of a
linear estimator is inversely proportional to it. This leads to so-called T-optimal and E-optimal designs, which
maximize, respectively, the trace and the minimum eigenvalue of the FIM. After that, most focus has been given
to problems associated to identification for control (e.g., [16]), closed-loop identification (e.g., see [[17]], which
also serves as an overview of this literature), and frequency domain identification, see, e.g., [[18]], [19]]. More
recently, [20] addressed the problem of computing the T-optimal input in the MIMO case where the total energy
of the input and output are bounded. They provide global optimal results for the case of only two quadratic
constraints building on the results of [[21]]. With the recent surge of data-driven control, experiment design has
also been gaining increased attention [22], [23]], [24]. In [22]], a series of experiments is designed to achieve
the most accurate system identification with the least samples, using the classical FIM-optimal approaches as an
oracle. In [23]], [24]], the focus is qualitative rather than quantitative: the goal is to derive sufficient excitation
conditions that enable designing a stabilizing controller from an experiment. Since our focus is quantitative,
our experiment design problem is closer to that of [13[], [141], [15],[16]],[17], [20] and related work.

In this work, we propose a fault estimation method for LTI systems described by differential-algebraic equations
(DAEs), which include classical ordinary differential and difference equations as a special case [25]], [126]], [27].
The method is designed to estimate multiplicative faults. Additionally, we propose an optimal input design
algorithm that maximizes the accuracy of the aforementioned method. The main contributions are summarized
in the following list:

1. Estimation of multiplicative faults affecting latent variables. We extend the work in [28]] to multiple
simultaneous faults that possibly multiply latent variables such as states and external disturbances. The fault
estimation system has the same structure as [28]] (see Fig. , including a residual generator, a regressor
generator, and a fault estimator. Due to the fault characteristics mentioned above, a novel formulation for
the design of residual and regressor generators is required, which we provide in Theorem The fault
estimation is obtained with a Gauss—Newton-like approach.

2. Performance characterization: bias and variance. We characterize the bias and variance bounds of the
least-squares fault estimation system in the presence of measurement noise (Theorem [3.2), assuming the
regressor signal is persistently exciting. The bias is zero in the special case where the multiplicative faults
affect only the measured variables (Corollary[3.1)).

3. Optimal input design. Motivated by the error characterization formula of Theorem [3.2] we propose an
E-optimal periodic input design that maximizes the asymptotic value of the regressor’s singular value in the
absence of external disturbances (Definition [4.1)).

3a. Exact formulation and first-order information. We provide an exact formulation of the optimal
periodic input design problem, including exact first-order information via a subgradient (Theorem |4.1)).
This paves the way to a local optimization method based on convex optimization that yields fast and
efficient local optima (Algorithm [I)).

3b. Convex relaxation and sub-optimality gap. We provide a convex semi-definite relaxation (Proposition
4.2), which gives a conservative certificate of the local solution’s sub-optimality gap.

This paper is organized as follows. Section [2] provides mathematical preliminaries and presents the problem
formulation. Section |3| presents the fault estimator design and provides formal results on the estimation
performance. Section [4] presents the input design problem and methods to solve it. Section 5|shows numerical



simulations, highlighting how input design plays a major role in the estimation accuracy. Section [6|concludes
the paper with discussions and ideas for future work. Finally, Section[7]contains the technical proofs, which we
set apart from the main text for improved readability.

Mathematical notation. Throughout the text, we use Italic typesetting, e.g., a, for scalars or scalar-valued
functions; bold letters, e.g., a, for vectors or vector-valued functions; bold capital letters, e.g., A, for matrices;
and calligraphic letters, e.g., ., for sets or operators in Hilbert spaces such as transfer functions. We denote
by N, the set of natural numbers including zero, N := Ny \ {0}, N, = {1,2,...,n}, and by R, the set of
non-negative reals. We denote by |x|, the p-norm of the vector x € R", dropping the subscript when p = 2. We
denote by ||Al|, the p-induced norm of the matrix A € R"*™. For a square matrix A € R™", A(A) C C" is the set
of its eigenvalues, and A;(A) is the i-th largest-in-magnitude. For any matrix A € R™*", s(A) C R, denotes the
set of its singular values, with s; being the i-th largest. The complex conjugate of z € C" is denoted by z*. The
set S" denotes the set of symmetric matrices in R". For P € S", we write P > 0 (P > 0) if P is positive definite
(semi-definite); and P < 0 (P < 0) if P is negative definite (semi-definite). The set of positive (semi-)definite
matrices in S" is denoted by Sfr + (Si). The partial order induced by < allows us to use P < S when P —S <0
(and equivalently for P > S).

For a signal x : & — R", where  is the time axis (typically N, or R,), we denote by X’[la’a (N=1)h] the
N by n matrix [x(a) x(a+h) --- x(a+(N—1)h)]. When the sampling interval h and the time range
[a,a+ (N —1)h] are clear from context, we may drop the subscript and superscript, and the mere capitalization

shall indicate the transformation.

2 Preliminaries and problem formulation

2.1 System model

Throughout this work, we consider faulty linear time-invariant dynamical systems described in a differential-
algebraic equation (DAE) form,

(H(q) + ZfiH;(q)) £+ (L(q) + ZfiLg(q)) 2+ W(gw =0, &
i=1 i=1

where &,z and w are (either continuous-time or discrete-time) signals taking values in R"%, R™ and R",
respectively. The matrices H(q),L(q), W(q),H(q),L}(q), for i € N, are polynomial matrices in the operator
q, with n, rows and compatible number of columns. The operator q is a linear operator in the signal space
where &,z and w are defined, typically the forward shift operator for discrete-time signals or the (right) time
derivative for continuous-time (right) differentiable signals. The scalars f; represent unknown multiplicative
faults, which are assumed to be constant for analysis; in Sectionmwe show how to extend the framework for
time-varying faults. The signal & comprises the system’s latent variables, such as internal states and external
disturbances, z comprises known signals such as control inputs, measured outputs and references, and w
represents unknown i.i.d. noise with zero mean and variance o2. All components of w can have the same
variance without loss of generality, by rescaling the rows of (I). One may notice that we have partitioned
unknown variables in two; this is a common approach in the fault diagnosis literature, that allows one to
distinguish unknown variables & that do not have an a priori statistical description, and are determined either
by dynamics or an external agent, from unknown variables w which may be characterized as random processes.
We make the following nominal (disturbance) observability assumption.

Assumption 2.1. (Nominal observability) The polynomial matrix H(q) has full column rank for all g € C.
Equivalently, H(q) has a polynomial left-inverse H(q)" such that H(q)"H(q) =1 (see, e.g., [29]).

We call Assumption [2.1]a nominal observability condition because, when f; = 0 for all i and w = 0, the unmea-
sured variables & satisfy £ = —H(q)"L(q)z; that is, they can be determined by combinations of differentials of
the measured variables z. Note that observability is only required in the nominal case, i.e., the faults f; can
be estimated even if H(q) + Z:n:l f:H'(q) loses rank. One advantage of the DAE framework used here is that,
even though we impose an observability condition, it does not require building (unknown input) observers to
obtain a fault estimation system, which has great scalability implications.



Remark 2.1. (Converting state-space ODE to DAE) The DAE framework in encompasses standard
differential-algebraic state-space LTI formulations of the form

(G + ZfiGg)x(k +1)= (A + ZfiA;) x (k) + (Bu + ZfiB;) u(k)+ (Bd + ZfiB:U) d(k) + B, w (k),
i=1 i=1 i=1 i=1
(2
m m m
y(k) = (c +>° fic;) x(k)+ (Du +>° fiD;) u(k) + (Dd +>° fiD"i’i) d(k) + D, w(k),
i=1 i=1 i=1
where x : Ny — R™ is the state trajectory, u : Ny — R™ is the input signal, y : Ny — R is the output signal,

and d : N, — R™ is the external disturbance signal. By taking z = [yT uT]T and § = [xT dTJT, the following
conversion from to holds: foralli=1,...,m,

—qG+A B 0 B, B,
ORI AR =% . w=|p"].
u w

oy [~G 4] B, [0 B

2.2 Linear-algebra operations in polynomial matrices

It is possible translate certain polynomial matrix equations into standard linear algebraic ones, which are
suitable for efficient numerical methods from linear algebra and optimization. These techniques have been
used in [26] and others. For that, let us introduce some notation: given a polynomial matrix H(q) := ;1:0 H.q'
of degree d, we denote

blkrow(H(q)) :=[H, H, ---H4],
H, --- H; 0 -- 0
~ 0 H -« Hy; 0 .-
H:=| . ) ) ,
o --- 0 H, --- Hy

where blkrow(H(q)) is the block-row form of H(q) and H is its block-Toeplitz form. In the latter, the number
of block rows shall be derived from the context of its usage, which we provide next:

Lemma 2.1. (Characterization of polynomial matrix multiplication [27, Lemma 4.2]) Let H,(q) and H,(q)
be polynomial matrices of degrees d; and d,, respectively, and with dimensions allowing the product H,(q)H,(q).
The following identity holds:

blkrow(H (q)H(q)) = blkrow(H (q))H,

where the number of block rows of H, is d; + 1.

