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Abstract— We study the problem of fault isolation in
linear systems with actuator and sensor faults within a
data-driven framework. We propose a nullspace-based filter
that uses solely fault-free input-output data collected under
process and measurement noises. By reparameterizing the
problem within a behavioral framework, we achieve a direct
fault isolation filter design that is independent of any ex-
plicit system model. The underlying classification problem
is approached from a geometric perspective, enabling a
characterization of mutual fault discernibility in terms of
fundamental system properties given a noise-free setting.
In addition, the provided conditions can be evaluated using
only the available data. Finally, a simulation study is con-
ducted to demonstrate the effectiveness of the proposed
method.

Index Terms— Data-driven control, Fault diagnosis, Lin-
ear systems, Subspace methods.

I. INTRODUCTION

FAULT detection and isolation are essential components
of modern health monitoring systems, driven by the

ever-increasing demand for improved reliability and safety
in complex industrial systems. Fault detection is the task of
determining whether the system is healthy or experiencing a
fault during the real operation. On top of it, fault isolation
(FI) – the focus of this letter – is the more involved task of
identifying the root cause of the faulty behavior.

To assess the state of operation, diagnosis filters should
ignore the influence of all external inputs on the system
output, except for the fault. The resulting signal is called
residual [1]. Both model-based and data-driven approaches
for residual generation have been developed in the literature.
Recently, the latter has received most attention, since in
practice large datasets are available, but accurate mathematical
models are scarce and costly. Classical data-driven methods
rely on system identification followed by model-based diag-
nosis filter design. More recently, behavioral methods based
on on Willems’ Fundamental Lemma [2] enable a direct filter
design, bypassing the identification step [3]. This approach has
recently been used in [4], [5] to develop a data-driven unknown
input observer.Another important family of diagnosis filters
is based on nullspace (or parity-space) [6], [7], [8], which
we build upon in this letter. These methods exploit the left
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nullspace of the extended observability matrix to filter out
the contribution of the system internal states to the output.
Nullspace methods enable building a bank of filters for FI, see,
e.g., [9], [10], [11], by ensuring that each filter is sensitive to
only one specific fault rather than all faults [12].

While the theoretical foundations of nullspace-based FI
filters have been extensively studied (e.g., [1], [7], [13]), their
performance limits in a data-driven setting remain largely
unexplored; more importantly, fault discernbility is not fully
understood. Additionally, state-of-the-art bank-of-filters ap-
proaches, which rely on scalar residual signals, may impose
limitations on filter performance [10]. This letter aims to
bridge these gaps within a data-driven framework.

Contributions: We employ a geometric approach based on
behavioral nullspaces to design a FI scheme for sensor and
actuator faults. Moreover, we characterize fault discernibility
under a noise-free condition and show that fault signals
corresponding to transmission zeros of certain subsystems
are indiscernible, causing isolation ambiguities. Notably, the
indiscernible fault subspaces can be verified using only data.

Notation. Throughout this letter, R, C, and N0 denote the
sets of real, complex, and natural numbers, respectively. The
nullspace of a matrix is represented by N (·), while R(·)
denotes its range. The inner product of two vectors in the
Euclidean space is given by ⟨·, ·⟩, and the Euclidean-norm is
denoted by ∥·∥. The Kronecker product is represented by ⊗,
and the symbol In shows the identity matrix of size n.

