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Abstract. In this paper, we consider the problem of propagating an uncertain distribution by a

possibly non-linear function and quantifying the resulting uncertainty. We measure the uncertainty

using the Wasserstein distance, and for a given input set of distributions close in the Wasserstein

distance, we compute a set of distributions centered at a discrete distribution that is guaranteed to

contain the pushforward of any distribution in the input set. Our approach is based on approximating

a nominal distribution from the input set to a discrete support distribution for which the exact

computation of the pushforward distribution is tractable, thus guaranteeing computational efficiency

to our approach. Then, we rely on results from semi-discrete optimal transport and distributional

robust optimization to show that for any ϵ > 0 the error introduced by our approach can be made

smaller than ϵ. Critically, in the context of dynamical systems, we show how our results allow one

to efficiently approximate the distribution of a stochastic dynamical system with a discrete support

distribution for a possibly infinite horizon while bounding the resulting approximation error. We

empirically investigate the effectiveness of our framework on various benchmarks, including a 10-D

non-linear system, showing the effectiveness of our approach in quantifying uncertainty in linear and

non-linear stochastic systems.

1. Introduction

Modern cyber-physical systems are commonly affected by various sources of uncertainty. These

include both the uncertainty caused by the intrinsic randomness in the system dynamics [38] and

the uncertainty due to the use of statistical learning algorithms to estimate the unknown compo-

nents/parameters of the system [28, 41]. Consequently, it is common that mathematical models

are not only stochastic, but the distribution of the various random variables are themselves un-

certain [39]. As a result, when these models are used in safety-critical applications, the resulting

uncertainty cannot be neglected [13] and must be propagated through possibly non-linear functions.

For instance, this is the case for stochastic dynamical systems, where the input distribution and the

distribution of the noise affecting the system are commonly estimated from data and need to be prop-

agated through the system dynamics for multiple (possibly infinite) time steps [7]. Unfortunately,

how to propagate uncertain distributions through non-linear functions is still an open question. This

leads to the main question in this paper: how can we efficiently propagate an uncertain distribution

through a non-linear function with formal guarantees of correctness?
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Propagating a distribution P through a function f is equivalent to computing the push-forward

distribution of P by f denoted by f#P, which in the context of stochastic dynamical systems is

equivalent to computing the Chapman-Kolmogorov Equation [33]. Unfortunately, in general, even

when P is known, computing f#P in closed form is not possible and requires approximations [27],

such as moment matching [14] or discretization-based methods [25]. Unfortunately, these techniques

either come with no correctness guarantees or are too computationally demanding due to the need

to discretize the full state space and do not support any uncertainty in P. When P is uncertain,

the problem is exacerbated by the additional challenge of dealing with a possibly infinite set of

distributions that must all be propagated through f . While this problem is receiving increasing

interest [6, 16, 2], existing approaches are either limited to linear f or lack formality and scalability.

In this paper, given an uncertain distribution P and a non-linear function f , we present a frame-

work to efficiently approximate f#P via discrete distributions with formal quantification of the

resulting uncertainty. To quantify the uncertainty, we rely on the Wasserstein distance [40]. This

choice is motivated by the properties of the Wasserstein distance (i.e., it is a metric, it bounds the

distance of the moments of the distributions, and convergence in the Wasserstein distance guarantees

weak convergence) and its connection with optimal transport, which allows us to devise particularly

efficient algorithms to solve our problem. Our approach is based on the fact that the Wasserstein

distance between a continuous and a discrete distribution can be characterized as the solution of

a semi-discrete optimal problem for which optimal solutions can be efficiently computed [34]. By

using this connection and using techniques from distributional robust optimization and stochastic

optimization [9, 10, 31, 18], we show that given a discrete distribution approximating P, the Wasser-

stein distance between the pushforward of P by f and of its discrete approximation can be efficiently

bounded, even when P is uncertain and f non-linear. The resulting bound can then be minimized

by appropriately selecting the support of the approximating discrete distribution. This allows us to

derive an efficient algorithmic framework that, given an uncertain distribution P and a non-linear

function f and a given error threshold ϵ > 0, returns a discrete distribution whose push-forward

through f is guaranteed to be closer than ϵ to f#P.

We then show how our framework can be applied to formally approximate the state distribution

of stochastic dynamical systems over time. We show that in contrast to existing results [6, 17], our

approach can be successfully applied to linear and non-linear systems and for both finite and infinite

time prediction horizons. In particular, under relatively mild assumptions on f, we prove the conver-

gence of the approximation error of our approach over time to a fixed point. To further illustrate the

usefulness of our framework, we perform an empirical evaluation on various benchmarks. In partic-

ular, we consider various linear and non-linear systems, including standard control benchmarks such

as the Mountain Car [37] and Dubins Car [8], and a 10-D model of a neural network. The empirical

analysis highlights how our framework can successfully approximate the push-forward distributions

in both linear and non-linear cases and with relatively small discrete distributions, thus showcasing

its potential to efficiently approximate complex distributions even in complex iterative prediction

settings.

In summary, the main contributions of this work are listed below:
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• Uncertainty propagation: upper-bounds on the uncertainty measured in terms of the

Wasserstein distance of the pushforward of an uncertain probability distribution through

a possibly non-linear function (Theorem 5.1), and a refined version under no ambiguity

(Theorem 5.2);

• Algorithm & convergence rate: an efficient algorithmic procedure (Algorithm 1) to ap-

proximate the pushforward of an uncertain probability distribution by a discrete distribution,

with guaranteed convergence in ρ-Wasserstein distance (Theorem 6.2);

• Approximation error dynamics: an application of our framework to stochastic dynamical

systems for both finite and infinite prediction horizons (Theorem 7.1).

The paper is organized as follows. We formulate the problem in Section 4, present the formal

uncertainty propagation error bounds in Section 5, and introduce an algorithmic procedure to prop-

agate the uncertain distributions and compute these bounds in Section 6. Finally, in Section 8,

we conduct an extensive empirical validation on several benchmarks, including complex non-linear

dynamical systems, such as the Mountain and Dubins Car, and a 10-D non-linear system.

2. Related Works

Our work is connected with the distributionally robust optimization literature. In distributionally

robust optimization, one is usually interested in computing the worst expected value of a certain

transformation of a random vector w.r.t. a family of distributions P, i.e., supP∈P Eξ∼P[f(ξ)] [35, 15,

12, 18]. In particular, [31] provides techniques to characterize this worst-case expectation via convex

optimization in the case where P is defined as a Wasserstein ambiguity set. Similarly, [18] prove that

the distributionally robust problem is equivalent to a dual minimization program in R-space for a

large class of functions f and spaces P, a result from which we took inspiration to demonstrate some

of our results in this paper. In our work, however, we aim to find the worst Wasserstein distance

between push-forwarded measures, given that they belong to a given set of probabilities close in

Wasserstein distance. Furthermore, the Wasserstein distance is defined not as an expectation on

the P-space but as the infimum expectation of a specific cost function on the coupling space. Thus,

a different framework must be devised to solve the problem.

Uncertainty propagation for various classes of functions has also been studied in the context

of dynamical systems [27]. In [6], the authors provide a framework for the propagation of a

set of distributions close in the Wasserstein distance in dynamical systems, where a distribution

needs to be propagated through the system dynamics multiple times. These results have been

applied in the context of stochastic model predictive control [5, 30]. However, in terms of nu-

merical tractability, these techniques are specific to linear systems. Instead, in [16], the authors

consider the uncertainty propagation problem in the context of random differential equations. The

resulting bounds, however, involve different Wasserstein spaces, i.e., they propose a bound of type
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Wρ1(f#P, f#Q) ≤ C(f,P,Q)Wρ2(P,Q) where1 ρ1 < ρ2, thus not allowing for its use in settings

where the uncertainty must be propagated multiple times and the information on the moments must

be conserved2. Uncertainty propagation in stochastic dynamical systems has also been considered in

[17], where the authors consider mixture approximations of the distribution of a dynamical system

over time with bounds in total variation. However, the resulting bounds cannot be applied in the

context of our paper where we approximate a continuous distribution with a discrete one, grow

linearly with time independently of f , and, consequently, become uninformative for a not small pre-

diction time horizon. A related work is also [2], which views neural networks as stochastic dynamical

systems and presents an algorithmic framework to approximate a stochastic neural network with

a mixture of Gaussian distributions with error bounds in Wasserstein distance. This approach is,

however, specific to neural networks.

Another related line of work is that of stochastic abstraction-based methods, where a stochastic

system is abstracted into a variant of a discrete Markov chain [1, 26] and that have also been recently

extended to support distributional uncertainty on the system dynamics [22]. However, these works

suffer from the state-space explosion problem due to the need to finely discretize the full support of

the distributions. In contrast, our approach approximates a continuous distribution with a discrete

one by selecting the support of the discrete distribution to minimize the distance from the continuous

one. This allows us to reduce the size of the support of the resulting discrete distribution by only

placing locations in the regions with high probability mass.

3. Preliminaries

Here, we provide the necessary preliminaries on the Wasserstein distance and the quantization of

probability distributions.