2.3 Problem statement

In this work we are interested in three problems: (i) to design a fault estimation filter, (ii) to characterize
its performance bounds, and (iii) to design an input signal within given constraints that minimizes the fault
estimation error. We formalize these problems below.

Problem 2.1 (Estimator design). Consider system (I)), and recall that the signal 2 is available. We aim to
design a (nonlinear) fault estimation filter & that generates an estimate signal f for the multiplicative fault
f=0fi fo -+ fnl such that

1. Causality: the filter & is a causal dynamical system taking z as input;

2. Estimation error order: the multiplicative estimation error | f' (t) — f] in the absence of noise is on the
2.
order of |f]*;
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Figure 1: The proposed fault estimation architecture. The switches represent samplers, since the linear
regression always operates in discrete-time. The system, residual generator and regressor generator can be
either continuous- or discrete-time.

3. Asymptotic consistency: for sufficiently high signal-to-noise ratio, the asymptotic expected squared error
lim,_, o E[|f(t)— f|?] is on the order of (1 + |f|?), with the bias on the order of |f|?.

The estimation error specifications in Problem depend on |f|?, making them suitable for small faults f.

The second task is characterizing performance bounds of our designed fault estimation method. Again, focusing
on the small-fault scenario, we focus on asymptotic results as f approaches zero. Following the stochastic
perturbation theory of [I30]], we concentrate our attention to the first-order approximation f of the estimate f.

Problem 2.2 (Performance bounds). Given system and the designed fault estimator filter Z , determine
bounds on the asymptotic bias and variance of the first-order approximation of the error f(t)— f(t).

Designing a good fault estimation scheme for multiplicative faults may not be sufficient for their accurate
estimation. Effective excitation of the system’s states is also necessary. Therefore, for active estimation of the
faults f, we pose the following experiment design problem:

Problem 2.3 (Input design). Given system and the designed fault estimator filter %, compute a periodic
signal u that minimizes the asymptotic performance bounds obtained by solving Problem

Remark 2.2. (Finite-time vs. asymptotic performance) Asymptotic performance criteria measure performance
after the contribution of the initial state vanishes. In this case, input periodicity ensures that the performance
metric E[| f (t)— f(t)|?] converges as t grows large. If the initial state is known, it can be easily incorporated
in the input design problem, and a T-periodic input renders E[| f (t)— f(t)|?] constant for all t > T.

3 Fault estimation of multiple multiplicative faults

Inspired by [28]], we design a system composed of three blocks as depicted in Fig. |1} One block is a residual
generator, which as usual should have zero response if no faults are present, but we shall design to have specific
sensitivity properties to the faults f; that allows them to be distinguishable among each other. The block below
it is a regressor generator, similar to what is called pre-filter in [[28]], whose function is to provide a basis of
signals that serves as regressors to the final block, the fault estimator, which in turn performs a linear regression
in a moving-horizon fashion.

Both the residual and the regressor generators are LTI systems. They shall be designed, respectively, as the
transfer functions d(q) *N(q) and d(q) " 'M(q) with n, inputs and 1 and m outputs, respectively, where d(q) is
a polynomial designed to be stable, provide good noise attenuation, and render the generators proper. As a
first requirement, the residual r must satisfy, under small fault assumptions, the approximation

r~ fld(q) ' M(q)z. (€))

That is, the residual is approximately the linear combination of the regressors. This paves the way for applying
linear regression to obtain an estimate f;(t) of each fault f;, from a sampled trajectory of r and d(q)"'M(q)z
fromt—T to t.



This framework imposes certain requirements to the residual and regressor generators. In addition to (B)), we
want that the term f'd(q)"'M(q)z is not identically zero for nonzero faults f, and that M(q)z spans linearly
independent signals for sufficiently exciting 2. For the excitation condition, we invoke a recent notion originally
proposed for continuous-time systems:

Definition 3.1. (Persistency of excitation [[31, Def. 1]) A signal z : & — R™ is persistently exciting (PE) of
order d if, for all v € R™,
z(t)

. qz(t)

v =0Vt = v=0. 4

a-1
q° " 2(1)
The design requirements are summarized in the definition below:

Definition 3.2. (Independently sensitive residual generator) Consider system with noise w = 0. A
BIBO stable linear filter d'(q)N(q)L(q) is called an independently sensitive residual generator if there exist a
polynomial matrix M € R[q]™" such that the following conditions hold:

1. lim, o, r(t) =0 < f =0, i.e., the signal r is a fault detection residual;
2. for any norm ||, lim¢|_o 7 — fTd(q)"*M(q)z = 0, i.e., the approximation holds;
3. if z is PE of sufficiently high order, the signals d(q) *M/(q)z are linearly independent.

The corresponding filter d(q) "' M(q) is called a regressor generator.

3.1 Residual and regressor generator design

Consider a standard residual generator used for the additive fault case, i.e., one taking the form d(q)r =
N(q)L(q)2z, where N(q)H(q) = 0. The first observation is that, when f; # 0, N(q) generally ceases to be in
the left null space of the system (). L.e., N(q)H(q) = 0 does not imply that N(q)(H(q) + Y, f;H/(¢)) =0. In
this case, the residual output is affected by input-output data of the system 2z as well as the latent variables &.
However, this dependency is largely predictable if the faults f; are sufficiently small, as we show next.

Lemma 3.1 (Residual characterization). Consider system and a residual generator described by d(q)r =
N(q)L(q)z satisfying N(q)H(q) = 0. If Assumption [2.1|holds, then the residual r satisfies

Ao =N D 6@z + D ifidy @) & |+ A w - N@wW @w. 5)
7 i i

where G;(q) = Hg(q)H(q)*L(q)—Lg(q)for alli=1,...,m, H'(q) is a polynomial matrix satisfying H'(q)H(q) =1
and J; j(q) and F(q) are polynomial matrices. Furthermore, ifH(q) =0 foralli=1,...,m, then J;;(q)=0and
Fi(qg)=0forali,j=1,..,m.

Proof: See Section|7.1} |

Remark 3.1 (Linear-algebraic computation of the left-inverse of a polynomial matrix). From Assumption
there exists a polynomial matrix H (q)" satisfying H(q)"H(q) = I. Hence, for a sufficiently large natural
number k, there exist H;,i =0, ...,k such that

Hy -~ H; 0 - 0 I
H., --- H I
HH@=[H] -H]]| © =
0 k : .. .. : :
0O --- 0 H, - H, VAR |

Hence, one can obtain H'(q) with standard linear algebra by solving
blkrow(H'(q)H=[I 0 --- 0]

where the number of rows of H is k + 1.



Let us analyze equation further. By dividing it by d(q), we can distinguish r as the sum of the outputs of
four LTI systems. The first term performs a linear combination, where the weights are the faults f;, of the LTI
systems N(q)G;(q) applied to the available signals z. The second term contains responses of LTI systems to
both & and 2, but scaled to second-order combinations of the faults; hence, they tend to have a negligible effect
on the residual if the faults are small. The third and fourth terms show the effect of noise, which, when the
faults are small, is dominated by the fourth term —N(q)W(q). These observations indicate that, for any N(q)
satisfying the conditions in Lemma the regressor generator d ' (q)M(q) where

N(q)G,(q)
N(q)Gy(q)

M(q) = ) 6)

N(@)Gon(0)

satisfies requirement 2 of Definition [3.2] by taking T(q) = —N(q)W(q). To additionally satisfy requirement (b),
the residual must satisfy the following equivalent linear-algebraic conditions:

Theorem 3.1 (Linear-algebraic filter characterization). Consider system (IJ), matrices G; as in Lemma
and assume Assumption holds. Given a polynomial d(q) of sufficiently high order, the system d~*(q)N(q)L(q)
is an independently sensitive residual generator with corresponding regressor generator d—*(q)M (q) if M(q) has
the form (6) and

blkrow(N(q))H = 0, (7a)
rank (blkrow(M(q))) = m, (7b)
where _
blkrow(N(q))G,
blkrow(M(q)) = . (8)
blkrow(N(q))G,,
Proof: See Section|7.1 [ ]

Unlike residual generator design for additive faults as in [27]], conditions (7)) do not allow for an efficient linear-
programming characterization, by virtue of the rank condition (7b). This rank condition does not appear in [28]],
since it handles a single multiplicative fault: when m = 1, condition simplifies to blkrow(N(q))G; # 0,
which is the same condition as in the design of a filter for additive faults. In addition, in [28]], the concern is
precisely when the residual generator for a given additive fault cannot nullify the effect of the multiplicative
fault; that is, the sensitivity to a multiplicative fault is a by-product of the residual design rather than a
requirement.

