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Abstract: This paper addresses the problem of optimal state-feedback design for a class of non-linear systems. The method is
applicable to all non-linear systems which can be linearised using the method of state-feedback linearisation. The alternative
is to use linear optimisation techniques for the linearised equations, but then there is no guarantee that the original non-linear
system behaves optimally. The authors use feedback linearisation technique to linearise the system and then design a state
feedback for the feedback-linearised system in such a way that it ensures optimal performance of the original non-linear
system. The method cannot ensure global optimality of the solution but the global stability of the non-linear system is
ensured. The proposed method can optimise any arbitrary smooth function of states and input, including the conventional
quadratic form. The proposed method can also optimise the feedback linearising transformation. The method is successfully
applied to control the design of a flexible joint dynamic and the results are discussed. Compared with the conventional linear
quadratic regulator (LQR) technique, the minimum value of cost function is significantly reduced by the proposed method.
1 Introduction

Feedback linearisation is an important technique in the study
of non-linear control systems. The purpose of feedback
linearisation is to transform a given non-linear system into a
linear system via state feedback. The exact state-feedback
linearisation problem was pioneered and elegantly solved in
[1–4]. Sufficient and necessary conditions for exact
feedback linearisation of large classes of affine non-linear
systems were established and documented in [5, 6].

To enlarge the class of non-linear systems that can be handled
using the differential geometric approach, the dynamic feedback
linearisation problem was initiated and addressed in [7] by
introducing dynamic compensators and searching for the
corresponding state and control transformations in the
augmented state spaces. Sufficient conditions for dynamic
feedback linearisation were given in [8] and necessary
conditions were established in [9]. The partial feedback
linearisation problem was formulated and studied in [10, 11]
by identifying the largest feedback-linearisable subsystems,
where conditions were given to transform a portion of the
non-linear system into a linear part. When the relative degree
of the considered non-linear system is less than system
dimension, feedback linearisation-based non-linear control
can also render the transformed system consisting of a non-
linear zero dynamics plus a linear controllable system [5].
More recently, the non-regular feedback linearisation problem
was defined in [12], where the purpose is to transform the
non-linear system into the linear controllable form with
reduced control input dimensions.
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Feedback linearisation technique transforms the original
non-linear system into a linear system. A stable controller
for the linearised system will then also stabilise the original
non-linear system. Performance of the non-linear system,
however, is not directly related to that of the linear system
and cannot be inferred from that. An optimal design such as
linear quadratic regulator (LQR) for the linearised system,
for instance, does not necessarily correspond to any
optimality in the performance of the non-linear system. This
paper addresses optimal state-feedback design for the
feedback-linearised system to achieve optimal performance
of the non-linear system. A technique is presented, which
arrives at the solution for any arbitrary smooth cost
function. The method is successfully applied to a flexible-
joint system and results are discussed. The proposed
controller achieves a performance that is about five times
higher than the LQR design (in terms of the minimum point
of the cost function). It is worthwhile noting that the
stability offered by the feedback linearisation technique is a
global stability rather than the local stability ensured by the
traditional Jacobian linearisation. Therefore, even though
the proposed method cannot guarantee arriving at a global
optimum point, it ensures the global stability of the closed-
loop system.

Arrangement of the paper is as follows. Section 2 provides
a brief background into the concept of feedback linearisation
and then states the problem encountered. The proposed
technique to optimally design the state feedback is
presented in Section 3 and a step-by-step algorithm is
provided. Remarks on the convergence of the algorithm and
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stability of the closed-loop system (while the algorithm is
converging) are presented as well. A method for estimation
of the Hessian matrix to increase the algorithm convergence
rate is also developed. Section 4 presents some numerical
results of the proposed technique in the context of an
example and Section 5 concludes the paper.

2 Background and problem statement

Consider the affine non-linear system represented by

ẋ = f (x) + g(x)u (1)

where x is the n-dimensional state vector, f and g are smooth
vector fields on Rn and u is the scalar input signal. The
feedback linearisation technique is based on applying

z = f(x), v = a(x) + b(x)u (2)

where z = f(x) is an admissible state transformation and v is
the new control input signal. Upon using the linearising
transformation f and associated functions a and b, the
representation (1) will change to

ż = Az + Bv (3)

where

A =

0 1 0 · · · 0
0 0 1 · · · 0

..

. . .
. ..

.

..

.
0 1

0 · · · · · · 0 0

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

0
0

..

.

0
1

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

(4)

The necessary and sufficient conditions for existence of
f(x), a(x) and b(x) are given as follows [5, 13].

† The set of vector fields {g, adf g, . . . , adf n−1 g} is linearly
independent over {Rn}.
† The set {g, adf g, . . . , adf n−2 g} is involutive in {Rn}.