II. NULLSPACE BASED RESIDUAL GENERATION
A. System

A general discrete-time finite-dimensional linear time-
invariant (LTI) system, in the presence of additive faults, can
be represented in the following innovation form [14]

xk+1 = Axk +Buuk +Bffk +Kek ,

yk = Cxk +Duuk +Dffk + ek .
(1)

where the tuple (A, [Bu, Bf ], C, [Du, Df ]) represents the
minimal state-space realization of the system matrices with
appropriate dimensions. The state vector xk is n-dimensional,
corresponding to the order of the system. The input, output,
and fault signals are denoted by uk ∈ Rnu , yk ∈ Rny , and
fk ∈ Rnf , respectively. K ∈ Rn×ny is a steady-state Kalman
gain, and ek ∈ Rny is the zero-mean innovation process with
covariance matrix Σe. The ith fault component can be modeled
as either a sensor or an actuator fault as follows:

jth actuator fault: B[i]
f = B[j]

u , D
[i]
f = D[j]

u ,

jth sensor fault: B[i]
f = 0 , D

[i]
f = I [j]ny

,
(2)



where superscripts [i] and [j] refer to the ith and jth columns
of the associated matrices. Next, we define the required
definitions and assumptions for our method.

Assumption 2.1: The pair (A, C) corresponding to the sys-
tem (1) is observable.

Definition 2.1 (Left-invertibility): [15] A system defined by
an ny×nu proper transfer function G(z) := C(zI−A)−1Bu+
Du is τ -delay left invertible if there exists an nu × ny proper
transfer function G+

τ (z) such that G+
τ (z)G(z) = z−τInu for

almost all z ∈ C and nonnegative integer τ . If one such τ
exists, the system is simply called left invertible.
A necessary condition for left invertibility is ny ≥ nu.

Assumption 2.2: The fault subsystem (A, Bf , C, Df ) is τ -
delay left invertible.

Assumption 2.2 implies that ny ≥ nf ≥ 2, as the problem
concerns fault isolation.

Proposition 2.1: [15, Theorem 1] The following statements
are equivalent:

(i) The system (A,Bu, C,Du) is left invertible.

(ii) rank

[
A− zI Bu

C Du

]
= n+ nu for almost all z ∈ C.

Let the notation wk1,k2 = [w⊤
k1

· · · w⊤
k1+k2−1]

⊤ de-
scribe a time window of data points associated with an
arbitrary signal wk. The measurements over a sliding window
of length L are given by the following data equation

yk,L = OLxk + T u
L uk,L + T f

L fk,L + T e
Lek,L, (3)

in which OL represents the extended observability and T ⋆
L is

the lower triangular block-Toeplitz matrix structured as

OL =


C
CA

...
CAL−1

 , T ⋆
L =


M⋆

0 0 · · · 0

M⋆
1 M⋆

0

. . .
...

...
...

. . . 0
M⋆

L−1 M⋆
L−2 · · · M⋆

0


with ⋆ representing u, f , or e. The corresponding Markov
parameters are given by

Mu
i =

{
Du i = 0

CAi−1Bu i > 0
, Mf

i =

{
Df i = 0

CAi−1Bf i > 0
,

Me
i =

{
Iny i = 0

CAi−1K i > 0
.

Let N represent the total number of samples in the dataset.
Denote by Wk,L = [wk,L wk+1,L · · · wk+N−L,L] the
corresponding Hankel matrix of an arbitrary signal wk, and
Xk1,k2

= [xk1 xk1+1 · · · xk1+N−k2 ], consisting of sys-
tem states. The Hankel format of the data equation (3) is
obtained by

Yk,L = OLXk,L + T u
L Uk,L + T f

L Fk,L + T e
LEk,L , (4)

leading to[
Uk,L

Yk,L

]
= GL

[
Uk,L

Xk,L

]
+

[
0

T f
L Fk,L + T e

LEk,L

]
, (5)

with GL :=

[
I 0
T u
L OL

]
, providing a compact representation

of the underlying fault/noise-free system.