3.1. Notation

For a vector x ∈ Rd, we denote by x(i) its i-element. For a set X ⊆ Rd, the indicator function

for X is denoted as 1X (x) := 1 if x ∈ X ; otherwise 0. For X ⊆ Rd, we denote a partition of X in

N regions R :=
{
Ri

}N
i=1

, i.e. Ri ⊆ X ,
⋃N

i=1Ri = X , and ∀i ̸= j,Ri ∩ Rj = ∅. Given a Borel

measurable space X ⊆ Rd, we denote by B(X ) the Borel sigma algebra over X and by P(X ) the

set of probability distributions on X . For a random variable xt taking values in X , Pxt ∈ P(X )
represents the probability measure associated to xt. For N ∈ N, ΠN := {π ∈ RN

≥0 :
∑N

i=1 π
(i) = 1}

is the N -simplex. A discrete probability distribution D ∈ P(X ) is defined as D =
∑N

i=1 π
(i)δci ,

where δc is the Dirac delta function centered at location c ∈ X and π ∈ ΠN and N is the number

of locations in the support of D. The set of discrete probability distributions on X with at most N

1The term C(f,P,Q) is a constant upper-bounding the moment under both P and Q of a function only requiring

local Lipschitz continuity from f , which is a less restrictive assumption compared to the piecewise Lipschitz continuity

that we need in our work.
2The ρ-Wasserstein distance between P and Q is related to how close their ρ-moments are ([40, 2]). Propagating a

bound in the ρ2-Wasserstein space to the ρ1-Wasserstein space implies a loss of information on the difference of the

higher moments of the push-forwarded measures.



EFFICIENT UNCERTAINTY PROPAGATION WITH GUARANTEES IN WASSERSTEIN DISTANCE 5

locations is denoted as DN (X ) ⊂ P(X ). For a probability distribution P ∈ P(X ) and a measurable

function g : X → Y ⊆ Rq, we denote the push-forward measure of P by g as g#P such that for all

A ⊂ B(Y), (g#P)(A) := P(g−1(A)). We note that g#P is still a probability distribution such that

g#P ∈ P(Y).

3.2. Wasserstein (or Kantorovich) distance

Let ρ ≥ 1, X ⊆ Rd, and define Pρ(X ) as the set of probability distributions with finite ρ-th

moments under the Lρ-norm, i.e. all P ∈ P(X ) such that
∫
X ∥x∥

ρ dP(x) <∞.

Definition 1 (ρ-Wasserstein distance). For P,Q ∈ Pρ(X ) the ρ-Wasserstein distance Wρ between

P and Q is defined as

Wρ(P,Q) :=

(
inf

γ∈Γ(P,Q)

∫
X×X

∥x− y∥ρ dγ(x, y)
) 1

ρ

(1)

where Γ(P,Q) ⊂ Pρ(X ×X ) represents the set of joint probability distributions with given marginals

P and Q (also known as couplings between P and Q), i.e., for all γ ∈ Γ(P,Q), it holds that:

γ(A×X ) = P(A), γ(X ×A) = Q(A) ∀A ∈ B(X ).

Additionally, we define the ρ-Wasserstein ball of radius θ ≥ 0 centered at the probability distri-

bution P ∈ Pρ(X ), also called ambiguity set, as:

Bθ(P) :=
{
Q ∈ Pρ(X ) : Wρ(P,Q) ≤ θ

}
. (2)

That is, Bθ(P) contains all probability measures closer than θ to P according to Wρ.

We finally state an identity that follows directly from the definition of the Wasserstein distance

and will be extensively employed in the following sections:

Wρ(f#P, f#Q) =

(
inf

γ∈Γ(P,Q)

∫
X×X

∥f(x)− f(y)∥ρ dγ(x, y)
) 1

ρ

. (3)

This identity states that the ρ-Wasserstein distance between the pushforward of two probability

measures under a function f is equal to a ρ-Wasserstein-like distance between the original measures,

using a modified cost structure
(
∥.∥ ◦ (f × f)

)
.

3.3. Quantization of probability distributions

For X ⊆ Rd, we consider a X -partition R =
{
Ri

}N
i=1

in N regions. Further, we denote by

C =
{
ci}Ni=1 a set of N points in Rd, which we refer to as locations henceforward.

Definition 2 (Quantization of a probability distribution). For partition R and set of locations C,
the quantization operator ∆R,C : X → X is defined by

∆R,C(x) :=
N∑
i=1

ci1Ri(x). (4)
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Figure 1. Schematic representation of the density of a continuous probability distribution P, and its

quantization ∆R,C#P, which has support of size N = |C| = 4, where we represent π(i) := P(Ri), a

notation that will be commonly adopted in the rest of the paper.

That is, the quantization operator takes any point in the region Ri and brings it to the location ci.

For any probability distribution P ∈ P(X ), the quantization (or discretization) of P is defined as

the pushforward measure

∆R,C#P =

N∑
i=1

P(Ri)δci ∈ DN (X ). (5)

Note that in the definition of ∆R,C, we do not assume any relationship between the partition and

the locations, although it is natural to pick ci ∈ Ri. We should also stress that if, for a given set of

locations C, one defines the partition as the Voronoi partition w.r.t. C, i.e., we take R with each

region being constructed as

Ri :=
{
z ∈ Rd : ∥z − ci∥ ≤ ∥z − cj∥ ,∀j ̸= i

}
, (6)

where ∥.∥ is the underlying norm, then the quantization operator ∆R,C is equivalent to the signature

operation described in [2]. An example of the quantization operator is shown in Figure 1.

The concept of quantizing a continuous probability distribution is well known in the literature

[23, 4, 2] and the following result to compute the ρ-Wasserstein distance between P and ∆R,C#P is

a straightforward extension of Theorem 1 of [4], which we will employ in this work.

Proposition 3.1 (Quantization error). Let P ∈ Pρ(X ) and assume a given X -partition R ={
Ri

}N
i=1

and set of locations C =
{
ci
}N
i=1

. Then, for any ρ ≥ 1,

Wρ(P,∆R,C#P) ≤
( N∑

k=1

∫
Rk

∥x− ck∥ρ dP(x)
) 1

ρ

(7)

Furthermore, if R is chosen to be the Voronoi partition w.r.t. C, then (7) holds with equality.
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This result comes from the fact that the particular coupling which transports the probability

mass of P in the region Rk to the location ck belongs to Γ(P,∆R,C#P). Thus, its associated cost

(right-hand side of (7)) upper-bounds the Wasserstein distance between these two distributions.

Remark 1 (Computing the quantization error). To compute the constrained ρ-moments in (7),

there are various approaches one can rely on. For instance, if P is a product measure, ∥.∥ is the

Lρ-norm, and R is a set of axis-aligned hyper-rectangles, then we have:

N∑
k=1

∫
Rk

∥x− ck∥ρ dP(x) =
N∑
k=1

d∑
m=1

∫
r
(m)
k

∣∣∣x(m) − c
(m)
k

∣∣∣ρ dPm

(
x(m)

) ∏
j ̸=m

Pj

(
r
(m)
k

)
,

where r
(m)
k := [a

(m)
k , b

(m)
k ], and Rk =

∏d
m=1 r

(m)
k . That is, we need to compute a set of constrained

ρ-moment of the univariate distributions Pm, which is analytically tractable for many distributions

(especially - although not limited to - for ρ ∈ {1, 2}), including Gaussian (see Proposition 9 and

Corollary 10 in [2] also for the general full covariance multivariate case), Uniform, Exponential, or

Gamma distributions. Another particularly favorable case is when P is discrete, i.e., P ∈ DN (Rd);

in this case, the bounds can be computed directly because of the finiteness of the support of the

distributions.

4. Problem Formulation

After having formally defined Wρ and ∆R,C we are now ready to state the main problem we

consider in this paper. Given an uncertain distribution Q ∈ Bθ(P), where Bθ(P) is a Wasserstein

ambiguity set of radius θ ≥ 0 centered at P ∈ Pρ(X ) for X ⊆ Rd, and a possibly nonlinear measurable

piecewise Lipschitz continuous function f : X → Y, our goal is to find discrete approximations of

the pushforward distribution of Q by f . In particular, we consider the following problem.

Problem 1. For an error threshold ϵ > 0, find a X -partition R =
{
Ri

}N
i=1

and locations C ={
c1, ..., cN

}
such that∣∣∣∣∣ sup

Q∈Bθ(P)
Wρ(f#Q, f#∆R,C#P)− sup

Q∈Bθ(P)
Wρ(f#Q, f#P)

∣∣∣∣∣ ≤ ϵ. (8a)

Furthermore, find a bound WR,C ≥ 0 such that

sup
Q∈Bθ(P)

Wρ(f#Q, f#∆R,C#P) ≤ WR,C. (8b)

The goal of Problem 1 is to find arbitrarily accurate discrete approximations of the pushforward

measure of an uncertain distribution and, critically, to bound the resulting uncertainty. Note that

the convergence requirement in (8a) to supQ∈Bθ(P)Wρ(f#Q, f#P) is natural as if P and Q differ,

then, in general, the distance of their pushforward distributions will not be zero. Hence, even if ϵ,

the error introduced by the quantization, vanishes, then supQ∈Bθ(P)Wρ(f#Q, f#∆R,C#P) may not.

The need to compute WR,C in Problem 1 guarantees that in this paper we are not only interested

in computing converging discrete approximations, but also in obtaining non-trivial error bounds for

the resulting uncertainty quantification problem.
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Problem 1 aims at generalizing existing methods to perform uncertainty propagation of proba-

bility distributions, such as non-linear filtering [11, 3] or sigma point methods [25], by computing

formal error bounds on the error in terms of the Wasserstein distance and in selecting optimal dis-

crete distribution approximations, which also accounts for the uncertainty in P. Note also that for

θ = 0, (8b) reduces to bounding Wρ(f#P, f#∆R,C#P), that is, the error in the pushforward ap-

proximation of a discrete operator applied to a known distribution. While this is itself an important

open problem [27], as we will illustrate in Example 1, we should already stress that in the case of

uncertainty propagation in dynamical systems, which is the main application we consider in this

paper, considering θ > 0 in (8b) is essential.