In the above conditions, adf g = [f , g], adf k+1 g =
[f , adf k g] where [ f,g] stands for the Lie bracket as defined
by [ f , g] = (∂g/∂x) f − (∂f /∂x)g [13]. A set of vector
fields, called a distribution, is said to be involutive if the
Lie bracket of every pair in that set belongs to the space
spanned by all members of the set. If the above conditions
hold, then a scalar function h(x) on Rn exists, which satisfies

∂h

∂x
g adf g · · · adf n−2 g

[ ]
= 0 (5)

In (5), [ g adf g · · · adf n−1 g ] means a matrix, each
column of which is the shown vector. Equation (5) then
shows a set of n − 1 partial differential equations. If h
exists, the distribution is called completely integrable.

The desired transformation f(x) and functions a(x) and
b(x) are then expressed in terms of h(x) as [13, 14]

f(x) = [ h(x) Lf h(x) · · · Lf n−1 h(x) ]T

a(x) = Lf n h(x), b(x) = LgLf n−1 h(x)
(6)
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In (6), the operator Lf shows the Lie derivative with respect to
f defined as Lf h = (∂h/∂x)f and Lf k h = Lf (Lf k−1 h).

The main point in proving the necessary and sufficient
conditions for feedback linearisability is the equivalence of
the involutivity condition and complete integrability of
{g, adf g, . . . , adf n−2 g}. This fact is a result of the
Frobenius Theorem [5, 13] in differential geometry.

The control signal is then calculated from

u = a(x) + b(x)v = −a(x)

b(x)
+ 1

b(x)
v (7)

Lemma 1: The conditions for feedback linearisability imply
b(x) = 0.

Proof: According to the involutivity condition, the
distribution {g, adf g, . . . , adf n−2 g} is completely integrable;
namely, there exists a smooth scalar function h: Rn � R
such that ∇h(adf i g) = Ladf i gh = 0 for all i [ {0, 1, . . . ,
n − 2}. According to the property of the Lie brackets which is

Ladf k g =
∑k

i=0

(−1)i k
i

( )
Lf k−i LgLf i

one can deduce that Ladf i gh = 0, i [ {0, 1, . . . , n − 2} is
equivalent to LgLf i h = 0, i [ {0, 1, . . . , n − 2}. Now, by
contradiction, we assume there exists x0 [ Rn that satisfies
the feedback linearisation conditions but b(x0) = LgLf n−1

h(x0) = 0. This results in that LgLf i h|x=x0
= 0 for all

i [ {0, 1, . . . , n − 1}. Again from the aforementioned
property of the Lie brackets, one can deduce that
∇h(adf ig)(x0) = 0 for all i [ {0, 1, . . . , n − 1}. This means
that there exists a non-zero vector ∇h(x0) (since h(x) is
smooth) such that ∇h(x0)[g, adf g, . . . , adf n−1 g] = 0. This
latter result contradicts the linear independence of
{g, adf g, . . . , adf n−1 g} and thus, b(x0) cannot be zero.

Having transformed (1) into (3), the stabilisation problem
can now simply be addressed by choosing

v = −KTz (8)

where K is an n × 1 constant vector such that all eigenvalues
of (A − BKT) lie on the negative left-half of the complex
plane. This selection of control input ensures stability of the
original system (1). However, desired performance of the
system (1) cannot be inferred from desired performance of
the system (3). An LQR can for example be designed for
the system (3) by properly selecting the vector K, but it
may or may not result in an optimal (nor even a
suboptimal) performance for the original system (1). The
LQR optimal controller for the linear system (3) is the one
that minimises the following cost function

Jz =
∫1

0

(v2 + zT �Qz)dt (9)

where Q is a positive-definite n × n matrix and T stands for
matrix transposition. A solution to this problem exists since
(A,B) in (4) is controllable. The solution can easily be
obtained using the lqr command in Matlab. We used the
subscript z to emphasise that this cost function is defined on
z-space not on the original x-space. However, we are
IET Control Theory Appl., 2011, Vol. 5, Iss. 2, pp. 323–333
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interested in a solution to minimise

Jx =
∫1

0

(u2 + xTQx)dt (10)

which is the associated cost function in x-space. Formulating
the general solutions to (10) is challenging because of the
non-linearities involved. This paper addresses this problem
and formulates a solution to (10) for the special case where
the control input is of the form (8). In other words, we use
the feedback linearisation technique to linearise the system
but then we design the controller coefficients K to ensure
the optimality of the non-linear system (quantified by Jx)
rather than the linearised system (quantified by Jz). (Note
that the controller u that (globally) minimises Jx need not
necessarily correspond to the form given by (8). However,
here only a solution is sought within all controllers u that
correspond to the form of (8). Thus, the controller presented
here will only be a suboptimal solution. Presenting the
optimal solution (which is not confined to the form (8)) is
in general challenging due to the non-linearities involved.
One possible extension is to consider the form v = −KT

0 z +
zTK1z as a more generalised version. The proposed
technique of this paper is applicable to this form as well.
However, we confine our study to the form of (8) for
simplicity.