Nonetheless, the matrix blkrow(M (q)) has m rows and (k,, + 1)n, columns, where k,, is the degree of M(q);
as such, if (k,, + 1)n, > m, it is unlikely that N(q) and M(q) violate (7). Therefore, we suggest the following
simple procedure to obtain matrices N(q) and M(q), which works satisfactorily for small m:

1. Compute a unitary matrix representation N of the left null-space of H by, e.g., singular-value decompo-
sition; let b be the number of rows of Ny.

2. Randomly generate K unitary vectors v; € R>.

3. For each i = 1,...,K, compute blkrow(N'(q)) = v/N} and blkrow(M'(q)) following (8).
4. Compute i* = arg max;ey_, (Smin (blkrow(M ).

5. Select the filter parameters N(q) = N’ (q) and M(q) = M (q).

The procedure above is a Monte-Carlo optimization where the minimum singular value of blkrow(M(q)) is
maximized. This not only ensures full rank of M(q) but additionally controls its condition number. This
concludes the residual and regressor design results.



3.2 Fault estimation

With the generators designed according to Theorem the main objective of this subsection is to show that
our proposed least-squares approach (the rightmost block of Fig.[1)) solves Problem

Let us call e := d(q) "' M(q)z the regressor signal. Throughout this Section, we fix a sampling interval h and a
sample count N to be used in the regression stepE] The fault estimation is performed by computing, at every
time step t > Nh multiple of h, a standard least-squares operation, i.e.,

200y — (i tph
SO = Efyayn) Rl v-phe- ©

where E" = (ETE)"'E" is the (Moore-Penrose) pseudo-inverse of E

In what follows, we provide performance bounds in the estimation error f — f (t). We start by representing
in discrete time according to the sampling interval h selected for the fault estimation block:

r= e+ 370 5]+ (Zfﬁf(a) ¥ 3W(3)) w,
i,j i

e = ﬂ;M(g)z, i=1,...m

(10)

. J F W M . . . .
where the transfer functions 2’1.(3),2 (3),7"7(3), and F;" (3) are the exact discrete-time versions (with

sampling interval h) of d~*(q)J;;(9),d " (q)F(q), —d " (q)N(q)W(q), and d'(q)N(q)G;(q), respectively. To
prevent clutter, hereafter we abuse the notation by preserving the notation of signals despite the sampling
process.

To deal with noise, we follow the stochastic perturbation theory of [[30]], using a small-noise approach; i.e.,
we assume the variances of E and R are, in an appropriate sense, small in comparison to their respective
expected values. This enables approximate computations of the expected error norm of an LS estimator with
errors in variables based on a first order approximation of the LS estimate, which is asymptotically exact
as variances tend to zero (see [[30, Theorem 2.8]). Hence, let us make the contribution of noise explicit by
denoting E :=E + E,, and R :=R +R,,, where E, R are the noise-free regressor and residual matrices, E,,,R,,
are the perturbations to these matrices exclusively by noise, and E, R are the respective perturbed matrices.
From (10), let Ry, be the component of the regressor coming from the second-order terms. It holds that

R == Ef + RNL’
while the noisy least squares estimation gives
Ef =R.
Thus, the following expression relates the fault estimate and the actual fault:
f=E'(Ef+R,)+E Ry, (11)
The first-order approximation of the estimate f , denoted f, is given by [30
f=f+ERy~E'R,~E,f)—((EE)'E,P, —E'E,E")Ry, (12)
where P| :=I—EE T is the annihilator (projection) matrix.

Finally, a special type of system norm shall be useful:

LIf the signals are in discrete time, h must be a natural number.

2Because our estimation algorithm is performed every time step, a more computationally efficient online fault estimation implementation
should use the recursive least-squares algorithm, see, e.g., [32] Sec. 17.6]. For analysis, we use the standard least-squares solution
throughout the text.

3Eq. combines expressions from Sections 3.1 and 3.4 of [[30] which give the first-order approximations of, respectively, the
perturbed pseudo-inverse and the ordinary-least-squares (OLS) estimate under zero-mean perturbation. The combination is necessary
because of the term Ry, which is nonzero in general.



Definition 3.3 (31”; norm). Let 7(q) be the transfer function of a BIBO stable system. Its %”(fo norm is defined
as sup,eg |7 (jow)llp if it is a continuous-time system, and as sup,,¢( 2] |7 (exp(jw))|lg if it is discrete-time.

It is easy to see that the /. metric enjoys the same norm properties as the Frobenius norm, and hence it is
itself a norm. It is also submultiplicative thanks to the submultiplicativity of the Frobenius norm. It can be
computed by taking the square root of the 5., norm of the system i 9;;‘91 =tu(T*T).

Let 1 and 7y, be the #% norms of the transfer functions 7 and 7", respectively, and denote n* := n% +n2,.
In addition, let || 7 ||oo 00 be the peak-to-peak gain of 7, and denote by A := max; ; ||§;Jj||oo’oo. Our main
performance result follows.

Theorem 3.2 (Performance characterization: bias and variance). Consider system satisfying Assumption
and further assume it is BIBO stable. Let residual r and regressors e be generated by BIBO stable filters
d ' (q)N(q)L(q)z and d"'(q)M(q)z, respectively. Furthermore, let s; be the i-th largest singular value of E. Then,
for any N, any fault f and any time t > Nh, the first-order approximation of the fault estimate f provided by
(12)) satisfies

Bias: |E(f(t)—f)| SA«/ﬁmlflzs;l |||:§T zT]”oo =:B, (13a)

Variance: tr(Var(f(¢) — f)) < o (2(|f|2 +1)n? Zsi_z + anf, (225;2 +sn_12)) . (13b)
i=1 i=1

Proof: See Section|7.2] [ |

Since A is the maximal peak-to-peak norm among Zﬂ(q) =d(q) i), Theoremwith Lemmaw give
the following corollary:

Corollary 3.1 (Bias and variance when faults multiply only known signals). Given the premises of Theorem
suppose additionally that H;(q) = 0 for all i =1, ...,m. Then, more simply, E(f(¢) —f)} =0 and E(|f(t)—
P <UFP+ Do B, 572

The involved expressions and require some unpacking. We start by the simpler case of Corollary
where no errors due to nonlinearities occur. Compare it with ordinary least squares (OLS), where the
linear model R = E f + v, with i.i.d. v; with zero mean and variance o2, gives an error variance asymptotically
equal to o2(ETE)™!. Hence, its trace, which is the expected value of the squared Euclidean norm of the error,
converges to o2 Z:“:l si’z. Our result is the same, but amplified by the factor (1 + |f|*) and further scaled by
the squared %f’; norm of the systems that filter the white noise w. The %OFO -norm essentially measures the
amplification/attenuation of noise that the systems provide, but also accounts for the added autocorrelation
generated by filtering white noise. The amplification factor (1 + |f|*) is due to the errors-in-variables nature,
and is consistent with the observations of, e.g., [30, Sec. 3.4].

Now, let us inspect the bias term of (1I3a). As expected from the first-order approach to the estimation
problem, it increases with the square of fault magnitude, scaled by the peak-to-peak norm of associated systems
d(q)J;, ;(q) which map the unmeasured variables into the residual, and the magnitude of the signals involved.
It also increases with the number of faults m. However, it decreases with s,,/+/N, which can be seen as an
effective regressor richness measurement, see Remark [3.3]

Returning to the explanation of the total variance bound, includes a second term, which is the squared
bias given in (I3a) multiplied by the factor n2(2> - s;% +s.2) < n(2m + 1)s, 2. Three observations are in
order: (i) this term is the most negligible when faults are small, given the factor |f|*; (ii) this term is essentially
a multiple of 5;4, while the previously discussed term is a multiple only of 3;2 ; thus, a large value of s,, should
also contribute to the low importance of this term; and (iii) this term does increase linearly with N, which is

not the case for the previous term.