Example 1 (Dynamical systems). Consider the general model of a discrete-time stochastic process

xt+1 = f(xt, wt), x0 ∼ Px0 , wt ∼ Pwt ,

where Px0 and Pwt represent, respectively, the distribution of the initial condition and of the noise

affecting the system at time t. If f is non-linear or Pwt is not Gaussian, then the distribution of

the system at time t, Pxt, generally cannot be obtained in closed form and requires approximations

[20, 27, 17]. A solution to Problem 1 allows one to approximate arbitrarily well Pxt for any t > 0

with a discrete distribution P̂xt by iteratively approximating the pushforward distribution f#Pxt and

quantifying the approximation error. Note that for t > 0, the distribution of Pxt is uncertain because

of the uncertainty introduced by the quantization at the previous time steps. Consequently, approx-

imating Pxt+1 requires one to consider θ > 0 in Problem 1 to propagate the resulting uncertainty

through f . In Section 7, we will show how a solution of Problem 1 allows us to efficiently compute

approximations for Pxt with formal guarantees of correctness in the ρ-Wasserstein metric.

We should also stress that the impact of a solution to Problem 1 is not limited to dynami-

cal systems and, for instance, also represents a key contribution to the distributional robust un-

certainty propagation quantification problem, where it is still an open question how to quantify

supQ∈Bθ(P)Wρ(f#Q, f#P) when f is non-linear [6]. A solution to Problem 1 would give an efficient

method to over-approximate this quantity3.

Remark 2 (Wasserstein distance vs. divergences). A key advantage in using the ρ-Wasserstein

distance to quantify the error compared to other commonly used quantities, such as KL divergence

[19], is that bounds in the ρ-Wasserstein distance between two probability distributions can be used

to bound their difference in moments ([2], Lemma 2), in probability ([18], Example 7), and many

other further quantities of interest ([16], Section 4).

Approach. In Section 5, we start by focusing on bounding supQ∈Bθ(P)Wρ(f#Q, f#∆R,C#P)
for a given R,C using results from stochastic optimization and properties of the Wasserstein dis-

tance and derive bounds both for θ > 0 and θ = 0. Then, in Section 6, we present an algo-

rithm to efficiently select the partition R and locations C, and we further prove the convergence of

supQ∈Bθ(P)Wρ(f#Q, f#∆R,C#P) to supQ∈Bθ(P)Wρ(f#Q, f#P) for the resulting algorithm as the

3Indeed, as a corollary of (8a) and (8b), it holds that supQ∈Bθ(P) Wρ(f#Q, f#P) ≤ WR,C + ϵ.
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number of locations |C| increases. Lastly, in Section 7, we show how our uncertainty propagation

framework can be applied to approximate the state distributions in stochastic dynamical systems

with formal ρ-Wasserstein guarantees for both finite and infinite prediction horizons. Section 8

provides experimental results on various benchmarks to show the effectiveness of our approach.

5. Error Bounds in Wasserstein Distance

In this section, we show how for a given quantization operator ∆R,C one can efficiently bound

supQ∈Bθ(P)Wρ(f#Q, f#∆R,C#P) for any θ ≥ 0. Our main result is reported next and is based on

a norm linearization around each location ck ∈ C.

Theorem 5.1 (Uncertainty propagation of ambiguity sets). For X ⊆ Rd and P ∈ Pρ(X ), assume a

given X -partition R =
{
Rk

}N
k=1

and a set of locations C =
{
ck
}N
k=1

. For every k ∈ {1, ..., N}, call
π(k) := P(Rk), and let αk, βk ∈ R+ be such that for x ∈ X

∥f(x)− f(ck)∥ρ ≤ αk ∥x− ck∥ρ + βk. (9)

Further, denote

θd =

( N∑
k=1

∫
Rk

∥x− ck∥ρ dP(x)
) 1

ρ

(10)

Then, for αmax = maxk∈{1,...,N} αk, it holds that

sup
Q∈Bθ(P)

Wρ(f#Q, f#∆R,C#P) ≤
(
αmax(θ + θd)

ρ +
N∑
k=1

π(k)βk

) 1
ρ

. (11)

The proof of Theorem 5.1 is given in Appendix A.2, where we rely on duality to relax the

computation of supQ∈Bθ(P)Wρ(f#Q, f#∆R,C#P) into a one-dimensional minimization problem that

can be efficiently bounded by using the fact that Wρ(P,#∆R,C#P) can be formulated as a semi-

discrete optimal transport problem (Proposition 3.1), and on the local linearization of f given in (9).

An algorithm to automatically select αk and βk for the various locations will be given in Section 6.1,

while how to compute θd has already been mentioned in Remark 1. Before discussing the theoretical

implications of Theorem 5.1 in the rest of this section, we should stress that a potential source of

conservatism in Theorem 5.1 is in the linearization around each location ck, which must hold for

all x ∈ X and not just locally in Rk. This is due to the uncertainty of not knowing P exactly. In

Subsection 5.1, we show that such a requirement can be relaxed, and consequently, the bound is

improved when there is no ambiguity set, i.e., θ = 0.

Remark 3 (Lipschitz-based uncertainty propagation). Note that a straightforward corollary of The-

orem 5.1 is that

sup
Q∈Bθ(P)

Wρ(f#Q, f#∆R,C#P) ≤ Lf
(
θ + θd

)
, (12)
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where Lf is the Lipschitz constant of f according to the Lρ-norm
4. However, in general, as we

give intuition in Example 2 below, and we will show empirically in Section 8, the bound in (11)

is generally substantially tighter and can return bounds that are orders of magnitude smaller. The

intuition is that in the regions Ri where the local Lipschitz constant of f is large, one can rely on

a larger βj to obtain a lower αmax. If, in these regions, the probability mass of P is small (and,

consequently, π(j) is low), then the bound could substantially improve. Note that an exception is

when f is linear, where it is easy to show that the bounds in (11) and (12) coincide. In fact, if f is

linear, i.e., f(x) := Ax+ b, Theorem 5.1 reduces to

sup
Q∈Bθ(P)

Wρ(f#Q, f#∆R,C#P) ≤ ∥A∥
(
θ + θd

)
, (13)

where ∥A∥ := supx∈X
∥Ax∥
∥x∥ is the induced norm of A, which is equivalent to the global Lipschitz

constant of f .
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Figure 2. There exists infinite admissible pairs (α, β) such that (9) holds. In particular, we show three

of them: (0.252, 0) (purple line), (0.132, 0) (orange), and (0.092, 0.4) (brown).

Example 2 (Local vs. Lipschitz-based norm approximations). Let ρ = 2, and f(x) = 1
1+e−x be

a sigmoid function, whose Lipschitz constant w.r.t. the L2-norm is Lf = 0.25. We consider the

location c = 5; see Figure 2. We can upper bound |f(x)− f(5)|2 for any x ∈ R with (9) by choosing

i) (α, β) = (0.252, 0), ii) (α, β) = (0.132, 0), or iii) (α, β) = (0.092, 0.4). The first observation is

that since the location c = 5 is far from the region where the global Lipschitz is found (x = 0), α can

be chosen to be considerably smaller than L2f even for β = 0 (0.132 < 0.252). Further, since f is

bounded, by increasing the bias β, one can decrease α even further (see the brown line). In Section

6.1, we explain how to automatically select these parameters.

4This follows by observing that for all j ∈ {1, ..., N} one can select βj = 0 and αj = Lf . The resulting choice

always satisfies (9) by the definition of Lipschitz constant.
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5.1. No ambiguity case: θ = 0.

As mentioned, when θ = 0, the bound in Theorem 5.1 can be improved. In fact, in the proof

of Theorem 5.1, as will be discussed in detail in Section 5.2, to obtain a tractable reformulation,

we seek the worst plausible joint distribution among all couplings such that one of the marginals is

∆R,C#P and the other is any distribution Q ∈ Bθ+θd(P). Instead, when P is known, as in the case

θ = 0, we can design a specific transport plan that generally leads to improved bounds, as shown in

Theorem 5.2 below.

Theorem 5.2 (Uncertainty propagation under no ambiguity). For X ⊆ Rd, let P ∈ Pρ(X ). Assume

a given partition R =
{
Rk

}N
k=1

and a set of locations C =
{
ck
}N
k=1

. For every k ∈ {1, ..., N}, call
π(k) := P(Rk), and let αk, βk ∈ R+ be such that for x ∈ Rk, it holds that

∥f(x)− f(ck)∥ρ ≤ αk ∥x− ck∥ρ + βk. (14)

Then,

Wρ(f#P, f#∆R,C#P) ≤
(

N∑
k=1

αk

∫
Rk

∥x− ck∥ρ dP(x) +
N∑
k=1

π(k)βk

) 1
ρ

(15)

The proof of Theorem 5.2 is reported in Appendix A.3. Note that, differently from Theorem 5.1,

the norm overapproximation in (14) is local, i.e. for each region Rk, (14) has to hold for every

x ∈ Rk, instead of x ∈ X as in Theorem 5.1. This is a consequence of the fact that, in the setting

of Theorem 5.2, P is known with no uncertainty.