Problem Statement: For the non-linear affine system (1) with
the original state vector x and the transformed system of (3)
with the state vector of z, determine K in (8) which
minimises Jx of (10).

3 Proposed method

3.1 Derivation of the algorithm

Using v = −KTz = −KTf(x), the original system (1) can
be represented as ż = (A − BKT)z in z-space. In x-space,
it will be

ẋ = f (x) + g(x)u = f (x) + g(x)[a(x) − b(x)KTf(x)]

= f (x) + a(x)g(x) − b(x)g(x)KTf(x)

= f1(x) − g1(x)KTf(x)

= F(x, K) (11)

where K = [k1, k2, . . . , kn]T, u = a(x) + b(x)v, a(x) =
−a(x)/b(x), b(x) = 1/b(x) (for all x where b(x) = 0),
f1(x) = f (x) + a(x)g(x) and g1(x) = b(x)g(x). Let us assume
a general form for the cost function J as

J =
∫Tf

0

G(x, K)dt (12)

where G is a function from R2n to R. For the quadratic case,
we will have

G(x, K) = xTQx + [a(x) − b(x)KTf(x)]2 (13)

Initial condition x0 = x(0) and final time Tf are assumed to be
known. The objective is to reach a desired K that minimises J.
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Define a new variable

xn+1(t) =
∫T

0

G(x(t), K)dt

It is clear that xn+1(0) = 0 and xn+1(Tf ) is equal to J in (12),
which is to be minimised. Moreover, for all 0 , t , Tf

ẋn+1(t) = G(x(t), K) (14)

Augmenting (11) and (14) yields

Ẋ = H(X (t), K) (15)

where X is the augmented (n + 1)-dimensional state vector

X (t) = x(t)
xn+1(t)

[ ]
(16)

and H(X, K) is a function from R(2n+1) to Rn+1 given by

H(X , K) =
�F(X (t), K)
�G(X (t), K)

( )
= F(x(t), K)

G(x(t), K)

( )
(17)

The initial condition for (15) is X0 = [x0, 0]T and the final
time is Tf ; both are known. Thus, the objective will now be
to find K that minimises xn+1(Tf ) = J . The following
theorem adopted from [13] provides sufficient conditions
for existence of solutions.

Theorem 2 (Dependence on parameters): Let E be an open
subset of Rn+1 × Rn containing the point (X0, K0) where
X0 [ Rn+1 and K0 [ Rn and assume that H [ C1(E). It
then follows that there exists an a . 0 and a d . 0 such
that for all X̃ 0 [ Nd(X0) and K [ Nd(K0), the initial value
problem

Ẋ (t) = H(X (t), K)

X (0) = X̃ 0

(18)

has a unique solution X (t, X̃ 0, K) [ C1(G) where G =
[−a, a] × Nd(X0) × Nd(K0); furthermore, for each
K [ Nd(K0), X (t, X0, K) is a continuously differentiable
function of K.

Define

W = ∂X

∂K
(19)

which implies that W [ R(n+1)×n. Taking the time derivative
of W in (19) and using the chain rule results in

Ẇ = ∂H

∂X
× ∂X

∂K
+ ∂H

∂K
= ∂H

∂X
W + ∂H

∂K
(20)

The matrices ∂H/∂X are equal to

∂f1
∂x

+ ∂g1

∂x
KTf+ g1KT ∂f

∂x
0

2xTQ + 2 a + bKTf
( ) ∂a

∂x
+ ∂b

∂x
KTf+ bKT ∂f

∂x

( )
0

⎛
⎜⎜⎝

⎞
⎟⎟⎠
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and

∂H

∂K
= g1(x)fT(x)

2[a(x) + b(x)KTf(x)]b(x)fT(x)

( )

These two latter relationships are only valid for the quadratic
cost function.

Notice that W (0) = 0 because X at t = 0 is independent
from the choice of K. The last row of W, evaluated at
t = Tf , is the gradient of J with respect to K, which shows
variational behaviour of J with respect to changes in K.

Based on the above observations, it is now possible to
propose an iterative algorithm to obtain the optimal K as
follows.

3.1.1 Proposed algorithm:

† Step 1. Choose an initial value for K that ensures stability.
† Step 2. Jointly solve (15) and (20) with initial conditions
X (0) = [xT, 0]T and W (0) = 0.
† Step 3. Update K using the information at time Tf .

A proper initial value can, for example, be obtained by
solving the LQR problem in z-space, which ensures the
stability and, moreover, might have the chance of being
close to the desired K. However, the only requirement when
choosing the initial value is the closed-loop stability. Any K
that places eigenvalues of A − BKT in the stable region is
acceptable. Step 2 involves a set of (n + 1) + n(n + 1) =
(n + 1)2 ordinary differential equations. The updating step
can simply be done using the gradient descent rule as below

Ki+1 = Ki − mi(W
n+1
i )T (21)

where W n+1
i is the last row of matrix W at stage i and mi is a

positive definite matrix that controls the convergence rate of
the algorithm. The algorithm stops when the gradient vector
W n+1

i becomes small enough.