Remark 3.2 (Relation to Gauss-Newton method for nonlinear least squares). The problem of finding
f; given z using can be seen as a nonlinear least-squares (NLS) problem, perturbed by &. Therefore,
using the linear-least-squares approximation in (9) is similar to performing one step of the Gauss—Newton



method for the NLS problem involved. For this reason, a natural extension of the fault estimation approach
proposed here is to iteratively (i) compute residual and regressor generators using Theorem (i) run
the fault estimation algorithm using Eq. (9) up to a sufficiently long time T; update the nominal polynomial
matrices using [H(q) L(q)] < [H(q) L(q)]+D fAl-(T)[Hg(q) L!(q)]. Under similar convergence conditions
as the nominal Gauss—-Newton method for NLS (see, e.g., [32, Section 17.4]), the successive incremental fault
estimates and residuals converge to zero, and the total fault is the cumulative sum of the incremental estimates.
It is important to highlight that, while this process involves switching the dynamics of the generators in real
time, it does not hinder their stability, as the poles, dictated by d(q), are unchangedﬂ

Remark 3.3. (Effective singular values) Observation (iii) above may give the impression that, contrary
to intuition, more data can actually have a negative impact in the estimation performance, but this is not
correct. Generally, s,.;,(E) grows linearly with v/N. E.g., it is easy to verify that the singular values of
[E E ---E ], where E is repeated k times, are vk times the singular values of E. Hence, when e(t) is
periodic, limy_, o E(|f(t)— f]?) = 0, provided E is full-rank. This asymptotic result does not hold for the bias
in (132): longer experiments cannot cancel the bias introduced by a linear model not properly representing
the relation between residual and regressors, which is a known fact for nonlinear regression. Therefore, one
can call s,,/v'N an effective singular value that measures the richness of data irrespective of its size.

Remark 3.4. (Signal-to-noise ratio) Theorem [3.2]is an asymptotic result using a small-noise assumption. In
[30], a metric is suggested to assess whether the first-order approximation for least squares is accurate. In our
case, it has the following upper bound (see Section for the derivation):

¢ < V2Ns, loyy. (14

Due to the asymptotic arguments that justify the theory in [[30]], this metric must be significantly smaller than 1
for Theorem to have practical meaning. Thus, the inverse ¢! can be interpreted as a signal-to-noise ratio
(SNR), where the signal is measured by the effective richness s,,/+N and the noise by oyy.

Theorem [3.2]indicates the main drivers of estimation performance, among which the smallest singular value of
E is the only one depending on real-time deterministic signals. This is the starting point for the experiment
design problem we present in Section [4]

3.3 The case of time-varying faults

The approach outlined in this section has only been analyzed for constant faults. However, it can be applied to
time-varying faults of the form f; = >’ iPij®i ;(t), where p;; are unknown parameters and ¢;;(t) are known
signals. Its application needs a slight modification, which we explain next.

To accommodate the use of time signals and the q operator, we introduce a notational convention. Throughout
this text, the pre-multiplication of a signal with another signal shall be understood as an operator. That is,
a(t)b(t) is the result of applying the operator that multiplies signal b by signal a. The main observation is that
multiplication is commutative but differentiation does not commute with multiplication. That is, in continuous
time, for signals a and b, ab = ba but aqb # qab. Hence, we shall always read abc := a(b(c)) as usual when
applying operators, where a, b, c might be either signals to be multiplied or (differentiation/shift) operators.

With this operator approach, the following identities are important:

(i) continuous-time: for signals a and b, because q(ab) = (qa)b + agb, we write

qga = a+aq. (15)

(ii) discrete-time: for sequences a and b, because q(ab) = (qa)(qb), we write

qga=a(k+1)q (16)

4Stability of switched linear systems can be assessed by finding a common Lyapunov function for all systems. If all modes have the same
poles, they admit a state-space realization with the same A matrix; since the Lyapunov function depends only on A, stability is retained
with switching zeros.
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Modulo the order of operations in the second order terms, one can see that Lemma still holds in the
time-varying fault case; the only difference is that the second-order term in becomes

N(a) D f(OH(@H (a)f;(OH'(q).
i,j

Therefore, the linear approximation still holds, and, as such, the estimation performance has the same essential
characteristics as the constant-fault presented above.

The modification is required on the implementation side. It must remain possible to generate the regressor
signals from measured signals and signals that are known in advance. In the time-varying case, the known
signals are z, and, since ¢;; is known a priori, potentially higher-order derivatives of ¢;; can be also used.
Since the regressors come from the linear term in (5)):

T ON@ DO =D pyd  (DN(0)dyGi(a),
i ij

we must be able to implement the regressors

d_l(CI)N(CI)¢ijGi(CI)-

To obtain a realizable filter that avoids derivatives of the measurements, we can simply apply the operations (i)
or (ii) above repeatedly so that the regressor ends with the form d~!(q)N (9)G; j(q)¢lf i where ¢’ may contain
higher-order derivatives or time advances. When building the regressor, one needs to perform multiplications
of z with ¢! ; accordingly, and then feed each of these signals to the corresponding LTI filter d !N (9)G! j(q).

This approach is better understood with an example.
Example 3.1. Consider a single fault of the form f(t) = p; + p,t, and let
G(q)=[q*+q+1 1].

The only non-trivial element of G(q) is the first. The two basis functions are ¢;(t) = 1 (constant) and ¢,(t) =t.
Applying identity (i), we get tq=qt —1 and tq?> = (qt — 1)q = q(tq) —q = q(qt — 1) — q = gt — 2q. Therefore,
t(@®+q+1)=q’t—2q+qt—1+t=(q>+q+ 1)t —2q—1. Hence, ¢;(t) =1, ¢;(t) = ¢, and

G (@Q=[+a+1 1], Gy (@)=0, G, ()=[-2q—1 0], Golq)=[a*+q+1 1].

Given these matrices, the regressor for p; is generated by d'(q)N(q)G’,(q)2, while the regressor for p, is
generated by d ' (q)N(q)G5,(q)z + d’l(q)N(q)G’ZZ(q)tz.

4 Input design for active estimation

In this section, we describe an optimization problem that gives the input design that maximizes the fault
estimator performance, followed by our solution approach.

4.1 Optimization problem

Theorem [3.2]tells that the performance of the fault estimator is inversely proportional to s,;,(E). Thus, it makes
sense to design an input u that maximizes the minimum singular value of E, a metric we shall denote as richness.
Unfortunately, the regressor signal e is affected by all signals entering the system, including the potential faults
f. Nevertheless, we chose to design the input assuming the nominal case, i.e., f =0,w =0,d =0, where d is
the external disturbance within the partition of §. Under this assumption, e is a function of u.

Recall that the signals for the estimation are sampled with period h. We shall hereafter assume that an exact
discrete-time version J (3) of the nominal system of (I)) is available, i.e., y = % (3)u. Then, by letting Z;,(3)
be the exact discrete-time representation of d(q)M(q), we have

%I(a)] w

e=J(Gu:= 9M(3)[ 17
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Before writing down the optimization problem, we must impose a few design choices. First, we remark that a
finite-horizon experiment design problem is ill-advised, unless the initial state of the system can be ensured
to be zero. This is due to the uncontrollable effect of the unknown initial state in the richness of e. Instead,
because the system and filter are stable, it is more convenient to assume that the experiment runs for sufficient
long time so that the contribution of the initial state vanishes. Therefore we suggest a moving-horizon approach:
we want that U’[It_(N_l)h’ ;] maximizes the richness smin(E)[L‘t_(N_l)h’ t]) for sufficiently large t. This asymptotic
richness exists if e is asymptotically periodic, as we show next:

Proposition 4.1 (Asymptotic richness for periodic inputs). If e is asymptotically N-periodic, then the limit
lim,_, o0 Spin (E[¢ ¢ +n—11) eXists.

Proof: See Section|7.5 ]

Because 7 (3) is a linear operator, one could always increase the magnitude of U to increase s,,;,(E). To make
the problem well-posed (and realistic), we assume that U has to be constrained to some compact and bounded
set % . We shall further assume that % is convex. For simplicity, assume further that h = 1. We can define the
optimal input design problem as follows:

Definition 4.1 (Optimal input for asymptotic richness). Consider and associated system (). Assume u
is an N-periodic discrete-time signal and denote the asymptotic richness by Joo(u) :=lim,_, oo Spmin (E [t,t+N71])2-
An N-periodic input signal u* in a given closed bounded convex subset % is said to be optimal for fault
estimation if u* = argmax, cq, Joo (1).