5.2. Conservatism under ambiguity

We should stress that, although supQ∈Bθ(P)Wρ(f#Q, f#∆R,C#P) is right-continuous in θ = 0,

the bound in Theorem 5.1 does not generally converge to the one in 5.2 as θ ↓ 0. To see this,

note that the proof of Theorem 5.1 is based on a worst-case analysis. In particular, as detailed in

Appendix A.2, we define Sθ(T) :=
{
γ ∈ P(X×X ) :

∫
X×X ∥x1 − x2∥ρ dγ(x1, x2) ≤ θρ,proj2#γ = T

}
,

and show

sup
Q∈Bθ(P)

Wρ(f#Q, f#∆R,C#P) ≤ sup
γ∈Sθ+θd

(∆R,C#P)

∫
X×X

∥f(x)− f(y)∥ρ dγ(x, y)

By taking the limit θ ↓ 0 on both sides, we have

Wρ(f#P, f#∆R,C#P) ≤ sup
γ∈Sθd

(∆R,C#P)

∫
X×X

∥f(x)− f(y)∥ρ dγ(x, y) (16)

On the other hand, to prove Theorem 5.2, we design a specific coupling γ∗ ∈ Γ(P,∆R,C#P) that

achieves
∫
X×X ∥x− y∥ρ dγ∗(x, y) = θρd, as reported in (27) in the Appendix A.2, and bound

Wρ(f#P, f#∆R,C#P) ≤
∫
X×X

∥f(x)− f(y)∥ρ dγ∗(x, y) (17)
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While it holds by construction that γ∗ is in Sθd(∆R,C#P), the elements in Sθd(∆R,C#P) do not

necessarily have P as one of the marginals, i.e., are not necessarily a member of Γ(P,∆R,C#P).
Hence, in general, the bounds in (16) and that in (17) for θ = 0 differ 5.

6. Selecting approximate discrete distributions

In this section, we provide an algorithmic approach to automatically select R, C, and the lin-

earization coefficients in Theorems 5.1 and 5.2. First, in Section 6.1, for any c ∈ X ⊆ Rd, we

present an algorithm to compute coefficient pairs (α, β) such that either (9) or (14) holds, and the

corresponding error bound in (11) or (15) is minimized. Then, we provide a practical approach

to construct a partition R and a set of locations C that guarantees that the approximation error

defined in (8a) can be made arbitrarily small.

6.1. Norm approximation algorithm

As observed in Example 2, given a location c ∈ C, there exist infinite combinations of (α, β)

to generate the upper-bounds for ∥f(x)− f(c)∥ρ for all x ∈ X . Unfortunately, due to the pos-

sibly non-linear nature of f , it is generally intractable to minimize the error bound in Theorem

5.1 or 5.2 with respect to all feasible linearization combinations. Hence, in practice, we focus on

combinations of type (i) (0, β) and type (ii) (α, 0), which can be computed efficiently. Specifi-

cally, for combinations of type (i), where f remains bounded in the region where the linear bounds

must hold, we select (α, β) = (0, supx∈X ∥f(x)− f(c)∥ρ). For type (ii) combinations, we select

(α, β) = (supx∈X ∥f(x)− f(c)∥ρ / ∥x− c∥ρ , 0). Due to the typically non-convex nature of these op-

timization problems, in practice, we utilize approximate solutions obtained via bound propagation

techniques.6 That is, for each region Sk of a X -partition S, we compute linear maps Ǎk(x− c) and

Âk(x− c), and vectors b̌k and b̂k, that satisfy:

Ǎk(x− c) ⪯ f(x)− f(c) ⪯ Âk(x− c) (18)

b̌ ⪯ f(x)− f(c) ⪯ b̂, (19)

for all x ∈ Sk. We then use that

sup
x∈X

∥f(x)− f(c)∥ρ
∥x− c∥ρ ≤ max

k∈{1,...,N}

(
∥Ǎk∥ρ, ∥Âk∥ρ

)
. (20)

and

sup
x∈X
∥f(x)− f(c)∥ρ ≤ max

k∈{1,...,N}

(
∥b̌k∥ρ, ∥b̂k∥ρ

)
(21)

to set α for combinations of type (ii), and β for combinations of type (i) and respectively. Note

that, for Theorem 5.2 where the norm-linearization has to hold only over a region R ⊆ X , we follow
the same procedure, replacing X by R.

5For instance, consider P = δ(0,0), R := {R2}, C := {(0, θd)}, and f(x) := diag(2, 0.1)x. Then, ∆R,C#P = δ(0,θd),

and γ∗ = δ(0,0)×(0,θd). Note that γ̃ := δ(0,θd)×(θd,θd) ∈ Sθd(δ(0,θd)), and hence,
∫
X×X ∥f(x)− f(y)∥ρ dγ∗(x, y) = 0.1ρθρd,

while
∫
X×X ∥f(x)− f(y)∥ρ dγ̃(x, y) = 2ρθρd, a significantly larger value.

6For our experiments, we use the linear bound propagation techniques from [29] to compute the linear maps.
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Algorithm 1 details a procedure to select (αk, 0) or (0, βk) for all ck ∈ C for Theorem 5.1. The case

for Theorem 5.2 follows similarly. Algorithm 1 is based on the fact that Theorem 5.1 only depends

on the maximum value of the αk coefficients for all locations ck ∈ C, so, by ordering those coefficients

in descending order, we can iteratively verify whether replacing αk ∥x− ck∥ρ approximations in (9)

for βk lead to a tighter bound. As discussed in Remark 3, this will generally be the case when P(Rk)

is low. More specifically, we start by computing ᾱ := (α1, ..., αN ) and β̄ := (β1, ..., βN ) using (20)

and (21), respectively, for each ck ∈ C (line 2), and θd in (10) as explained in Remark 1 (line 3). We

then compute the first candidate for the bound, by applying Theorem 5.1 with ᾱ (line 4). In line 5,

we sort ᾱ in descending order (and sort accordingly β̄,R,C). As mentioned above, the strategy is to

try to replace the highest αk by zero, and include instead βk, while verifying if the bound decreases.

This is implemented in the for loop in lines 6-12.

Algorithm 1: Compute least conservative bound in Thm 5.1 for a given quantization oper-

ator
Input: X -partition R, set of locations C, radius θ, distribution P
Output: Least conservative ρ-Wasserstein bound in Thm 5.1 given R,C

1 function BoundGivenQuantizationOperator(R,C, θ,P):
2 (ᾱ, β̄)← (Eqns (20) & (21) for ck ∈ C)|C|k=1

3 θd ← Eqn (10)

4 W← maxα∈ᾱ α(θ + θd)

5 ᾱsorted, β̄sorted,Rsorted,Csorted ← sort descendingly according to ᾱ

6 for k ∈ {1, ..., |C|} do
7 bk ←

∑k
j=1 P(Rsorted,j)β̄sorted,j

8 W̃←
(
ᾱsorted,k+1(θ + θd)

ρ + bk

) 1
ρ

9 if W ≤ W̃ then

10 break

11 else

12 W← W̃
13 return W

6.2. Constructing a converging quantization operator

After having discussed how to select the linearization coefficients in Theorem 5.1 and 5.2, what is

left to do is to explain how to effectively construct a quantization operator ∆R,C, i.e. a X -partition
R and a set of locations C ⊂ X , such that the convergence requirement in Problem 1 holds for

any given ϵ > 0. We start with the following lemma, which is a straightforward consequence of the

triangular inequality, showing that to satisfy Problem 1, it is enough to select ∆R,C to minimize

Wρ(f#P, f#∆R,C#P). This result implies that to guarantee an arbitrarily small ϵ, it is enough to

optimize R, C w.r.t. to P even if θ > 0.
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Lemma 6.1. Let P ∈ Pρ(X ). For any X -partition R, and set of locations C, it holds that∣∣∣∣∣ sup
Q∈Bθ(P)

Wρ(f#Q, f#∆R,C#P)− sup
Q∈Bθ(P)

Wρ(f#Q, f#P)

∣∣∣∣∣ ≤Wρ(f#P, f#∆R,C#P) (22)

Lemma 6.1 is used in the next theorem to show that even taking R as a uniform partitioning of

any compact set containing enough probability mass of P to select R,C can guarantee a solution to

Problem 1. An improved, non-uniform, partitioning scheme will then be given in Remark 4.

Theorem 6.2 (Convergence rate). For X ⊆ Rd, let P ∈ Pρ(X ) and ρ ≥ 1. For any ϵ > 0, consider

a cubic compact set X̄ ⊆ X such that
∫
X\X̄ ∥x− c̄∥ρ dP(x) ≤ ϵρ

2Lρ
f
for some c̄ ∈ X . Further, consider

R := {Rk}Nk=1 as a uniform X̄ -partition of X̄ in N ≥
(

2
1
ρLfd

1
ρ ∥X̄∥∞
ϵ

)d

hypercubic regions, and C

as set of the centers of each hypercube Rk. Then, for R∗ = R∪{X \ X̄ } and C∗ = C ∪{c̄}, it holds
that: ∣∣∣∣∣ sup

Q∈Bθ(P)
Wρ(f#Q, f#∆R∗,C∗#P)− sup

Q∈Bθ(P)
Wρ(f#Q, f#P)

∣∣∣∣∣ ≤ ϵ. (23)

The convergence rate reported in Theorem 6.2 is conservative due to two factors: i) it relies on

linearization coefficients (α, β) = (Lf , 0) in Theorem 5.2, which generally leads in over-conservative

error bounds, as discussed in Remark 3, ii) Theorem 6.2 is proven w.r.t. a uniform partitioning of

an appropriately selected compact set. Consequently, it is evident that non-uniform partitioning

approaches that directly minimize the bounds in Theorem 5.2 would lead to improved bounds. In

particular, we can rely on Lemma 6.1, which implies that the quantization error is bounded by

Wρ(f#P, f#∆R,C#P) ≤
(

N∑
k=1

αk

∫
Rk

∥x− ck∥ρ dP(x) +
N∑
k=1

π(k)βk

) 1
ρ

︸ ︷︷ ︸
=:WR,C

≤ Lfθd, (24)

whereWR,C is the error bound from Theorem 5.2. Consequently, by selecting R and C to minimize

θd, we indirectly reduce the error bounds. This approach may lead to greatly improved bounds

compared to a uniform partitioning approach, as we will illustrate empirically in Section 8.