3.2 Convergence of the algorithm

Assume that the cost function J, defined in (12), is a smooth
function of K. Then its Taylor series expansion around the
point Ki is

J (u) = J (Ki) +
∂J

∂K
(Ki)(K − Ki) +O(K − Ki) (22)

Evaluating J at Ki+1 and substituting from (18) yields

J (Ki+1) = J (Ki) − 1iW
n+1
i �mi(W

n+1
i )T +O(1i) (23)

where the real positive 1i is a measure of the distance between
Ki and Ki+1, �mi = mi/1i and O(1)/1 � 0 as 1 � 0. Since
�mi . 0, an 10 . 0 exists that for all 0 , 1i , 10

J (Ki+1) − J (Ki) = −1i W n+1
i �mi(W

n+1
i )T +O(1i)

1i

{ }
, 0

(24)

Thus, the sequence {Ji} associated with the sequence {Ki} is
decreasing for sufficienly small 1i. On the other hand, note
that J is positive and thus Ji will have a lower bound. Thus,
proper selection of mi at each iteration ensures that Ji
326
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converges at least to a local minimum. In general, a proper
selection is that which corresponds to small steps taken
from Ki to Ki+1 and hence to small mi. More explanation on
how to select mi based on the concept of Hessian matrix is
given in Section 3.6.

3.3 Stability of the system

In this section, it is shown that proper selection of mi will
guarantee stability of the closed-loop system. This is done
by induction: assume that Ki maintains the closed loop
stability, that is

<{l(A − BKT
i )} , 0 (25)

where <{ · } and l(·) denote the real part and the set of
eigenvalues, respectively. The matrixes A and B are defined
in (4). The objective is to show that there exists an 10 . 0
that ensures the stability of the closed-loop system for
iteration i + 1, that is <{l(A − BKT

i+1)} , 0 where

Ki+1 = Ki − 1i�mi(W
n+1
i )T (26)

for all 1i satisfying 0 , 1i , 10.
Multiplying equation (26) by B and adding A results in

(A − BKT
i+1) = (A − BKT

i ) + 1iBW n+1
i �mi (27)

Thus, the eigenvalues of the system at iteration (i + 1) are
related to the eigenvalues at iteration i according to

l(A − BKT
i+1) = l((A − BKT

i ) + 1iBW n+1
i �mi) (28)

On the other hand, it is a fact that the eigenvalues of a matrix
are continuous functions of its entries. This means that the
eigenvalues of the system at iteration (i + 1) are continuous
functions of 1i which coincide with the eigenvalues
at iteration i for 1i = 0. Then if 1i � 0, the eigenvalues
of (A − BKT

i+1) move continuously towards the eigenvalues

of (A − BKT
i ). Since Ki corresponds to a stable closed-loop

system, there exists an 10 for which the closed-loop stability
is guaranteed for all 1i satisfying 0 , 1i , 10.

3.4 On selection of step-size

The above discussion shows that convergence and stability
are ensured for a sufficiently small selection of step-size mi.
Further improvements can be made using the so-called
strong Wolfe conditions. Rewrite (21) in the form

Ki+1 = Ki + mipi where pi = −(W n+1
i )T (29)

Lemma 3 [15]: Suppose that J : R2n � R is continuously
differentiable. Then pi defined in equation (29) is a descent
direction at Ki. This means that

J (Ki+1) ≤ J (Ki) (30)

for sufficiently small mi.
IET Control Theory Appl., 2011, Vol. 5, Iss. 2, pp. 323–333
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Definition 4 [15]: The strong Wolfe conditions require mi to
satisfy

J (Ki + mipi) ≤ J (Ki) + c1mip
T
i ∇J (Ki) (31)

|pT
i ∇J (Ki + mipi)| ≤ c2|pT

i ∇J (Ki)| (32)

with 0 , c1 , c2 , 1. The first inequality is called the
sufficient decrease condition and the second one is called
the curvature condition.

Lemma 5 [15]: Suppose that J : R2n � R is continuously
differentiable. Let pi be a descent direction at Ki, and assume
that J is bounded below along the ray {Ki + mpi|m > 0}.
Then if 0 , c1 , c2 , 1, there exist intervals of step lengths
satisfying the strong Wolfe conditions.

3.5 Rate of convergence

It is generally difficult to predict the rate of convergence of
the algorithm. The following theorem provides hints on this
issue.