Hereafter, let us use the shorthand U := Up, y_17, and let u € RN™ be the column vector obtained by stacking
the columns of U. Furthermore, let 2/ be its associated convex constraint set; since u is N-periodic by definition,
there exists a natural bijection between % and % of Def. Consider now a minimal state-space realization
of 7 (3) and its matrices A, B, C, D, and define the following matrices for alli =1,...,N:

P;:==[CA™?B --- CB D O,
p,:=[A""'B A"?B ... AB B], (18)
P;:=P;+CA"'(1-A")"'P,.

Our main optimization result follows:

Theorem 4.1 (Objective function and first-order information). Consider (17), (18), and associated system

(@), and assume T (3) is BIBO stable. Let Ay, Vmin be a smallest eigenvalue and associated unitary eigenvector of

the p.s.d. matrix Q(i1) := Z?’Zl P! ﬂﬂTPgT, and define the expressions

Objective function: J(i) = Ap, (Q(1)), (19a)
N

Subgradient: g(a):=2 Z vLinP;ﬁP;Tvmm. (19a)
i=1

Let u be the signal built by the periodic repetition of the elements in i, i.e., u;(k) = U1y (k moan) for all i =
1,..,n,,k € N; here, mod denotes the remainder operator. Then, J(i1) = Jo,(u) (Def. and g(@) is a
subgradient of J(i).

Proof: See Section[7.5 ]

Theorem enables us to translate the optimal input design of Definition |4.1| into a finite-dimensional
optimization problem. Moreover, it provides a subgradient, which is needed as the minimal eigenvalue function
is not everywhere differentiable. With the first-order information, convex optimization methods such as
projected subgradient ascent can be used.

Remark 4.1 (Convex constraints). Common choices for % are those described by the following inequalities:
* Component bounds, i.e., uf <u;, <u?,Vt€{1,2,..,N},i € {1,2,..,m};

* Component energy bounds, i.e., ul.Tui <E,Vie{l,2,..,m};

12



* Total energy bounds, i.e., >, u'u; <E.

Nominal output constraints are also possible, but they may need to be robustified against unknown initial state
and disturbance.

Remark 4.2. Because the function f (E) := A,;,(E'E) satisfies f (aE) = a?f (E), the solution to Problem
is always on the boundary of %, provided % is star-shaped at the origin. This is the case, for example, of
non-empty convex sets containing the origin. By continuity of f, this implies that it has at least one maximum
and one saddle point at the boundary, unless f is constant at the boundary of % .

4.2 Optimization solution

We propose Algorithm (I} a projected subgradient ascent algorithm for an efficient local-optimal solution to the
input design problem. In this method, at each iteration a subgradient of the objective function is computed, a
step is taken in such direction, the solution is projected onto the feasible set, and the iteration repeats.

Algorithm 1 Computation of optimal input for

Input: P;,i =1..N, %, ,L

Output: u

k<0

: U « projecty (rand(Nn,))

: while true do

M« 3V Paa'PT

(Amin: v]{]nin) — eigmin(M)

g — Zi=1 vrTmnPiﬂPl.Tvmm

e < Projecty; (it + LLngT)

if |yey — Uy < €, OF [Agil/k < g, then
ﬂ — ﬂnew
return

end if

k—k+1

13: U — Upey

14: end while

RN D hwdh

_ e
M =2

Let us explain Algorithm relying on Theorem After u is initialized the main subgradient ascent loop
begins. Lines 4-6 use to compute the subgradient g; next, Line 7 computes the projected subgradient
update with step size parameters T and L, using project,, to perform an orthogonal projection onto the convex
set % ; finally, Line 8 presents the two stopping criteria: either the change in the Euclidean norm of the gradient
below the tolerance ¢,, or the change in the ergodic mean of the objective function A_,;, is smaller than the
tolerance ¢,. Note that, for many practical convex set descriptions, projection is an easy computation; e.g., in
the unit ball case, % = {u | |u|, < 1}, it is computed by normalizing u to unit Euclidean norm when bigger
than 1. In addition, we apply a decaying step size of the form LLﬁT, which has generally improved convergence
properties. For the same reason, the ergodic mean is used as stopping criterion.

Since we have presented a local method, we have no guarantee that the global optimum is attained. Thus, it is
sensible to estimate an upper bound to the global optimal value, thereby obtaining an over-approximation
of the optimality gap. This can be achieved by semidefinite relaxation. Let us assume for simplicity that the
constraint set has the form % = {it | ﬁTSiﬂ <1,i=1,...,N_}, where N, is the number of constraints and S; > 0.
This is valid for all constraints laid out in Remark [4.1] We can assert the following.

Proposition 4.2 (Semidefinite relaxation of the optimal experiment design). Let A* be the value of (19),

SWe have chosen to initialize i to a pseudorandomly generated vector, but other initalization is possible, as long as it is not the zero
vector, which is a global minimum with zero gradient.
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where % = {ii | i'S;ii <1,i=1,...,N,}, where S; > 0. Then, the value ASP? of the SDP

max A
i

N
subject to ZP?UPgT = Al
i=1
(S, 0)<1, Vi=1,..,N,,
U>=0

(20)

is larger than or equal to A*. Furthermore, if rank(U) = 1, then ASPF = A*.
Proof: See Section[7.5] ]

We must remark that the SDP (20) has as its main variable a square Nn,-dimensional matrix. With large values
of N, it may be challenging to solve it reliably.

5 Numerical results

This section presents a series of numerical experiments to illustrate the performance of our method. A
Matlab implementation of our methods, including the scripts to reproduce these results, can be found in
https://gitlab.tudelft.nl/ggleizer/aenf,

5.1 Setup

We consider a continuous-time linearized pendulum-cart system, adapted from [33], Egs. (3) and (6)], with
three parametric faults and one external (unmeasured) disturbance described by the following nominal DAE of
the form (I)):

(M +M,)q+b M,lg* (M +M,)g 0 0 -1 o0
M,lq (I+M,1*)¢*>+M,gl —M,gl 0 0 0 -01 0
p p P P —
1 0 0 5121 0 o o [FT[1wTO
0 1 0 0 -1 0 0

where M is the cart mass, My, [, are the nominal pendulum mass, length, and moment of inertia, respectively,
b is the nominal friction coefficient, and g is the acceleration of gravityE] The linearization is performed at
downright pendulum position, hence the system is open-loop stable. The measured signals z(t) € R* can
be partitioned as [yT uT]T where y(t) € R? are the car velocity and pendulum angle measurements, and
u(t) € R? are the force applied to move the cart horizontally and a torque applied to the base of the pendulum,
in the respective order. Likewise, the unmeasured signals §(t) € R* can be partitioned as [xT dT]T where
x(t) € R are the internal states (car velocity, pendulum angle, and pendulum angular velocity, in order), and
d(t) € R! is the unmeasured slope in which the cart is travelling, being zero when the car moves horizontally.

The fault matrices are

b 0 0 M,q M,lg? M,
0 00 Mylg Mygl+M,l*¢* —M,
Hi@=|y o ol Ha@=| 57 "8 0T =08 Hig)=o,

0 00 0 0

00 -1 0

00 0 —01

L@=L,@=0, LiM=|, o o o

00 0 0

6See [33]] for nominal values and units.
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Figure 2: Input (left) and fault estimation results (right) for the first scenario, with simple sinusoidal input and
Zero noise.

Fault f; represents a multiplicative change in the friction of the system; fault f, represents a multiplicative
change in the mass of the pendulum; and fault f; represents a multiplicative factor applied to the battery
power of the cart, affecting both force and torque, simultaneously.

5.2 Fault estimator and input design

The matrix H(q) is verified to satisfy Assumptionwith the help of Remark where H'(q) has degree 1.
We then solve the equations in Theorem which, for degree 2, has the unique solution (up to a scalar)

N(q) =[-0.065 0.026q 0.026 —0.024—0.065q 0.994+0.026q>],

from which M(q) can be readily derived following (8], having degree 2. To design the denominator d(q),
whose degree must be bigger than or equal to 2 for a proper realization, we notice that the nominal system has
a peak frequency response at 5.58 rad/s, after which it decays rapidly. Therefore, we choose the poles to be
higher than this frequency, and set d(q) = (q+ 10)(q + 20)/200. For the fault estimator, we have chosen the
sampling interval of h = 0.05 and estimation window of N = 400.