Remark 4 (Partitioning for normalizing flows of Gaussians). When P is Gaussian or a normalizing

flow of a latent Gaussian distribution [32],7 we can rely on Algorithm 2 from [2] to obtain C that

minimize θd, with R being the Voronoi partition w.r.t. C. Since Algorithm 2 from [2] guarantees

that θd converges to zero as N increases, we can iteratively increase the number of locations N until

Lfθd ≤ ϵ, and consequently, according to (24), WR,C ≤ ϵ, where ϵ > 0 is the desired error threshold.

The non-uniform partition R resulting from Algorithm 2 in [2] typically leads to a convergence rate

that is significantly better than the one presented in Theorem 6.2.

7For normalizing Gaussian distribution flows, i.e. P := g#N (µ,Σ) for some known piecewise Lipschitz continuous

function g, one can use that Wρ(g#N (µ,Σ), g#∆R,C#N (µ,Σ)) ≤ LgWρ(N (µ,Σ),∆R,C#N (µ,Σ)).
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−2 0 2
x

WR,C = 0.05

f (x)

P
∆R,C#P

−2 0 2
x

WR,C = 0.03

−2 0 2
x

WR,C = 0.00

Figure 3. Quantization of P = N (0.2, 0.5), ∆R,C#P, constructed as described in Remark 4, for |C| ∈
{5, 10, 102}, and the corresponding bound WR,C for f the sigmoid function.

Example 3 (Efficacy of Algorithm 1). Let ρ = 2. Consider again the sigmoid function f : R→ R
of Example 2. Further, let P = N (0.2, 0.5). Figure 3, illustrates ∆R,C#P and shows WR,C for

different number of location |C|. Note how the bound monotonically decreases and reaches a value

in the order of 10−2 with only 10 locations.

7. Iterative predictions for stochastic dynamical systems

In this section, we show how our results can be used to generate provably correct discrete approx-

imations for stochastic dynamical systems with formal guarantees in the ρ-Wasserstein distance.

To do so, we consider the general model of a discrete-time stochastic process already introduced in

Example 1:

xt+1 = f(xt, ωt), x0 ∼ Px0 , ωt ∼ Pω, (25)

where the measurable function f : X ×W → X , with X ⊆ Rd as the state space and W ⊆ Rq as

uncertainty space, represents the one-step dynamics of the system. Here, x0 is the initial condition

of the system, assumed to be distributed with distribution Px0 ∈ P(X ), and ωt is an i.i.d. process

noise distributed according to Pω ∈ P(W). We denote the state-noise joint distribution at time t

by Pt := Pxt × Pω. As previously mentioned in Example 1, if f is non-linear or Pw non-Gaussian,

the distribution Pxt of the system at time t becomes intractable. In this Section, we show how our

solution of Problem 1 allows one to obtain a tractable (discrete) distribution P̂xt ∈ P(X ) such that

Wρ(Pxt , P̂xt) ≤ δ, for a given error threshold δ > 0 for any t > 0.

Our approach is summarized in Figure 4, where for a time t, we denote by Ct = {ct,1, ..., ct,Nt},
Rt = {Rt,1, ...,Rt,Nt}, respectively, the locations and regions for the discrete approximation of

the system at time t, to emphasize how this can change over time. To describe our approach,

we start with t = 0, assuming Px0 is known, and setting P̂x0 = Px0 . For t = 1, the true state

distribution is given by Px1 = f#P0, which, as we have previously argued, is generally intractable,

Thus, as showed in Figure 4, we define the approximate state-noise joint distribution as P̂0 =

P̂x0 × Pω. We then apply the quantization operation using a (X × W)-partition R0 and a set of
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Actual state distr. Px0 Px1 Px2 . . .

Joint distr. Px0 × Pω︸ ︷︷ ︸
P̂0

P̂x1 × Pω︸ ︷︷ ︸
P̂1

P̂x2 × Pω︸ ︷︷ ︸
P̂2

. . .

Quantization ∆R0,C0#P̂0 ∆R1,C1#P̂1 ∆R2,C2#P̂2 . . .

Approximator f#∆R0,C0#P̂0︸ ︷︷ ︸
P̂x1

f#∆R1,C1#P̂1︸ ︷︷ ︸
P̂x2

f#∆R2,C2#P̂2︸ ︷︷ ︸
P̂x3

. . .

Bounds Thm 5.2 Thm 5.1 Thm 5.1 . . .

θd,0 θd,1 θd,2

Figure 4. Discrete approximation scheme for stochastic dynamical systems with formal guarantees on

the ρ-Wasserstein distance, Wρ(Pxt
, P̂xt

).

locations C0 ⊂ X ×W, and propagate it through f , resulting in the approximate state (discrete)

distribution P̂x1 = f#∆R0,C0#P̂0. Note that the latter consists of a straightforward application of

a f transformation to the support of a discrete distribution, hence providing a tractable propagation

through time. This process is repeated for the next time steps, where (X ×W)-partitions Rt and

locations Ct are chosen such that the requirement in (1) is met for some predefined ϵ > 0.

The next result shows how our framework can be applied to bound Wρ(Pxt , P̂xt) for any t ≥ 0.

Furthermore, critically, we show that if f is contractive, the resulting error bounds propagation will

reach a fixed point, allowing for infinite-time prediction horizons.

Theorem 7.1 (Approximation error dynamics). Given ϵ > 0, let Rt be (X × W)-partitions and

Ct ⊂ X ×W sets of locations such that θd,t =

(∑Nt
k=1

∫
Rt,k
∥x− ct,k∥ρ dP̂t(x)

) 1
ρ

≤ ϵ for every t ≥ 0.

Consider the following iterative process describing the approximation error evolution for t ∈ N>0:

θ1 =

(
N0∑
k=1

α0,k

∫
R0,k

∥x− c0,k∥ρ dP̂0(x) +

N0∑
k=1

P̂(R0,k)β0,k

) 1
ρ

,

θt+1 =

(
αmax,t(θt + ϵ)ρ +

Nt∑
k=1

P̂(Rt,k)βt,k

) 1
ρ

.

Then, for any t > 0, the following holds:

i) Wρ(Pxt , P̂xt) ≤ θt .
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ii) If the dynamics f in (25) is Lipschitz continuous in (x, ω) with constant Lf < 1, then

lim
t→∞

Wρ(Pxt , P̂xt) ≤
Lf

1− Lf
ϵ .

The proof of Theorem 7.1 is reported in Appendix A.6 and follows from a combination of Theorem

5.1 and 5.2 with the Banach Fixed Point Theorem [21]. Theorem 7.1 has many consequences. First

of all, the bound does not necessarily grow with time; it is possible that θt+1 < θt if the dynamics

contracts sufficiently. This is a fundamental advantage with respect to existing approaches for the

same problem, whose bounds tend to grow linearly with time [17]. Furthermore, Theorem 7.1

guarantees that if f is contracting w.r.t. (x, ω), i.e., Lf < 1, then the approximation error will

reach a fixed point. Note also that the bound for the fixed point of the error reported in case ii) in

Theorem 7.1 is stated using the linearization coefficients from Remark 3, i.e., (αk, βk) = (Lf , 0) for
all k. Consequently, in practice, the approach in Figure 4 may yield a smaller bound. Notably, as

empirically shown in Section 8, our approach can lead to a fixed point for θd even when Lf > 1 if f

is bounded.

Remark 5 (Separable dynamics). For a process with separable dynamics as f(x, ω) = g(x) + s(ω),

where g and s are given piecewise Lipschitz continuous functions, we observe:

Wρ(Pxt+1 , P̂xt+1) = Wρ(g#Pxt ∗ s#Pω, g#∆R,C#P̂xt ∗ s#∆Rω ,Cω#P̂ω)

≤Wρ(g#Pxt , g#∆R,C#P̂xt)+

Wρ(s#Pω, s#∆Rω ,Cω#P̂ω), (26)

where ∗ is the convolution operator, R,C defined in X -space, and Rω,Cω inW. When Pω is known,

the right term in (26) is constant for all t and only needs to be computed only once.

Remark 6 (Ambiguous noise). Although we consider both Px0 and Pω are known in this section,

the framework can be easily extended to case where one has uncertain Px0 ∈ Bθ0(P̃) and Pω ∈
Bθω(T̃), where θ0, θω > 0, P̃ ∈ Pρ(X ), and T̃ ∈ Pρ(W) are given. In this case, we note that

Px0 × Pω ∈ Bθ0+θω(P̃× T̃) and then we use Theorem 5.1 to bound the first time-step Wρ(f#(Px0 ×
Pω), f#∆R,C#(Px0 × Pω)).

8. Experimental results

In this Section, we empirically evaluate the performance of our ρ-Wasserstein uncertainty prop-

agation framework on various benchmarks taken from the literature8. We consider the following

piecewise Lipschitz continuous functions f : a Bounded Linear f adapted from [36] with state space

dimension d ranging from 1 to 4, an instance of the Quadruple-Tank from [24], the Mountain Car

dynamics [37], and the Dubins Car [8]. Additionally, we consider the Sigmoid function introduced

in Example 2, and a 10-dimensional Neural Network layer. In Section 8.4, we consider stochastic dy-

namical systems variants of the Mountain Car [37], and Quadruple-Tank [24] with additive Gaussian

8Our code is available at https://github.com/sjladams/DUQviaWasserstein

https://github.com/sjladams/DUQviaWasserstein
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noise, and of a 3D-NN dynamics affected by non-Gaussian process noise. Additional details about

the functions, dynamical systems, and probability distributions are available in the Appendix B.0.1.