Theorem 6 [15]: Suppose that J : R2n � R is twice
continuously differentiable, and that the iterates generated
by the steepest descent method with exact line search
(mi = argmin{J (Ki + mpi)}) converge to a fixed point K∗

where the Hessian matrix ∇2J (K∗) is positive definite. Then

|J (Kn+1) − J (K∗)| ≤ ln − l1

ln + l1

( )2

|J (Kn) − J (K∗)| (33)

where l1 ≤ l2 ≤ · · · ≤ ln are the eigenvalues of the Hessian
matrix ∇2J (K∗).

In general we cannot expect the rate of convergence to
improve if an inexact line search based on strong Wolfe
conditions is used.

3.6 Estimation of Hessian matrix

The previous discussion in Sections 3.2 and 3.3 shows that
convergence of the proposed algorithm and stability of the
closed-loop system are guaranteed as long as the matrix mi in
(21) is positive definite and small for all iterations. The most
straightforward selection for the positive-definite matrix mi is
mi = eI , where I is the identity matrix and e is a small
positive number. At every iteration i, the value of e is
decreased if the norm of the gradient vector does not
decrease or if the stability condition is violated. Both these
conditions are easy to verify. However, the algorithm with
this process may become too slow and the convergence rate
will become low. This section provides an alternative for
choosing the positive definite matrix mi based on the concept
of the Hessian matrix, which results in a fast convergence rate.

It is well known that, for a quadratic cost function, the best
option for the matrix mi in the gradient method is the inverse
of the Hessian matrix Hi = ∇2J (Ki) = (∂2J/∂K2)(Ki). The
difficulty is, however, in calculating this matrix. Here a
method is presented that estimates the Hessian matrix using
m previous iterations of the algorithm. Denote the gradient
function of J as ∇J (K) = (∂J/∂K)(K). Then a linear
approximation yields

∇J (K) ≃ (K − Ki)
THi + ∇J (Ki) (34)
IET Control Theory Appl., 2011, Vol. 5, Iss. 2, pp. 323–333
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We pick the best Hi that satisfies this approximation at m
iterations prior to Ki, that is {Ki−1, . . . , Ki−m}. Such an Hi
is the one that minimises

min
Hi[<

n×n
‖Qi − DiHi‖ (35)

where Qi and Di are m × n matrixes and defined as

Qi =

∇J (Ki) − ∇J (Ki−1)

∇J (Ki) − ∇J (Ki−2)

. . .

∇J (Ki) − ∇J (Ki−m)

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠, Di =

(Ki − Ki−1)T

(Ki − Ki−2)T

. . .

(Ki − Ki−m)T

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

(36)

The solution to (35) is the pseudoinverse of Di multiplied by
Qi. Hence, the Hessian matrix is approximated as

Hi = (Di
TDi)

−1Di
TQi (37)

There is, however, no guarantee that Hi evaluated from (37)
remains symmetric and positive definite. To overcome these
two problems, the Hessian matrix can be obtained from the
modified equation

�Hi = aI + Hi + HT
i

2
(38)

where a is positive gain and greater than −lmin((Hi + HT
i )/2)

if (Hi + HT
i )/2 is not positive definite. When (Hi + HT

i )/2 is
positive definite, then a = 0. The matrix �Hi in (38) may or
may not be an exact estimation of the Hessian matrix;
nevertheless, it can carry the information of the Hessian
matrix and hence can result in a much quicker convergence
of the algorithm.

3.7 Further discussion

The gradient method is very simple to implement and its
memory usage is very low, making it attractive for large
systems. The linear rate of convergence and the possibility
of local minima are, however, its main drawbacks. Higher
order methods such as Newton’s method and quasi-Newton
methods can be used to achieve faster convergence at the
cost of more complexity. The idea of estimating the Hessian
matrix in Section 3.6 is the same as the quasi-Newton
method and it increases the convergence speed-specially
around the optimal point. When the controller parameters
are far away from the optimal parameters, the estimated
Hessian may not be positive definite, and then according to
the proposed modifications, the search direction may
become close to the simple scalar step-size because the aI
term is dominant. But as the parameters become closer to
the optimal point, the estimated Hessian matrix becomes
similar to the real Hessian matrix and the convergence rate
becomes super-linear.

One may use any other numerical optimisation technique
such as the conjugate gradient approach to approximate the
Hessian matrix to improve the convergence rate.
Furthermore, the Hessian matrix can be precisely computed
using the sensitivity analysis approach too. Namely, similar
to equation (20), one can derive the corresponding ordinary
differential equations for the Hessian matrix and compute it
at the terminal time, which in turn require solving
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(n + 1)(n2 + n + 1) ordinary differential equations (ODEs)
that is (n + 1)n2 more ODEs than the proposed algorithm of
the paper.

4 Numerical results

This section studies the feasibility of the proposed algorithm
in the context of a flexible-joint single-link arm. In this study,
the ability of the proposed algorithm to handle non-quadratic
index functions is also illustrated. Moreover, an extension of
the proposed algorithm to optimising the feedback linearising
transformation z = f(x) is also carried out.