B. Residual
Nullspace-based diagnosis filter design [10] requires identi-

fying the left nullspace of GL from the given fault-free input-
output (I/O) data, {uk, yk}Nk=1. This subspace is described by
KL, i.e., R(K⊤

L ) = N (G⊤
L ). Behavioral system theory gives

that, for any healthy noise-free trajectory of the system, the
kernel representation is given by [16]

∀uk,L, xk, KL

[
uk,L

yk,L

]
= 0, and KL

[
Uk,L

Yk,L

]
= 0 . (6)

By partitioning KL into [Ku
L Ky

L] and using (5), the
following relationships hold:

Ky
LOL = 0; Ku

L = −Ky
LT

u
L ,

using the fact that KLGL = 0. Ky
L is referred to as the parity

space in the literature [6]. Rewriting (3) into form of (5)
for [u⊤

k,L, y
⊤
k,L]

⊤, and pre-multiplying by KL results in the
residual signal

rk = KL

[
uk,L

yk,L

]
= Ky

L(T
f
L fk,L + T e

Lek,L) .

The detection filter, therefore, is entirely designed by obtaining
a proper KL satisfying (6). The subspace represented by KL

can be consistently estimated when the I/O data is corrupted by
noise. For details on designing and optimizing such a detection
filter, we refer readers to [10], [11]. However, in this letter, we
focus on the fault isolation task, which follows immediately
after the detection.

III. FAULT ISOLATION SCHEME
Given KL satisfying (6), the resulting residual signal rk

carries all the system’s fault information. One key observation
is that rk is possibly multi-dimensional, depending on the
nullity of G⊤

L , i.e., dimN (G⊤
L ). In this sense, each row of KL

acts as a single-output finite-impulse-response (FIR) detection
filter.. This fact has been utilized in designing bank of filters
in [12], [9], which can discard information. To avoid that,
we propose working with the full multi-dimensional residual
signal. With this, we fully exploit the available analytical
redundancy, and the number of rows in KL determines the
degree of freedom in the design.

By the block triangular structure of GL, it is easy to
show dimN (G⊤

L ) = dimN (O⊤
L ). Moreover, since (A, C)

is observable, if no ≤ n is the observabilty index of (A, C),
for any L > no,OL has full column rank with row excess of
Lny − n. This gives the following result.

Lemma 3.1: Let no be the observability index of (A, C)
and Assumption (2.1) hold. For L > no, there exists a full
row-rank Ky

L ∈ R(Lny−n)×Lny such that Ky
LOL = 0.

For the sake of brevity, we develop the foundations in this
section without considering noise, i.e., ek = 0. The effect of
noise is empirically investigated in Section V.

By choosing L according to Lemma 3.1, the multi-
dimensional residual signal at time instant k satisfies

rk = πLfk,L ; πL := Ky
LT

f
L ∈ R(Lny−n)×Lnf . (7)

This implies that the residual signal belongs to the column
space of πL through the linear map F : RLnf → RLny−n,



where F(x) := πLx. Thus, the residual signal is a linear
combination of fault signals present in the system

rk =

nf∑
i=1

π
(i)
L f

(i)
k,L ; π

(i)
L ∈ R(Lny−n)×L .

where the column vector f (i)k,L includes only values correspond-
ing to ith fault signal over the filter horizon.

A. Fault dictionaries
In this section, we show how to construct π

(i)
L from of

I/O data in a data-driven FI framework. First, the fault block-
Toeplitz matrix T f

L is expressed based on (2). Then, we show
how these bases are transformed by pre-multiplying them with
Ky

L. To do so, the range of T u
L is needed to be recovered from

the fault-free I/O data.
Assumption 3.1 (data rank condition): The healthy data is

recorded such that rank
[
Xk,L

Uk,L

]
= n+ Lnu.

Remark 3.1: In practice, Assumption 3.1 can be ensured
when the data is collected in open-loop using an input signal
uk that is persistently exciting (PE) of sufficient order [14].

Proposition 3.2: Suppose the input signal satisfies Assump-
tion 3.1. Given fault-free data {uk, yk}Nk=1, we have R(T u

L ) =
R(L21) and R(OL) = R(L22) where L21 and L22 are derived
from the following LQ decomposition[

Uk,L

Yk,L

]
=

[
L11 0
L21 L22

] [
Q⊤

1

Q⊤
2

]
.