In what follows, first, in Sections 8.1 and 8.2 we investigate the impact of the placement and

the number of quantization locations C on the error bounds, respectively. Then, in Section 8.3,

we analyze the effect of the linearization coefficients in Theorems 5.1 and 5.2 in case of non-linear

functions f for different radii of uncertainty θ. Lastly, in Section 8.4, we apply the approximation

scheme presented in Section 7 to stochastic dynamical systems. For all the experiments, we fix

ρ = 2. All the experiments were conducted on an Intel Core i7-1365U CPU with 16GB of RAM

using a single-core implementation.

|C|
Dim. d Algorithm 5 10 100 1000

1
Optimized grid 0.5085 0.2731 0.0280 0.0087

Uniform grid 0.5420 0.3363 0.0487 0.0169

2
Optimized grid 0.7867 0.1935 0.0723 0.0248

Uniform grid 0.7867 0.3826 0.1566 0.0539

3
Optimized grid 0.7940 0.1982 0.0818 0.0410

Uniform grid 0.7940 0.5428 0.3532 0.1801

4
Optimized grid 1.8681 0.8043 0.4078 0.2111

Uniform grid 1.8681 1.8465 0.7935 0.6161

Table 1. Comparison of error bounds from Theorem 5.2 for R,C obtained as described in Remark 4

(Optimized grid) and the uniform partition (Uniform grid) for the Bounded Linear benchmark defined

in the Appendix B.0.1.
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NN Layer (10D)

Mountain Car (2D)

Dubins car (3D)

Figure 5. Upper bounds on supQ∈Bθ(P) W2(f#Q, f#∆R,C#P) for various benchmarks computed using

Theorem 5.2 for θ = 0 and Theorem 5.1 for θ = 0.1.
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8.1. Improving on uniform grids of quantization locations

In this Section, we analyze the effect of optimizing the locations C used for the quantization

operator ∆R,C using the approach in Remark 4 compared to taking a uniform grid. In particular,

in Table 1, for a bounded linear f : Rd → Rd defined in Appendix B.1 for each d ∈ {1, 2, 3, 4},
for different quantization sizes |C|, we compare the error bound from Theorem 5.2, obtained using

the the procedure described in Remark 4, with that obtained from a uniform partition of a subset

X̃ ⊂ X containing most of the probability mass of P9. From Table 1, we observe that as the

dimensionality of the problem increases, the restrictiveness of placing locations in an equidistant

fashion also augments. In fact, note that while for d = 1 the error bound in Theorem 5.2 is

similar regardless of the heuristics used to place the locations, for d = 4 the selection performed by

employing Remark 4 leads to bound 2-3 times smaller than the uniform partition approach.

8.2. Error bound convergence

In the previous Section, we focused on the placement of the quantization operator’s locations.

Here, we analyze how the 2-Wasserstein bounds decrease as the number of optimized locations for

Theorems 5.1 and 5.2 grows. More precisely, given a distribution P and a ambiguity set Bθ(P) of

radius θ = 0 or θ = 0.1, we report the bound of supQ∈Bθ(P)W2(f#Q, f#∆R,C#P) for different

quantization sizes |C|.
From Figure 5, we observe that for all benchmarks increasing the number of locations in the

quantization leads to a decreasing bound. This is expected due to the reduction of θd guaranteed

by the discussion in Section 6.2. In the case where θ = 0, as there is no uncertainty around P,
the bounds converge to zero. In contrast, with θd = 0.1, the bounds do not converge to zero, but

to different values for each system. Both observations empirically confirm Theorem 6.2. It is also

important to note that the error bounds are impacted both by the geometry of the probability

space of P as well as the system dynamics f . For instance, for the Dubins car, the upper bound

on supQ∈Bθ(P)W2(f#Q, f#∆R,C#P) is consistently larger than that of the Quadruple-Tank, even

though the Quadruple-Tank is higher dimensional. This can be explained because the Dubins car is

not a stable system, and, consequently, the resulting uncertainty in terms of 2-Wasserstein distance

is amplified.

8.3. Analysis of ambiguity set propagation using global and local linearization

We continue our analysis by investigating the impact of the linearization coefficients on our 2-

Wasserstein bounds for different uncertainty radii θ. Specifically, we compare the bounds constructed

using the trivial linearization coefficients (Lf , 0), with those derived from the coefficients described

9This uniform partition is defined as follows. We first get C from Remark 4. We then move the locations ck ∈ C
such that they are equally spaced in all axes (also forming a grid), obtaining Cunif. Finally, we compute Runif as the

Voronoi partition w.r.t. Cunif.
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Figure 6. Analysis of the upper bounds on supQ∈Bθ(P) W2(f#Q, f#∆R,C#P) computed using Theorem

5.2 for θ = 0 and Theorem 5.1 for θ > 0. In the left plot are the absolute bounds using the linearization

coefficients from Section 6.1; on the right, the absolute difference between the bounds using the more

conservative global Lipschitz coefficients.

NN Layer (3D) Mountain Car Quadruple-Tank

t Emp. Rmk 1 Thm 4 Emp. Rmk 1 Thm 4 Emp. Rmk 1 Thm 4

1 0.0116 0.2020 0.1214 0.0256 0.0627 0.0547 0.0821 0.1517 0.1517

2 0.0090 0.2436 0.1358 0.0302 0.2364 0.1826 0.0790 0.2748 0.2748

3 0.0102 0.2732 0.1464 0.0498 0.6183 0.4178 0.0757 0.3670 0.3670

4 0.0102 0.2941 0.1522 0.0371 1.3944 0.8088 0.0680 0.4308 0.4308

5 0.0104 0.3097 0.1555 0.0413 2.9423 1.4388 0.0643 0.4751 0.4751

6 0.0105 0.3213 0.1574 0.0433 6.0399 2.4609 0.0621 0.5031 0.5031

7 0.0106 0.3301 0.1586 0.0407 12.2351 2.9560 0.0618 0.5185 0.5185

8 0.0102 0.3366 0.1593 0.0507 24.6256 2.9748 0.0659 0.5260 0.5260

9 0.0105 0.3414 0.1595 0.0505 49.4063 2.9910 0.0793 0.5242 0.5242

10 0.0099 0.3451 0.1598 0.0758 98.9695 3.0035 0.0769 0.5174 0.5174

50 0.0100 0.3562 0.1601 0.0676 1.1× 1014 3.1819 0.0767 0.4794 0.4794

Table 2. Formal bounds on W2(Pxt
, P̂xt

) from Theorem 5.1 using the linearization coefficients described

in Section 6.1, as shown in column Thm 4, or employing coefficients (Lf , 0), as in column Rmk 1. Column

Emp. presents a Monte Carlo approximation of Wρ(Pxt
, P̂xt

), calculated using 5× 105 samples.

in Section 6.1, as per Theorem 5.1 and 5.210. We set |C| = 102 for functions with dimension of at

most three, and use |C| = 103 otherwise. The Rd-partitions R and locations C ⊂ Rd are selected as

outlined in Remark 4.

10More specifically, we report Lf (θ + θd) −
(
αmax(θ + θd)

ρ +
∑N

k=1 π
(k)βk

) 1
ρ

for θ > 0, and Lf (θ + θd) −(∑N
k=1 αk

∫
Rk

∥x− ck∥ρ dP(x) +
∑N

k=1 π
(k)βk

) 1
ρ
for θ = 0.
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The left plot of Figure 6 shows that for the optimized coefficients in case of bounded functions

(NN Layer, Mountain Car and Bounded Linear), the bounds saturate from a certain θ onwards.

This saturation occurs because, for large θ, we select (αk, βk) = (0, supx∈X ∥f(x)− f(ck)∥ρ) for

most regions, as explained in Section 6.1. Consequently, the error bound from Theorem 5.1 becomes

independent of θ. Furthermore, it is important to note that in many cases, the error bounds are

smaller than θ, which indicates a contraction of the ambiguity set. An exception is the Dubins car

example, where instability in the system dynamics causes the ambiguity set to expand.

The right plot of Figure 6 confirms that, as discussed in Remark 3, for nonlinear systems, the

bounds constructed using the optimized coefficients are consistently and substantially tighter that

the bound resulting from using the global Lipschitz coefficients. Note that for linear systems

(Quadruple-Tank), the two coefficients are equivalent and lead to the same linearizations in (9)

and (14).

8.4. Uncertainty Propagation in Stochastic Dynamical Systems

In this Section, we apply the discrete approximation scheme presented in Section 7 and illustrated

in Figure 4 to three stochastic dynamical systems. We analyze both an empirical estimation of, and

our formal bounds on, W2(Pxt , P̂xt), where Pxt represents the true unknown state distribution at

time t and P̂xt is our discrete approximator. In Table 2, we observe that the empirical ρ-Wasserstein

distance remains low over longer time horizons, demonstrating the effectiveness of the approximation

in practical scenarios. For the contracting NN Layer and Quadruple-Tank dynamics, the Monte

Carlo estimates of the approximation error converge to fixed points, supporting Theorem 7.1. For

the non-contracting (Lf > 1) but bounded Mountain Car dynamics, the bounds from Theorem

5.1 obtained using coefficients (Lf , 0) quickly explode. In contrast, using Theorem 5.1 results in

bounds that converge to a fixed point due to the boundedness of the dynamics. From Figure 7,

we can visually confirm that our discrete approximators (right column) closely match an empirical

estimate of true distributions (left column). We highlight that the discrete approximator is able to

capture the fact that the state distribution becomes bimodal at t = 10. Such characteristics are

challenging to identify using techniques like moment matching [14], for instance, which only focus

on approximating, commonly with no guarantees, the first few moments of the distribution.