4.1 Case study

Consider the mechanical system of Fig. 1 which represents a
link driven by a motor through a torsional spring conveniently
called a single-link flexible-joint manipulator in the vertical
plane [14]. The motion equations of the manipulator are

I q̈1 + MgL sin (q1) + k(q1 − q2) = 0
J (̈q2) − k(q1 − q2) = u

{
(39)

Defining the state vector x = [q1 q̇1 q2 q̇2]T, the equations can
be easily derived by a fourth-order model of the form
ẋ = f (x) + g(x)u in which f and g are given as f = [x2, −
a sin(x1) − b(x1 − x3), x4, c(x1 − x3)]T and g = [0, 0, 0, d]T

where a,b,c,d are some positive constants determined by the
link physical quantities as described by a = MgL/I ,
b = k/I , c = k/J , d = 1/J . The state vector is defined as
x = [q1 q̇1 q2 q̇2]T and the input signal is u. The parameters
M, I, L, k, J, variables q1, q2 and the input signal u are
shown in Fig. 1. In view of the fact that the unforced
system has an equilibrium point at x = 0, we expect to find
a finite energy input to regulate the arm from any arbitrary
‘small’ initial value to zero. Simple derivations show that

adf g = [f , g] = − ∂f

∂x
g = [0 0 −d 0]T

adf 2 g = [f , adf g] = − ∂f

∂x
adf g = [0 bd 0 −cd]T

adf 3 g = [f , adf 2 g] = − ∂f

∂x
adf 2 g = [−bd 0 cd 0]T

(40)

It is easy to verify that the matrix (g adf g adf 2 g adf 3 g) has
full rank for all x [ R4 and the set {g, adf g, adf 2 g} is
involutive for all x [ R4. Thus, both conditions for the
existence of a feedback linearising transformation are
satisfied for all x [ R4 that guarantees existence of a
function h(x) satisfying (∂h/∂x)(g, adf g, adf 2 g) = 0.
Expansion of these partial differential equations will restrict
h(x) = h(x1), that is only a function of x1. The control

Fig. 1 A flexible-joint mechanism [14]
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signal is obtained from h(x) using (2) as below

u =
v − Lf 4 h(x)

LgLf 3 h(x)
=

−
∑4

i=1 kizi − Lf 4 h(x)

LgLf 3 h(x)
(41)

Note that the new input signal v = −KTz = −
∑4

i=1 kizi is
substituted in (41) where the relationship between the new
state vector z and h(x) is given by (2) and (6). One can
deduce from (41) that scaling the function h(x) does not
change the control signal; thus, without loses of generality
it can be assumed that h(0) = 0 and (∂h/∂x1)(0) = 1. A
selection of h(x) = x1 holds for all conditions and is
considered here. In Section 4.4, we will discuss how to
optimally choose h(x) as well. Thus

z1 = h(x) = f1(x) = x1

z2 = f2(x) = Lf z1 = x2

z3 = f3(x) = Lf z2 = −a sin x1 − bx1 + bx3

z4 = f4(x) = Lf z3 = −ax2 cos x1 − bx2 + bx4

(42)

The control signal u is now a function of x and K as
u = u(x, K) and the objective is to locate the optimal K that
minimises the cost function

J (K) =
∫1

0

[u2(x, K) + xTQx]dt (43)

for a given positive-definite matrix Q. The stability
requirement on the eigenvalues of A − BKT poses a
constraint on the elements of K as

k4k3k2 − (k2
2 + k2

4 k1) . 0, ki . 0, i = 1, 2, 3, 4 (44)

The constraint (44) is derived using the Routh–Hurwitz
criterion and ensures stability of the closed-loop system.
Using the same notations introduced in the previous
section, we have

F(x, K) = f (x) + g(x)u(x, K)

G(x, K) = u(x, K)2 + b‖x‖2
2

(45)

where a selection of Q = bI (b > 0) is made for simplicity.

4.2 General simulations

The results of computer simulations of the proposed
algorithm on the above case study are presented in this
section. Numerical values of simulation are b = 3 (for the
cost function), x0 = [1 0.7 0.1 0.2] (initial state) and
Tf = 40s (final time). The physical parameters a, b, c, d are
estimated as 5, 0.5, 0.1, 1, respectively, from the real
physical quantities. The initial value for controller
coefficients K is randomly selected as long as the stability
requirement (44) is satisfied. Two cases are considered:
Case I. mi = 1iI . Case II. mi = H−1

i . For the first case, 1i is
primarily set at 0.0001 and it remains constant as long as
the sequences of Ji = J (Ki) are decreasing. When this
sequence does not decrease, 1i is scaled by g where g , 1.
We chose g = 0.9 in this simulation. The scaling with g
keeps going until the sequence again starts decreasing.
IET Control Theory Appl., 2011, Vol. 5, Iss. 2, pp. 323–333
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In the second case, the parameter a in (38) is set at 0.1 when
(Hi + HT