Proof: Assumption 3.1 ensures that the row spaces of
OLXk,L and T u

L Uk,L remain disjoint in the data-equation (4).
Thus, we conclude that L21Q

⊤
1 is the term linking Uk,L to

Yk,L because it forms a linear combination of the same bases
as in Uk,L = L11Q

⊤
1 . Consequently, we obtain T u

L Uk,L =
L21Q

⊤
1 . By substituting Uk,L from the LQ-decomposition, we

arrive at T u
L L11Q

⊤
1 = L21Q

⊤
1 , which implies T u

L = L21L
−1
11 .

The PE input signal guarantees that L11 is invertible and
full rank, leading to R(T u

L ) = R(L21). Moreover, since
OLXk,L = L22Q

⊤
2 , a similar argument establishes that

R(OL) = R(L22), thus completing the proof.
Looking at the definition of fault matrices (2), we observe

that the columns of T u
L and Iny serve as the building blocks

of T f
L . That is, R(T f

L ) ⊆ R(T u
L ) in case of faulty actuators,

as well as R(T f
L ) ⊆ R(IL ⊗ Iny

) for faulty sensors.
Let T ai

L and T si
L represent the signatures of the ith actuator

fault and sensor fault, respectively, and define them as

T ai
L = (L21)Ωa

; T si
L =

(
IL ⊗ Iny

)
Ωs

,

Ωa = {k ∈ N0 : k = i+ t nu, t ∈ N0, k ≤ (L− 1)nu + i} ,
Ωs = {k ∈ N0 : k = i+ t ny, t ∈ N0, k ≤ (L− 1)ny + i} ,

where sets Ωa and Ωs specify the columns to be selected
from the corresponding matrices. Then, we introduce fault
dictionaries as

Dictionary :

{
Dai

L = Ky
L T ai

L ; if ith actuator is faulty,
Dsi

L = Ky
LT

si
L ; if ith sensor is faulty,

(8)

in which Dai
L , Dsi

L ∈ R(Lny−n)×L. The total set of dictionaries
are collected in DL = {Dai

L }nu
i=1 ∪ {Dsi

L }
ny

i=1. In addition,

r

sensor fault

actuator 
fault

θ1θ2

#
i

#i

Fig. 1. Geometric interpretation of the fault isolation problem.

denote by A := {a1, . . . , anu
} and S := {s1, . . . , sny

} the
sets of actuators and sensors, respectively. Note that learning
the dictionaries uses only I/O data, thus not relying on the
underlying system matrices.

B. Geometric classifier

In the proposed framework, classification takes place in the
subspace RLny−n. In this space, hyperplane i corresponds
to the span of the columns in D(i)

L ∈ DL. The residual
signal is expected to belong to the subspace that shares
the same basis vectors as πL; that is, if only one fault is
active, the signal should lie entirely within the corresponding
subspace for an appropriate choice of L. The geometry of
the problem suggests that projecting the residual signal onto
each hyperplane should provide the necessary information for
classification. In other words, the angle between the residual
signal and its projection serves as the primary decision variable
in the proposed classifier (see Fig 1). As a result, the problem
can be formulated as

cos θ
(i)
k =

⟨rk, PD(i)
L

[rk]⟩

∥rk∥ ∥PD(i)
L

[rk]∥
, (9)

with PD(i)
L

[rk] := D(i)
L (D(i)⊤

L D(i)
L )−1D(i)⊤

L rk. The multi-
dimensional time-varying signal θk is defined as θk :=
[θ

(1)
k · · · θ

(nu+ny)
k

]⊤. To simplify the exposition, we as-
sume that only a single fault is present at time instant k (i.e.,
nf = 1), and the classifier is proposed as

faulty mode := argmax
i=1, ··· , nu+ny

cos θ
(i)
k ; 0 ≤ θ

(i)
k ≤ π/2 .

Note that cosx is monotone in the closed interval [0, π
2 ].