For the input design, we have picked N = 40 and chose to bound the 2-norm of each input signal by v/N /2, so
that it has the same 2-norm as a sinusoidal of amplitude 1 and period N )| We have run Alg. with step size
parameters T = 10 and L = 50, and tolerances ¢ = 107> and ¢, = 10™°. The algorithm stopped after 3961
iterations, taking only 0.20 second, and yielding an optimal value of 0.212. We used CVX [34]] in Matlab to
solve the SDP in Prop. which took 0.85 second to compute the upper bound to the global optimum of
0.451. This means that the global optimal singular value is between the square roots 0.460 and 0.672.

5.3 Results

Now we present the estimation results for multiple simulations, including small constant faults, large constant
faults, and time-varying faults.

5.3.1 Small faults

We have simulated four scenarios. In all of them, the faults are f; = —0.05, f, = 0.02, f; = —0.03, and a

disturbance d(t) = % sin(7t), corresponding to a terrain oscillating between -5 and 5 degrees of slope. In

the first two scenarios we emulate passive fault estimation by setting the input u(t) = [sm(ﬂ:t) cos(rtt)] s

and set noise to zero. In the second scenario, we introduce zero-mean Gaussian white noise with variance 1
through pseudo-randomly generated numbers. In the third and fourth scenarios, we use the optimal input
designed using Algorithm [Ifor the noiseless case and the noisy output case, respectively.

In the first scenario, without noise, the fault estimation attains a small estimation error, with a more significant
bias in the estimation of the friction fault f;, see Fig.[2] The non-zero error is in line with Corollary[3.1} since

7It is not necessary that the time window for estimation is the same as that of the input signal, provided the former is an integer
multiple of the latter to ensure periodicity.
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Figure 3: Input (left) and fault estimation results (right) for the second scenario, with simple sinusoidal input
and noise.
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Figure 4: Input (left) and fault estimation results (right) for the third scenario, with optimized input and noise.

H:(q) Z 0, but it is still relatively small: | f (t)—fI/1f1 = 0.2, where t; is the final time of the experiment.
The performance increases substantially with the optimal input, where the final relative error drops to 0.0134.
This is much smaller than the bound of 36.47 obtained by (13a), which indicates that in practice the estimation
bias can be much lower than the conservative bound we have devised. In comparison to the noiseless case, it is
striking to observe that the accuracy of the estimation is completely unacceptable once noise is introduced
(Fig.[3). This is mainly due to the bad excitation properties of the input signal, as illustrated by the estimation
performance using the optimized input in Fig. |4} as well as Fig. |5] which shows the minimal singular values of
the regressors for both the sinusoidal and optimized inputs. The mean Euclidean norm of the estimation error,
using the optimized input, is only about 3.4% of the norm of the fault vector. The mean squared error over the
last half of the simulation is 3.3 - 107>, orders of magnitude smaller than the bound on the expected squared
error given by the first-order-approximation result in Theorem which is 5.0 - 1072, Finally, to assess the
validity of the first-order-approximation, we computed the upper bound for the inverse SNR in (T4)), obtaining
0.12. Since it is significantly smaller than 1, the first order approximation is deemed accurate.

10° T T T T T T T
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=
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E
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h

Figure 5: Running minimal singular values of E [t-20.6]

for the passive sinusoidal input and the optimized input.

16



0.6 T T T T

jo)
o 0.4 [~ -
£ =
3 |
ks =
E 0.2 |- |

_04 | .

—0.6 | | | | 0 | B N

0 2 4 6 8 10 0 2 4 6 8 10
Iteration Iteration

Figure 6: Fault estimation results (left) and estimation error norm (right) for the large fault scenario of
Section Each iteration corresponds to the last estimate after 40 seconds from the last update in the fault
estimation filters.
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Figure 7: Fault estimation in the time-varying fault case using an estimator that assumes constant faults (left)
and the estimation designed for the appropriate time-varying fault signature (right).

5.3.2 Large faults

In the previous subsection, we have seen the performance of our proposed fault estimation scheme for small
faults. Now we present the results for significantly larger faults. In this case, the faults are constant with
fi=-0.2,f, =0.2, f; =—0.5 and we have followed the procedure suggested in Remark[3.2] The updates on
the residual and regressor generators were made every 40 seconds. The same optimal input from Section|5.3.1
was used throughout the simulation. The resulting fault estimation performance is shown in Fig. [6} one may
note that convergence is attained after two iterations only, after which the noise effects dominate the estimate
variation.

5.3.3 Time-varying fault

In this last set, we simulate one time-varying fault: f;(t) =—0.05, f,(t) = 0.02, f5(t) = 0.05sin(t). Following
Section we compute G/s, j(q). Since in our case study G5(q) is zero-order, we have only one regressor
generator associated with f; and Gg’l = G5. Its corresponding input signal is zsin(t). The optimal input
designed in Section is used in this experiment, and noise variance is kept at 1. Figure |[/| shows the
difference in fault estimation performance between using the exact same estimator as in Section ie.,
assuming all faults are constant, and using the correct time-varying estimator. Clearly, the performance is far
superior with the correct assumption of time-varying fault for estimating f5; in addition, a small improvement
in the estimation of f, can be observed.

6 Conclusion

We have presented a fault estimation scheme for multiple multiplicative faults using a DAE framework, as
well as numerical methods to compute its parameters. The focus is on small parametric faults, which have
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small effect in the residual signal, but allow for efficient estimation using a least-squares approach. The fault
estimation performance is shown to be highly dependent on the richness of the involved signals, in particular
the minimal singular value of a windowed trajectory of the regressor signal, which is highly dependent on
the input signal of the plant. This motivated an active estimation approach, by means of an optimal periodic
input design, for which we have provided a formulation and an algorithm for its efficient computation. The
numerical example, despite being simple, highlights the importance of a properly designed input signal to
enable accurate estimation in noisy conditions.

A prototype of the fault estimation method presented here has been successfully implemented in a larger
scale realistic use case based on a chip manufacturing machine [[35]], with a 20-dimensional state space and 8
simultaneous faults. As part of the next steps, we are currently working on the implementation on a more
realistic, nonlinear model of this system.

As a potential side contribution of this work, we believe our optimization algorithm can have an impact in
other input design applications, such as system identification, active learning, and parameter estimation. There
is evidence that the optimization problem (I9), despite being non-convex, is well-behaved in the sense that
either it does not contain spurious local maxima, or that this is the case with high probability as the problem
dimensions increase.

7 Technical proofs

7.1 Proof of Theorem

Proof of Lemma We start by pre-multiplying the system equation (I) with N(q)(I— ., fiH/(¢)H(q)),
which is a first-order approximation of the left null space of the system. To simplify notation, we drop the
dependency of matrices on the operator g.

N (I— ZfiH;H"") (H + ZfiH;) £
+N (1 - ZfiH;H"') (L + ZfiL;) z
+N (1— ZfiH;H"f) Ww =0.
Expanding, we get |
(NH + > f;NH;— > fNH, —ZZfiijH;H"fH;) £
i i T
+ (NL + D> FNL = fNHHL-Y>"f, ijH;H"”L;.) z
i i T
+N (I—ZfiH;H"”) Ww =0,

Since NH =0, and NLz = d(q)r, we obtain
- (sziijHfHTHﬁ) §+d(q)r+ (ZfiNL§ —ZfiNHgH"‘L) 2
i i i
- (ZZfiijHgHTL;)z—N (ZfngHT) Ww+NWw =0.
i i

18



Finally, let J, ; ;= [-NH{H'H, —NH{H'L]and F; := —NH/H'W, which are identically zero if H, = 0 for
all i. We arrive at the desired simplified expression:

d(a)r = (ZfiNH;H*L—fiNL;) 24+ Sl @] ]+ 200w - Nww.
i ij i

Now we provide a useful lemma regarding a notion of symbolic rank of polynomial matrices.

Lemma 7.1. Consider a polynomial matrix H € R[q]™" of degree d. The following statements hold:
(i) There exists a nongero v € R" such that H(q)v = 0 if and only if blkrow(H (q)") is row-rank deficient;
(ii) There exists a nonzero v € R™ such that v'H(q) = 0 if and only if blkrow(H(q)) is row-rank deficient.

Proof: We prove item (ii), which immediately gives (i) by transposing the matrices. First, we start by noticing
that 3v € R* : vIH(q) = 0iff 3v € R" : vIH, = 0 for all i = 0, 1,...,d. This, in turn, is equivalent to
Jv € R" : v blkrow(H(q)) = 0, which is the definition of row-rank deficiency. [ |

The following Lemma shows that full symbolic rank of a filter gives linearly independent signals provided its
input is persistently exciting:

Lemma 7.2. Consider a polynomial matrix H € R[q]™" of degree d, where q represents a differential or time-shift
operator. Assume blkrow(H (q)) is full-row-rank. Then, if 2 is PE of order d + 1, the output of H(q)z2 is linearly
independent.