i )/2 is not positive definite.
In Fig. 2, the solid curve and dashed curve show the

evolution of the cost function for Cases I and II,
respectively. Also, Fig. 3 shows the variations of the norm
of the gradient vectors as iterations go on for both cases. In
Case II, first the algorithm is run with fixed step size
(similar to Case I) for the first m iterations in order to have
m previous iterations information to estimate the Hessian
matrix. That is why both simulations show identical results
till the fifth iteration (m =5). Case II, which is based on
estimation of the Hessian matrix, converges significantly
faster than the first case. Within about 15 iterations, the
gradient vector becomes sufficiently small and the
algorithm can be stopped. The obtained controller is
Kopt = [1.92 5.05 5.89 1.23] and the minimum value of the
cost function is about Jmin = 422.

To compare the results with those of an optimally designed
LQR controller, the Matlab command lqr is used to obtain the
optimal controller KLQR = [1.732, 4.943, 6.1897, 3.9216]
with the same b. This controller results in a value of
JLQR = 1630 for the same cost function J(K ) given in (43).
The index function is improved about four times by the
proposed controller.

The time responses of the closed-loop control systems,
using both the designed controller, using the proposed
algorithm and the LQR controller, are obtained and shown

Fig. 2 Evolution of the cost function Jx for mi ¼ 1iI (solid curve)
and mi ¼ Hi

21 (dashed curve)

Fig. 3 Evolution of the gradient norm ‖∇Jx(Ki)‖ for mi ¼ 1iI (solid
curve) and mi ¼ Hi

21 (dashed curve)
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in Figs. 4 and 5. In Fig. 4 parts (a) and (b) depict the state
variables, and in Fig. 5 parts (a) and (b) show the control
signals for both methods. Comparing with the LQR
responses, variations of the state variables as well as the
control signal are within a much smaller range in the
proposed controlled system.

We also repeated the simulation for different initial
conditions. The results confirm robustness of the controller
gains to a wide range of initial conditions. Some cases are
reported below as examples.

x0 = [0.5, 1, −0.1, 0.1]T, Kopt = [1.96, 5.56, 6.26, 1.46]T

J (KLQR)= 1216, J (Kopt)= 146

x0 = [0.7, −1, 0.2, 0.4]T, Kopt = [1.98, 5.58, 6.23, 1.41]T

J (KLQR)= 2029, J (Kopt)= 374

x0 = [0.4, 0.4, 0.1, 0.1]T, Kopt = [1.96, 5.57, 6.27, 1.43]T

J (KLQR)= 797, J (Kopt)= 56

4.3 Non-quadratic cost functions

The formulation proposed in this paper is not restricted to
quadratic cost functions. The method can be applied to any
cost function as long as the cost function can be formulated
as a smooth function of unknown parameters with the
possibility of obtaining its partial derivatives with respect to
those parameters. This is a strong feature, which is studied
in this section by way of an example.

The previous section showed how the proposed controller
can improve LQR performance. It is observed from the last
two figures that improvement is obtained at the expense of
some higher frequency dynamics. To control the variations
of input signals, the cost function can be modified as

J (K) =
∫1

0

[u2(x, K) + du̇2(x, K) + xTQx]dt (46)

where u̇(x, K) is the time derivative of the control signal. This
signal can be obtained from

u̇(x, K) = ∂u(x, K)

∂x
ẋ = ∂u(x, K)

∂x
F(x, K) (47)

where F(x,K) is introduced in (45). The partial derivative of
this term with respect to K can thus be computed.

State variables and the control input of the closed-loop
control systems using the designed controller subject to a
new cost function (with d = 0.3) are shown in (Fig. 6). The
results show that the control signal is smoother and
generates smoother states as compared with the previous case.

4.4 Optimising the linearising transformation

The feedback linearising transformation z = f(x) is not
unique. For the example discussed in this section, h(x) can
be any smooth function of x1. Our previous study was
performed based on the simplest selection which is
h(x) = x1. The next straightforward candidate is

h(x) = x1 +
∑N

i=1

uix
i+1
1
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which remains a smooth and well-defined function (global
diffeomorphism) under some conditions. It is possible to
extend the method of this paper to obtain optimum values
of ui’s.

Define Q = [ u1 u2 . . . uN ]T. Then the closed-loop
equation is

ẋ = F(x, K, Q) (48)

The task of the optimal controller is to minimise the

cost function

J (K , Q) =
∫Tf

0

G(x, K, Q)dt (49)

A similar formulation to what was presented before can be
used to obtain the set of parameters K and u. We avoid
repeating the formulations due to similarity with the
discussed case.