9. Conclusion and future direction

We introduced a novel framework to approximate the push-forward measure of uncertain distri-

butions with discrete distributions with formal quantification of the resulting uncertainty in terms

of ρ-Wasserstein distance, allowing for a tractable propagation of ρ-Wasserstein ambiguity sets. We

see at least three interesting future research directions. First, the development of efficient ways

to compute the norm approximations in (9). Further, in the context of multi-step propagation of

ambiguity sets, such as for dynamical systems, it may be of interest to directly rely on properties of

the compositions of f ◦ ... ◦ f , instead of the sequential application of our framework, as we propose

in Section 7. Lastly, we indicate that this framework could be directly applied as the prediction

mechanism for distributionally-robust non-linear Model Predictive Control.
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Figure 7. Monte Carlo simulation of the true state distribution (left plots) - with 5×103 samples - and

our discrete approximation from Section 7 (right plots) - with |C| = 100 - for the Mountain Car system

from t = 1 to t = 10. The upper plots display the joint distribution of the first two state dimensions,

x
(1)
t and x

(2)
t , for all time steps, and the lower plots illustrate the initial and final marginal distributions.

Appendix A. Proofs

In this section, we present the proofs for all the results discussed in the paper’s main text.

A.1. Proof of Proposition 3.1

Before proving Proposition 3.1, we prove an auxiliary Lemma.

Lemma A.1. For X ⊆ Rd, let P ∈ Pρ(X ). Further, let R be a X -partition and C a set of locations.

Then, for γ∗ ∈ P(X × X ) defined as

dγ∗(x1, x2) :=

N∑
i=1

1Ri(x1)dP(x1)dδci(x2) (27)
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it holds that:

i) γ∗ is a valid coupling between P and ∆R,C#P, i.e. γ∗ ∈ Γ(P,∆R,C#P),

ii) if R̄ is the Voronoi partition w.r.t. C then

γ∗ = arginf
γ∈Γ(P,∆R̄,C#P)

∫
X×X

∥x− y∥ρ dγ(x, y).

Proof. We start by proving that γ∗ ∈ Γ(P,∆R,C#P). For any A,B ∈ B(X ), we have:

γ∗(A,B) =

∫
A

∫
B
dγ∗(x1, x2)

=

∫
A

∫
B

N∑
i=1

1Ri(x1)dP(x1)dδci(x2)

=

N∑
i=1

P(A ∩Ri)1B(ci),

which is a value in [0, 1] since R is a partition of X . Further, note that:

γ(A,X ) =
N∑
i=1

P(A ∩Ri)1X (ci) =
N∑
i=1

P(A ∩Ri) = P(A)

and

γ(X , B) =

N∑
i=1

P(X ∩Ri)1B(ci) =

N∑
i=1

P(Ri)1B(ci) =
(
∆R,C#P

)
(B)

and, consequently, γ(X ,X ) = 1. Thus, γ ∈ Γ(P,∆R,C#P). This proves item i). To prove item ii),

it suffices to note that if x ∈ Ri, then by the definition of the Voronoi partition w.r.t. C, the cost of

transporting dP(x) to ci is smaller than any other cj , j ̸= i since ∥x− ci∥ ≤ ∥x− cj∥. □

We are now ready to prove Proposition 3.1. Let γ∗ be defined as in (27). Using item i) from

Lemma A.1, we have:

Wρ(P,∆R,C#P)ρ ≤
∫
X×X

∥x− y∥ρ dγ∗(x, y) (28)

=

∫
X×X

∥x− y∥ρ
N∑
k=1

1Rk
(x)dP(x)dδck(y)

=
N∑
k=1

∫
Rk

∥x− ck∥ρ dP(x)

If R̄ is the Voronoi partition w.r.t. C, by applying item ii) from Lemma A.1, the inequality in (28)

becomes an equality. □
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A.2. Proof of Theorem 5.1

Before proving Theorem 5.1, we show that supQ∈Bθ(P)Wρ(f#Q, f#∆R,C#P) can be upper bounded

by a one-dimensional minimization program, using duality techniques from the DRO literature

[18, 31, 42].

Proposition A.2. For X ⊆ Rd, let P ∈ Pρ(X ), R be a X -partition, and C be a set of locations.

Further, denote θd :=

(∑N
k=1

∫
Rk
∥x− ck∥ρ dP(x)

) 1
ρ

, and call π(i) := P(Ri) for every Ri ∈ R.

Then,

sup
Q∈Bθ(P)

Wρ(f#Q, f#∆R,C#P)

≤
(

inf
λ≥0

{
λ(θ + θd)

ρ +

N∑
j=1

π(j) sup
ξ∈X

(
∥f(ξ)− f(cj)∥ρ − λ ∥ξ − cj∥ρ

)}) 1
ρ

(29)

Proof. We define Sθ(P) as a subspace of P(X ×X ) containing all the couplings for which one of the

marginals is P and the other implied marginal is at most θ far in ρ-Wasserstein distance from P, i.e.

Sθ(P) :=
{
γ ∈ P(X × X ) :

∫
X×X

∥x1 − x2∥ρ dγ(x1, x2) ≤ θρ,proj2#γ = P
}
,

where proj2#γ returns the marginal distribution of γ in the second component, i.e. proj2#γ :=∫
X γ(dx1, .). We then have:

(
sup

Q∈Bθ(P)
Wρ(f#Q, f#∆R,C#P)

)ρ

(By monotonicity of xρ for x ≥ 0)

= sup
Q∈Bθ(P)

Wρ(f#Q, f#∆R,C#P)ρ

(Using Eqn (3))

= sup
Q∈Bθ(P)

inf
γ∈Γ(Q,∆R,C#P)

∫
X×X

∥f(x1)− f(x2)∥ρ dγ(x1, x2)

(As Bθ(P) ⊆ Bθ+θd(∆R,C#P) for Wρ(P,∆R,C#P) ≤ θd)

≤ sup
Q∈Bθ+θd

(∆R,C#P)
inf

γ∈Γ(Q,∆R,C#P)

∫
X×X

∥f(x1)− f(x2)∥ρ dγ(x1, x2)

(By the fact that Γ(Q,∆R,C#P) ⊆ Sθ+θd(∆R,C#P))

≤ sup
γ∈Sθ+θd

(∆R,C#P)

∫
X×X

∥f(x1)− f(x2)∥ρ dγ(x1, x2) (30)
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Applying Lagrangian duality to (30):

sup
γ∈Sθ+θd

(∆R,C#P)

∫
X×X

∥f(x1)− f(x2)∥ρ dγ(x1, x2)

(By Lagrangian strong duality)

= inf
λ≥0

sup
γ∈P(X×X )

{∫
X×X

∥f(x1)− f(x2)∥ρ dγ(x1, x2)+

λ

(
(θ + θd)

ρ −
∫
X×X

∥x1 − x2∥ρ dγ(x1, x2)
)

: proj2#γ = ∆R,C#P
}

(31)

(Reorganizing the terms)

= inf
λ≥0

sup
γ∈P(X×X )

{
λ(θ + θd)

ρ+∫
X×X

(
∥f(x1)− f(x2)∥ρ − λ ∥x1 − x2∥ρ

)
dγ(x1, x2) : proj2#γ = ∆R,C#P

}
(By applying Theorem 1 from [18])

= inf
λ≥0

{
λ(θ + θd)

ρ +

∫
X
sup
ξ∈X

(
∥f(ξ)− f(ς)∥ρ − λ ∥ξ − ς∥ρ

)
d
(
∆R,C#P

)
(ς)

}
(32)

(By using the definition of ∆R,C#P)

= inf
λ≥0

{
λ(θ + θd)

ρ +

N∑
j=1

π(j) sup
ξ∈X

(
∥f(ξ)− f(cj)∥ρ − λ ∥ξ − cj∥ρ

)}
□

We are now ready to prove Theorem 5.1. By Proposition A.2,(
sup

Q∈Bθ(P)
Wρ(f#Q, f#∆R,C#P)

)ρ

≤ inf
λ≥0

{
λ(θ + θd)

ρ +
N∑
j=1

π(j) sup
ξ∈X

(
∥f(ξ)− f(cj)∥ρ − λ ∥ξ − cj∥ρ

)}
(By the norm linearization in (9))

≤ inf
λ≥0

{
λ(θ + θd)

ρ +

N∑
j=1

π(j) sup
ξ∈X

(
αj ∥ξ − cj∥ρ + βj − λ ∥ξ − cj∥ρ

)}

= inf
λ≥0

{
λ(θ + θd)

ρ +
N∑
j=1

π(j)βj +
N∑
j=1

π(j) sup
ξ∈X

(
(αj − λ) ∥ξ − cj∥ρ

)}
(33)

First, consider the case where X is unbounded (e.g. X = Rd). If there exists αℓ such that αℓ > λ,

then the correspondent inner supremum returns ∞. Thus, in the outer minimization program, it

is enough to search for λ ≥ maxj∈{1,...,N} αj . Moreover, we note that for any λ ≥ maxj∈{1,...,N} αj ,

the inner supremum returns 0. Hence, the solution of the whole optimization program is given by
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λ∗ = maxj∈{1,...,N} αj , so that (33) becomes λ∗(θ + θq)
ρ +

∑N
j=1 π

(j)βj . For bounded X , one may

find a solution λ∗ < maxj∈{1,...,N} αj for the entire optimization program. However, we remark that

choosing λ̃ = maxj∈{1,...,N} αj still provides a valid upper bound on (33). □

A.3. Proof of Theorem 5.2

Let γ∗ be defined as in (27). Then, from statement i) from Lemma A.1, we have:

Wρ(f#P, f#∆R,C#P)ρ ≤
∫
X×X

∥f(x)− f(y)∥ρ dγ∗(x, y) (34)

=

∫
X×X

∥f(x)− f(y)∥ρ
N∑
k=1

1Rk
(x)dP(x)dδck(y)

=

N∑
k=1

∫
Rk

∥f(x)− f(ck)∥ρ dP(x)

(By the norm linearization in (14)))

≤
N∑
k=1

∫
Rk

(
αk ∥x− ck∥ρ + βk

)
dP(x)

=
N∑
k=1

αk

∫
Rk

∥x− ck∥ρ dP(x) +
N∑
k=1

βkP(Rk)

In the case where R is the Voronoi partition w.r.t. C, by item ii) of Lemma A.1, the inequality in

(34) can be replaced by equality. The rest of the proof remains the same. □

A.4. Proof of Lemma 6.1

By straightforward applications of the triangle inequality:

sup
Q∈Bθ(P)

Wρ(f#Q, f#∆R,C#P) ≤ sup
Q∈Bθ(P)

Wρ(f#Q, f#P) +Wρ(f#P, f#∆R,C#P),

sup
Q∈Bθ(P)

Wρ(f#Q, f#P) ≤ sup
Q∈Bθ(P)

Wρ(f#Q, f#∆R,C#P) +Wρ(f#∆R,C#P, f#P).