Remark 3.2: The classifier can be extended to handle si-
multaneous faults, provided the fault subsystem remains left-
invertible. This is done by iteratively testing combinations of
dictionaries using direct sums of their column spaces, until
one yields a zero angle.



IV. FAULT DISCERNIBILITY

By introducing the FI scheme, we can determine the condi-
tions under which faults can be perfectly isolated and identify
the limiting factors. To emphasize its importance, consider
the scenario where the system is subject to only one fault.
From Figure 1, it follows that if the resulting residual signal
resides exactly on the intersection of two planes, the angles
will be zero for both possible faults. Consequently, the clas-
sifier cannot distinguish between them. In the following, we
establish the link between fault discernibility and hyperplane
intersections based on the filter horizon and the dynamical
system properties.

First, we formally define the concept of mutual discernibility
of faults in terms of the system output behavior.

Definition 4.1 (Mutual discernibility): Let f1
k ∈ Rn1 and

f2
k ∈ Rn2 be two nonzero fault signals with f1

k ̸= f2
k .

f1
k and f2

k are said to be indiscernible for a given L if
there exist x1

k, x
2
k such that y1

k,L = y2
k,L, where yi

k,L =

OLx
i
k + T u

L uk,L + T fi
L f ik,L + T e

Lek,L. Otherwise, f1
k and f2

k

are discernible.
Next, the null space of

[
OL T f

L

]
is related to the transmis-

sion zeros of the fault subsystem, as shown in [17]:
Theorem 4.1: Let τ be the smallest integer such that

(A,Bf , C,Df ) is τ -delay left invertible, and ζ be the number
of finite and infinite transmission zeros counting multiplicity.
Then, if L ≥ max(τ, n), we have dimN (

[
OL T f

L

]
) = ζ.

Proof: Let ζfi be the number of finite transmission
zeros counting multiplicity and ζinf be the number of infinite
transmission zeros, so that ζ = ζfi+ ζinf . By Theorem III.4 of
[17], if L ≥ n, then dimN (

[
OL T f

L

]
)− dimN (T f

L ) = ζfi.

By Theorem IV.8 of [17], if L ≥ τ , dimN (T f
L ) = ζinf .

Combining the two expressions gives the desired result.
Lemma 4.2: For any f0 ∈ CLnf , Ky

LT
f
L f0 = 0 if and only

if there exists x0 ∈ Cn such that
[
OL T f

L

] [x0

f0

]
= 0.

Proof: (⇒) Suppose Ky
LT

f
L f0 = 0. This implies T f

L f0 ∈
N (Ky

L) = R(OL). Thus, T f
L f0 = OLv for some v, and taking

x0 = −v yields OLx0 = −T f
L f0. (⇐) Left-multiplying the

zero equation by Ky
L gives the result.

A direct consequence of Lemma 4.2 and Theorem 4.1 is

dimN (Ky
LT

f
L ) = dimN (

[
OL T f

L

]
) = ζ , (10)

where ζ denotes the number of transmission zeros of
(A,Bf , C,Df ). Thus, we call a nonzero f0 satisfying
Lemma 4.2 a zero-dynamic input. Moreover, indiscernible
faults relate to zero-dynamic input directions as follows:

Proposition 4.3: Let f1k,L ̸= f2k,L be indiscernible faults.
Denote by faugk,L := [f1

k −f2
k · · · f1

(L−1)n1
−f2

(L−1)n2
]⊤

the augmented fault. Then, faugk,L is zero-dynamic input of the
augmented system (A, [B1

f , B
2
f ], C, [D

1
f , D

2
f ]).

Proof: From Definition 4.1, indiscernible faults yield
identical residuals, i.e., r1k,L = r2k,L. This implies
Ky

L[T
f1
L T f2

L ][f1
⊤

k,L − f2
⊤

k,L]
⊤ = 0. This can be rewritten

as Ky
LT

faug
L faugk,L = 0, where T faug

L defines the augmented
system, obtained by reordering the columns and entries of
the associated matrices. By Lemma 4.2, faugk,L lies in the zero-
dynamic input space of the augmented system.