Fig. 4 State variables

a Proposed controller
b LQR method

Fig. 5 Control signal

a Proposed controller
b LQR method
330 IET Control Theory Appl., 2011, Vol. 5, Iss. 2, pp. 323–333

& The Institution of Engineering and Technology 2011 doi: 10.1049/iet-cta.2009.0242



www.ietdl.org
The method is applied to the case-study example with a
selection of h(x) = x1 + ux3

1. The same quadratic cost
function with the given system parameters are used
for simulation, Fig. 7. The value of uopt = 0.018 is obtained

and the optimum controller gains are Kopt =
[ 2.05 5.53 6.01 1.49 ]T. The cost function is reduced
to Jmin = 294, which shows about 30% improvement as
compared with the previous minimum value of 422.

Fig. 7 Controller design using the optimal feedback-linearisation transformation of the form h( x) = x1 + ux3
1

a State variables
b Control signal

Fig. 6 Controller design using the modified cost function introduced in equation

a State variables
b Control signal
IET Control Theory Appl., 2011, Vol. 5, Iss. 2, pp. 323–333 331
doi: 10.1049/iet-cta.2009.0242 & The Institution of Engineering and Technology 2011



www.ietdl.org
Fig. 8 Controller design using the particle swarm optimisation method

a State variables
b Control signal
Some results for different initial conditions are given
below.

x0 = [0.5, 1, −0.1, 0.1]T, uopt = 0.0182, J (KLQR) = 1216

J (Kopt) = 146, J (Kopt, uopt) = 124

x0 = [0.7, −1, 0.2, 0.4]T, uopt = 0.0209, JLQR = 2029

J (Kopt) = 374, J (Kopt, uopt) = 196

x0 = [0.4, 0.4, 0.1, 0.1]T, uopt = 0.0124, JLQR = 797

J (Kopt) = 56, J (Kopt, uopt) = 51

4.5 Comparison with the PSO algorithm

The particle swarm optimisation (PSO) algorithm is a
population-based evolutionary algorithm that was developed
from research on swarm such as fish schooling and bird
flocking [16, 17]. It has become one of the most powerful
methods for solving optimisation problems. The method is
proved to be robust in solving problems featuring non-
linearity and non-differentiability, multiple optima and high
dimensionality. The advantages of PSO are its relative
simplicity and stable convergence characteristics with good
computational efficiency [18].

The proposed method of the paper in the context of the
studied numerical example is compared with the PSO
technique. The PSO obtained the optimal coefficient
K ¼ [32.95 26.19 12.62 4.73] after 15 000 iterations,
whereas the proposed algorithm reaches the same optimal
value of cost function in less than 20 iterations. The
evolvement of state variables and control signal for the
PSO-based designed controller are shown in Fig. 8.
Although the controller gains are very different from those
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obtained by the proposed method, the time responses of the
two methods are very close.

Each iteration of the PSO requires an ODE of order n to be
solved numerically while in each iteration of the proposed
algorithm an ODE of order (n + 1)2 must be solved. This,
however, does not demerit the proposed algorithm because
solving an ODE in general is relatively a cheap process and
solving an ODE with a large number of states can be done
in parallel (thanks to the recent technology of multi-core
process units). Moreover, the PSO algorithm, similar to any
other evolutionary algorithm such as the genetic algorithm,
requires huge storage and it also suffers from the same
problem of trapping in local minima within a finite number
of iterations.

5 Conclusion

The problem of designing a suboptimal state-feedback
controller is addressed for a class of non-linear systems
characterised by those that can be linearised using the
input-state linearisation technique. The controller is in the
form of a linear feedback on the state variables of the
linearised system. The best coefficients that minimise a
smooth cost function (of the non-linear system states and
input) are obtained using a recursive algorithm that is based
on gradient descent. A method for estimating the Hessian
matrix to improve the algorithm convergence rate is also
presented. It was shown that the proposed method can be
used to optimise the linearising transformation as well. The
simulations performed on a flexible-joint robot arm showed
that the minimum value of the cost function can be reduced
from 1600 (offered by the LQR technique) to about 300.
The proposed technique can also handle non-quadratic cost
functions, a feature that can be helpful in reaching different
control goals, as confirmed in the paper. As compared with
the evolutionary type algorithms such as genetic algorithm
IET Control Theory Appl., 2011, Vol. 5, Iss. 2, pp. 323–333
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and particle swarm optimisation, the proposed algorithm is
much faster and reaches the solution in a fewer number of
iterations but it engages a solution of differential equations
of higher order. As compared with the traditional method of
Jacobian linearisation and designing an optimal controller
for the linear system, the proposed method has the
advantage of guaranteeing global stability for the whole
region where the feedback linearising transformation is
valid, and the method also enjoys independence from any
particular operating point. As future work, we can suggest
the design of a state observer for cases where the state
variables are not available. Using a non-linear observer with
tunable constant gains and augmenting its states to the
actual dynamic system, one can extend the proposed
method to the design of a state observer.
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