Proof: Suppose H(q)z has a linear dependence. Then there exists a nonzero v € R™ such that v 'H(q)z(t) =0
forall t. By Lemma for all nonzero v € R™, it holds that v H(q) # 0. Thus, a(q)" := v H(q) is a polynomial
vector of degree less than or equal to d. Hence, a(q)"z(t) = 0 for all t, which can be rewritten as the RHS of
(4], contradicting the fact that z is PE of order d + 1. [ |

Lemmas and[7.2]allow us to prove Theorem

Proof of Theorem By Lemma N(q)H(q) = 0 is equivalent to (7a)), and equations (6) and are
equivalent. From Lemma if Assumptionholds, then taking N(q) s.t. N(q)H(q) = 0 and M (q) according
to () yields (5). For small f, and taking T(q) := —N(q)W (q), we obtain the approximation (3], fulfilling
requirement (b) of Deﬁnition

Finally, Lemmas and establish that implies that requirements (a) and (c) of Definition are
satisfied. This concludes the proof. ]

7.2 Proof of Theorem

Let us recall the expression for the first-order approximation of the fault estimation error (12)):

f—f=ERy—E'R,—E,f)—((E'E)'EIP, —E'E,E")Ry.

We divide the proof of Theoreminto two parts: the proof of its bias bound expression (13al), and its total
variance bound expression (13b)).

Proof of (I3a): By assumption, R,, and E,, are zero-mean, and as such, we can state that E(f — f) = E'Ry;.
Thus, its expression can be obtained with w = 0. In this case, for any t, gives

0=+ 30756 ) 2
i,j

HN

Hence,

J
7

00,00

|r(6) = fTe(t)| < D 1A
i,j
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where || 7 || oo 00 is the peak-to-peak gain of 7. Denote by C := max; ; Hﬂﬂ}

H[g]H . We then have

00,00 z co

r()—fTe(t)] < € D If.f;| < Cmf ¥, (22)
i,j

where the last inequality follows from Young’s inequality. Let b := Cmf'f. Then,
—b<r(t)—fle(t)<b = —b1<R—Ef <bl,
where 1 is a vector of ones and the inequality holds element-wise. Hence,
[R—Ef| < bvN. (23)
Now, f(t)— f = Ef(R—Ef). Thus,
[f()=f| = |[E'®R—Ef)| < [E"|, R~ Ef| < 5in(E)"'DVN, 24)

where “E THz = Smin(E) ™! comes from the fact that the singular values of A" are the reciprocals of the singular
values of A for any A.

Since E is full rank, s,;,(E)"' < 0o, and thus the proof is concluded by taking A = max;, i Hﬂf;

00,00
To prove Theorem we shall use the notion of stochastic norm presented by [[30]]. For a random matrix A,
its stochastic norm is defined by ||A||§ = IE(||A||§). We begin with some useful bounds.

Lemma 7.3. Let y = J(3)w be a discrete-time m x n LTI w - norm of 7 is n < oo and where w; are
independent zero-mean i.i.d. random processes with variance o2. Let % € Sﬂ\rf be the auto-covariance matrix defined
by (2);; = E[y(t)"y(t —|i—j + 1|)]. Then, uniformly in N, it holds that A..(%) < n?c?.

Proof: First, we decompose the auto-covariance of y

g
Ely(0)y(t-7)]=E Z(ij(r)*hi,,-(t)) (Zwk(t—r)*hi,k(t—r))
k=1

i=1 \_j=1

=E | > > (w;(t)xhy j(0)(w;(t — ) xhy j(t = 7))

i=1 j=1
= > S TE[w(6) #h () w;(t — ) xhy (e —)],
i=1 j=1

where h; ; is the impulse response of the entry J; ;, and we have used independence, i.e., i # j =
E[Wi(t)wj(t’)] = 0 for all t,t’, in the third equation. We conclude that & = Zle ZT=1 %; j, where 3, ;
is the auto-covariance matrix of 7 ;w;.

i

Now, consider the auto-covariance function p; ; of 7; ;(3)w;. According to [I36, Chap. 10], the discrete-time
Fourier transform ¢, ; of p, ; satisfies ¢; ;(jw) = azlﬂg,j(exp(jw))lz, where we use the fact that the Fourier
transform of the auto-covariance of w; is constant and equal to o. By [37, Lemma 4.1], a Toeplitz matrix
e SI satisfies, uniformly in N, A, (37) < esssup,,¢[o 2,1 s(exp(jw)). Hence,

Amax(Br) < 0% esssup > T (exp(je))* = 0”1,
wel0,2r] 77

by definition of % norm. u
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Lemma 7.4. Let vy (mgp) and vy (My) be the 56, (%’:o) norms of the transfer functions ¥ and F". Then,

E[tr(E[E,)] < 0®Ny2 (25)
Amax(Var(R,, —E,, f)) < (If|> + 1)o’n?, (26)
trVar(EI,b) <|blo?n?, 27)

where y? :=y2 +y2, and n* = n% + 12,
Proof: Recall that the 5, norm y of an LTI system y = 7 (3)w satisfies

N N
. 1 T T l 2
nggoﬁ ;ZOIE[y(t) y(t)]—nggoN tEZOtrVar(y(t))—Y .

when w is an i.i.d. random process with variance I.
Because the variance E[y(t)"y(t)] is monotonically increasing with t, this implies that for any t;,

t1+N

> Ely(0)Ty ()] < Ny (28)

t=t;

Now, E[tr(ETE )] =E[> (E)E! |=>" E[(E)E|]= ZE_(N_D e(t)Te(t), where E! is the i-th column
of E,,. Applying (28), while recalling that Var(w) = ¢, leads to (25).

For Apqx(Var(R,, —E,, f)), notice that r(t) —e(t)'f is the output of the system 7’ := 7" — 3" f.7F. By the
triangle inequality, its ., norm 7’ satisfies n” < 0" +|f|n" < /(1 +|f[*)n? (by Cauchy-Schwarz). The
bound is then obtained by applying Lemma [7.3]

For the last bound,
tr(Var(ETb)) = > Var(b'E')) = > b'sb = bT(Z zi) b=b"%b, (29)
i=1 i=1 i=1

where ¥; is the Toeplitz matrix composed by the auto-covariances of e;(t), and X is the auto-covariance matrix
defined by E[e(t)Te(t — )] as in Lemma Hence, this Lemma leads to

trVar(ETb) < |b|* A0 (2) < |b[* 020

The following fact is taken from [38, Prop. 8.4.13]:
Lemma 7.5. For any two p.s.d. matrices A,B € S, it holds that tr(AB) < tr(A)Aax(B).

Proof of (I3D): First, notice that the stochastic norm of the estimation error satisfies Hf —-f ||§ =E(f—f)>+
tr(Var( f — f)). Hence, we obtain

. _ ; ; 2
tr(Var(f — f)) = |[E'®R, —E,.f) + (E"E) 'E]P, —E'E ,E") Ry, |, -
Since E'P | = 0, we have, by [30, Theorem 2.4],

tr(Var(f — £)) = ||E (R, — E.of) — E'ELE"Ry. ||z + || (ETE) ETP Ry |2

T 2 . “ 2 Try—11T (30)
<2|E'R, —E,f)|s+2||EEE R[5 + || (ETE) "E1P Ry, |

2
S

. . . N 2 N .o
where we have used linearity of expectation and the fact that (Zi:l fi) <N Zi:l f;#. Now we bound each
term, recalling the following facts:
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F1. For any matrix A, the eigenvalues of A'A are the squared singular values of A, thus it holds for any p € R
that tr((ATA)) = 37,57 (A).

F2. For a random variable x with mean m and covariance matrix %, it holds that [[39] E[x 'Ax ] = tr(A%) +
m'Am. Hence, for a zero-mean x, E[|Ax| ] =tr(ATAX) and Var(f 'x) = f T2 f.