A. Intersection of two dictionaries

Since a fault cannot be isolated when its residual belongs to
two different dictionaries, here we characterize the intersection
between two dictionaries. In what follows, we present the
necessary lemmas and propositions to quantify the intersection
in terms of OL and T f

L , enabling the application of the result
in Lemma 4.2.

Lemma 4.4: Let P1 ∈ Rm×n and P2 ∈ Rm×n. Then,
dim (R(P1) ∩ R(P2)) equals to:

(i) rankP1 + rankP2 − rank [P1 P2].
(ii) dimN ([P1 P2])− dimN (P1)− dimN (P2).

Proof: For the proof of (i), see [18, Fact 3.14.15].
Applying the rank-nullity theorem to (i) gives (ii).

Lemma 4.5: Let R(Ky
L
⊤
) = N (O⊤

L ) and P ∈ RLny×L.
Then, rank(Ky

LP ) = L− dimN (
[
OL P

]
).

Proof: By [18, Proposition 3.6.10], rank(Ky
LP ) =

rankP − dim (N (Ky
L) ∩R(P )). From the fundamental sub-

spaces theorem, it can be established that N (Ky
L) = R(OL).

Combining this with the second part of the findings in
Lemma 4.4, we can express the rank as follows

rank(Ky
LP ) = rankP + dimN (P )− dimN (

[
OL P

]
) .

In this derivation, the fact that dimN (OL) = 0 is already
taken into account. Using the rank-nullity theorem then yields
the desired result.

The following lemma characterizes the common subspace
spanned by the columns of two distinct fault dictionaries. For
this, let c, c′ ∈ A ∪ S and assume that Dc

L, Dc′

L with c ̸= c′

follow (8). Define dc,c
′

∩ := dim
(
R(Dc

L) ∩ R(Dc′

L )
)

.
Lemma 4.6: The dimension of intersection of subspaces Dc

L

and Dc′

L is given as

dc,c
′

∩ = dimN (
[
OL T c

L T c′

L

]
)− dimN (

[
OL T c

L

]
)

− dimN (
[
OL T c′

L

]
) . (11)

Proof: In light of Lemma 4.4, we have

dc,c
′

∩ = rankDc
L + rankDc′

L − rank
[
Dc

L Dc′

L

]
= rank(Ky

LT
c
L) + rank(Ky

LT
c′

L )− rank(Ky
L[T

c
L T c′

L ]) .

By applying Lemma 4.5 to each term individually, the final
result is achieved.

Assumption 4.1: The pair (A,CIy
) is observable for any

subset Iy ⊆ {1, . . . , ny}, where CIy
consists of the rows of

C corresponding to the outputs in Iy .
The main result is presented in the following theorem, where
the dimension of the intersection is derived for different
combination of fault dictionaries. Each case is defined by c
and c′, denoting either an ith actuator ai or an ith sensor si.

Theorem 4.7: Suppose that Assumption 2.2 and Assump-
tion 4.1 hold, and let L ≥ n. Define Iu ⊆ {1, . . . , nu} and
Iy ⊆ {1, . . . , ny} to be subsets of the inputs and outputs,
respectively. Denote by ζm, ζIu , and ζm,Iy the total number
of finite and infinite transmission zeros in the subsystem: from
the mth input to all outputs, from all inputs in Iu to all outputs,
and from the mth input to all outputs in Iy , respectively. Then,



for any two different channels c and c′

dc,c
′

∩ =


ζ{i,j} − ζi − ζj if c = ai, c

′ = aj , i ̸= j ,

ζi,{1,...,ny}\j if c = ai, c
′ = sj ,

0 if c = si, c
′ = sj , i ̸= j, ny > 2 ,

n if c = si, c
′ = sj , i ̸= j, ny = 2 .