We conclude by combining both inequalities. □



EFFICIENT UNCERTAINTY PROPAGATION WITH GUARANTEES IN WASSERSTEIN DISTANCE 27

A.5. Proof of Theorem 6.2

From Lemma 6.1, to prove this theorem, it is enough to show that Wρ(f#P, f#∆R∗,C∗#P) ≤ ϵ.

From Theorem 5.2, by taking (αk, βk) = (Lf , 0) as discussed in Remark 3, we have that:

Wρ(f#P, f#∆R∗,C∗#P)ρ ≤ Lρf
N+1∑
k=1

∫
R∗

k

∥x− c∗k∥ρ dP(x)

= Lρf
N∑
k=1

∫
Rk

∥x− ck∥ρ dP(x) + Lρf
∫
X\X̄
∥x− c̄∥ρ dP(x)

≤ Lρf
N∑
k=1

∫
Rk

∥x− ck∥ρ dP(x) +
ϵρ

2
(35)

where we use the fact that, by construction, R∗ := R ∪ {X \ X̄ } and C∗ := C ∪ {c̄}, and also∫
X\X̄ ∥x− c̄∥ρ dP(x) ≤ ϵρ

2Lρ
f
(which, we must highlight, is always possible as P ∈ Pρ(X )). Then,

what is left to show is that the left term in (35) can also be upper-bounded by ϵρ

2 . Indeed, because

∥Rk∥∞ =
∥X̄∥∞
N

1
d

(as all compact regions are hypercubic), it holds that: ∥Rk∥∞ =
∥X̄∥∞
N

1
d
≤ ϵ

2
1
ρ d

1
ρLf

,

where we use the fact that again by construction, N ≥
(

2
1
ρLfd

1
ρ ∥X̄∥∞
ϵ

)d

. Thus,

Lρf
N∑
k=1

∫
Rk

∥x− ck∥ρ dP(x)

(From the Lρ-norm definition)

= Lρf
N∑
k=1

∫
Rk

d∑
i=1

|x(i) − c
(i)
k |ρdP(x)

(From the ∥.∥∞ definition)

≤ Lρf
N∑
k=1

∫
Rk

d∑
i=1

∥Rk∥ρ∞ dP(x)

(Using that ∥Rk∥∞ ≤
ϵ

2
1
ρd

1
ρLf

)

≤ Lρf
N∑
k=1

∫
Rk

d∑
i=1

ϵρ

2dLρf
dP(x) = Lρf

N∑
k=1

ϵρ

2Lρf
P(Rk) =

ϵρ

2

N∑
k=1

P(Rk) ≤
ϵρ

2
.

□

A.6. Proof of Theorem 7.1

We use the same notation as in Figure 4. The proof follows by induction. The base case is t = 1,

for which we have

Wρ(Px1 , P̂x1) = Wρ(f#P0, f#∆R0,C0#P̂0) = Wρ(f#P̂0, f#∆R0,C0#P̂0)
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Section

7.1 7.4

System d f(x) P f(x, ω) Px0 Pω |C| T

Sigmoid 1 fSigm N (0.2, 0.5)

Bounded Linear 2 fBoundLin N
([

1.5

2.5

]
,

[
0.4 0.0

0.0 0.5

])

Quadruple-Tank 4 fQuadTank N




1.5

2.5

−0.5
−1.0

 ,


0.001 0 0 0

0 0.02 0 0

0 0 0.4 0

0 0 0 0.01




NN Layer 10 fNNLay P̄ σ(Ax+Bω) P̄x0 P̄ω 102 50

Mountain Car 2 fMountCar N
([

0.3

0.2

]
,

[
10−1 0

0 10−3

])
f(x) + ω P (from 7.1) N

([
0

0

]
, 10−2I

)
102 50

Dubins Car 3 fDubinsCar N


 0.3

0.2

0.01

 ,

10−1 0 0

0 10−2 0

0 0 10−3


 f(x) + ω P (from 7.1) N


00
0

 , 10−2I

 102 50

Table 3. Summary of implementation details

since P0 = P̂0 (as Px0 = P̂x0). Thus, the bound θ1 comes from the application of Theorem 5.2. For

the induction case (i.e., t > 1) we have:

Wρ(Pxt+1 , P̂xt+1) = Wρ(f#Pt, f#∆Rt,Ct#P̂t) ≤ sup
Q∈Bθt

(P̂xt )

Wρ(f#Q, f#∆Rt,Ct#P̂t),

from which the bound θt+1 follows from applying Theorem 5.1 for θ = θt, and using that θd,t ≤ ϵ.

This proves statement i) in the Theorem. For statement ii), we first note that by Remark 3, for

t > 1:

Wρ(Pxt+1 , P̂xt+1) ≤ θt+1 ≤
(
αmax,t(θt + ϵ)ρ +

Nt∑
k=1

P(Rt,k)βt,k

) 1
ρ

≤ Lf (θt + ϵ)

Let T : R→ R be a map given by T (θ) := Lf (θ+ϵ). Note that T is contractive since |T (θ)−T (θ̃)| ≤
|Lf (θ − θ̃)| ≤ Lf |θ − θ̃|. One can easily find a fixed point θ∗ for T , i.e.

θ∗ = T (θ∗) ⇐⇒ θ∗ = Lf (θ∗ + ϵ) ⇐⇒ θ∗ =
Lf

1− Lf
ϵ

Then, by the Banach fixed-point theorem, for the sequence θt+1 = T (θt), it holds that limt→∞ θt =

θ∗, which concludes the proof. □

Appendix B. Implementation Details

In the following, we present the implementation details of the experiments in Section 8. First,

we introduce the piecewise Lipschitz continuous functions f that we consider. Then, in Table 3, we

show the probability distributions used in the experiments.
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B.0.1. Functions.

Sigmoid (Example 2). fSigm = 1
1+e−x .

Bounded Linear (adapted from [36]). fBoundLin : R2 → R2 such that

fBoundLin(x) = clamp

([
0.0 0.4

0.3 0.8

]
x,

[
−2
−2

]
,

[
2

2

])
. (36)

Quadruple-Tank (instance of [24]). fQuadTank : R4 → R4 such that:

fQuadTank(x) =


0.721 0 0.041 0

0 0.718 0 0.033

0 0 0.724 0

0 0 0 0.737

x (37)

NN Layer. fNNLay : R10 → R10 such that fNNLay(x) = σ(Ax), where A = diag(3 × 100, 10−3, 5 ×
10−3, 7× 10−3, 3× 10−2, 10−3, 10−3, 10−3, 10−3, 10−3).

Mountain Car (adapted from [37]). fMountCar : R2 → R2 such that:

fMountCar(x) = clamp

([
1 0

1 1

]
x+

[
10−3

0

]
,

[
−0.5
−0.5

]
,

[
1.2

1.2

])
− 2.5× 10−3

[
cos
(
3x(2)

)
0

]
(38)

Dubins Car [8]. fDubinsCar : R3 → R3 such that

fDubinsCar(x) =

x(1) + 1.5 sin
(
x(3)

)
x(2) + 1.5 cos

(
x(3)

)
x(3) + 0.6

 . (39)

B.1. Further details

In Section 8.2, for the NN Layer function, we consider (see Table 3) P̄x0 = N (µNN ,ΣNN ), with:

µNN = [0.0, 1.0, 0.5,−0.7, 0.3, 2.0,−3.0, 0.4,−0.1, 4.0]T ,

and

ΣNN = diag([0.0001, 0.5, 0.7, 0.2, 1.5, 2.5, 0.1, 0.5, 0.8, 0.2]).

Alternatively, in Section 8.4, we consider a 3D NN Layer, where (using the same notation as in

Table 3) A = diag([3.0, 1.5, 1.2]), B = diag([0.5, 1.0, 0.9]),

P̄x0 = N


 1.5

−1.2
2.4

 ,

10−1 0 0

0 0.5 0

0 0 0.2


 , P̄ω = N


00
0

 ,

10−1 0 0

0 10−1 0

0 0 10−2


 .

Finally, in Section 8.1, we consider the following functions and distributions, for d ∈ {1, 2, 3, 4}: For
d = 1, f(x) = clamp(3x,−1, 1),P = N (0, 1) . For d = 2, f(x) = clamp(diag([3, 0.001])x,−2, 2),

P = N
([

3

1

]
,

[
0.02 0

0 0.5

])
.
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For d = 3, f(x) = clamp(diag([3, 0.001, 1.1])x,−2, 2),

P = N


 3

1

−0.9

 ,

0.02 0 0

0 0.5 0

0 0 0.001


 .

For d = 4, f(x) = clamp(diag([3, 0.001, 1.1, 2.2])x,−2, 2),

P = N




3

1

−0.9
0.4

 ,


0.02 0 0 0

0 0.5 0 0

0 0 0.001 0

0 0 0 0.2


 .
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