Bounding the first term in (30)), we obtain

|E'®,~EP=E[[F' R, ~ENF] 2 oEE Var(R, ~E,.f))

S ETEN A e (Var(R,, — Eoy f)) = tr(E(ETE) " (ETE) " E Aoy (Var(R,, — E,, f))
=tr(ETE(ETE)‘l(ETE)‘l)Amax(Var(Rw—wa))=tr((ETE)‘1)AmaX(Var(R —E,f))
N2 (Var(Ry —Eof) 2 (12 +1)02n22 2. (31)

i=1 i=1

For the second and third terms, first note that f := E'Ry; is precisely the error in estimation for the noiseless
case, whose Euclidean-norm upper bound has been provided in (13a)). Expanding the second term,

2 F1

|EELE Ry [ls = [E'EWFIls 2 E[[EEWFI ] < Amax(Var(Eu ) D 572,
i=1

where the last inequality comes from following the same steps as in (31)). Following the steps of the proof of
(26) in Lemma|[7.4] we get

B e R < 7o Y B ot > s ey

i=1 i=1
For the third term, let b := P | Ry;. We again follow similar steps to to get
IETEYETD |2 < Amax(ETE) ) tr(Var(E[p)) = tr(Var(ETb))smm(E)*‘*
D b 02n2s0in (B < b1 025 (E)*. (33)
Since P is a projection matrix, |b| < |[Ry|. By the proof of (I3a), [Ry.| < Am|fI*VN ||[§7 2"]|| ., = Bsmin(E).
Therefore,
_ 2 _
|ETEYE!D||s < B*0*nismin(E) > (34)
Now we can finally replace the bounds (31)-(34) into to get
m m
tr(Var(f — f)) < o2 (2(|f|2 +1)n? Zslfz +B%n?2 (ZZsiz +sm2)) .
i=1 i=1

This concludes the main result. For the special case where H; = 0 for all i, we have that Ry; = 0, and then the

bounding step in is unnecessary, yielding H f—f Hz = ”ET(RW —E,f )Hz The desired expression is then
obtained by merely using (31). [ |

7.3 Derivation of the SNR equation (14)

In [30]], three metrics are suggested to evaluate the quality of the errors calculated by using the first-order
approximation. The first two are related to the approximation of the pseudo-inverse, and the last is specific to
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least squares:

¢, = ||E'E, |, (35)
VE'P E,v
2]
.
Cy = E_—rE'S (37)
I

Due to the asymptotic arguments that justify the theory in [[30]], all these metrics must be significantly smaller
than 1 for Theoremto have practical meaning; i.e., this ensures that the approximation ||f — fls ~ || f —flls
holds. Below we provide some expressions for upper bounds of these metrics, using the same facts and similar
algebraic techniques as in the proof of Theorem For brevity, we will keep explanations of steps to a
minimum.

alZ3]

., Lemm .
> =E[t(ETE"'E'E,)] = E[tr(E" E'EEN] < E[Anax(E" E")tr(E,EN]

mma[7.4]

= Amax((ETE)_l)]E[tr(EVTVEW)]=s;2E[tr(EI)EW)]Le < 520°Nyi. (38)

For c,, we extract from the proof of Lemma |[7.4] that, for any constant vector b € R™,
E[b'E'E,b] < o?n?|b|*. (39)
Now, define ¢ := Ev to get

I

N,

KN <+ P o+
Cy = sup E[CTE’TEI}PJ_EWE'C] sup E[CTETTE-‘;EWE'C]
llell=1 llell=1

(39) w _
sup  on?|b* = 02 ntsnu(EN)? = 02 ntsyn(E) 2. (40)
b=E'¢,|lc||=1

For c,, we have from [30]] that E* — B =(EE )'EP, —E'E,E". We follow operations similar to those in the
proof of Lemma|7.4]to get
|E"—E"IZ=I(E"E)"E]P |13+ |[E'E,,E"||s

— E[tr(P, P",E,(E'E) 2EN)] + E[te(E'E" ETE" E'E,,)]

< E[tr(E,, (E"E)2EN)] + s E[tr(E" E'E, ,E)]

<2s *E[tr(E]E,)]

—4_2pr. 2
<2s "0°Nyg,

and, thus,

V2Ns 2oy - V2Ns 2oy
mo 5 —2
Dic1 S Sm

One may note that bounds satisfy v/2c; = c3, which are proportional to ms;. The inverse of this quantity,

s/ V¥ N, has been discussed in Section [3| as an “effective” singular value of E, when considering periodic
experiments. Since c; is the metric specifically built for least-squares problems, we chose ¢ := c5 in Remark[3.4]

c3 < = 1/2Nsn_1la}fp.
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7.4 Proof of Proposition

Proof: For this proof it suffices to show that for any i € N_y,
klim Smin(E[kn kv+n—11) = 1M S (B v gen+ien—17)-
—00 k— oo
Let e’ be the limit periodic signal of e, i.e., e’ is N-periodic and, for any i € N_y, it holds that lim;_, ., e(kN+i) =

e’(i). We start by noting that
E/ 0 I
/ _ [i,N—1] | — /
E[i,N+i—1] - |:E/l i| - [IN—i 6i|E[O’N_1]’

[0,i-1]
where the subscripts denote the dimension of the corresponding identity matrices. Thus,
E [O,N— l]E[ON 1]~ E/-I[—i,N+i—1]EEi,N+i—1]’
which implies that for all i
klggo Smin(E[kn kn+N—1]) = Smin(EE(),N_l]) = smin(EEi,N_H'_l]) = klgglo Smin (B [kN+i kN-+i+N—1])>

proving the existence of the limit. [ ]

7.5 Proofs of Theorem [4.1 and Proposition

We start with a Lemma for the subgradient information in Theorem

Lemma 7.6 (First-order oracle expression). Consider the function f : R"™ — R defined by

N
F (%) = Amin (Zpixprj).
i=1

. . . . . . N
Let v i, be a unitary eigenvector associated to one of the minimal eigenvalues of )., Pxx'P!.

;- Then, the vector

N
g=2 Z vrTninPixPiTvmin

is a subgradient of f.

Proof: The first step is to reformulate the minimum eigenvalue function as the solution of a minimization
problem. First, notice that the matrix S(x) := levzl PixxTPT is symmetric. Therefore, by Rayleigh’s Theorem
[40, Theorem 4.2.2],

flx)= mm 4>(v x) = Ir‘un v (ZP xxTPT)
for which v, is in the set of minimizers. Furthermore, the function ¢ (v, x) is convex in both v and x. Thus,

applying Danskin’s Theorem [41]], the partial derivative d¢(x,v)/dx, taken at v = v_;,, is a subgradient of
f(x). Applying the dot product rule gives

3‘“" x) 22 vPxPTv.

Replacing v for v;;, concludes the proof. ]
Proof of Theorem 4 Since 7 (3) is BIBO stable, by Propos1t1onwe have that J oo = s, (E/ [ON—-1] )2, where
E EO N—1] is the matrix bu11t by the first N samples of the limit periodic signal e’.
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We now compute e’ as a function of u. To do this, we must find the initial state x such that, for all k € Ny,
e'(i +kN) = Plu. First, recall (I8) and notice that, for any x,,

x(N)=P, i +A"x,.
Now, x is N-periodic iff x (N) = x, hence
/. N -
Xg=x,:=(I—A")P,u 41

renders e N-periodic and equal, by definition, to e’. From LTI systems theory and by definition of P; and 1, we
have that _
e/(i) = Pll_l + CAlile.

Substituting x, for x in (41)), and by definition of P! in (18), we get
e'(i) =P,

which, due to periodicity of x, implies e’(i + kN) = €’(i), Yk € N,.

Notice now that EEO’N_I] =[Pia Py - P;\]ﬁ]T. For simplicity, denote E’ := EEO,N—l]' Now, recall that
Joo (W) = 5,5 (E")? = Ay (E''E’). It is easy to see that
N
E"E' = Paa'P],
i=1
which establishes that J.,(u) = J(it) as desired.
The subgradient result is an immediate consequence of Lemma|7.6 [ |

Proof ofProposition First, notice that max {A | Zflzl PZUP;T > AI} = Amin (Zivzl Pgl_]PgT), by the properties
of eigenvalues of symmetric matrices. Thus, we may rewrite (20) as the equivalent problem
N
max A, (Z P! UpgT)
U :
i=1

subjectto tr(S;U)<1, Vi=1,..,N,,
U=0

(42)

To prove that A* < ASPP | it suffices to show that for any feasible it € %, iii" is a feasible solution of (42). This
is easy to see since @ 'S;ii = tr(S;it'i1) < 1, and @i’ > 0.

To prove equality A* = ASP? when U™ has rank 1, we can check that in this case U" = s;vv ', where s; > 0
is the only non-zero singular value of U". Then let * := ,/5;v, and it holds that U" = @*@i*". Now, it* € %,

because for all i, tr(S;0") = tr(S;a*u*") = a*'S;ii* < 1. Hence, A, (Zf’zl P;ﬂ*ﬂ*TP;T) < A* < ASPP. But

Amin (levzl P;ﬂ*ﬂ*TP;T) = Amin (levzl PlfU*P:T) = ASPP hence equality is proven. [
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