Proof: To prove this, we primarily rely on the dimension
of the intersection (11) in Lemma 4.6. The key aspect is com-
puting the dimension of each nullspace, where Theorem 4.1
connects it to transmission zeros.

(First case): In this case, fault dictionaries correspond to
actuator faults. Direct application of Theorem 4.1 yields
dimN (

[
OL T ai

L

]
) = ζi and dimN (

[
OL T aj

L

]
) = ζj . To

obtain dimN (
[
OL T ai

L T aj
L

]
), we rearrange the columns

so that Theorem 4.1 can be invoked for the subsystem
from {i, j}th inputs to all outputs. Note that the rank of
a matrix remains invariant under column-wise permutations.
Consequently, the nullity for this subsystem is equal to ζ{i,j}.
Substituting each part into (11) gives the result.

(Second case): This case considers an actuator fault versus
a sensor fault. We analyze each term separately. According to
Theorem 4.1, dimN (

[
OL T ai

L

]
) = ζi. On the other hand,

Assumption 2.2 implies that
[
OL T sj

L

]
is full column rank,

and therefore dimN (
[
OL T sj

L

]
) = 0. To simplify computa-

tion of dimN (
[
OL T ai

L T sj
L

]
), we break it down to a few

steps. Since one of the dictionaries corresponds to an actuator
fault, we can always find at least ζi nonzero linear combi-
nations of columns in

[
OL T ai

L T sj
L

]
that produce zero

based on Theorem 4.1, implying dimN (
[
OL T ai

L T sj
L

]
) ≥

ζi. We now show that there exists another set of linear
combinations that leads to rank deficiency. Let j represent the
jth output of the system and Ω denote the set {1, . . . , ny}\j.
Consider z0 ∈ C to be a transmission zero for the subsystem
from ith input to all outputs in Ω. For notational clarity, we
introduce OIy

L to represent the extended observability matrix
for the outputs in Iy , and T m,Iy

L to represent the Toeplitz
matrix corresponding to subsystem from the mth input to the
outputs in Iy . Then, according to Theorem 4.1, there exist

pairs (x(ω)
0 , u0) for all ω ∈ Ω such that

[
O1

L T i,1
L

] [x(1)
0

u0

]
=

· · · =
[
Ony

L T i,ny

L

] [
x
(ny)
0

u0

]
= 0 and

[
Oj

L T i,j
L

] [x(j)
0

u0

]
̸=

0. Permuting rows, which does not affect rank, results in

perm [OL T ai
L T sj

L ] =

[
OΩ

L T i,Ω
L 0

Oj
L T i,j

L IL

]
.

Our goal is to demonstrate the existence of a nonzero tuple
λ := (λ1, λ2, λ3) satisfying[

OΩ
L T i,Ω

L 0

Oj
L T i,j

L IL

]λ1

λ2

λ3

 = 0 .

Since z0 is also a transmission zero for the subsystem (i,Ω),
it is always possible to find a nonzero (λ1, λ2) such that
the top partition becomes zero, i.e., OΩ

Lλ1 + T i,Ω
L λ2 = 0.

Substituting the solution of the top partition into the bottom
partition gives λ3 = −Oyj

L λ1 − T (ui,yj)
L λ2 ̸= 0 as z0 is not a
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Fig. 2. A noise-free actuator fault scenario. The fault magnitude is
indicated in the left y-axis, while the classification result follows the right
y-axis.

transmission zero for subsystem from the ith to the jth output;
this argument holds for all ζi,Ω transmission zeros. It is easy
to show that if there were another output channel not sharing
z0 as a transmission zero, the given system of equations would
have no nonzero solution, but the proof is omitted for brevity.
Assumption 2.2 guarantees that no additional linear dependen-
cies exist. Thus, dimN (

[
OL T ai

L T sj
L

]
) = ζi + ζi,Ω. The

desired result follows from (11).
(Third case): In case of two distinct sensor fault dictio-

naries, T si
L and T si

L have independent columns by construc-
tion. Moreover, Assumption 2.2 ensures that

[
OL T si

L

]
and[

OL T sj
L

]
are full column rank, resulting in a nullspace of

zero dimension. Using similar notations as in the second case,
but with Ω being {1, . . . , ny}\{i, j}, and applying row-wise
permutations, we obtain

perm [OL T si
L T sj

L ] =

 OΩ
L 0 0

Oi
L IL 0

Oj
L 0 IL

 . (12)

Assumption 4.1 implies that dimN (
[
OL T si

L T sj
L

]
) = 0

if ny > 2 based on the structure in (12). In case of ny = 2, it
follows from (12) that dimN (

[
OL T si

L T sj
L

]
) reduces to

dimN (

[
Oi

L

Oj
L

]
) = n. This concludes the proof.

Remark 4.1: When the underlying system has only two
outputs (ny = 2), the dimension of intersections in all cases
of Theorem 4.7 coincides with the system order, i.e., for any
two distinct channels c, c′ ∈ A ∪ S , we have dc,c

′

∩ = n.

V. NUMERICAL EXAMPLES
To showcase the theoretical results, we design experiments

under both noise-free and noise-contaminated conditions. Con-
sider an observable LTI system with n = 4. In this system,
only the channels from the input to the outputs {1, 3} share a
transmission zero at z = 0.95, i.e., ζ1,{1,3} = 1. The details
of the system matrices can be found here.

Scenario 1. In a noise-free setting, the considered system
is subject to only an actuator fault throughout the simulation.
To highlight some of the key findings in Theorem 4.7, it is
assumed that the fault dictionaries are computed with nominal
values. The input signal is a multi-step signal taking values
from {1, 2, 1.5}. We aim to design a fault signal that leads
to an isolation confusion. To this end, consider the fault
signal as fk = {0 if k < 10, sin (0.2πk) if 10 ≤ k ≤

https://github.com/amiiigen/DDFI.git
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Fig. 3. The proposed FI performance in the presence of noise with different types of faults. (Left) The left y-axis represents fault signals in different
components, while the classification result is depicted with respect to the right y-axis. (Right) The corresponding histogram.

70, (0.95)k−70 if 70 ≤ k ≤ 130, −0.5 otherwise}. The
isolation performance is illustrated in Fig. 2 for L = 5.
From the figure, it can be seen that the classifier cannot
distinguish between the actuator and sensor #2 faults during
the shaded period (i.e., cos θ = 1 for both). This is because
the residual signal exactly resides at the intersection of the
corresponding hyperplanes in this period. This non-trivial
intersection corresponds to the second case of Theorem 4.7,
where an actuator and a sensor fault become indiscernible if
the subsystem from the actuator to the considered sensor does
not contain the transmission zero shared by the other output
channels.

Scenario 2. In a more realistic setting, the faulty subsystem
switches between multiple fault modes under a noisy condi-
tion. The perturbed healthy I/O data is collected using a PRBS
signal, generating N = 1000 samples. The innovation signal
is considered to be zero-mean white noise with a nonzero
covariance matrix, and the signal-to-noise ratio (SNR) is 25.
Setting L = 15 to estimate fault dictionaries and to obtain KL

by examining the singular values of the LQ decomposition, as
outlined in Proposition 3.2. The FI performance is evaluated
through a Monte Carlo simulation. The average FI accuracy
across simulations is 91.28%. The result for one particular
realization is shown in Figure 3. Apart from some transient
behavior, the results demonstrate the effectiveness of the
proposed method.

VI. CONCLUSIONS
The proposed FI approach can perfectly isolate faults under

the noise-free condition in case of discernible faults. While the
presence of noise may degrade classification performance, the
filter still performs satisfactorily. A formal investigation of fil-
ter performance under noisy conditions remains an interesting
direction for future work.
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